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A B S T R A C T

This study investigates whether geostatistical properties of aquitards can be determined from data collected at a 
drinking water well field. A workflow adaptable to any drinking water extraction site with pumping and 
groundwater head data is developed. Using data from Budel, the Netherlands, a layered groundwater flow model 
is constructed and calibrated on hydraulic heads. A large number of realizations are generated for the aquitard, 
considering various heterogeneity parameters. These simulations are upscaled to the grid of the flow model, and 
their fit to observed heads is evaluated. Results show that optimal geostatistical parameters can be identified, 
even though many combinations reproduce observed heads. These parameters can be used to parameterize 
regional groundwater flow models. Particle tracking simulations show heterogeneity decreases contaminant 
breakthrough times while also decreasing the total flow through the aquitard. These findings emphasize the need 
to consider aquitard heterogeneity in risk assessments at drinking water production sites.

1. Introduction

Aquitards are low permeable layers that either separate or confine 
aquifers in multilayered aquifer-aquitard systems. Understanding their 
hydraulic properties is important for water resource management 
(Gurwin and Lubczynski, 2005), subsidence (Díaz-Nigenda et al., 2023; 
Soonthornrangsan et al., 2025) and contaminant transport (Filippini 
et al., 2020; Fjordbøge et al., 2017). Characterizing aquitards is chal
lenging due to large variability in hydraulic conductivity (K) of the 
sediments that they consist of (clay, silt, peat) together with their low 
permeability. Lab measurements often differ by orders of magnitude for 
similar grain sizes (van Leer et al., 2023a) and tend to indicate lower K 
compared to in situ measurements, such as those from pumping tests 
(Hart et al., 2006; Zhuang et al., 2024). In addition, classical in
terpretations of pumping tests using analytical methods assume homo
geneous layers with axisymmetric flow (e.g. Hantush and Jacob, 1955; 
Hemker and Maas, 1987) resulting into lumped parameters of which the 
physical meaning is unclear (Copty et al., 2008; Wu et al., 2005). 

Observation wells are typically placed only within the pumped aquifer, 
which makes aquitard parameters uncertain and also ambiguous 
because these might result from leakage through both the overlying and 
underlying aquitards. Many analytical solutions based on leaky aquifers 
do not account for drawdowns in overlying and underlying aquifers (Li 
and Neuman, 2007). With observation wells on both sides of the aqui
tard, tests still need to be run long enough for the drawdown to propa
gate through the aquitard (Neuzil, 1986) and to enable determination of 
both the storage coefficient and hydraulic conductivity of the aquitard 
(Fogg and Zhang, 2016; Van Der Kamp, 2001). Even if hydraulic prop
erties of aquitards have been identified with conventional pumping 
tests, they do not provide information about spatial variability. It further 
remains unclear whether these values are appropriate for other flow 
patterns than radial flow towards the well (van Leer et al., 2023b).

To adequately characterize hydraulic properties of aquitards 
throughout spatial scales, a connection must be made between core scale 
measurements and local/regional scale data. Applying stochastic 
methods is a way to accomplish this by upscaling core scale 
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measurements and borehole descriptions to model block scale. Geo
statistics and upscaling methods have been extensively reviewed by De 
Marsily et al. (2005) and Sanchez-Vila et al. (2006), respectively. 
However, for aquitards specifically, it is difficult to determine the 
required parameters for this upscaling procedure, such as core scale 
hydraulic conductivity data, lithology distribution and variograms. Due 
to the variable nature of the hydraulic conductivity of core samples for 
low permeable materials, many samples are required to obtain an ac
curate probability density function per lithology or geological forma
tion. The hydraulic conductivity of clays and silts are also sensitive to 
secondary processes such as compaction and soft soil deformation (van 
Leer et al., 2023a), which could cause deviations between e.g. the hy
draulic conductivity distribution of the geological formation and the 
local distribution. Identifying the lithology distribution and estimating a 
variogram require a sufficient number of boreholes in the area of interest 
at different distances from each other, which is often not available. 
These variograms do however affect the percolation threshold and the 
presence of preferential flow paths, which have a strong effect on the 
effective hydraulic conductivity (Colecchio et al., 2021).

Many studies that used a form of stochastic analysis to obtain geo
statistical parameters have focused on aquifers only (Demir et al., 2017; 
Firmani et al., 2006; Neuman et al., 2004; Zech et al., 2015). van Leer 
et al., 2023b were the first who identified horizontal and vertical cor
relation lengths for an aquitard with a pumping tests specifically 
designed for this purpose. However, such pumping tests are expensive to 
perform. At the same time, drinking water production sites are wide
spread with data routinely collected. As these sites are often made up of 
multiple wells where pumping rates between wells are often varied over 
time, they could possibly serve as an alternative to assess the hetero
geneity of aquitard properties. Whether such data are indeed suitable for 
this purpose has, to our knowledge, not been investigated.

The main objective of this study therefore is to test whether it is 
possible to infer geostatistical parameters describing aquitard hetero
geneity, specifically correlation lengths, from existing drawdown data 
around a drinking water production sites.

These sites are widespread, data is routinely collected, and aquitard 
heterogeneity is especially relevant there with regards to water sources, 
travel times and the risk of groundwater contamination. In addition, 
well fields that have been operational for extended time periods have 
had enough time for pumping induced drawdown to propagate through 
the surrounding aquitards. Moreover, the pumping in the individual 
wells usually varies in time, which makes the drawdown spatially var
iable that can be used as additional information. We address the 
following research questions. 

• How can geostatistical parameters of aquitards be identified from a 
drinking water production site?

• How does heterogeneity of aquitards affect the groundwater flow 
pattern and travel times of water pumped at a drinking water pro
duction site?

2. Methods

2.1. Workflow

We developed a flexible modelling workflow adaptable to any 
drinking water extraction site in four steps. Step 1; a reference 
groundwater flow model, simulating hydraulic head responses to 
pumping based on initial parameter assumptions with relatively ho
mogeneous aquitards and aquifers, is constructed and calibrated using 
field data. Step 2; heterogeneous realizations have been generated for 
the reference model setting using a range of geostatistical parameters. 
They replace the relatively homogeneous hydraulic conductivity in the 
aquitard in the calibrated reference model, the aquitard of interest. Step 
3; the best performing realizations are selected based on their ability to 
reproduce observed head data. Step 4; particle tracking is run on the 

selected realizations to assess the hydrological implications of the het
erogeneity of aquitards.

The workflow is implemented using Snakemake (Mölder et al., 
2021). Snakemake was chosen for its ability to automate workflows, 
facilitate reproducibility, and manage computational resources, partic
ularly for parallelizing the Monte Carlo simulations.

2.2. Data and site description

The workflow requires site-specific information, specifically the 
discharge per well, hydraulic heads at surrounding observation wells, 
borehole descriptions, and a multi-aquifer schematization. High reso
lution pumping and head data allow for the differentiation of pumping 
effects from individual pumping wells on observed hydraulic heads.

For the Budel well field, daily discharge per well and head data were 
available for a period of eight years. Observation wells have screens in 
the pumped aquifer, as well as in the overlying and underlying aquifers. 
Fig. 1 shows a hydrogeological profile with the arrangement of extrac
tion and observation wells. Lithological descriptions are available for 
both the pumping and observation wells.

2.3. Groundwater flow model

A layered MODFLOW 6 model is created with FloPy (Hughes et al., 
2024) and nlmod (Caljé et al., 2022). MODFLOW is a widely used 
modular groundwater modelling software that uses a control-volume 
finite-difference method to solve the groundwater flow equation. 
Nlmod is a Python package that uses open subsurface data of TNO – 
Geological Survey of the Netherlands to create MODFLOW 6 models. 
The hydrogeological characterization is based on the model ‘H3O De 
Kempen’ (Vernes et al., 2018), which is a transboundary hydro
geological model of the southern Netherlands and Flanders (Belgium) 
with the same format as the national hydrogeological model REGIS II 
(Hummelman et al., 2019), for which nlmod has been created. H3O De 
Kempen was selected instead of REGIS II, as the well field of Budel is 
located close to the Belgian border.

The groundwater flow model grid is 6.4 km by 6.4 km and un
structured with incrementally refined cells towards the pumping wells, 
ranging from 800 m at the boundaries to 25 m at the wells. An un
structured grid with finer cells near the wells allows for more detailed 
simulation of hydraulic gradients and flow patterns around the pumping 
wells while maintaining computational efficiency. A period of 4 months 
is selected from the available 8 years time series of observed heads and 
pumping discharges, to make sure constant General Head Boundaries 
(GHB) can be used at the horizontal boundaries of the domain and un
certain long-term dynamics are negligible. The initial heads of the GHB 
boundaries are based on long term average heads of the LHM national 
groundwater flow model (Lenssinck, 2023), to ensure compatibility with 
broader hydrogeological conditions in the region. The conductance is 
computed from the H3O De Kempen model as well, with a range of 5000 
m outside the model domain. The transient model uses daily time steps, 
matching the temporal resolution of the observed head and discharge 
data.

2.4. Reference model calibration

The reference model is calibrated in two stages. First, the hydraulic 
conductivities (assuming a fixed anisotropy ratio of 10) and the heads of 
the GHB at the side boundary cells are calibrated in steady state. Second, 
the specific storage and hydraulic conductivity are calibrated in a 
transient simulation with fixed GHB heads from the steady-state cali
bration, focusing the optimization on specific storage linked to the dy
namic head responses.

Hydraulic conductivity and specific storage are calibrated as multi
pliers on the initial values, so these will follow the regional trends of the 
original hydrogeological model H3O De Kempen, but do not include 
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variability at smaller scales. The parameters are optimized for the 
pumped aquifer as well as the aquitards and aquifers directly above and 
below the pumped aquifer. Parameters in other layers in the model are 
kept constant at the initial values. The Nelder-Mead downhill simplex 
algorithm (Gao and Han, 2012) is used to minimize the root mean 
squared error (RMSE) on observed heads in the calibrated aquifers.

2.5. Conditional simulations and tested parameters

We inversely infer the correlation lengths, core-scale conductivity, 
and lithology distribution of the aquitard using Monte Carlo simulations 
and subsequent realization selection. Using a brute force forward 
approach has two reasons: (i) correlation lengths are difficult to opti
mize using gradient-based methods, as altering the correlation length of 
a realization becomes a completely new realization, unrelated to the 
initial realization, and (ii) a correlation length which scores on average 
good might still result in low scoring realizations and vice versa, even if 
other parameters are kept constant.

Conditional geostatistical simulations are performed for the aquitard 
of interest, directly overlying the pumped aquifer. First, the section that 
lies within the aquitard is selected from the borehole description. Due to 
trends in the depth of the layer and its thickness, the depth of the 
borehole sections is flattened around the middle of the layer. This way 
values at the middle of the aquitard layer are spatially correlated with 
each other, rather than with overlying or underlying aquifers.

A density distribution of K values is constructed from core scale 
hydraulic conductivity values in the selected sections of the boreholes 
(Fig. 2). This distribution is bimodal with high K values related to sand 
and gravel, and low K values related to clay, silt and peat. The lithologies 
that correspond to the two modes of the distribution can be used as high 
and low conductivity indicators, which serve as the basis for the geo
statistical simulations (cf. Bierkens, 1996).

Heterogeneous K-distributions are generated by three-dimensional 
sequential indicator simulations (Journel and Alabert, 1990) for a reg
ular grid with a resolution of 25 m × 25 m x 1 m cells, covering the entire 
model domain. The simulations are conditioned on the borehole data, 
and established for a range of horizontal and vertical correlation lengths. 
A vertically anisotropic spherical indicator variogram model is used to 
capture the layered nature of the aquitard, and the correlation lengths 
we refer to are the ranges of the spherical horizontal (Lx) and spherical 
vertical variogram (Lz), assuming a geometric anisotropy. The param
eter Lz was inferred from the borehole data (Appendix 1). We varied it 
with values of 7.5, 10, and 12.5 m to account for uncertainty in the 

variogram. We tested seven values for Lx ranging from 400 to 1200 m. In 
addition, the simulations are generated with varying fractions of the 
high and low conductivity indicators, to account for uncertainty of the 
fraction computed from the borehole data, we use the computed value, 
and adjustments of 0.05 in both positive and negative direction.

K values were randomly drawn from the high and low conductivity 
distributions and assigned to their respective indicators without corre
lation within the indicators. To account for uncertainty of the low K 
values in the core scale K distribution (Kcore), the low K values log10(K) is 
adjusted with log values of 0.5, 1.5, 2 and 2.5. The high K distribution 
was kept constant as the uncertainty of K values for sands of the Kie
seloolite Formation deposits is smaller, and the hydraulic resistance of 
the aquitard is mainly determined by that of the low conductivity 
sediments.

We generate 100 realizations for each combination of parameters, 
resulting in a total of 37,800 realizations. This ensures a wide range of 
geological and hydraulic uncertainties are tested while also accommo
dating for the variability between realizations within single parameter 
sets.

The realizations were generated for a structured three-dimensional 

Fig. 1. West – East hydrogeological profile of the Budel well field (REGIS II, [20]). Shown are parts of the Early Pleistocene Stramproy (SY), Mio/Pliocene Kie
seloolite (KI) and Miocene Breda (BR) Formations with aquitards (k, darker colours) and aquifer (z, lighter colours). Observation and extraction wells are represented 
as dots, even though the well screens of extraction wells cover most of the aquifer, while the observation wells are located either at the top or bottom of the aquifer. 
The x-coordinates are presented in Amersfoort/RD New format (EPSG: 28,992). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)

Fig. 2. Hydraulic conductivity distribution for the aquitard KIk2 at the Budel 
well field. For each lithological class K values are drawn from the K-distribution 
corresponding to the respective lithological class [20], weighted based on how 
frequently the lithologies occur in the borehole descriptions. Two distinct dis
tributions emerge, one for low K values (clay, silt, peat) and one for high K 
values (sand, gravel).
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grid and upscaled to the unstructured two-dimensional aquitard layer 
grid in the MODFLOW model. We did this with a local flow model. Each 
local model spans the structured grid cells that fall within a cell of the 
unstructured flow model grid. We run MODFLOW again for the local 
upscaling with a simple flow model having a vertical constant head 
gradient to calculate the flux. These fluxes are then used with Darcy’s 
Law to determine the hydraulic resistance c (ratio of head difference and 
flux) and equivalent K (equal to ratio of thickness and resistance). The 
latter form the upscaled hydraulic conductivity realization to be used in 
the calibrated MODFLOW model with the unstructured grid.

2.6. Selection of realizations

The aquitard above the pumped aquifer is replaced by the upscaled 
realizations, and they are assessed based on RMSE and a modified 
version for groundwater heads of the Kling-Gupta Efficiency (KGE) 
(Gupta et al., 2009). RMSE is sensitive to fitting well to the mean of the 
modelled and observed time series, while the KGE also incorporates the 
dynamics of the time series. We adjusted the KGE as follows: 

KGE=1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(1) 

in which r is the Pearson correlation coefficient, α = σm/σo and β =
C− μm − μo

C . The original β term represents the ratio of modelled and 
observed means, which is not meaningful for groundwater heads. 
Instead, we use the absolute difference normalized by a constant C, 
chosen as 0.5 m to make β dimensionless and obtain similar magnitudes 
compared to r and α. Realizations with RMSE lower than the reference 
model or KGE higher than the reference model are deemed an 
improvement over the relatively homogeneous reference model and are 
selected for further analysis. These criteria ensure that realizations are 
selected not only when they match observed mean heads but also 
whether they replicate temporal dynamics adequately.

2.7. Particle tracking

We investigate the value of using heterogeneous aquitards around 
drinking water well fields using MODPATH 7 (Pollock, 2016) for particle 
tracking, both forward and backward in a steady state model. Forward 
tracking is used to calculate travel times of groundwater from the 
overlying aquifer to the pumping wells, highlighting potential vulner
abilities to contamination. The particles are evenly distributed within 
the overlying aquifer to cover all potential flow paths through the 
aquitard. Only the particles that end up in the pumping wells are 
selected to compute travel times. With backward tracking, we quantify 
the proportion of extracted water that has flowed through the aquitard. 
This provides insight into the origin of the extracted water. Particles are 
released uniformly at the well screen to represent all water entering the 
well. By comparing the heterogeneous models to the reference model, 
we determined whether modelling with heterogeneity leads to faster 
travel times or alters the sources of extracted water.

3. Results

3.1. Calibration of the reference model

The calibration results are shown in Table 1. The aquitard of interest 
Kik2 has the largest deviation from the initial values with a factor 6. The 
specific storage values between aquifers and aquitards remain very 
similar, which can be explained by the depth of the well field, where the 
specific storage will be low and the effect on the drawdown will be 
limited. The GHB heads are all lower than the initial values especially in 
the pumped aquifer, suggesting the pumping induced drawdown is still 
present at the boundaries. The steady state and transient calibration 
steps result in a RMSE of 0.12 m. Fig. 3 presents the time series of 

observed and modelled heads across the different aquifers. In the 
pumped aquifer, the modelled heads closely match the observed data, 
with minimal error. Thus, we consider further calibration of the aquifer 
layers unnecessary. The pumping-induced fluctuations are well repre
sented across all layers, indicating that the transient dynamics caused by 
pumping are captured adequately. However, background dynamics are 
relatively large in the overlying and underlying aquitards, compared to 
the pumping induced drawdown and are not fully captured in the model.

3.2. Performance of Monte Carlo simulations and realization selection

2253 out of the 37,800 flow simulations with heterogeneous hy
draulic conductivity realizations for the aquitard have either an 
improved (i.e., lower) RMSE or improved (i.e., higher) adjusted KGE 
(Fig. 4). In the remainder of this paper these will be referred to as 
‘selected realizations’. The majority of these realizations only show an 
improvement in the adjusted KGE. Fig. 5 shows the value distributions of 
the four tested parameters for the improved realizations. There are 
improved scores for most of the individual parameter values and there is 
no clear optimal value when each parameter is viewed independently. 
However, optimal combinations appear when the parameters are 
viewed together (Fig. 6) because the parameters are not independent. Lx 
shows correlation with all other properties. Low values correspond to 
low Lz values (Fig. 6c) a pattern which has been found in previous 
studies (van Leer et al., 2023b), while high Lx values correspond to a 
negative clay fraction adjustment (Fig. 6c). When Lx is plotted against 
Kcore adjustment, it converges to a single optimum, from which the 
number of realizations decreases in every direction (Fig. 6a). This in
dicates that while there may be an optimum set of values for some 
parameter combinations, it is not straightforward to derive a singular 
optimal value for all parameters.

We use an iterative pruning process as alternative method to identify 
the optimal parameter sets within the four-dimensional parameter 
space. In each iteration the parameter value with the fewest realizations 
relative to the parameter value with the most realizations is removed 
from the ensemble. The results of the iterative pruning are shown in 
Fig. 7.

The optimal parameter values (Kcore = 1.5, Lx = 1000 m, Lz = 7.5 m, 
clay fraction = − 0.05) identified through the pruning refinement differ 
from those that appeared optimal when considered individually (Fig. 5) 
for Lx, Lz and clay fraction adjustment. However, they do align with the 
parameter combinations in Figs. 6a, 8e and 8f.

Among the parameters, Kcore adjustment was found to be the most 
sensitive, converging to a single value in fewer iterations than the other 
parameters. This was expected as Kcore governs the K values that are 
assigned to the model cells, while the other parameters control the 
spatial distribution mainly. Lx appears the least sensitive parameter as it 
requires the most iterations to converge to a single optimal value in the 
pruning process, meaning there is limited difference in performance 
between parameter values.

To account for the uncertainty in the resulting optimal parameters, 

Table 1 
Calibration results of the reference model; see Fig. 1 for the aquifer and aquitard 
layer codes.

Parameter Layer type Layer Type Value

Hydraulic conductivity K Aquifer KIz2 Multiplier 3.68
Hydraulic conductivity K Aquitard KIk2 Multiplier 6.07
Hydraulic conductivity K Aquifer KIz3 Multiplier 0.40
Hydraulic conductivity K Aquitard Kik3 Multiplier 1.28
Hydraulic conductivity K Aquifer KIz4/KIz5 Multiplier 0.47
Specific storage Aquifer All Multiplier 1.92
Specific storage Aquitard All Multiplier 2.58
GHB head Aquifer KIz2 Addition − 0.68 m
GHB head Aquifer KIz3 Addition − 2.21 m
GHB head Aquifer KIz4 Addition − 0.36 m
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instead of selecting only the single optimal values, we selected an iter
ation where the relative difference between the minimum and maximum 
values was smallest and therefore the difference in performance be
tween parameter values the smallest. In iteration 11, this criterion was 
met. The set of realizations remaining after iteration 10 was chosen as 
the ‘optimal realizations’ for further analysis with a range of values for 
Lx (700 m, 800 m, 1000 m and 1200 m) and clay fraction (− 0.05 and 0), 
and single values for Kcore (adjustment of 1.5) and Lz (7.5 m). This 
optimal set consists of 200 realizations.

3.3. Hydraulic resistance fields

The representative hydraulic conductivity K used in the MODFLOW 
simulations has been converted to a hydraulic resistance c of the aqui
tard using the aquitard thickness B via c = B/K. Fig. 8 shows the mean of 
the logarithm of the hydraulic resistance of the aquitard for the 2253 
selected and the 200 optimal realizations.

Clear spatial patterns with high and low resistance areas can be 
identified, especially near wells. At locations without wells the values 

converge to the mean as none of the observation contain information 
regarding the hydraulic resistance at these locations.

The smallest grid cells around the wells have higher resistance values 
than surrounding, larger cells in both the selected realizations and the 
optimal realizations. The difference is approximately one order of 
magnitude in resistance values between the smallest (25 m × 25 m) and 
the largest scale (800 m × 800 m). We attribute this to the scale effect, 
where, in the upscaling procedure, larger cells show less resistance due 
to preferential flow paths at the smaller scale in the stochastic realiza
tion. This pattern is not visible in the original realizations before 
upscaling (SI 1). In such larger cells, flow tends to bypass the lowest K 
cells and goes through higher K cells during the upscaling process, 
leading to higher effective K values in the upscaled MODFLOW cells. 

Fig. 3. Time series of observed and modelled heads in observation wells. The timeseries are grouped per aquifer (left). Top right shows the location of the 
observation wells. Coordinates are presented in Amersfoort/RD New format (EPSG: 28,992).

Fig. 4. Root Mean Squared Error (RMSE) and adjusted Kling-Gupta Efficiency 
(KGE, Equation (1)) of selected realizations. Each point represents a realization. 
The lines refer to the RMSE and KGE values of the reference model. Only re
alizations that show an improvement in these scores compared to the reference 
model are included.

Fig. 5. Histograms of the parameter values (core scale hydraulic conductivity 
Kcore, horizontal correlation length Lx, vertical correlation length Lz and 
adjustment of clay fraction relative to the computed value) for the selected 
realizations that are an improvement compared to the reference model.
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This effect does not occur in the smallest MODFLOW cells, as these have 
only been upscaled in the vertical dimension and remained single cells in 
the horizontal dimensions.

The c values of the optimal realization set are lower than those of all 
selected realizations, and closer to the reference model. This shows that 
refining the selected realization set to the optimal realization set im
proves the usefulness of the realizations with regards to parameteriza
tion and upscaling.

The hydraulic resistance values of the three optimal realization (with 
the lowest RMSE) are shown in Fig. 9. Realizations before upscaling are 
shown in supplementary information (SI 2). The individual realizations 
do not show the same spatial pattern as the mean of the realizations. The 
scale effect is present but is less defined. While the spatial distribution of 
c values differ among the realizations, their distributions (Fig. 9c) are 
similar. This implies that further upscaling of these realizations will 
result in similar mean c values.

3.4. Particle tracking simulations

Figs. 10 and 11 show results of the particle tracking simulations with 
regard to the amount of water flowing through the aquitard and the 
travel times. When heterogeneous realizations of hydraulic conductivity 
in the aquitard are used, a smaller fraction of the abstracted 

groundwater originates from the aquitard above compared with the 
reference model (Fig. 10). However, water that does come from the 
aquitard above reaches the pumping wells more quickly than in the 
reference model (Fig. 11). This means that contaminants from the 
aquifers overlying or underlying the extraction reach the extraction 
wells faster than would be expected assuming a relatively homogeneous 
aquitard. Unfortunately, no data was available at the Budel site to 
validate these findings. However, as we argue in the discussion, the large 
differences between the homogeneous and heterogeneous results sug
gest that information on age distributions of the pumped water may help 
to further identify the correct heterogeneity.

4. Discussion

4.1. Reference model calibration

The reference model is calibrated using multipliers on the hydro
geological model parameters, and therefore relatively homogeneous. 
This means the choice of reference model impacts the selection of well- 
fitting realizations. As the main forcing stems from the discharge in the 
pumping wells, and external forcing is limited (e.g. recharge), the 
reference model calibration dependance on initial values for the cali
bration is limited, similar to how parameters can be derived from 

Fig. 6. Number of improved realizations in 2D histograms of the four aquitard properties that have been varied (core scale hydraulic conductivity Kcore, clay 
fraction, horizontal correlation length Lx, and vertical correlation length Lz). Yellow shows the largest number of improved realizations (note this value differs per 
histogram), blue the smallest. White dots are modelled properties that do not occur in the selected realizations. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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pumping tests unambiguously with analytical equations. The measured 
drawdown in observation wells however is mostly determined by the 
effective upscaled hydraulic conductivity of the aquitard. If the effective 

hydraulic conductivity of a realization is vastly different from the real 
value, it will heavily impact the observed drawdowns and therefore not 
result in a good performance score. This means that realizations that 

Fig. 7. Iterations of the successive refinement procedure. Iteration 0 shows histograms of the completed set of realizations that perform better than the reference 
model. The lowest scoring parameter value is removed in each iteration to obtain a defined optimum with only well performing parameters.

Fig. 8. Hydraulic log-resistance log(c) in the aquitard of interest. Left: mean over all selected realizations; middle: mean over optimal realizations; right: calibrated 
reference model. Top: full realization domain, bottom: zoom to the well field.
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Fig. 9. Three realizations of the optimal realization set with the lowest RMSE. (a) Map of hydraulic resistance c for entire MODFLOW model, (b) zoom of the map 
around wells, (c) histogram of log (c) values.

Fig. 10. Relative frequency of fraction of water flowing through the aquitard. 
These values result from the backwards particle tracking from the well. The 
reference model is shown in blue, the selected realizations (n = 2253) in yellow 
and the optimal realizations (n = 157) in purple. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.)

Fig. 11. Results of the forwards tracking simulation. The histogram shows the 
travel time for particles flowing through the aquitard of interest for both par
ticles in the selected well-performing heterogeneous realizations (purple) and 
particles in the relatively homogeneous reference model (blue). (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.)
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perform well with a certain reference model are also likely to score well 
in reference models that are calibrated in a different way, or with 
different priors. In addition, due to the large number of selected re
alizations, it is unlikely that a change in the exact cutoff value changes 
the statistics of the parameters of the selected realizations.

4.2. Geostatistical model

The geostatistical model is developed from in situ data at the 
extraction site, such as lithologies from the borehole descriptions, and 
hydraulic conductivity distributions per lithology. In the case of Budel, 
drawing log-conductivity values based on the borehole descriptions re
sults in two distinct distributions (Fig. 2). Both of these distributions are 
approximately Gaussian, which leads to the use of indicator simulations. 
Bi-modal distributions are not uncommon in aquitards (van Leer et al., 
2023b), but other sites might exhibit a single-peak Gaussian distribution 
of log-hydraulic conductivity, where a sequential Gaussian simulation 
can be used.

In the case study of Budel, we use the correlation length that refers to 
one of the indicators. In the case of a log-Gaussian distribution this can 
also be the correlation length of the hydraulic conductivity values 
directly. With multi-modal distributions more correlation lengths exist, 
which makes calibration more challenging due to the increase in the 
number of parameters.

Other assumptions in the geostatistical model are stationarity and 
horizontal isotropy. However, effects of non-stationarity and anisotropy 
are partly covered by the fact that the realizations are conditioned on 
boreholes. If borehole data shows a trend, this will be taken into account 
in the realizations due to the conditioning. In practice it is difficult to 
know whether anisotropy is present, although this could potentially be 
calibrated, too.

4.3. Impact of heterogeneity in aquitards on model performance

The implementation of heterogeneous hydraulic conductivity in an 
aquitard within a groundwater flow model only slightly improves the 
model fit to data when calibrating on heads. However, it impacts the 
distribution of groundwater travel times and the origin of the ground
water in the pumping wells. The small difference in calibration mea
sures, such as RMSE and KGE to the reference model is attributed to the 
insensitivity of heads to heterogeneity in general. Many realizations 
result in the same head distribution. This well-known phenomenon is 
confirmed in this study, as realizations with a wide range of parameters 
fit the observed heads well. However, further conditioning on flow ve
locities or travel times potentially reduces the range of plausible re
alizations, although such data is rarely available at drinking water 
extraction sites (Visser et al., 2013).

Gradient-based methods (e.g., Levenberg-Marquardt, Nelder-Mead 
(Gao and Han, 2012; Marquardt, 1963)) allow for finer optimization of 
parameters than brute force Monte Carlo. Monte Carlo methods, are 
better suited for exploring the parameter space for heterogeneity pa
rameters but result in less specific optimal realizations compared to 
gradient-based calibration since their computational demands allow for 
a limited number of parameter values only. More efficient sampling 
schemes, such as Markov-Chain Monte Carlo (MCMC) were not deemed 
necessary for this study, as the Monte Carlo method resulted in good 
results with manageable computation times. Combining the strengths of 
both Bayesian and gradient-based approaches, such as generating re
alizations first and refining key parameters (Kcore, high/low K fractions) 
with gradient-based calibration, potentially yields improved results but 
requires significant computational resources.

We applied adjusted KGE and RMSE as assessment metrics for the 
realizations. A larger number of realizations showed improvements in 
the adjusted KGE compared to RMSE. We attribute this to the fact that 
the reference model is calibrated with RMSE as objective function, 
leaving room for improvement in KGE. Using both metrics provides a 

more comprehensive evaluation, identifying realizations that better 
match observed dynamics (via KGE) and mean states (via RMSE), ulti
mately reducing noise in optimal parameter value distributions.

4.4. Scale effects

Within this study, variance in hydraulic conductivity between scales 
stems from spatial correlation and variance at smaller scales. We deal 
with three spatial scales: the core scale of lab measurements (~0.1 m), 
the model block scale of the stochastic simulation (25 m × 25 m x 1 m) 
and the model block scale of the groundwater flow model (25–800 m ×
27 m). We assumed no difference between the core scale and the model 
block scale of the stochastic simulation, even though it is expected that K 
in these cells differ from the original 0.1 m scale conductivities due to 
scale effects. We computed effective conductivity values within the 
model cells as representative K values at the 25 m scale. The results show 
K increases by 2 orders of magnitude compared to the original core scale 
conductivities, partly due to inaccurate prior conductivity values, but 
potentially also due to the scale difference. While variance typically 
decreases with increasing scale due to averaging, this effect is not 
occurring in our method. However, this is not a real limitation, as 
variance within lithologies is generally several orders of magnitude 
smaller than variance between lithologies in aquitards.

We use an unstructured model grid which also showcases how K 
varies with scale. The difference between K values of the smallest (25 m) 
and the largest cells (800 m) is on average approximately 1 order of 
magnitude, suggesting that the scale effect is strong in aquitards. This 
can be attributed to the large variance in core scale hydraulic conduc
tivities specifically in aquitards, especially between lithologies. With 
strong scale effects, horizontal variability in hydraulic resistance is an 
important factor and should be considered when upscaling from core 
scale to local/regional scale.

To summarize, the results of this study depend on the model block 
size and might change with other model grid resolutions. The depen
dence of hydraulic conductivity with scale is large for aquitards, which 
should be taken into account in the parameterization of regional 
groundwater flow models.

4.5. Application at other sites

The site chosen for testing the workflow features a relatively thick 
aquitard with large mean hydraulic resistance. As a result, pumping- 
induced drawdown in the overlying and underlying aquifers was small 
and highly sensitive to external dynamics (i.e., boundary conditions). 
Although the method successfully identified a range of optimal param
eters for this site, sites with more permeable aquitards may be even 
better suited for this approach. At such sites, the calibration will be more 
sensitive to pumping-induced drawdown in the overlying aquifer, 
thereby reducing uncertainty regarding aquitard parameters.

For successful application of the workflow at other locations, suffi
cient piezometers must be present in both the pumped and overlying 
aquifers. This ensures the ability to identify leakage from the overlying 
and underlying aquifers and provides additional data points to charac
terize heterogeneity in hydraulic conductivity within the aquitard. 
Lithological descriptions are commonly available at the locations of 
piezometers, since these are installed in boreholes, although quality of 
the lithology description could vary depending on drilling method, 
personnel and availability of borehole logging. Other information may 
also be available like geophysical borehole logs providing information 
on (vertical) heterogeneity. In this study we could not differentiate 
whether high conductivity zones were identified based solely by con
ditioning on borehole data, calibrating on head observations, or a 
combination of both. However, geostatistical or statistical parameters 
such as correlation lengths of lithological classes and Kcore distributions 
were derived primarily on the heads, as borehole data alone could not 
reliably provide this information at this site (Appendix 1).
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We utilized four months of daily data, even though eight years of 
hourly records were available. Daily data was sufficient to capture 
pumping induced drawdown and variations in drawdown patterns from 
changing well discharges. We tested longer time series, but that intro
duced more external dynamics that are difficult to capture in the model. 
While four months is significantly longer than the duration of typical 
pumping tests, which usually last several hours to some days, the 
extended time frame allowed for sufficient dynamics on a daily scale to 
differentiate pumping-induced drawdown from external influences and 
to differentiate drawdowns of different wells. At drinking water ex
tractions, it is challenging to establish the base level of heads that would 
occur if there was no pumping, especially if they have been active for a 
long time. Therefore, it is essential to have a time frame and resolution 
of head and discharge data that clearly capture pumping-induced head 
dynamics. As long as such dynamics are observed, it is possible to cali
brate a model effectively for the well field. The necessary time frame and 
frequency of pumping and head data might vary per site, depending on 
local hydrogeological conditions and the available drawdown and 
discharge data, as well as the operational management of the ground
water pumps.

Once a homogeneous model is calibrated adequately, the workflow 
with heterogeneous aquitard realizations can be applied. Even with a 
limited number of observation wells, it is possible to identify a range of 
geostatistical parameters that reproduce the effective conductivity value 
of the reference model, albeit with significant uncertainty. Increasing 
the number of observation wells improves the identification of specific 
high or low conductivity zones within the area, improving the overall 
characterization of aquitard heterogeneity. We demonstrated this by the 
low resistance zones in the northern part of the domain where more data 
is are available, compared to the southeast part were the data is limited.

4.6. Implications for groundwater resources management

Our study has local and general implications with regards to 
regional-scale hydrogeological parameterization. Locally, modelling 
flow with heterogeneous aquitard representations improves model fit to 
observed heads. Apart from that, it impacts the water balance, since less 
water flows through the aquitard compared to the reference model. It 
also provides critical information for risk assessment of the quality of the 
extracted water as the travel time of part of the extracted water, and thus 
that of contaminants, is reduced. This implies that if the extraction is at 
risk of contamination, the time when a contaminant front arrives at the 
well might be severely overestimated. Since the uncertainty of the travel 
times is large, further investigations are recommended, e.g. with 
increased monitoring of water quality in wells or tracer tests. Potential 
management strategies in case of contamination risk include decreasing 
extraction rates, moving the wells to deeper aquifers or improving water 
treatment as well as restrictions on land use to prevent contamination.

Regionally, the optimal geostatistical parameter ranges can be used 
to parameterize groundwater flow models at various scales, as they are 
used to upscale from core scale to larger scales. Having more accurate 
regional flow models with better established uncertainty regarding 
spatial variability can improve water management decision making and 
operational management of the drinking water extraction.

5. Conclusion

We present a workflow for determining structural hydrogeological 
parameters of aquitards, such as lithology correlation lengths, core scale 
conductivity distributions and lithology fractions with observation data 
from drinking water well field. These parameters are challenging to 
derive from lithological descriptions or laboratory data, but they are 
critical for conducting risk assessments related to water quality and 
ensuring consistent scaling from core to regional flow.

Through model calibration and Monte Carlo simulations, realizations 
were identified that had a better fit between modelled and observed 
hydraulic heads. These realizations provided optimal value ranges for 
horizontal and vertical correlation lengths, core-scale hydraulic con
ductivity, and lithology fractions.

Particle tracking using high-scoring realizations revealed that 
incorporating heterogeneous aquitards results in a smaller fraction of 
water originating from above the aquitard within the model domain. 
However, the water that locally flows through the aquitard reaches the 
pumping wells more quickly. This finding underscores an increased risk 
of contamination at drinking water extraction sites due to faster trans
port of contaminants from overlying or underlying aquifers, compared 
to a simpler model using relatively homogeneous aquitards. The pro
posed workflow is adaptable to other drinking water production sites, 
provided that enough borehole descriptions and piezometers data are 
available, and sufficient pumping-induced dynamics are observable for 
both the pumped aquifer and the aquifers above and below aquitards. In 
addition, a sufficiently accurate subsurface characterization is required.

This approach offers a tool for improving the representation of het
erogeneity in aquitards, contributing to better risk assessments and 
water management practices at and around drinking water production 
sites.

Further improvements in the parameterization of aquitards using 
drinking water extraction sites could be made with additional data types 
to condition the calibration, such as observations of flow velocity using 
e.g. active temperature sensing (Bakx et al., 2023) or tracer tests 
(Hendry et al., 2000).

Software and data availability section

The code that has been developed for this modelling framework are 
based on Python (version 3.11), and mainly relies on the packages flopy 
and nlmod. The source code can be found at https://github.com/Martij 
nVanLeer/ExtractionCalibrator. This repository is created by Martijn 
van Leer (m.d.vanleer@uu.nl) in 2024 and published in 2025. The 
required input and output data can be found at https://doi.org/10.5 
281/zenodo.14869963 (500 MB).
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Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envsoft.2025.106554.

Appendix A. Variogram derivation

Variogram models for lithologies within hydrogeological formations are difficult to derive. Figure A1 shows variograms and fitted spherical 
variogram models for the Budel site.

Vertical correlation is can be fitted decently, as each lag distance has multiple data points within each borehole. For lag distances of 15–20 m a 
worse correlation occurs. This can be attribute to the fact that clay, which mostly occurs in the center of the layer, is not correlated with the sand that is 
present on either side of the aquitard. The correlation improves again for lag distances of 20–25 m. This can be attributed to correlation between the 
sand on the top and bottom of the layer being correlated. Some uncertainty remains around whether this pattern for lag distances >10 should be 
accounted for in the variogram model, which can, subjectively, be chosen to have shorter correlation lengths than the best fit of 13.7. Note that the R2 

is relatively high with 0.94.
The horizontal variogram shows a different pattern. Each lag distance bin contains a limited number of values, due to the limited number of 

boreholes. This causes an overrepresentation of correlation between single boreholes. Badly correlated boreholes skew the variogram as there is only a 
limited number of sets of boreholes that have a certain lag size. Increasing the bin size to have adequate average values of semivariance for each bin 
size would result in bin sizes that are large compared to expected correlation lengths. Fitting a variogram model to this pattern results in a correlation 
length close to the smallest lag distance and a relatively poor fit (R2 = 0.38).

Figure 12. Horizontal (top) and vertical (bottom) semivariograms for high and low conductivity indicators. A spherical variogram without nugget is fitted through 
binned lags of borehole data.

Data availability

The data and source code are publicly available.
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