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Abstract
Humans and artificial intelligence agents increasingly collaborate
in morally sensitive situations such as firefighting. These agents can
often perform tasks with minimal human control, challenging ac-
countability and responsibility. Combining higher agent autonomy
levels with meaningful human control can address such challenges.
For example, agents can allocate decisions to themselves in less
morally sensitive situations and to humans in more sensitive ones.
However, how to responsibly and effectively design and implement
agents for this dynamic task allocation remains unclear, with their
autonomy level and provided explanations being crucial considera-
tions. Therefore, we conducted experiments in simulated firefight-
ing environments where participants (n = 72) collaborated with a
more and less autonomous artificial moral agent. These agents pro-
vided no additional information, feature contributions, or potential
consequences when allocating decision-making. Our results show
that moral trust, agreement, and meaningful human control are
higher when the agent is less autonomous. Furthermore, people dis-
agree and reallocate decisions to themselves more when the agents
explain potential consequences, especially when moral sensitivity
is higher. Overall, our findings highlight that people prefer more
involvement over higher agent autonomy and take on greater moral
responsibility when agents explain potential consequences. These
actionable insights are crucial for designing transparent artificial
moral agents that enhance human moral awareness and respon-
sibility. Ultimately, this supports the responsible implementation
of dynamic task allocation in practice and enhances human-agent
collaboration in morally sensitive situations.
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1 Introduction
Humans and artificial intelligence (AI) agents are increasingly col-
laborating on complex tasks such as firefighting in situations too
dangerous for firefighters [45, 49, 91]. Several factors determine the
success of these human-agent teams, including situation awareness
and mutual trust [44, 78, 100]. The ultimate goal of human-agent
teams is to combine the strengths of humans and agents to accom-
plish what neither can do alone [3, 101].

Artificial moral agents are required when human-agent teams
operate in morally sensitive situations [4, 88]. These agents can
increasingly perform tasks with little human intervention and con-
trol [81]. However, humans must remain accountable when agent
behavior violates ethical guidelines [81, 89]. Therefore, increased
agent autonomy should always be combined with meaningful hu-
man control and moral responsibility [71, 81].

Dynamic task allocation can be useful for moral decision-making
in human-agent teams to ensure meaningful human control during
the collaboration [10, 27, 52, 89, 94, 102]. This approach involves
an artificial moral agent that allocates decisions to itself in less
morally sensitive situations and to a human in more sensitive ones,
while the human retains the power to override the agent [2, 88, 89,
92, 102]. Key factors include the agent’s explanations and level of
autonomy, yet their impact on dynamic task allocation remains
unclear [9, 23]. For example, the agent can be highly autonomous
and allocate most decisions to itself, but also operate with lowmoral
agency and keep humans more involved. Moreover, the agent can
explain what features contribute most to its allocations, but also
the potential consequences of decisions [10, 82, 89]. Given the
variety of possible autonomy levels and explanation types, it is
crucial to first investigate how these factors influence dynamic task
allocation. Such actionable insights can support the responsible
implementation of dynamic task allocation in practice and enhance
human-agent collaboration in morally sensitive situations.

We will fill these gaps by studying how agent autonomy (low
and high moral agency) and explanations (no additional informa-
tion, feature contributions, or potential consequences) influence
trust in agent capacity and morality, allocation agreement, and
meaningful human control. We believe feature contributions and
no additional information can lead to overtrust from overestimat-
ing agent capabilities and incomplete mental models, respectively
[14, 31, 51]. In contrast, we expect potential consequences to best
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support human moral awareness because this explanation closely
aligns with utilitarianism [18, 82]. Finally, we expect people to
prefer low artificial moral agency because they do not perceive
supervising autonomous artificial moral agents as collaboration
and prefer collaboration over supervision [8, 89]. Therefore, we
pre-registered the following hypotheses [97]:
H1a: Capacity trust will be higher in the less autonomous artificial
moral agent than the more autonomous agent.
H1b: Capacity trust will be higher in the more autonomous artifi-
cial moral agent that explains feature contributions or no additional
information rather than potential consequences.
H2a: Moral trust will be higher in the less autonomous artificial
moral agent than the more autonomous agent.
H2b: Moral trust will be highest in the more autonomous artificial
moral agent that explains no additional information, followed by
feature contributions, and lowest for potential consequences.
H3a: Agreement will be lower with the more autonomous artificial
moral agent than the less autonomous agent when both explain
potential consequences.
H3b: Agreement will be lower with the more autonomous artifi-
cial moral agent that explains potential consequences rather than
feature contributions or no additional information.
H4a: Meaningful human control will be higher over the less au-
tonomous artificial moral agent than the more autonomous agent.
H4b: Meaningful human control will be higher over the artificial
moral agents that explain potential consequences rather than fea-
ture contributions or no additional information.

2 Background
2.1 Meaningful Human Control
Meaningful human control assumes that humans should ultimately
remain in control of, and thus morally responsible for, the behav-
ior of autonomous agents [81]. Designing for meaningful human
control means ensuring that humans are aware and equipped to
act upon their moral responsibility [18]. Consequently, meaning-
ful human control can help prevent responsibility gaps in culpa-
bility, moral and public accountability, and active responsibility
[18, 80, 96]. This is especially important in human-agent teams
that operate in morally sensitive situations, where people’s welfare,
rights, and values may be directly or indirectly affected [30, 74, 89].

Early work on meaningful human control introduced two neces-
sary conditions: Tracking and tracing. Tracing requires at least one
human involved in the design or interaction with agents to have
a proper moral and technical understanding of their behavior, ca-
pabilities, and effects [15, 81]. Tracking requires agents to respond
to relevant moral reasons of humans who are then considered in
control of and morally responsible for the agents [60, 96]. These
reasons have been ordered based on their proximity and complex-
ity in influencing agent behavior. More proximal reasons, such as
intentions, are argued to be simpler and closer in time to agent
behavior than more distal reasons, such as values [60]. However,
this operationalization is ambiguous in distinguishing between mo-
tivating and normative reasons [10, 41, 96]. Therefore, it is argued
that tracing should be the sole determinant of responsibility [96].

Since the tracking and tracing conditions are quite abstract, more
actionable solutions for addressing meaningful human control in

human-agent teams have been proposed. These include team design
patterns to shapemeaningful human control [18, 93], value sensitive
design to respect norms and values [18, 35], machine ethics to
implement artificial moral agents [4, 18], explainable AI to achieve
human moral awareness [18, 27], and variable autonomy to allow
human control and responsibility [10, 18, 64]. These approaches
can also be combined, for example, during dynamic task allocation.

2.2 Dynamic Task Allocation
2.2.1 Variable Autonomy. Dynamic task allocation combines vari-
able autonomy, machine ethics, and explainable AI and can ensure
meaningful human control over artificial moral agents by promot-
ing accountability, responsibility, and transparency [64, 102]. It
allows humans to remain accountable for highly sensitive decisions
and agent behavior while reducing workload and avoiding unnec-
essary control [22, 105]. Variable autonomy enables the dynamic
adjustments and allows humans to (re)take control over agent be-
havior [64, 102]. This control is typically categorized as having
humans-in-the-loop, humans-off-the-loop, or humans-on-the-loop
[20, 26, 64]. Maintaining humans-in-the-loop requires informed
human approval for all elements of agent behavior, whereas al-
lowing humans-off-the-loop involves autonomous agents without
human involvement. Dynamic task allocation involves humans-
on-the-loop and requires a human supervisor who monitors and
influences agent behavior when necessary [26, 102].

Variable autonomy approaches define which aspects of agent au-
tonomy are adjusted, by whom, how, why, and when [12, 17, 21, 64].
Dynamic task allocation employs a mixed-initiative approach to
switch from agent decision-making in less morally sensitive sit-
uations to human decision-making in more sensitive situations
[59, 102]. The agent adjusts its autonomy when identifying situa-
tions as too sensitive and requiring human moral decision-making.
In contrast, the human adjusts agent autonomy when intervening
and reallocating decision-making [2, 88, 89, 102]. Finally, agent au-
tonomy is adjusted during active operation and in response to the
moral sensitivity of situations to ensure meaningful human control
preemptively [102].

2.2.2 ArtificialMoral Agents. Dynamic task allocation also requires
machine ethics to implement artificial moral agents. Machine ethics
aims to create autonomous artificial moral agents that make moral
and ethical decisions based on notions of right and wrong [4].
Such agents can be developed by constraining their actions or
operational environment to avoid unethical behavior [88]. However,
they can also be implemented top-down by incorporating ethical
principles in their decision-making processes, allowing for intrinsic
morality [66, 89, 103]. Alternatively, artificial moral agents can be
developed bottom-up by learning morality from human behavior
and interactions [5, 25, 43, 55, 70, 103]. Finally, these methods can
be combined into hybrid approaches as well [7, 48, 88].

Achieving full artificial moral agency would require holding
agents accountable for their decisions [19, 24]. However, this con-
flicts with the goal of meaningful human control to identify respon-
sible humans to hold accountable, even when fully autonomous
agents violate ethical guidelines [81]. In contrast, some machine
ethics approaches focus on agents that support and enhance hu-
man moral agency rather than putting ethics into agents [40, 82].
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The discussion on the feasibility and desirability of full or partial
artificial moral agents, or agents that enhance human moral agency,
remains active [66, 88, 95, 103]. We believe artificial moral agents
should always be combined with meaningful human control, for
example, using dynamic task allocation [89, 94, 102]. This ensures
that agent behavior can be meaningfully influenced by humans and
traced back to human responsibility and understanding [18, 81].

2.2.3 Explainable AI. Finally, dynamic task allocation requires ex-
plainable AI [89, 102]. Explainable AI aims to make agents more
understandable by explaining their behavior, ideally fostering ap-
propriate trust [6, 38, 50, 64]. Without such explanations, humans
attribute agent behavior by assigning mental states that explain
the behavior [6, 56, 57, 65]. In contrast, providing explanations
helps humans build a Theory of Mind of agents and understand
their capabilities and limitations [6]. Explainable AI comprises gen-
eration, communication, and reception phases [68]. Explanation
generation involves extracting explanations from agents, such as
which features influence their behavior [1, 89]. Explanation com-
munication concerns the content and form of explanations, such
as textual, visual, or hybrid [77, 84]. Finally, explanation reception
concerns empirical research on explanation effectiveness, which is
still lacking in realistic human-agent teaming scenarios [67, 68].

Dynamic task allocation requires explainable AI to support hu-
man moral supervision by explaining decisions, allocations, and
the moral context, enabling humans to exercise control properly
[89, 102]. These explanations should not influence humans to hold
the artificial moral agent accountable but instead achieve human
moral awareness by fulfilling the epistemic condition of direct
moral responsibility [10, 53, 76]. More specifically, they should
ensure humans are aware that (1) agent behavior traces back to
them and (2) they are in control and responsible for all outcomes
[10, 76, 89, 96, 102]. Finally, these explanations should also sup-
port situation awareness and appropriate trust calibration without
overloading humans’ cognitive abilities [34, 46, 51, 64, 99].

3 Method
3.1 Design
We conducted an experiment to investigate how agent explana-
tions and autonomy influence the dynamic allocation of moral
decision-making in human-agent teams. The experiment had a 3x2
mixed design, with agent autonomy as the within-subjects inde-
pendent variable and agent explanations as the between-subjects
variable. Agent autonomy consisted of two conditions (low moral
agency and high moral agency) and agent explanations of three
conditions (no additional information, feature contributions, or
potential consequences). We measured trust in, agreement with,
and meaningful human control over the artificial moral agents as
dependent variables. Moreover, we counterbalanced the order of
tasks, the order of collaboration with the artificial moral agents, and
the names assigned to the agents. We pre-registered our hypotheses
and methodology at the Open Science Framework [97].

3.2 Participants
We recruited 72 participants from our university and personal con-
tacts (34 female and 37 male participants, one preferred not to say).

Seventeen participants were 18-24 years old, 51 were 25-34 years
old, three were 35-44 years old, and one preferred not to say. One
participant obtained a high school diploma, two participants some
college credit but no degree, one participant an Associate degree,
21 participants a Bachelor’s degree, 44 participants a Master’s de-
gree, two participants a PhD degree or higher, and one participant
preferred not to say. Seven participants had no gaming experience
at all, 21 participants a little, 21 participants a moderate amount,
11 participants a considerable amount, and 12 participants a lot.
All participants signed an informed consent form approved by our
university’s ethics committee (ID 3670).

We balanced demographics, risk propensity [61], propensity to
trust technology [63], and utilitarianism [47] across explanation
and counterbalancing conditions to reduce the risk of confounds.
We report these statistics in the Appendix. Although our sample
was not diverse in all demographic factors (i.e., age and education),
it captured meaningful variation in biological and psychological
traits relevant to moral psychology and human-agent teaming [75].
More specifically, we ensured a well-balanced gender distribution
and variability in participants’ risk propensity (IQR = 1, 1-9 scale),
propensity to trust technology (IQR = 0.87, 1-5 scale), and utilitari-
anism (IQR = 0.84, 1-5 scale).

3.3 Hardware and Software
We used the Python package Human-Agent Teaming Rapid Experi-
mentation to generate 2D grid worlds simulating firefighting tasks
[42]. Furthermore, we used Qualtrics to create our surveys and R
to implement moral sensitivity predictions and agent explanations.
We also Dockerized our testbed to facilitate reproducibility and
future research [98]. Finally, we used a Dell Latitude 7410 laptop
running Ubuntu 20.04 LTS to conduct the experiments.

3.4 Environment and Task
The experiment involved two simulated firefighting tasks based on
the actual collaboration between the Rotterdam Fire Brigade and
their firefighting robot. We built two environments with 14 offices,
one safe zone, and multiple victims and fires (Figure 1). We created
four victim types represented by different icons (older woman,
older man, woman, and man) and two injury types represented by
different colors (mildly and critically injured). Finally, we added
one artificial moral agent to each environment (Brutus or Titus).

The task objective was to search and rescue the victims in the 14
offices. Participants supervised and collaborated with the artificial
moral agents using buttons and a messaging interface (Figure 2). Six
firefighting features characterized the tasks, displayed above the
messaging interface. These features were the resistance to collapse,
temperature, number of victims, smoke spreading speed, fire source
location, and distance between a victim and the fire source.

The resistance to collapse reflected how long the building could
burn before collapsing and counted down from 150 minutes. Six
seconds of real-time equaled one minute of game time, so each task
took a maximum of 15 minutes. The temperature was expressed
relative to a safety threshold and depended on the resistance to
collapse and the extinguished fires. This feature was close to (<≈)
or higher than (>) the safety threshold. The number of victims
was known beforehand for one of the tasks, but unknown for the
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Figure 1: Half of the two task environments used for the
experiments, one with Brutus (top) and Titus (bottom).

other. The tasks automatically ended after rescuing all victims or if
the resistance to collapse ran out. The smoke spreading speed was
slow, normal, or fast, and was updated when finding fire or smoke.
The fire source location was either unknown or found. Finally, the
distance between a victim and the fire source was small if the fire
originated in adjacent offices; otherwise, the distance was large.

Four decision-making situations occurred during the tasks. The
first was whether to continue the current deployment or switch to
the alternative one (Figure 2). The agents always started with an
offensive deployment to search and rescue victims; the alternative
was a defensive deployment to extinguish fires. This situation oc-
curred four times with intervals of 20 in-game minutes. The second
situation was whether to extinguish or evacuate first whenever
the agents found mildly injured victims in burning offices. Extin-
guishing first was sometimes followed by iron falling from the roof
and blocking the exit; evacuating first was sometimes followed
by the fire expanding. The third situation was whether to send in
firefighters to locate the fire source. This situation occurred only
once after 30 minutes. Finally, the fourth situation was whether to
send in firefighters to rescue critically injured victims (Figure 2).
Participants could safely send in firefighters when the temperature
was not higher than the safety threshold or when the temperature
was higher but the agents extinguished at least one big fire with
a smoke plume. However, a new smoke plume appeared at one of
the other big fires if not extinguished with 30-35 minutes left. The
temperature started close to the safety threshold but exceeded the
threshold with 50 minutes left. However, the temperature became
close to the threshold again if the agents extinguished more than
80% of the fires with 25 minutes left. Finally, the firefighters always
aborted their tasks when sent into too dangerous circumstances.

3.5 Agent Behavior
The agents always allocated decision-making to themselves or the
participants based on their predictions of the moral sensitivity of
situations. Implementing agent behavior for this dynamic task al-
location required modeling moral sensitivity. However, our core
contribution lies not in the modeling itself, but in the study of
agent autonomy and explanations during dynamic task allocation.
Accordingly, our priority was to ensure that the agents’ moral sensi-
tivity models were reasonable, interpretable, and capable of varying
autonomy and generating explanations. Therefore, we grounded
our modeling approach in input from expert firefighters, ensuring
that the models captured relevant situational features and decision-
making dynamics in a concrete and realistic context.

To implement these models, we collaborated with the Rotterdam
Fire Brigade and used a hybrid crowdsourcing approach to identify
moral features as predictors of moral sensitivity (see Appendix for
survey). This resulted in four linear regression functions to predict
moral sensitivity, each corresponding to a decision-making situa-
tion explained in Section 3.4. We first asked the expert firefighters
which features they considered most important, yielding an initial
set of four features per decision-making situation. We then created
a survey that presented two instances of the four decision-making
situations. We characterized each situation using different combi-
nations of the feature values to ensure sufficient variation. Next,
participants (n = 54) specified howmorally sensitive they rated each
situation on a 7-point scale ranging from not morally sensitive to
extremely morally sensitive. Moreover, they explained what feature
changes would result in alternative ratings and how comfortable
they would feel if artificial moral agents made such decisions.

Ultimately, we ended up with 1153 data points. Using this data,
we built statistically significant regression models for each of the
four situations, removing the non-significant predictor fire duration.
For deciding the deployment tactic, we modeled moral sensitivity
(𝑀) as a function of the victims (𝑉 ), resistance to collapse (𝑅), and
fire source location (𝐿):

𝑀 = 0.37 + 3.74 ·𝑉𝑢 + 4.63 ·𝑉𝑜 + 4.65 ·𝑉𝑚 + 0.002 ·𝑅 + 0.39 · 𝐿𝑢 (1)

Victims consisted of the categories unknown (𝑉𝑢 ), one (𝑉𝑜 ), multiple
(𝑉𝑚), and none (as reference). Fire source location consisted of
unknown (𝐿𝑢 ) and known (as reference). For deciding to extinguish
or evacuate first, we modeled moral sensitivity (𝑀) as a function
of the number of victims (𝑉 ), smoke spreading speed (𝑆), and fire
source location (𝐿):

𝑀 = 2.20 + 0.31 ·𝑉 − 0.41 · 𝑆𝑛 − 2.22 · 𝑆𝑠 + 1.73 · 𝐿𝑢 (2)

Smoke spreading speed consisted of normal (𝑆𝑛), slow (𝑆𝑠 ), and fast
(as reference). Fire source location consisted of unknown (𝐿𝑢 ) and
known (as reference). For deciding to send in firefighters to locate
the fire source, we modeled moral sensitivity (𝑀) as a function of
the victims (𝑉 ), resistance to collapse (𝑅), and temperature (𝑇 ):

𝑀 = 3.58+2.27·𝑉𝑢+3.76·𝑉𝑜+3.26·𝑉𝑚−0.020·𝑅−0.61·𝑇ℎ−1.48·𝑇𝑙 (3)

Victims consisted of unclear (𝑉𝑢 ), one (𝑉𝑜 ), multiple (𝑉𝑚), and none
(as reference). Temperature consisted of higher than (𝑇ℎ), lower than
(𝑇𝑙 ), and close to the safety threshold (as reference). For deciding to
send in a firefighter to rescue, we modeled moral sensitivity (𝑀)
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as a function of resistance to collapse (𝑅), temperature (𝑇 ), and
distance between victim and fire source (𝐷):

𝑀 = 6.47 − 0.050 · 𝑅 − 1.91 ·𝑇𝑙 − 0.48 · 𝐷𝑠 (4)

Temperature consisted of lower (𝑇𝑙 ) and higher than the safety
threshold (as reference). Distance between victim and fire source
consisted of small (𝐷𝑠 ) and large (as reference).

We implemented these functions in the agents to allow predic-
tions of moral sensitivity, expressed on a scale from zero to six.
Next, we determined two moral sensitivity thresholds for allocating
decision-making, one for each agent autonomy condition. To deter-
mine these thresholds, we asked the participants how comfortable
they were with agents making decisions in the described situations,
on a scale from −3 (extremely uncomfortable) to +3 (extremely com-
fortable). A linear regression analysis showed that this comfort
would turn negative at a moral sensitivity of 4.2. Therefore, we
considered this the “appropriate” threshold to deviate from and de-
termine our low and high moral agency conditions. Ultimately, this
resulted in thresholds of 3.5 (low moral agency) and 5.0 (high moral
agency), both approximately equally far from 4.2 and intuitive as a
half or whole number. The agents only allocated decision-making
to the participants when the predicted moral sensitivity exceeded
these thresholds. However, participants could always intervene and
reallocate decision-making to themselves or the agents (Figure 2).

Except for the moral sensitivity predictions, the two agents were
deterministic, rule-based firefighting agents. They only differed
in terms of their moral agency. Both agents followed firefighting
guidelines as much as possible, moved to the closest unexplored
offices to search for fire or victims, and memorized all task details
during execution. Moreover, they could detect victims and fire
within one grid cell, iron debris within two grid cells, and offices and
smoke from anywhere. Finally, they could extinguish and remove
small fires and iron in five seconds, extinguish large fires in ten
seconds, and remove large iron debris in 15 seconds.

3.6 Agent Explanations
We generated three agent explanations for allocating decisions (Fig-
ure 2). All three conveyed information about the situation, decision
options, allocation, and predicted moral sensitivity. The first expla-
nation did not provide additional information and served as the
baseline. The second explanation visually added how much each
feature contributed to the predicted moral sensitivity and served as
a more technical explanation. The third explanation visually added
the potential positive and negative consequences of both decision
options and served as a more ethical explanation. In addition, the
agents always explained their behavior and decisions. For example,
that they navigated to offices to search for victims or fires.

We generated the explanations on feature contributions using
SHAP and our four regression functions [1]. This method started
from an expected prediction without conditioning on any features,
commonly set as the mean response value. Then, it determined how
much each feature changed the expected prediction. Therefore, we
referred to the expected prediction as the baseline moral sensitivity.
The final predicted moral sensitivity was obtained by summing the
baseline sensitivity and the individual contributions of each feature.
We manually generated the explanations on potential consequences

Figure 2: Feature contributions (top) and potential conse-
quences (bottom). The explanation without additional infor-
mation removed the images and sentence before that. The
top of the figure shows the situational features and values.

before the study, using our knowledge of the tasks. Finally, we
designed these two explanations to be as visually similar as possible.

3.7 Measures
We quantitatively measured trust in, agreement with, and mean-
ingful human control over the agents (Table 1). In addition, we
qualitatively collected participants’ observed differences between
the agents and preferred agent via open survey questions, and rea-
sons for behavior via interviews. We conducted these interviews
with a subset of 22 of the 72 participants. All survey questions
can be found in the Appendix. We subjectively measured trust in
the agents using the multi-dimensional measure of trust scale [58].

2306



FAccT ’25, June 23–26, 2025, Athens, Greece Verhagen et al.

Table 1: Summary of all quantitative measures described in Section 3.7.

Concept Measurement tool Scale Data type Computation

Capacity trust Multi-dimensional 0 - 7 or Subjective Mean of the eight survey questions
measure of trust scale [58] doesn’t fit

Moral trust Multi-dimensional 0 - 7 or Subjective Mean of the eight survey questions
measure of trust scale [58] doesn’t fit

Agreement rate Automatic logging during tasks 0 - 1 Objective Proportion of agent-allocated decisions
that participants did not override

Agreement Two questions about agreement 1 - 5 Subjective Mean of the two survey questions
and comfort with allocations

(a) Exertion of Experienced control survey [90] 1 - 5 Subjective Mean of the seven survey questions
operational control

(b) Involvement Situation awareness global 0 - 1 Objective Proportion of correct answers
assessment technique (SAGAT) [32]

(c) Agent SAGAT for explainable 0 - 1 Objective Proportion of correct answers
understanding artificial intelligence [79]

(d) Agent Automatic logging during tasks 0 - 1 Objective Correct behavior (rate) using:
interaction - no self-reallocations < 3.6 or < 4.2

- no agent-reallocations > 3.5 or > 5.0
- self-reallocations ≥ 4.2 and ≤ 5.0

(e) Moral responsibility Responsibility scale [85] 1 - 7 Subjective Mean of the two survey questions
understanding

Meaningful Cascade approach [15, 28] 0 - 1 Subjective min (min (min(a, b),min(c, d)) , e)
human control Objective

This scale distinguished between capacity and moral trust, each
measured by eight one-word items scored on a scale from 0 (not at
all) to 7 (very). Moreover, the scale provided the option does not fit,
which turned selected items into missing values. We computed the
means as the final capacity and moral trust scores.

We measured human agreement with the agents’ allocations
both objectively and subjectively. We objectively calculated the
agreement rate as the proportion of agent-allocated decisions that
participants did not override. This measure strongly aligned with
meaningful human control because it captured whether partici-
pants actively intervened rather than passively complied with the
allocations. Meaningful human control requires that humans re-
main aware and capable of acting upon their moral responsibility
by overriding agent behavior when necessary. By directly reflecting
human interventions, our agreement rate provided an objective and
behaviorally grounded measure of meaningful human control. For
subjective agreement, we asked participants about their agreement
and comfort with the agent allocations on a 5-point Likert scale
ranging from I disagree strongly to I agree strongly. We computed
the mean as the final subjective agreement score.

We used a combination of subjective and objective measures to
operationalize meaningful human control over the agents [102].
More specifically, we measured participants’ (a) exertion of opera-
tional control, (b) involvement, (c) understanding of the agents, (d)
interaction with the agents, and (e) understanding of their moral

responsibility. We subjectively measured (a) exertion of operational
control using the experienced control survey [89]. This survey in-
cluded seven questions on a 5-point Likert scale ranging from I
disagree strongly to I agree strongly, and assessed aspects such as
time pressure and decision comfort. We computed the mean as the
exertion of operational control score. We objectively measured (b)
involvement and (c) understanding of the agents using situation
awareness (of the agents) [32, 33, 79, 101]. More specifically, we cre-
ated multiple choice questions evaluating participants’ knowledge
of situational information and the agents’ behavior. These ques-
tions assessed each of the perception, comprehension, and projec-
tion levels [32]. The percentage of correct answers determined the
involvement and agent understanding scores. We objectively mea-
sured (d) interaction with the agents using correct behavior based
on the “appropriate” allocation threshold of 4.2. For high moral
agency, we considered self-reallocations below a sensitivity of 4.2
as inefficient interventions, no self-reallocations above 4.1 as missed
interventions, and agent-reallocations above 5.0 as inappropriate in-
terventions. For low moral agency, we considered self-reallocations
below a sensitivity of 3.6 and agent-reallocations above 3.5 as ineffi-
cient interventions. The correct behavior rate determined the agent
interaction score. Finally, we subjectively measured (e) understand-
ing of moral responsibility using the responsibility scale [85]. This
scale included two questions on a 7-point Likert scale ranging from
not at all to very, and asked participants how morally responsible
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they held themselves and the agents [85]. We computed the mean
as the understanding of moral responsibility score.

We determined the final meaningful human control score using
the cascade approach [15, 28]. We first normalized all measures to
a range of zero to one. Then, we determined temporary score (1) by
taking the minimum of measures (a) and (b). Next, we determined
the minimum of measures (c) and (d), and determined temporary
score (2) by taking the minimum of that value and temporary score
(1). Finally, we determined the minimum of temporary score (2)
and measure (e) as the meaningful human control score.

3.8 Procedure
Participants first answered the demographic, risk propensity, trust
propensity, and utilitarianism surveys. Next, they completed a tu-
torial to get familiar with the research environment. After this
tutorial, participants completed the two tasks. We paused each task
twice (after five and ten minutes) to ask the situation awareness
questions. During each pause, we asked participants eight ques-
tions, four for both types of situation awareness. Participants filled
out the surveys on trust, control, agreement, and responsibility
immediately after each task. We collected the qualitative data on
participants’ observed differences between the agents, preferred
agent, and reasons for behavior immediately after the final surveys.
The whole study lasted about an hour and was conducted in person.

4 Results
4.1 Counterbalancing and Completeness
We first examined whether the three counterbalanced factors (task
order, agent order, and agent-name pairs) influenced our measures.
However, we did not find statistically significant differences across
any of these factors. Next, we explored whether agent explanation
or autonomy affected task completeness (automatically logged as
the proportion of rescued victims), which might influence trust.
We deliberately designed and extensively tested our tasks to be
challenging yet achievable, aiming to avoid low or highly varying
task completion rates. The observed ranges of task completeness
(82% to 100%, with most participants rescuing all victims) and time
taken (69% to 100%, with most participants taking around 94% of
the allowed time) indicated that we achieved this goal. Furthermore,
we did not find main effects or an interaction between agent expla-
nation and autonomy on task completeness. Detailed statistics for
these analyses are available in the Appendix.

4.2 Trust
Since the data was not normally distributed, we conducted a non-
parametric rank-based mixed ANOVA for both capacity and moral
trust (Figures 3A and B). Results showed no statistically significant
main effects of agent explanation (F(1.98) = 1.39, p = 0.25, effect
size = 0.19) and autonomy (F(1.00) = 0.89, p = 0.34, effect size =

0.11) on capacity trust, nor an interaction between them (F(1.98)
= 0.02, p = 0.98, effect size = 0.03). For moral trust, results showed
no statistically significant main effect of agent explanation (F(1.99)
= 1.36, p = 0.26, effect size = 0.19) or interaction effect between
explanation and autonomy (F(1.98) = 0.08, p = 0.92, effect size =
0.05). However, results did show a statistically significant main
effect of agent autonomy on moral trust (F(1.00) = 9.32, p < 0.005,

effect size = 0.36), revealing a significant difference in moral trust
between the high (mean rank = 63.75±42.65) and low (mean rank =
76.16±36.85) moral agency conditions. These results did not confirm
hypotheses H1a, H1b, and H2b, while confirming hypothesis H2a.

4.3 Agreement
Since the data was not normally distributed, we conducted the
non-parametric mixed ANOVA for both subjective and objective
agreement (Figures 3C and D). Results showed no statistically sig-
nificant main effect of agent explanation (F(1.97) = 0.23, effect size
= 0.08) or interaction between agent explanation and autonomy
(F(1.92) = 0.88, p = 0.41, effect size = 1.71) on subjective agreement.
However, results did show a statistically significant main effect of
agent autonomy on subjective agreement (F(1.00) = 7.64, p < 0.01,
effect size = 0.33), revealing a significant difference between the
high (mean rank = 64.56±42.81) and low (mean rank = 80.44±37.61)
moral agency conditions. For objective agreement, results showed
no statistically significant interaction effect between agent expla-
nation and autonomy (F(1.77) = 1.54, p = 0.22, effect size = 0.22).
However, results did show a statistically significant main effect of
agent autonomy on objective agreement (F(1.00) = 28.63, p < 0.0001,
effect size = 0.63), revealing a significant difference between the
high (mean rank = 57.7±40.90) and low (mean rank = 87.26±36.19)
moral agency conditions. Moreover, results showed a statistically
significant main effect of agent explanation on objective agreement
(F(1.95) = 3.81, p < 0.05, effect size = 0.34). Pairwise robust ATS
post-hoc comparisons revealed statistically significant differences
in objective agreement between the potential consequences (mean
rank = 59.02±38.33) and (1) feature contributions (mean rank =

78.14±41.84) (F(1.00) = 6.07, p < 0.05) and (2) no additional informa-
tion (mean rank = 80.34±40.89) (F(1.00) = 5.88, p < 0.05) conditions.
These results partially confirmed hypotheses H3a and H3b.

Following these pairwise comparisons, we conducted a chi-
square test of independence to examine the overall association
between agent explanations and human behavior (no interventions,
self-reallocations, or agent-reallocations). Results revealed a statis-
tically significant association (𝜒2(4) = 27.90, p < 0.0001, Cramer’s V
= 0.086). Pairwise comparisons using chi-square tests with Bonfer-
roni corrections revealed significant differences in human behavior
between the potential consequences and (1) feature contributions
(adj. p < 0.005) and (2) no additional information (adj. p < 0.0001)
conditions. Next, we conducted a residual analysis to examine what
drove these pairwise differences and if, within explanations, hu-
man behavior deviated from the overall expected frequencies. Re-
sults showed that explaining potential consequences led to more
self-reallocations than expected (Pearson residual = 3.85), while
providing no additional information led to fewer self-reallocations
than expected (Pearson residual = −2.26).

To further explore how agent explanations influenced self-
reallocations, we visualized self-reallocation percentages across
explanations, moral sensitivity, and agent autonomy (Figure 4). We
defined moral sensitivity “bins” representing meaningful intervals
and values, with a minimum of 12 and an average of 25 observa-
tions per “bin”. Results showed that potential consequences led to
higher self-reallocation percentages in most “bins” and for both
moral agency conditions. However, these differences were modest
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Figure 3: Effects of agent explanation and autonomy on the mean ranks of capacity trust (A), moral trust (B), subjective
agreement (C), objective agreement (D), and meaningful human control (E). Error bars represent the standard errors.
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Figure 4: Self-reallocation percentages per agent explanation and autonomy, grouped in four (left) or ten (right) “bins”.

for the low moral agency condition but increased beyond a moral
sensitivity of 4.1 for the high moral agency condition. More specif-
ically, potential consequences led to increased self-reallocation
percentages beyond a moral sensitivity of 4.1, while both feature
contributions and no additional information showed flat trends.

Finally, we qualitatively analyzed participants’ reported reasons
underlying no interventions and self-reallocations using reflexive
thematic analysis [13]. Reasons for no interventions mostly con-
cerned high trust in the agents and perceiving them as competent,
predictable, and ethical, irrespective of the agents’ explanations. In
contrast, the reasons for self-reallocations showed some variation
between explanations. These included task performance and safety
(two) and agent capability and alignment (three) when participants
received no additional information. One participant mentioned: "I
did not understand how the sensitivity was calculated, so per situa-
tion, I determined the appropriateness of agent decision-making."
When participants received the feature contributions, reasons in-
cluded task performance and safety (two), agent capability and
alignment (three), and human control and responsibility (four). Fi-
nally, the reasons for self-reallocations included agent capability
and alignment (five) and human control and responsibility (five)
when participants received the potential consequences. One partic-
ipant mentioned: "I reallocated this decision to myself because an
agent should not make highly sensitive decisions."

4.4 Meaningful Human Control
Since the data was not normally distributed, we conducted the
non-parametric mixed ANOVA (Figure 3E). Results showed no sta-
tistically significant main effect of agent explanation (F(1.97) = 1.76,
p = 0.17, effect size = 0.21) or interaction between explanation and
autonomy (F(1.96) = 0.04, p = 0.96, effect size = 0.03) on meaningful
human control. However, results did show a statistically signifi-
cant main effect of agent autonomy on meaningful human control
(F(1.00) = 4.98, p < 0.05, effect size = 0.26), revealing a significant
difference between the high (mean rank = 65.55±41.61) and low
(mean rank = 79.45±39.57) moral agency conditions. These results
confirmed hypothesis H4a but not H4b.

Next, we investigated which measures determined the meaning-
ful human control scores across agent explanation and autonomy
conditions. In general, agent understanding was the most frequent
cause (39.46%), followed by involvement and exertion of operational
control (19.05%), responsibility understanding (12.24%), and agent
interaction (10.20%). Exertion of operational control and agent in-
teraction were respectively more and less frequent causes for the
potential consequences (24.00% and 4.00%) than for the feature
contributions (16.67% and 10.42%) and no additional information
(16.33% and 16.33%) conditions. Finally, we observed differences
between the low and high moral agency conditions for exertion of
control (26.03% vs. 12.16%) and agent interaction (1.37% vs. 18.92%).
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4.5 Difference and Preference
Finally, we investigated whether participants observed the differ-
ence between the two agents and preferred one of them. Results
showed that only 52.78% of the participants observed the difference,
even though one allocated 70.62% of the decisions to humans and
the other only 18.58%. Among those who observed the difference,
57.89% preferred the less autonomous agent, 28.95% preferred the
more autonomous agent, and 13.16% had no preference.

5 Discussion and Conclusion
5.1 Discussion
5.1.1 Agent Autonomy. Our results indicate higher moral trust in
the less autonomous artificial moral agent (confirming H2a), sug-
gesting that participants perceive this agent as more ethical and
sincere than the more autonomous one. This differs from findings
that agents with higher agency and autonomy are blamed less than
those with lower agency and autonomy [104]. However, our task in-
cluded the opportunity to intervene, so increased disagreement with
the more autonomous agent may have resulted in this difference. In
contrast, we find no evidence that agent autonomy affects capacity
trust (not confirming H1a). This differs from predictions that people
will trust agents with higher agency and autonomymore to perform
competently [104]. We believe another performance-based factor,
agent behavior, contributed more to capacity trust than agent au-
tonomy [39]. The consistent behavior of following guidelines and
rescuing victims likely contributed significantly to both the high
capacity and moral trust ratings for the more (5.65±1.29, 5.44±1.22)
and less (5.92±0.87, 5.81±0.86) autonomous agents [73].

The results also show lower subjective and objective agreement
with the more autonomous artificial moral agent, irrespective of
its explanations (partially confirming H3a). For dynamic task al-
location, this suggests that people prefer more involvement over
increased agent autonomy. This is also supported by the 57.89% of
participants who preferred the less autonomous agent. This prefer-
ence aligns with research suggesting that people do not perceive
supervising a fully autonomous artificial moral agent as collabo-
ration [89] and prefer collaboration over supervision [8]. These
findings are promising for meaningful human control as they sug-
gest that people want to take responsibility for morally sensitive
decisions rather than rely on artificial moral agents [18, 71].

Furthermore, our results indicate higher meaningful human
control over the less autonomous artificial moral agent (confirm-
ing H4a). This suggests that increased human involvement dur-
ing moral decision-making in human-agent teams leads to higher
meaningful human control over the artificial moral agent, which
aligns with prior research [89]. Overall, participants achieve mean
meaningful human control scores of 46.90±11.97% over the more
autonomous agent and 50.58±10.46% over the less autonomous
agent. Given that the cascade approach emphasizes the weakest
aspects, these scores suggest moderate meaningful human control
with room for improvement [15, 16, 28]. Exertion of operational
control, which considered factors such as maintaining an overview
and experienced time pressure, is a main area for improvement with
the less autonomous agent [89]. Given the increased participant in-
volvement when collaborating with this agent, it is understandable
that the higher cognitive demands negatively affect these factors.

We believe more training and interactions with the less autonomous
artificial moral agent can combat these issues [20, 80, 102]. In con-
trast, interaction with the more autonomous agent requires im-
provement. This interaction required many interventions involving
self-reallocations when the moral sensitivity was 4.2 or higher.
However, participants only intervened with 26.99±29.70% of the
allocations within this range, suggesting that they struggled to
act upon their assumed responsibility. Therefore, we recommend
increasing human involvement during dynamic task allocation.

5.1.2 Agent Explanations. We find no evidence that agent expla-
nations affect capacity or moral trust (not confirming H1b and
H2b). This suggests that when artificial moral agents provide a
basic level of transparency, additional explanations do not sig-
nificantly enhance trust. These results align with [101] but also
contradict [11, 72] prior research. Perhaps the additional explana-
tions encouraged participants to evaluate the agents more critically
due to a better understanding, leading to more appropriate trust
[51, 62, 64]. However, our results mainly suggest that agent behav-
ior contributes more to capacity and moral trust than explanations.

Our results also show that people intervene more when artificial
moral agents explain potential consequences rather than feature
contributions or no additional information (partially confirming
H3b). Furthermore, our findings indicate that people are less likely
to reallocate decision-making to themselves when not provided
with additional information. Perhaps they lack sufficient under-
standing to intervene confidently, such as the quoted participant
in Section 4.3. However, it is also possible that the lack of self-
reallocations results from overtrusting the agents [51, 64]. In con-
trast, people are more likely to reallocate decision-making to them-
selves when they receive potential consequences, which is even
amplified by moral sensitivity. This increased likelihood suggests
that explaining potential consequences facilitates better trust cali-
bration [51, 64]. Perhaps this explanation reminds people of their
forward-looking responsibility to act proactively and responsibly to
ensure future outcomes are positive [53, 86]. The frequent mention
of human control and responsibility as reasons for self-reallocations
also supports this. The potential consequences probably also better
fulfill the epistemic condition of moral responsibility, especially
awareness of probable consequences and moral significance of ac-
tions [10, 69, 76]. Moreover, this explanation likely better satisfies
the foreseeability and control conditions of moral and legal culpa-
bility [80]. Overall, these results indicate that explainable AI can
indeed raise human moral awareness to take responsibility, but
only if a proper explanation is used [18].

Finally, we find no evidence that agent explanations affect mean-
ingful human control (not confirming H4b). However, our results
indicate differences in the factors determining meaningful human
control. Agent interaction and the exertion of operational control
determine meaningful human control less and more frequently
when the agents explain potential consequences. Given the in-
creased self-reallocations when receiving potential consequences,
it is understandable that the higher cognitive demand leads to the
exertion of operational control more frequently determining mean-
ingful human control. We believe more training and interactions
can further improve this [20, 80, 102]. Since the self-reallocations in
response to potential consequences increase with moral sensitivity,
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it also follows that agent interaction determines meaningful human
control less frequently. Yet, we are not convinced that more training
with the agents explaining feature contributions or no additional
information can improve interaction with these agents. These ex-
planations simply seem unable to sufficiently (1) remind people of
their forward-looking responsibility and (2) fulfill the conditions
of moral responsibility and culpability [10, 53, 69, 76, 80, 86]. We
believe the potential consequences can do so and recommend that
agents provide these explanations during dynamic task allocation.

5.2 Limitations and Future Work
We acknowledge a few limitations of our work. The first one is the
implementation of our artificial moral agents. We used a hybrid
approach that incorporated ethical principles and predicted moral
sensitivity. This approach simplified real firefighting scenarios but
enabled us to implement complex yet interpretable artificial moral
agents. Furthermore, these agents’ moral sensitivity models were
domain-specific. However, the underlying methodology - eliciting
moral sensitivity ratings through structured scenarios and statis-
tically modeling key predictors - is adaptable to other domains.
Focusing on statistically significant predictors ensured that our
models reflected meaningful moral sensitivity factors rather than
an arbitrarily chosen set. Future work can explore alternative mod-
eling techniques or apply our methodology to additional domains
to enhance generalizability.

Another limitation is the selection of the “appropriate” allocation
threshold of 4.2. Although we determined this threshold using
human comfort data, it remains subjective as no absolute ground
truth exists for whenmorally sensitive decisions should be allocated
to humans. However, our approach ensured that the allocation
thresholds were empirically grounded in human judgements rather
than arbitrarily set. Moreover, its alignment of task allocation with
human comfort is crucial for developing trustworthy artificial moral
agents. Interestingly, self-reallocations in response to potential
consequences increased notably from 4.2 onwards. Adjusting this
“appropriate” threshold would likely not affect our results much,
as it was merely used to calculate the correct behavior rate. In
contrast, we believe that increasing the difference between the
agents’ thresholds could amplify the effects of agent autonomy.
However, there may be a cut-off point for the less autonomous
agent, as we suspect that approaching complete human decision-
makingwould not be preferred either. Overall, our testbed facilitates
future empirical research on dynamic task allocation, while our
approach and thresholds offer valuable benchmarks.

The generalizability of our findings is also worth discussing.
While our controlled experiments focused on a firefighting use case
with participants from our university and personal contacts, such
human-grounded evaluations are essential for providing results that
can be validated in real-world settings [29]. This is crucial given
that fewer than 1% of explainable AI papers validate explainability
with humans [83]. We explicitly designed our study to capture key
challenges in human-agent collaboration under high stakes and
time pressure, factors that are generalizable beyond firefighting
and enhance the ecological validity of our findings. Future research
should extend these findings through application-grounded evalua-
tions and across different domains. In addition, although expanding

to a larger, more demographically diverse participant sample would
further enhance external validity, this was not feasible given the
face-to-face nature of our experiments. However, this ensured sus-
tained and deep participant engagement, something often lacking
in crowd-sourced studies. This trade-off prioritized internal validity
and provides a solid foundation for applying our findings to other
settings and real-world applications. Overall, we believe our sam-
ple size, participant diversity regarding relevant moral psychology
and human-agent teaming traits, and rigorous experimental design
ensure the robustness and broader relevance of our results.

We identify several suggestions for future work on the influence
of different agent explanations and collaboration configurations. For
example, supplementing the current local explanations with global
explanations of agent behavior during decision-making [29, 37, 54].
Another option would be to explore contrastive explanations that il-
lustrate what would have resulted in alternative allocations [65, 87].
Furthermore, comparing our approach to a collaboration where
humans determine all allocations is important. Prior research has
shown that people prefer agent-determined allocations over shared
or self-determined ones [36], but this preference might shift when
moral decisions are involved. Finally, it would be interesting to place
the human at the operative level and the artificial moral agent at
the oversight level. This could provide a stronger coupling between
moral actions and responsible humans [23], although a responsi-
bility gap could emerge if the artificial moral agent intervenes and
violates ethical guidelines.

5.3 Conclusion
We explored the influence of agent autonomy and explanations
during the dynamic allocation of moral decision-making in human-
agent teams. We conducted user studies in simulated firefighting
environments where participants collaborated with a more and
less autonomous artificial moral agent. These agents provided no
additional information, feature contributions, or potential conse-
quences during the allocation of moral decision-making. Our user
studies show a higher moral trust in, agreement with, meaningful
human control over, and preference for the less autonomous agent.
Moreover, we show that people disagree and reallocate decision-
making to themselves more when artificial moral agents explain
potential consequences. This difference amplifies with moral sensi-
tivity when people collaborate with the more autonomous agent.
These findings demonstrate that people (1) prefer more involve-
ment over higher agent autonomy and (2) take on greater moral
responsibility when artificial moral agents explain potential conse-
quences. Overall, our study provides crucial insights for responsibly
implementing dynamic task allocation and enhancing human-agent
teamwork in morally sensitive situations, such as raising human
involvement and explaining potential consequences.

Ethical Considerations Statement
This research involved experiments in simulated firefighting en-
vironments where human participants collaborated with artificial
moral agents with varying autonomy. The study took place in a two-
dimensional grid world environment, similar to playing a computer
game. The research adhered to ethical principles and community
norms to prioritize participant well-being, as outlined below:
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(1) The university’s ethics committee approved our study design,
data management plan, and informed consent form before
conducting the experiments.

(2) Our study did not collect sensitive or (in)directly identifiable
personal data. We securely stored this anonymous data in a
research data repository compliant with international data
security and privacy standards.

(3) All participants provided informed consent before the study.
We thoroughly briefed them about the nature of the exper-
iment, the data collection process, and the possibility to
withdraw at any time without providing a reason. We did
not employ deceptive practices.

(4) Our study aimed to understand and improve human-agent
teamwork in morally sensitive situations using dynamic task
allocation, with potential societal benefits. However, we also
acknowledge potential negative consequences. For instance,
dynamic task allocation could lead to artificial moral agents
making ethically undesirable decisions. Our findings, how-
ever, emphasize the importance of human involvement and
the need to explain potential decision consequences. We be-
lieve these elements promote meaningful human control and
transparency, which can help mitigate the risks associated
with dynamic task allocation and ensure that decisions align
more closely with human values.
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A Method
A.1 Participants
We balanced demographics, risk propensity [61], trust propensity
[63], and utilitarianism [47] across explanation and counterbalanc-
ing conditions. Results showed no significant differences between
explanation conditions for gender (𝜒2(2) = 0.08, p = 0.96), age (W =

2.96, p = 0.23), education (W = 1.22, p = 0.54), gaming experience (W
= 0.54, p = 0.76), risk propensity (W = 0.09, p = 0.96), trust propen-
sity (W = 1.51, p = 0.47), and utilitarianism (F(2, 69) = 0.12, p = 0.89).
Moreover, results also showed no significant differences between
counterbalancing conditions for gender (p = 1.00), age (W = 5.81,
p = 0.56), education (W = 4.63, p = 0.71), gaming experience (W =

1.32, p = 0.99), risk propensity (W = 0.97, p = 1.00), trust propensity
(W = 5.19, p = 0.64), and utilitarianism (F(7, 64) = 0.53, p = 0.81).

A.2 Agent Behavior
We used the following survey to identify moral features as predic-
tors of moral sensitivity:

(1) Situations (two versions with varying feature values):

(a) During the offensive inside deployment of Brutus, the
team should decide whether to send in firefighters to res-
cue an injured victim or if that is too dangerous. Several
guidelines exist for determining when conditions are safe
enough for firefighters to enter. For example, the temper-
ature should be below the auto-ignition temperatures of
present substances, and the structural condition of the
building must be good enough. To make a decision, the
team can use the following information:
• Estimated fire duration: 45/30 minutes
• Distance between victim and fire source: Small/Large
• Estimated fire resistance to collapse: 30 minutes
• Temperature: Higher/Lower than auto-ignition temper-
atures of present substances

(b) During the offensive inside deployment of Brutus to locate
the fire source, the team should decide whether to send in
firefighters to help locate the fire source or if that is too
dangerous. Several guidelines exist for determining when
conditions are safe enough for firefighters to enter. For ex-
ample, the temperature should be below the auto-ignition
temperatures of present substances, and the structural
condition of the building must be good enough. To make
a decision, the team can use the following information:
• People in the building: 0/Unclear
• Estimated fire duration: 15 minutes
• Estimated fire resistance to collapse: 60/90 minutes
• Temperature: Lower than/Close to auto-ignition tem-
peratures of present substances

(c) After Brutus explored the inside of the burning building,
the team should decide whether Brutus should first extin-
guish the fire or evacuate people. General guidelines men-
tion to first extinguish and then rescue. However, when the
location of the fire source is unknown and smoke spreads
fast, evacuating people first might be required. To make a
decision, the team can use the following information:
• People in the building: 1/3
• Smoke spreading: Normally/Fast
• Estimated fire duration: 30/45 minutes
• Location of the fire source: Known/Unknown

(d) During the offensive inside deployment of Brutus, the
team should decide whether Brutus should continue with
this tactic or switch to a defensive inside deployment. The
offensive inside deployment is used to fight fire and rescue
people, whereas the defensive inside deployment is used
to prevent the spread of fire, smoke, and damage to unaf-
fected parts of the building. Several factors are important
when deciding on an offensive inside deployment. For ex-
ample, the chance of saving people and the building plays
a role, which decreases with the fire duration. Moreover,
it is important to know the fire source location. To make
a decision, the team can use the following information:
• People in the building: 0/Unclear
• Estimated fire duration: 15/30 minutes
• Location of the fire source: Unknown
• Estimated fire resistance to collapse: 90/60 minutes

(2) Moral sensitivity rating:
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This situation could be described as ... (0 = not morally
sensitive, 6 = extremely morally sensitive).

(3) Alternative moral sensitivity rating (open option to alter
feature values from described situation):
On a scale from 0 to 6, you rated the moral sensitivity
of this situation as less than 2/greater than 4/between 2
and 4. When would you have rated the situation’s moral
sensitivity as greater than 4/less than 2?

(4) Comfort (-3 = extremely uncomfortable, +3 = extremely com-
fortable):
How comfortable would you feel if Brutus made the deci-
sion in the described situation?

A.3 Measures
We used the following surveys for our user studies:

(1) Demographics:
• What gender do you identify as?
– Female
– Male
– Other
– Prefer not to say

• What is your age?
– 18 - 24 years old
– 25 - 34 years old
– 35 - 44 years old
– 45 - 54 years old
– 55 - 64 years old
– 65+ years old
– Prefer not to say

• What is the highest level of education you have completed?
– No schooling completed
– Some high school, no diploma
– High school graduate
– Some college credit, no degree
– Associate degree
– Bachelor’s degree
– Master’s degree
– Ph.D. degree or higher
– Prefer not to say

• How much video gaming experience do you have?
– None at all
– A little
– A moderate amount
– A considerable amount
– A lot

(2) Risk propensity (1 = totally disagree, 9 = totally agree):
• Safety first.
• I do not take risks with my health.
• I prefer to avoid risks.
• I take risks regularly.
• I really dislike not knowing what is going to happen.
• I usually view risks as a challenge.
• I view myself as a ... (1 = risk avoider, 9 = risk seeker).

(3) Trust propensity (1 = strongly disagree, 5 = strongly agree):
• I usually trust technology until there is a reason not to.
• For the most part, I distrust technology.

• In general, I would rely on technology to assist me.
• My tendency to trust technology is high.
• It is easy for me to trust technology to do its job.
• I am likely to trust technology even when I have little
knowledge about it.

(4) Utilitarianism (1 = strongly disagree, 5 = strongly agree):
• If the only way to save another person’s life during an
emergency is to sacrifice one’s own leg, then one is morally
required to make this sacrifice.

• It is morally right to harm an innocent person if harm-
ing them is a necessary means to helping several other
innocent people.

• From a moral point of view, we should feel obliged to give
one of our kidneys to a person with kidney failure since
we don’t need two kidneys to survive, but really only one
to be healthy.

• If the only way to ensure the overall well-being and happi-
ness of the people is through the use of political oppression
for a short, limited period, then political oppression should
be used.

• From a moral perspective, people should care about the
well-being of all human beings on the planet equally; they
should not favor the well-being of people who are espe-
cially close to them either physically or emotionally.

• It is permissible to torture an innocent person if this would
be necessary to provide information to prevent a bomb
going off that would kill hundreds of people.

• It is just as wrong to fail to help someone as it is to actively
harm them yourself.

• Sometimes it is morally necessary for innocent people to
die as collateral damage - if more people are saved overall.

• It is morally wrong to keep money that one doesn’t really
need if one can donate it to causes that provide effective
help to those who will benefit a great deal.

(5) Situation awareness:
• What is the current fire resistance to collapse?
– 80 minutes/40 minutes
– 90 minutes/50 minutes
– 100 minutes/60 minutes
– 110 minutes/70 minutes

• What is the total number of people to rescue?
– 10/9
– 11/10
– 12/11
– 13/unknown

• How many victims have been rescued so far?
– 7/3
– 8/4
– 9/5
– 10/6

• Where is/was the fire source located?
– office 04/office 01
– office 06/office 03
– office 07/office 11
– office 09/office 14

• Which feature is one of the features that determines if
there should be extinguished or evacuated first?
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– fire resistance to collapse
– number of victims
– temperature
– speed of smoke spread

• Which feature is one of the features that determines if it
is safe enough for fire fighters to enter the building and
rescue a critically injured victim?
– localization of the fire source
– number of victims
– speed of smoke spread
– temperature

• Which feature is one of the features that determines if it
is safe enough to send in fire fighters to help locate the
fire source?
– temperature
– number of victims
– speed of smoke spread
– estimated time to locate the fire source

• Which feature is one of the features that determines if the
offensive deployment is still the best tactic?
– fire resistance to collapse
– distance between victims and fire source
– speed of smoke spread
– localization of the fire source

• If three mildly injured victims are found in a burning office,
the fire source is not located, and the smoke is spreading
fast; what should you decide?
– use a defensive deployment
– extinguish first
– use an offensive deployment
– evacuate first

• If a critically injured victim is found, the temperature is
close to the safety threshold, and the smoke is spreading
fast; what should you decide?
– extinguish first
– send in a fire fighter to rescue
– evacuate first
– do not send in a fire fighter to rescue

• If the fire source has not been located yet, no fires have
been extinguished, and the temperature is lower than the
safety threshold; what should you decide?
– extinguish first
– send in fire fighters to locate the fire source
– evacuate first
– do not send in fire fighters to locate the fire source

• If the deployment tactic should be determined, the fire
resistance to collapse is 70 minutes, and not all office have
been explored; what should you decide?
– extinguish first
– use a defensive deployment
– evacuate first
– use an offensive deployment

(6) Situation awareness of the agents:
• Which victim did Brutus find in office 01?
– critically injured older woman
– mildly injured older man
– mildly injured woman

– mildly injured older woman
• Which victim did Titus find in office 03?
– critically injured older woman
– mildly injured older man
– mildly injured man
– mildly injured older woman

• Which victim did Brutus/Titus find in office 09?
– critically injured older woman
– mildly injured older man/mildly injured man
– mildly injured older woman
– critically injured man

• In which office did Brutus find a mildly injured man?
– office 05
– office 06
– office 07
– office 12

• In which office did Titus find a critically injured older
woman?
– office 09
– office 10
– office 13
– office 14

• In which office did Brutus/Titus find a mildly injured older
woman?
– office 07/office 01
– office 10/office 02
– office 13/office 04
– office 14/office 06

• When does Brutus allocate decision making to itself in the
situation extinguish or evacuate first?
– if fire source is located
– it smoke is not spreading fast
– if temperature is lower than threshold
– if predicted sensitivity is lower than threshold

• When does Brutus allocate decision making to you in the
situation send in fire fighters to rescue?
– if smoke is spreading fast
– if temperature is higher than threshold
– if predicted sensitivity is higher than threshold
– if distance between victim and fire source is small

• When does Titus allocate decision making to itself in the
situation send in fire fighters to help locate?
– if fire resistance is more than 100 minutes
– if smoke is not spreading fast
– if predicted sensitivity is lower than threshold
– if distance between fire fighters and potential fire source
is large

• When does Titus allocate decision making to you in the
situation continue or switch deployment tactic?
– if smoke is spreading fast
– if temperature is higher than threshold
– if predicted sensitivity is higher than threshold
– if distance between victims and fire source is small

• Which action will Brutus/Titus perform/execute next?
– move to an office
– make a decision itself
– allocate decision making to me
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– none of the listed answers
(7) Capacity and moral trust (0 = not at all, 7 = very, or alter-

native option does not fit):
• Reliable
• Sincere
• Capable
• Ethical
• Predictable
• Genuine
• Skilled
• Respectable
• Someone you can count on
• Candid
• Competent
• Principled
• Consistent
• Authentic
• Meticulous
• Has integrity

(8) Experienced control (1 = I disagree strongly, 5 = I agree
strongly):
• It was difficult to keep an overview of victims and situa-
tional features.

• I experienced time pressure during decision making.
• I felt responsible for the well-being of the victims and fire
fighters.

• I made decisions under inconclusive firefighting- and eth-
ical guidelines.

• I made decisions during the task that I would not want to
make in real life.

• I felt uncomfortable during (some) decisions I made.
• I mostly made decisions for victims and firefighters that
led to good and safe task outcomes.

(9) Agreement (1 = I disagree strongly, 5 = I agree strongly):
• I agreed with most of the decision allocations by Brutus/
Titus.

• I felt comfortable with most of the decision allocations by
Brutus/Titus.

(10) Responsibility (1 = not responsible at all, 7 = very respon-
sible):
• To what extent do you hold yourself morally responsible
for bad task outcomes such as loss of victims and firefighter
risk?

• To what extent do you hold Brutus/Titus morally respon-
sible for bad task outcomes such as loss of victims and
firefighter risk?

(11) Agent difference and preference (open questions):
• Did you observe a difference between Brutus and Titus,
and if yes, what difference?

• if you had to chose between the Brutus and Titus in real
life, which one would you pick and why?

B Results
B.1 Counterbalancing and Completeness
We examined whether the three counterbalanced factors (agent-
name pairs, task order, and agent order) influenced our measures.

Since the data was not normally distributed, we ran Mann-Whitney
U tests. We did not find statistically significant differences between
the two task order conditions for capacity trust (W = 2750.5, p =

0.53), moral trust (W = 2831, p = 0.08), subjective agreement (W
= 2782, p = 0.44), objective agreement (W = 2617.5, p = 0.92), or
meaningful human control (W = 2635.5, p = 0.86). Moreover, we did
not find statistically significant differences between the two agent-
name pairs for capacity trust (W = 2830, p = 0.34), moral trust (W =

2133, p = 0.23), subjective agreement (W = 2557, p = 0.89), objective
agreement (W = 2635.5, p = 0.86), or meaningful human control (W
= 2274, p = 0.20). Finally, we did not find statistically significant
differences between the two agent order conditions for capacity
trust (W = 2553.5, p = 0.88), moral trust (W = 2283.5, p = 0.58),
subjective agreement (W = 2723, p = 0.60), objective agreement (W
= 2323.5, p = 0.28), or meaningful human control (W = 2462.5, p =

0.60).
Next, we explored whether agent explanation or autonomy af-

fected task completeness, which might influence trust. Since the
data was not normally distributed, we conducted a non-parametric
rank-based mixed ANOVA. Results showed no statistically signif-
icant main effects of agent explanation (F(1.78) = 2.00, p = 0.14,
effect size = 0.27) and autonomy (F(1.00) = 0.25, p = 0.62, effect size
= 0.06), nor an interaction between them (F(1.83) = 1.08, p = 0.33,
effect size = 0.17).
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