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Chapter 1

Introduction

In the mid-19th century, postal rates in England were calculated based on the distance
and the number of pages that were sent (National Postal Museum, n.d.). Moreover,
mail could be sent with insufficient postage. Due to the high postal rates, demand for
postal services was low and most mail was sent postage due, making the postal system
expensive to operate. Charles Babbage analysed the efficiency of postal operations
and showed that, given sufficiently high demand for postal services, the distance a
letter travelled was negligible on the total costs of the postal operations (Sutherland,
2021). Babbage proposed a standardised postal rate based solely on the letter’s
weight. This recommendation led to the introduction of the ‘Universal Penny Post’
in 1840 in which the price was set to one penny for letters weighing up to half an
ounce. This significantly increased the demand for postal services and made the

postal system profitable.

While the term was not used yet, the mathematical analysis on the performance of
the postal system by Babbage is an example of Operations Research (OR), in which
mathematical models are used for decision-making. The field of OR was formally
developed in World War II, when Patrick Blackett and his team of scientists — Black-
ett’s Circus — studied military operations (Assad and Gass, 2011). They analysed,
amongst others, the effect of the size of a merchant convoy on the probability of
sinkage (Falconer, 1976). They found that the probability that a convoy was sighted
did not depend strongly on the size of the convoy. Furthermore, they found that the
probability of breaking through the protection of the escort vessels, depended only
on the ratio of the number of escort vessels and the perimeter of the convoy that had

to be protected, and that this perimeter grows less than linearly in the number of
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ships in the convoy. Therefore, while it was believed that smaller convoys were safer,

Blackett suggested using fewer, but larger convoys.

Due to the recognition of the value of OR techniques in World War II, research on
military operations continued. Harris and Ross, an American researcher and retired
general, respectively, studied the railway network of the Soviet Union (Harris and
Ross, 1955). The first documented study of this network dates back to 1930 when
Tolstor published an article on minimising the total distance required to transport
resources using this railway network. A secret report released at the end of the 20th
century revealed that Harris and Ross studied the railway network as a maximum flow
problem (Schrijver, 2002). In this problem, the aim is to send as much flow through
a network as possible, i.e., transport as much cargo as possible, while adhering to
capacity constraints. However, according to Ford and Fulkerson, the study’s actual
aim was to find the minimum cut, %.e., the minimum number of train tracks that
should be destroyed to prevent transport by the Soviet Union to Europe. Harris
and Ross were the first to formulate the maximum flow problem which was used by
Ford and Fulkerson to prove the well-known max-flow min-cut theorem (Ford and
Fulkerson, 1956). This theorem states that the maximum flow in a network, i.e., the
largest amount of flow that can be sent from a source to a destination in a network
without exceeding the capacities on the edges, equals the minimum cut, i.e., the
smallest total capacity of connections that, if removed, would disconnect the source
from the destination (Ford and Fulkerson, 1956).

Military applications had an impact in the emergence of OR and remain an area
of research as new problems arise due to, for example, changes in the equipment,
technology, or strategies used by the military. After the success of OR techniques
in military applications, their value was also recognised in other fields as a way to
solve operational problems. OR techniques can be used to, for example, ensure your
package is delivered on time, the supermarket is restocked with the right quantities,
and all work shifts at a hospital are covered while meeting all labour agreements
related to resting hours between shifts. While the problems in the private sector often
optimise cost or profit, problems in military logistics consider effectiveness — achieving
the desired results, readiness — ensuring deployment capability and capacity, and
survivability — maintaining operational continuity. In addition to these different
priorities, military problems often include scarce resources and unique constraints

that do not exist in other applications.

A more recently developed field of OR is humanitarian logistics, which considers

the preparedness and response to disasters. While OR techniques have been applied
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to problems in the private sector for many decades, the application of these techniques
to humanitarian problems is relatively new (Van Wassenhove, 2006). Compared to
problems in the private sector, humanitarian logistics faces challenges such as scarce
resources and uncertainty about if and when a disaster will take place, the extent of
the damage, and where help is needed. Furthermore, equity concerns are important
in humanitarian logistics and therefore have to be considered in the decision-making
process (Breugem et al., 2024).

Military and humanitarian logistics thus both consider effectively and efficiently
using limited resources, possibly in unpredictable environments. They often involve
unique constraints such as coordination or equity, that are not present in the private
sector. As a result, the problems faced in military and humanitarian logistics differ
significantly from those in the private sector. Solution approaches developed for (re-
lated) problems in the private sector can thus not be (directly) applied to problems

in the military and humanitarian sector.

In this thesis, we consider various military and humanitarian optimisation prob-
lems. The remainder of this chapter is structured as follows. In Sections 1.1, 1.2,
and 1.3, we introduce the three different optimisation problems considered in this
thesis. In Section 1.4, we describe the set-up of the remainder of this thesis. The

contributions and research statement are given in Sections 1.5 and 1.6, respectively.

1.1 The Ship-to-Shore Problem

In coastal areas, access from the sea may be the fastest or only viable way to deliver
essential resources — personnel, vehicles, and supplies — for military or humanitarian
operations on land. The navy plays a vital role by transporting these resources by
large amphibious warfare ships. These large ships are not always able to reach the
shore themselves. The resources require transport to the shore using smaller ships and
helicopters, called connectors. Figure 1.1 illustrates this process, in which connectors
make trips between a large amphibious warfare ship and the shore to deliver the
resources. It is essential to deliver all resources to the shore as soon as possible to
enable their use. Scheduling the transportation from the large amphibious warfare
ship(s) to the shore is known as the Ship-to-Shore Problem.

Constructing a schedule for the Ship-to-Shore Problem is complex as the schedule
has to adhere to various requirements. For example, the connectors have both space

and weight capacities. We thus have to ensure that we assign sets of resources that



4 Chapter 1
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Figure 1.1: Illustration of the Ship-to-Shore Problem in which resources have to be trans-
ported from the large amphibious warfare ship on the left to the shore on the right. These
resources are transported using small ships, called connectors.

can fit on the connector. The amphibious warfare ships have a limited number of
loading spots and therefore a maximum number of connectors can be loaded at the
same time. In our schedule, we can thus not schedule more connectors to be loaded at
the same time, than the maximum number of available loading spots. Furthermore,
not all connectors can be loaded from the same spot. A helicopter can for example
only be loaded on the deck on top of the large amphibious warfare ship, from which
small ships cannot be loaded.

In addition to requirements regarding the capacity of the connectors and large
amphibious warfare ships, there can be requirements regarding the coordination of
the deliveries. Resources can have different priority levels where resources with a
lower priority can only be delivered once all resources with a higher priority have
been delivered. Furthermore, resources can be complementary to each other and
therefore should be delivered shortly after each other. For example, personnel and
their vehicles should not be delivered too far apart.

A schedule for the Ship-to-Shore Problem should thus meet various requirements
to be feasible in practice. Additionally, we aim to enable the operation on land to
start as soon as possible. We are therefore interested in finding a feasible schedule
that minimises the time it takes to transport all resources.

Based on such a schedule, preparations will be made. The resources on the large
amphibious warfare ship are placed in a certain order and therefore block resources
that are scheduled to be transported later. Also, personnel is potentially assigned
other tasks until their scheduled departure time. This limits the ability to change the
timing and order in which resources are transported. Therefore, delays in the trips
of the connectors and/or the (un)loading of the connectors, can propagate through
the schedule and result in large delays.

Our research focuses on both the construction of a schedule for the Ship-to-Shore

Problem and the evaluation of their robustness against delays.
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1.2 The Generalised Capacitated Resupply Prob-

lem

During military operations, it is important that units are supplied on time with
essential commodities, such as food, fuel and medical supplies. Traditionally, resup-
ply operations have focussed on supporting large, centralised units using motorised
vehicles. Advancements in drone technology are opening up new possibilities for re-
supply operations, particularly for delivering smaller quantities of supplies. At the
same time, developments in military strategies cause a shift toward smaller, more
dispersed units. Dispersed operations introduce new logistical challenges since nu-
merous small units should be resupplied, instead of resupplying a few centralised
locations. A relevant question is whether there is sufficient logistical capacity to
sustain these dispersed operations.

Besides military applications, this problem can also occur in humanitarian set-
tings. For example, in the aftermath of a natural disaster, emergency shelters have to
be resupplied with essential commodities such as food, water, and medical supplies,
that arrive at a central depot.

We are interested in finding the minimum number of vehicles that are required
to ensure none of the locations run out of stock. We consider locations that each
have their own capacity and demand that depletes their stock. Initially, all locations
are at full capacity. They are resupplied from a central depot by round-trips, i.e.,
the vehicles used to resupply the locations go directly to the location and then back
to the central depot. When a location is resupplied, its stock increases with the
vehicle payload up to its capacity. The time required to resupply a location from the
depot can differ and we assume the stock is delivered to the location at the end of
the resupply time. The problem of finding a feasible resupply schedule, is called the
Generalised Capacitated Resupply Problem.

Figure 1.2 shows a small example to illustrate this problem. Here, four locations,
A, B, C, and D, should be resupplied by vehicles from a central depot. For each
location, the capacity is given by the number of blocks in the adjacent bar, and the
resupply time is given on the corresponding arc. All locations have a demand rate of
1, equal to one block in the adjacent bar. We see, for example, that location C has
a very low capacity, while location B has a much higher capacity. Locations A and
C should be resupplied in the next time period, as they will otherwise experience a
stock-out. Figure 1.3 shows a feasible resupply schedule for the instance of Figure 1.2

with a vehicle payload of 4, i.e., when a vehicle visits a location, the stock level
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Figure 1.2: Ilustration of an instance of the Generalised Capacitated Resupply Problem.
Here, all locations — A, B, C and D — have a demand rate of 1. The capacity of a location
is denoted by the number of blocks in the bar next to it. Each block corresponds to the
demand for one period. The grey area shows the current stock level. The resupply times
are given on the corresponding arc.

Time-unit | . . . {

Vehicle 2 ‘

Vehicle 3 ’

Figure 1.3: Example of a feasible schedule for the instance of the resupply problem in
Figure 1.2 with a payload of 4. This schedule is repetitive, i.e., after time period 4, the
schedule is executed again. The stock levels in Figure 1.2 correspond to the stock level at
the end of time period 5.

increases by 4, or up to its capacity. This schedule has a length of 4 time periods and
it is thus repeated after 4 periods. Here, locations B and C are assigned a dedicated

vehicle, while vehicle 2 is used to resupply both location A and D.

Our research focuses on developing simple policies that can be used to construct
a feasible resupply schedule. We provide approximation guarantees on the number
of required vehicles for these resupply schedules, i.e., a worst-case guarantee on the

quality of the resulting schedule.
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1.3 The Value of Mobile Labs in Disease Surveil-

lance

Disease surveillance, i.e., the collection and testing of samples to identify and mon-
itor the spread of pathogens, is crucial for reducing the impact of infectious diseases.
Good surveillance enables rapid implementation of preventive measures, such as so-
cial distancing for air transmitted diseases and mosquito nets for malaria, thereby
reducing the spread of the disease. However, low- and middle-income countries
(LMICs) often face significant gaps in their surveillance infrastructure. These gaps
can be addressed through investments in local health facilities or by deploying mobile
laboratories (labs). Mobile labs, vans equipped with high-quality diagnostic equip-
ment that allow for on-site testing, can travel between regions, thereby periodically
improving the surveillance in multiple regions. While mobile labs appear to be a
promising alternative to investments in the local health facilities, they are expensive
and the budget in LMICs is limited. Therefore, we are interested in when and how
much value mobile labs can bring by analysing when investments should be made in

mobile labs and when in local health facilities themselves.

We consider a budget allocation problem in which we have to allocate a lim-
ited budget across multiple regions to improve surveillance from the perspective of
a health ministry. In each region, the budget can be used to either invest in im-
proving local health facilities, or in deploying mobile labs. Here, we aim to reduce
the expected detection time, i.e., the time at which a threshold for the number of
positive tests is reached. Figure 1.4 illustrates the problem, in which the budget is
allocated to four regions. The regions can differ in the quality of the local health
facilities, represented by the difference in the size of the local health facilities, and
in size/the population, represented by the figures. The budget should be allocated
to the region, either to improve the local health facilities, or to deploy mobile labs.
In this example, two of the regions receive investment to improve their local health

facilities, while the other two regions are assigned mobile lab visits.

We analyse the problem both analytically and numerically. We are interested in
the value of mobile labs, i.e., how much additional reduction in detection time can
be obtained by using mobile labs instead of considering investments in local health
facilities. In public health resource allocation, equity is import. Inequitable alloc-
ations may lack the necessary support from regional stakeholders, which prevents
them from being implemented. Therefore, we are interested in potential equity con-

cerns that can arise in the optimal budget allocation and in the price of fairness, i.e.,
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Figure 1.4: Illustration of the budget allocation problem in which a limited budget has to
be distributed across multiple regions to improve surveillance through either investments in
the local health facilities or the deployment of mobile laboratories.

the difference in the reduction in detection time between the optimal and equitable

solutions.

1.4 Thesis Outline

This thesis is structured into six chapters. Figure 1.5 gives a schematic overview of
the problems considered in Chapters 2-5. Chapters 2 and 3 consider the Ship-to-
Shore Problem described in Section 1.1. In Chapter 2, we present an exact and a
heuristic approach to solve the problem, i.e., to find a schedule. In Chapter 3, we
simulate the execution of the problem to analyse the robustness of the schedule as well
as the effect of allowing connectors to depart a limited amount of time ahead of the
scheduled time. Although these chapters can be read independently, we recommend
reading these in order. In Chapter 4, we consider the resupply problem described in
Section 1.2. We present policies for different versions of the problem to find feasible
resupply schedules and give guarantees on the quality of the schedule. In Chapter 5,
we consider the budget allocation problem introduced in Section 1.3. We end with a
conclusion in Chapter 6.

In the remainder of this section, we describe Chapters 2 - 5 in more detail.
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Ship-to-Shore problem

Chapter 2 Chapter 3
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Figure 1.5: Schematic overview of Chapters 2-5 in this thesis.

Chapter 2: Wagenvoort, M., Bouman, P.C., van Fe, M., Lamballais Tessensohn,
T., and Postek, K. (2025). “Exact and Heuristic Approaches for the Ship-to-Shore
Problem”. European Journal of Operational Research, 320(1), 115-131.

In this chapter, we consider the construction of schedules for the Ship-to-Shore
Problem described in Section 1.1. In the Ship-to-Shore Problem, trips with their
accompanying resources are determined while minimising the makespan, such that
the operation on land can start as soon as possible. Limited (un)loading capacities,
heterogeneous connector characteristics and constraints posed by priority of the re-
sources and grouping of complementary resources (resource sets) all require that the
connector trips are carefully coordinated. Despite the criticality of this coordination,
existing literature does not consider resource sets and has only developed heuristics.
We provide a formulation that incorporates resource sets and develop (i) an exact
branch-and-price algorithm and (ii) a tailored greedy heuristic that can provide upper
bounds using discretised time periods. We find that 84% of our 98 practical instances
terminate within an hour. On average, these instances are solved in 80 seconds. Our
greedy heuristic can find optimal solutions in two-thirds of these instances, mostly for
instances that are very constrained in terms of the delivery order of resources. When
improvements are found by the branch-and-price algorithm, the average gap with the
makespan of the greedy solution is 40% and, in most cases, these improvements are
obtained within three minutes. For the 20 artificial instances, the greedy heuristic
has consistent performance on the different types of instances. For these artificial

instances, improvements of on average 35% are found in reasonable time.
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Chapter 3: Wagenvoort, M., Bouman, P., van Ee, M., and Malone, K.M. “Evalu-
ating Ship-to-Shore Schedules using Simulation”. Journal of Defense, Modeling and

Simulation (accepted for publication).

In this chapter, we evaluate schedules for the Ship-to-Shore Problem described in
Section 1.1 that are created assuming deterministic parameters regarding the speed
and (un)loading time of the connectors. These schedules might therefore not be ro-
bust to delays. We developed a simulation model to analyse the effect of uncertainty
in these parameters on the execution of a schedule. We analyse (i) whether these
discrete time periods are able to capture the delays, (ii) the effect of using more
conservative parameters when constructing a schedule, and (iii) the effect of being
less rigid in the execution, i.e., when being allowed to depart a limited amount of
time ahead of schedule. We find that significant delays occur and that using more
conservative parameters for the (un)loading time can have a positive significant effect
on the duration of the operation. Being less rigid can also have a positive significant
effect on the duration, however, being less rigid comes at the cost of violating con-

straints regarding the grouped delivery of complementary resources.

Chapter 4: Wagenvoort, M., Bouman, P., van Ee, M., and Malone, K.M. “Policies
for the Generalised Capacitated Resupply Problem”. Under review.

In this chapter, we study the Generalised Capacitated Resupply Problem (GCRP)
described in Section 1.2, of which an earlier version is published in the ATMOS 2023
conference proceedings (Wagenvoort et al., 2023). In this problem, locations with a
given capacity and demand rate should be resupplied by vehicles such that they do
not run out of stock and the number of vehicles is minimised. Compared to related
problems, we consider the scenario where the payload of the vehicles may not suffice
to bring the stock level back to full capacity. In addition to the GCRP, we consider
three variants of the problem in which the capacities and demand rates and/or the
resupply times are homogeneous. We prove that the problem is NP-hard, even on one
vehicle and with homogeneous capacities, and present policies to solve the different

variants of the problem and provide corresponding approximation guarantees.

Chapter 5: Wagenvoort, M., Parsa, 1., and Van Wassenhove, L. “Outbreak preven-
tion in low- and middle-income countries: Investing in local health facilities or in

mobile laboratories?”. In preparation for journal submission.

In this chapter, we analyse the value of mobile laboratories (labs) in surveil-
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lance, as described in Section 1.3. Mobile labs are vans with high-quality diagnostic
equipment that can perform fast on-site testing at various locations. We consider
the perspective of a health ministry of a low- or middle-income country that has a
limited budget available for improving surveillance of infectious diseases in multiple
regions. For each region, the budget can be used to deploy mobile labs, or to invest
in improving the surveillance by local health facilities. We formulate a budget al-
location problem, where the objective is to optimally allocate the budget across the
regions. We analyse the problem both analytically and numerically for both the case
with identical regions and non-identical regions that differ in the current quality of
their local health facilities. We analyse the value of mobile labs and potential equity
concerns that can arise. We find that mobile labs can add significant value when
the budget is tight and identify potential equity concerns. Even when regions are
identical, inequity can arise. Furthermore, inverse inequity can arise where regions
with currently higher quality local health facilities face longer detection times. How-
ever, when we consider equitable budget allocations, we find that mobile labs can

still add significant value.

1.5 Contributions

In this section, we present the contributions of Chapters 2-5 separately.

Chapter 2: Wagenvoort, M., Bouman, P.C., van Ee, M., Lamballais Tessensohn,
T., and Postek, K. (2025). “Exact and Heuristic Approaches for the Ship-to-Shore
Problem”. European Journal of Operational Research, 320(1), 115-131.

We propose a formulation for the Ship-to-Shore Problem that enables coordina-
tion between complementary resources and show that the problem is NP-hard. We
develop two solution approaches, one exact and one heuristic method, to solve the
problem. We evaluate the performance of the solution approaches using both real-
world and artificial instances. We analyse under which circumstances the heuristic
works well and under which circumstances the exact solution approach finds signific-

ant improvements.

Chapter 3: Wagenvoort, M., Bouman, P., van Ee, M., and Malone, K.M. “Evalu-
ating Ship-to-Shore Schedules using Simulation”. Journal of Defense, Modeling and
Simulation (accepted for publication).

We develop a simulation model that can be used to evaluate the performance of
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schedules for the Ship-to-Shore Problem. The model accounts for uncertainties in
the connector speed, (un)loading times, and changes in the weather conditions that
impact the travel times. We analyse how well schedules constructed using discrete
time periods, as in Chapter 2, perform in practice, and analyse the effect of using
more conservative parameters. In practice, there is some rigidity in the execution
of the schedule. Due to preparations made in advance, connectors are not able to
depart ahead of schedule. We analyse the effect of this rigidity in the execution of
the schedule and find that while it has a positive effect on the time required to trans-
port all resources, it can result in violating requirements regarding the coordination

between complementary resources.

Chapter 4: Wagenvoort, M., Bouman, P., van Ee, M., and Malone, K.M. “Policies
for the Generalised Capacitated Resupply Problem”. In preparation for journal sub-
mission.

We formally introduce the Generalised Capacitated Resupply Problem (GCRP)
and variants of this problem, which differ based on whether locations have homo-
geneous or heterogeneous parameters. We present complexity results for the GCRP
and two of its variants and present corresponding inapproximability results, i.e., we
present a lower bound on the approximation guarantee for polynomial time approxim-
ation algorithms. We describe policies and corresponding approximation guarantees
for the GCRP and its variants.

Chapter 5: Wagenvoort, M., Parsa, 1., and Van Wassenhove, L. “Outbreak preven-
tion in low- and middle-income countries: Investing in local health facilities or in
mobile laboratories?”. In preparation for journal submission.

We analyse the value of mobile labs in improving surveillance, taking into account
the alternative option of investments in the existing local health facilities. We incor-
porate an equity perspective. Not considering potential equity concerns can result
in solutions that fail the required support of stakeholders and is often overlooked in

research.

1.6 Research Statement

This research was made possible by TNO in collaboration with Erasmus Univer-
sity Rotterdam (EUR) and the Netherlands Defence Academy (NLDA). The au-

thor of this thesis is the main contributor to all chapters in this thesis, which in-



Chapter 1 13

cludes model/solution method development, implementation, and writing. Chapter 2
is written in collaboration with Paul Bouman (EUR), Martijn van Ee (NLDA),
Tim Lamballais Tessensohn (TNO), and Krzysztof Postek (independent researcher).
Chapter 3 and 4 are written in collaboration with Paul Bouman (EUR), Martijn van
Ee (NLDA), and Kerry Malone (TNO). Chapter 5 is written in collaboration with
Iman Parsa (Stockholm School of Economics) and Luk Van Wassenhove (INSEAD).
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2.1 Introduction

After a natural disaster such as a hurricane, the navy can provide aid by bringing
supplies, helping to clear roads, and evacuating victims. In case of coastal areas, the
navy provides support by transporting supplies from ships to the shore using smaller
ships and helicopters, called connectors. For example, the US military delivers sup-
plies in relief missions through a floating dock from which smaller and lighter vessels
make deliveries to the pier (Debusmann, 2024). This has to be done efficiently for the
help on land to start as soon as possible. As the planning of such an operation may
depend on various situational parameters, such as weather conditions, the planning
of such an operation has to be done fast. In addition to humanitarian purposes, this
problem can be encountered in other military operations such as assault, withdrawal,
raid, or support of other operations (Maritime Warfare Centre, 2019).

Planning such an operation is known as the Ship-to-Shore Problem, which is a
type of transportation problem. In the Ship-to-Shore Problem, connectors pick-up
resources, such as personnel and vehicles, from ships, and deliver them to the shore.
Hence, it can be seen as a pick-up and delivery vehicle routing problem (PDVRP)
(Zachariadis et al., 2016). However, large naval operations typically require the co-
ordinated delivery of various types of resources, which we identified based on various
interviews with experts on military operations at the Defence, Safety & Security unit
of the Netherlands Organisation for Applied Scientific Research (TNO), a Dutch na-
tional research institute. To ensure this coordinated delivery, additional decisions on
how to load the heterogeneous resources on the connectors are needed. Compared
to the traditional PDVRP, the Ship-to-Shore Problem focuses on including the vari-
ous types of coordination required within large scale operations, while reducing the
movement of connectors to round-trips between the various loading and unloading
spots at the ships and the shore.

One way in which coordination between the deliveries of the resources is imposed
is through priority levels. Resources with a lower priority can only be delivered
after items with a higher priority have arrived on the shore. This helps ensure
that the command-and-control structure remains clear and ensures there are clear
phases in the execution of the plan. Between these phases, resources should not
be mixed, as it is imposed that preparatory measures should be completed before
expensive equipment can be safely deployed. Strict priority orderings can also exist
in other related problems. For example, consider the installation of a wind farm
where resources should be brought from the shore to the sea. Here it is preferable

to deliver expensive components only after the foundation is completed. Another
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way coordination is imposed is by requiring groups of resources to be delivered at
the same time or immediately after each other. Namely, units may have trained
with particular vehicles and other units. They can be temporarily separated while
being transported, but should be able to work together on the shore. These types
of coordination do not exist in the PDVRP. Despite their importance in practical
operations, these coordinating constraints have not been considered in prior research
on the Ship-to-Shore Problem (Christafore Jr., 2017; Danielson, 2018; Strickland,
2018).

The aim of the Ship-to-Shore Problem to minimise the duration of the operation,
such that all resources are on land as soon as possible. In the operation, connectors
are loaded at a ship, called the sea base (SB), after which the resources are trans-
ported to a landing area (LA) to be unloaded such that the connector can return to
a (possibly different) SB for its next trip. Note that only one SB and one LA is vis-
ited in each trip for safety reasons. The SBs and LAs accommodate different types
of connectors. For example, helicopters can only be loaded at a landing platform
on the deck of the ship, while surface connectors cannot use this landing platform.
Connectors also have different dimensions, fuel capacities, fuel consumption rates,
speeds and weight capacities. Furthermore, the speed of a connector depends on its
design speed, whether it is loaded or not, and the state of the sea, i.e., the wind and

the waves.

The Ship-to-Shore Problem can include various operational constraints that re-
quire coordination between the schedules of the different connectors. Our problem
formulation has three such constraints. Firstly, there is limited (un)loading capacity,
as there is a limited number of (un)loading spots, putting a constraint on the number
of connectors that can be (un)loaded at the same time. Secondly, we consider a het-
erogeneous fleet of connectors with varying speeds, fuel capacity and consumption,
and dimensions, affecting the set of resources that can be transported simultaneously.
Thirdly, we require coordination between the delivery of the resources in the two ways
described before. Namely, we consider priority levels and groups of resources, called
resource sets, that should be delivered together. The time period in which the re-
sources from a resource set are delivered is called a delivery wave for that resource
set. There is no ordering imposed between the different waves with the same priority
and these delivery waves can (partially) overlap. Note that this implies that the min-
imum number of connectors should be such that each resource set can be delivered

using each connector at most once.

An input to this problem are the ways in which connectors can be loaded during a
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trip. In the ship-to-shore application, there are very specific practical constrains that
are very challenging to incorporate in the model. We therefore focus on optimising
the transportation schedule and take the ways connectors can be loaded as input.

The main contributions of this chapter are as follows. First, we develop a for-
mulation for the Ship-to-Shore Problem that allows for coordination between the
resources, and we prove the Ship-to-Shore Problem to be NP-hard. We then develop
two solution methods: An exact branch-and-price algorithm in which heuristic pricing
is used in combination with an exact pricing method, and a tailored greedy heuristic
that can also be used as an upper bound in the formulation and algorithm. A branch-
and-price algorithm is used as preliminary results showed that the integrated problem
did not work well. We conduct computational experiments with instances from prac-
tice to show that the branch-and-price algorithm is able to solve the majority of
these instances within an hour. Finally, we investigate under which circumstances
which method is preferred. We observe that the greedy algorithm performs partic-
ularly well on instances where resource set constraints exist, but no priorities are
defined. We furthermore observe that the exact method has the highest potential to
improve solutions when resource set constraints are not present. We additionally use
20 artificial instances to compare with our practical instances. These show that for
general instances there is no difference in the performance of the greedy heuristic.
The artificial instances confirm the ability of the branch-and-price algorithm to find
improvements compared to the solution of the greedy heuristic fast.

The remainder of the chapter is organised as follows. In Section 2.2, we formally
introduce the Ship-to-Shore Problem and the time-space network which we use to
solve this problem. Section 2.3 gives an overview of the related literature and how the
problem differs from a PDVRP. Our mathematical model and proof of NP-hardness
are given in Section 2.4. Our branch-and-price algorithm is provided in Section 2.5
and our greedy heuristic is described in Section 2.6. In Section 2.7, we describe
the experimental set-up and analyse the performance of our exact algorithm and

heuristic. We end with a conclusion in Section 2.8.

2.2 Problem Definition

In this section, we formally define the problem and its notation. An overview of the
notation used in this section can also be found in Appendix 2.A.
In the Ship-to-Shore Problem we have a set of sea bases ¥ and a set of landing

areas A that each have a set of (un)loading locations, P; for ¢ € ¥ and D; for
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i € A, respectively. The set of loading locations and unloading locations can then
be defined as P = U;exP; and D = U;caD;, respectively. We denote the set of
connectors, i.e., smaller ships and helicopters used for transporting the supplies, as
C. Let M be the set of resource types for which the dimensions are known, and n,,
the demand for resource type m € M. Here, we aggregate resources with the same
origin, destination, priority level, and resource set, if assigned any. It is not possible to
aggregate resources that are not identical in the origin, destination, priority, and/or
resource set, as, for example, personnel should stick together with their unit and it
is therefore specified what their origin is. Personnel with different priority levels,
origins, and/or destinations, are thus considered different resource types. We define

the meaning of priority level and resource set later in this section.

For each connector ¢ € C, L¢ denotes the set of feasible ways connectors can
be loaded, called loadings. Here | € L€ is a vector of length | M| representing the
number of resources of each type m € M that can be transported together, i.e., they
can feasibly fit together on connector ¢, and have the same priority level, origin and
destination. This implies that exactly one loading needs to be selected for each trip
made by a connector from an SB to an LA. Travel times between the locations are
denoted by ;5. for 4,7 € PUD and c € C. When ¢ € P and j € D, t;;. is determined
using the speed of connector ¢ € C while it is loaded, and when ¢ € D and j € P,
using the speed while it is empty. The (un)loading time for a connector ¢ € C at
location ¢ € P UD is denoted by t/,. For each connector ¢ € C we denote the fuel

capacity, fuel consumption rate, and refuelling rate by Q., h., and g., respectively.

Due to the (un)loading capacities, at most one connector can be located at
each ¢ € PUD at all times. Furthermore, the fuel level of a connector should
be non-negative at all times. All resources have a priority level and our conven-
tion shall be that the lower the number, the higher the priority. Hence, all priority
m € {l,...,II—1} resource types should be delivered at their destination, before the
unloading of priority m + 1 resource types starts, where II is the number of priority
levels. Furthermore, we have a collection of resource sets s € S, where S is a par-
tition of (a subset of) M, i.e. not all resources are necessarily part of a resource
set. The delivery of resource types within a resource set should start within e time
of each other. Namely, if unloading of a connector with resources from resource set
s starts at time ¢ and takes ¢’ time, then unloading the next connector containing
resources from resource set s should start at time ¢ + ¢ + ¢ at the latest. We call
these requirements the resource set constraints. If a resource type is not assigned to

any resource set, there is no requirement to link the delivery of these resources to the
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delivery of other resource types, but only to those of that same type.
A solution to this problem defines for each connector ¢ € C, a sequence of trips
from a loading location i € P to an unloading location j € D where for each trip a

loading is assigned, such that the makespan is minimised and all constraints are met.

2.2.1 The Time-Space Network

To solve the problem, we make use of a time-space network. In the time-space
network we work with discrete time periods. This time discretisation results in loss
of exactness unless the time period length is set to the greatest common divisor of
all (un)loading times and travel times (Boland et al., 2019). However, when the time
period length decreases, the number of required time periods increases and so does
the size of the network. Hence, there is a trade-off between the size of the time-space
network and solution quality. In practice, the distances between the SBs and LAs are
quite large. Thus, the travel times are relatively long compared to the (un)loading
time. Therefore, the length of a time period is chosen such that (un)loading can
occur in one time period (Amrouss et al., 2017). In the remainder of this section, we
explain how the time-space network is constructed.

Due to (un)loading capacities, there is a maximum number of connectors that can
be (un)loaded at the same location simultaneously. Furthermore, as we are consid-
ering a heterogeneous fleet of connectors that can reach different loading spots, the
type of connectors (un)loading at a location has to be taken into account. Moreover,
it is possible that the same connector visits the same location multiple times. Thus,
we have to model the movement of connectors over time and allow them to visit
the same location multiple times. To model this problem, we therefore opt for the
usage of a time-space network inspired by the approach of Chardaire et al. (2005).
To construct a time-space network for an instance, an upper bound on the number
of required time periods is required. To this extend, we will use the upper bound
obtained using the greedy heuristic described in Section 2.6 denoted by T

Let G = (N, A) be the time-space network with A the set of nodes and A the
set of arcs. The nodes in the time-space network are a combination of a location and
a time period and the arcs denote a transition through time and space.

There are four types of nodes: starting, ending, (un)loading, and waiting nodes.
The starting and ending nodes denote the starting and ending locations of the con-
nectors which are denoted by 7. and 7. for connector ¢ € C, respectively. Hence,
the set of starting and ending nodes is defined as 7 = {(7.,1) | c€C} and 7/ =
{(7,,T) | ¢ € C}, respectively. (Un)loading nodes correspond to (un)loading loca-



Chapter 2 21

tions at the SBs and LAs and are defined as P’ = {(i,t) | i € P,t =1,...,T} and
D' ={(,t)|ieD,t=1,...,T} for loading and unloading activities, respectively.
The interpretation of node (i,t) is that the connector is (un)loaded at location i
during time period t. Waiting nodes are added to model that a connector waits for
a free (un)loading spot or travels below maximum speed. The set of waiting loca-
tions is denoted by W = {(i,¢) | i € EU A, c € C} and the corresponding nodes by
W = {(i,t) | ieW,t=1,...,T}. The total set of nodes can then be defined as
N=PUDuUWUTUT.

The set of arcs A consists of four types of arcs: starting, ending, travelling,
and waiting arcs. The starting and ending arcs denote the departure and return of a
connector from its starting or ending location and are defined as {(z,j) | 1 € 7,5 € P’}
and {(4,7) | i € D', j € 7'}, respectively. Furthermore, we include the option of not
using a connector by including an arc from node (7,1) to (7.,T). Travelling arcs
correspond to a feasible transition in both time and space between a loading location
7 and unloading location j. A feasible transition in space implies that i and j can both
be accessed by one of the available connectors. A transition is feasible in time when
the time difference of node ¢ and j is at least equal to the travel time ¢;;. for some
connector ¢ € C. It is possible that a connector does not directly proceed to the next
location due to the priority, resource set, and capacity constraints, but either waits
for a spot to be free or travels below maximum speed. For a travel time of ¢;;. between
loading location i and unloading location j, or vice versa, by connector ¢ € C, let A be
the equivalent number of time periods. Then, arcs would have to be added from time
period t to t+A+1,t+A+2,...,T. To avoid adding all possible transitions between
the different locations, we use the previously defined waiting nodes. With the use of
these waiting nodes, we only have to add the shortest arc between locations. Namely,
from each loading node an arc is added to an unloading node or waiting node at an
LA when feasible in time and space, and from each unloading node an arc is added
to a loading node or waiting node at an SB when feasible in time and space. Finally,
waiting arcs are added between waiting nodes to allow for a connector to stay at a
waiting location, namely the arcs {(j,¢), (j,t+1) | j e W,t=1,...,T — 1}. Hence
the number of arcs in the network is linear in the number of SBs, LAs, connectors,

and time periods.

Example 2.1. An example of a time-space network for one connector with one SB
containing one dock and one LA containing one beach is given in Figure 2.1. In this
example, the connector needs two time periods to travel from the SB to the LA and

one time period to travel from the LA to the SB. The dashed and thick lines represent
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Time period 1 2 3 4 5 6 7 8 9 10

Start location

Dock (SB)

Waiting (SB)

Waiting (LA)

Beach (LA)

End location

Figure 2.1: Example of a time-space network for one connector with one SB containing
one dock and one LA containing one beach. Here all possible arcs are given (the bold and
dashed lines combined) for a connector that takes two time periods to travel from the SB to
the LA and one time period to travel from the LA to the SB. The bold lines are an example
of a path through the network.

all arcs and the thick lines correspond to one feasible path through the network. We
see that the connector is loaded with resources at the SB in time period 1, travels to
the beach during time periods 2 and 3 to arrive for unloading in time period 4. After
visiting the beach, the connector does not immediately proceed to the SB, but waits
for one time period before proceeding. After loading at the SB in time period 7, the

connector ends its last trip after unloading in time period 10.

Finally, we have to define the deliveries of resources from resource sets in terms
of the time-space network. For a resource set, it is imposed that in a delivery wave,
deliveries of its resources take place within € time of each other. In the time-space
network, we therefore impose that resources from a resource set should be delivered
in consecutive time periods.

The above described time-space network can be used to model the movement of
connectors through both time and space. A solution for the Ship-to-Shore Problem
consists of, for each connector, a path through the time-space network and for each
trip from an SB to an LA, the loading that should be transported. Which loadings can

be used on a specific arc while satisfying the priority and resource set constraints, will
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depend on the loadings that were assigned in the trips preceding that arc. Therefore,
simply duplicating all arcs from an SB to an LA node for each loading would result
in some paths through the time-space network being infeasible with respect to these

constraints. We describe how loadings are considered in Section 2.5.2.

2.3 Literature Review

We first focus on the literature related to the Ship-to-Shore Problem. Thereafter, we
link it to some other practical problems with similar characteristics and we describe
how the Ship-to-Shore Problem can be interpreted as a special case of the pick-up

and delivery vehicle routing problem.

2.3.1 The Ship-to-Shore Problem

The Ship-to-Shore Problem has been addressed in some research. Villena (2019)
solves the Ship-to-Shore Problem using an Integer Linear Programming model to
minimise the makespan. The author considers the priority levels of the connectors,
however, the author does not consider (un)loading capacities and the fact that some
resources are complementary and should belong to the same wave. Fuel capacities
are imposed by defining a maximum distance that the connectors can travel and thus,
refuelling is not allowed.

Christafore Jr. (2017), Danielson (2018) and Strickland (2018) generate schedules
for the Ship-to-Shore Problem using a three-phase approach. In the first phase, a
quickest flow problem is considered. In this problem, the aim is to maximise the
total demand satisfied given a fixed number of time periods. If the actual demand is
higher than the satisfied demand, the number of time periods is increased. When the
number of time periods is large enough for all demand to be satisfied, the correspond-
ing number of connector trips per connector type can be determined. In this phase,
capacity constraints are disregarded and hence no direct schedule can be constructed
from these trips. In the second phase, trips are assigned to connectors in an assign-
ment problem using a heuristic. Finally, in the last phase, a schedule is constructed
from the output of the assignment problem such that the makespan is minimised
and (un)loading capacities are satisfied. Christafore Jr. (2017) and Strickland (2018)
only consider the transport of fuel, while Danielson (2018) extends this framework
to multiple commodities.

In the three-phase approach from Christafore Jr. (2017), Danielson (2018) and
Strickland (2018), (un)loading capacities are disregarded when the set of trips to
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be executed are determined in the first phase. Therefore, this set of trips could be
suboptimal compared to the set of trips that result from an integrated approach.
Furthermore, resource set constraints are hard to impose as the set of trips selected

in the first phase could result in an infeasible solution.

2.3.2 Related Problems

There exist problems that have a similar structure to the Ship-to-Shore Problem.
First, two specific examples are given. Second, its relation to the pick-up and delivery
vehicle routing problem is explained.

An example of a problem with similar characteristics to the Ship-to-Shore Prob-
lem is an evacuation where people are located at one or multiple locations and have
to be brought to one or multiple shelter locations. Some locations might have to be
evacuated first because they are more in danger and hence have a higher priority.
The question is then what trips the vehicles, e.g. buses, have to make to evacuate
the area as quickly as possible. Kulshrestha et al. (2014) aim to minimise the evac-
uation time by assigning buses to pick-up location, while incorporating uncertainty
in the demand. They do not consider priorities, resource sets, fuel capacities, and
(un)loading capacity at the locations and assume that buses only travel to a fixed
pick-up point. Zhao et al. (2020) use a heuristic to determine the allocation of buses
to trips with the aim of minimising both the in-bus travel time and the waiting
time of the evacuees. They incorporate time-windows in which each location should
be visited, which can be seen as a strict type of priority constraints. They do not
consider resource sets, and fuel and (un)loading capacities.

Another example of a problem with similar characteristics is the installation of a
wind farm. Components of the wind mills and the underlying wind farm infrastruc-
ture have to be transported from the shore to the sea using vessels. Priorities arise
since certain components are required at the start, while others are only required
later on. Resource set constraints can be interpreted as the delivery of components
that have to be used together in the next step in the installation process. Vessels
are rented and hence to minimise the costs, the installation of the wind farm has
to be completed as fast as possible. Ursavas (2017) uses a Benders decomposition
approach to determine the time at which a particular vessel should start a certain
building process and what loading is selected in each tour. Weather predictions are
included as the weather has a big influence on the time that certain steps in the
building process require.

Another related problem is the pick-up from and delivery to offshore platforms.
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Here, vessels have to be scheduled to visit offshore oil and gas platforms to execute
deliveries and pick-ups, e.g. the delivery of equipment and collection of waste. The
vessels have capacity constraints, but also capacity constraints for (un)loading at
the offshore platforms can exists. This problem is studied by Gribkovskaia et al.
(2008) and Cuesta et al. (2017) and solved using a tabu search and adaptive large

neighbourhood search, respectively.

More generally, the Ship-to-Shore Problem can be linked to a pick-up and deliv-
ery vehicle routing problem (PDVRP), where items should be collected at a pick-up
location and then delivered to its delivery location. However, the location that is
visited determines the resource that is transported, while in the Ship-to-Shore Prob-
lem it has to be determined which resources are picked-up each time a connector
visits the location. Therefore, unless the general PDVRP is extended to a split de-
livery problem, each location is visited exactly once as opposed to the Ship-to-Shore
Problem in which trips are made back and forth between a limited set of locations
(Nowak, 2005). In general, this problem does not contain priorities, resource sets,
refuelling constraints, and (un)loading capacities at the locations. For each of these
aspects, we briefly explain the difference between related aspects of the PDVRP and
the Ship-to-Shore Problem.

Time windows, which are a common extension of the basic PDVRP (Ticha et al.,
2017), can be seen as a type of priority ordering between the resources. However,
the difference is that there is no strict ordering, but only a partial ordering when
using time windows. Furthermore, the time windows impose the constraint that the
pick-up and delivery occur during a certain time window, which is not necessarily
the case in the Ship-to-Shore Problem.

Resource set constraints could be interpreted as requiring all items with the same
pick-up and delivery pair to be delivered at the same time, while allowing for split de-
liveries. Synchronised visits in a vehicle routing problem (VRP) have been considered
to allow for driver transitioning or executing tasks to be performed by more vehicles,
but differ from the Ship-to-Shore Problem where visits should be synchronised in
a delivery wave that can contain multiple consecutive time periods (Bredstrom and
Ronnqvist, 2007; Drexl, 2012; Liu et al., 2019).

Fuel is sometimes considered in transportation problems with the aim of minim-
ising these costs (Xiao et al., 2012) or the emissions (Behnke et al., 2021). Refuelling
options have been studied in relation to the VRP since the introduction of altern-
ative fuel-powered vehicles that have a more limited driving range and more limited

and costly refuelling options compared to traditional vehicles. We can model the
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fuel level in the Ship-to-Shore Problem in a similar way as is done in the electrical
VRP. Desaulniers et al. (2002), Hiermann et al. (2016), Schneider et al. (2014) as-
sume vehicles remain at a charging location until the batteries are full. However, in
the Ship-to-Shore Problem, refuelling can occur simultaneously with loading a con-
nector, and can be terminated before the connector is fully refuelled, which requires
an additional constraint.

The (un)loading capacities are essential in the Ship-to-Shore Problem, as disreg-
arding them can lead to infeasible schedules where the capacities are exceeded. A
limited number of (un)loading spots is realistic for routing problems, as loading ca-
pacity might be limited at a depot. However, these are usually disregarded in the
basic vehicle routing problem. In practice, depots have a limited number of loading
bays at which vehicles can be loaded, resulting in the vehicle routing problem with

docking constraints (Rieck and Zimmermann, 2010).

2.4 Mathematical Model and Complexity

In this section, we discuss the computational complexity of the Ship-to-Shore Problem
defined in Section 2.2. In Section 2.4.1, the computational complexity of the Ship-
to-Shore Problem and two special cases are determined to be NP-hard. Thereafter,
we provide a mathematical model in Section 2.4.2 to solve the problem using the

time-space network approach defined in Section 2.2.1.

2.4.1 Computational Complexity

To prove that the Ship-to-Shore Problem defined in Section 2.2 is NP-hard, we con-
sider the decision version of the problem. In this problem, the question is whether all
resources can be transported in at most N periods while adhering to all previously
mentioned constraints.

First, we consider the special case in Theorem 2.1. In this case we have one sea

base, one landing area and one connector.

Theorem 2.1. The decision version of the Ship-to-Shore Problem with a single sea
base, landing area, connector and priority level; with zero (un)loading times, fuel
consumption rates and resource sets; and with unit travel times and multiple resource

types, is strongly NP-complete.

Proof. This special case is in NP as it can be checked in polynomial time whether

demand is satisfied and the makespan is at most V.
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We will use a reduction from Set Cover, which is known to be strongly NP-
complete (Karp, 1972), to prove that this special case is NP-complete. In Set Cover,
we are given a set of elements E = {ej1,...,e,} and some subsets of those elements
Si,...,5m, where each §; C E. We say that an element is covered if at least one
subset containing the element is chosen. The question is whether we can cover all
elements by choosing at most K subsets.

Given an instance of Set Cover, create a resource type for each element, and set
its demand equal to 1. Furthermore, create a loading for every subset, where the
loading contains the resource types corresponding to the elements from the subset.
Finally, set N = 2K — 1, since the makespan is the time required to deliver the
resources and does not include the required for the connectors to return to the sea
base in their last trip.

If the instance of Set Cover is a yes-instance, we can use the loadings correspond-
ing to the chosen subsets. Therefore, the created instance of the ship-to-shore in-
stance is also a yes-instance. Similarly, if the ship-to-shore instance is a yes-instance,

it naturally follows that the instance of Set Cover is also a yes-instance. ]

Second, consider the special case in Theorem 2.2. In this case we have one sea
base. The resource types that have to be transported only differ in the destination to
which they have to be transported, e.g., only fuel has to be transported from the sea
base to different locations. Connectors can have various capacities of transporting
this resource, e.g., one connector can transport 1000 gallons of fuel at a time, while
another connector can transport 2000 gallons. There is one priority level, i.e., the
delivery of the resource at one location is not prioritised over other locations, and
there are no resource sets, i.e., it is not required to deliver the demand at one location
at the same time or directly after one another. This problem can thus be interpreted
as the delivery of fuel to petrol stations from a central depot. This special case
differs from the special case in Theorem 2.1 as it contains multiple destinations and

connectors, but resources that only differ in their destination.

Theorem 2.2. The decision version of the Ship-to-Shore Problem with one sea base,
resource types that only differ in their destination, multiple connectors, (un)loading
times equal to zero, unit travel times between the sea base and the landing areas, one
priority level, no resource sets, and a fuel consumption rate equal to zero, is strongly

NP-complete.

Proof. This special case is in NP as it can be checked in polynomial time whether

demand is satisfied and the makespan is at most V.
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We will use a reduction from 3-Partition, which is known to be strongly NP-
complete (Garey and Johnson, 1979), to prove that this special case is NP-complete.
In 3-Partition, we are given 3m numbers, ai,...,a3,. BEach number a; satisfies
B/4 < a; < B/2, where B = L Zf’:l a;. The question is whether we can partition
the numbers in subsets of size 3 with equal sum. More formally, do there exist sets
Siy.-Sm € {1,...,3m} with |S;| = 3 for all j, S;NS; = 0 for all 4,5, and
Yies; ai = B for all j?

Given an instance of 3-Partition, create m landing areas, each with a demand
of B. Hence, there are m resource types with demand B that only differ in the
destination. Then, create 3m connectors, where connector 7 can ship a; units of a
resource per trip. Finally, set N = 1.

Suppose that the instance of 3-Partition is a yes-instance. If we send the con-
nectors corresponding to the numbers in S; to landing area j, all demand is satisfied
within one time unit. Therefore, the ship-to-shore instance is also a yes-instance.
Conversely, suppose that the ship-to-shore instance is a yes-instance. This means
that all demand is satisfied within one time unit. Therefore, the connectors visiting
landing area j have a total capacity of B. Furthermore, because B/4 < a; < B/2, we
know that each landing area is visited by exactly 3 connectors. Hence, the instance

of 3-Partition is also a yes-instance. |

A similar reduction from Partition (Karp, 1972) shows that the problem is (weak-
ly) NP-hard for two landing areas.

Corollary 2.1 follows from Theorem 2.1 and Theorem 2.2, as the Ship-to-Shore
Problem is a generalisation of the special cases in these theorems. Thus, the Ship-
to-Shore Problem is NP-hard.

Corollary 2.1. The Ship-to-Shore Problem is strongly NP-hard.

2.4.2 Integer Linear Programming Formulation

In this section we introduce a linear programming formulation to solve the Ship-to-
Shore Problem. To solve the problem, we need to find a route for each connector,
which consists of a path through the time-space network, such that a loading to
be transported is assigned for each trip from an SB to an LA. The Ship-to-Shore
Problem is then equivalent to assigning exactly one route to each connector such
that the makespan is minimised, all resources are transported, and all constraints
regarding (un)loading capacities, resource set constraints, and priority levels are met.

First, some notation is introduced in Table 2.1.
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Table 2.1: List of sets, variables and parameters for the Integer Linear Programming
formulation.

Set Explanation

C Set of connectors

P’ Set of loading nodes

D’ Set of unloading nodes

M Set of resource types

N Set of nodes

R Set of routes

S Set of resource sets

Variables Explanation

Tre A binary variable equal to 1 if route » € R is assigned to connector ¢ € C, 0
otherwise

Yrt A binary variable equal to 1 if priority @ € {1,...,II} resources are delivered in
time period ¢t € {1,...,T}

Tstart Time period at which the first resource with priority 7 € {1,...,II} is unloaded

T,‘?”‘i Time period at which the last resource with priority = € {1,...,II} is unloaded

Vst A binary variable equal to 1 if resources from set s € S are delivered in time

period t € {1,...,T}

wjg‘“"t A binary variable equal to 1 if a wave of unloading resources from set s € S
starts in time period t € {1,...,T}

wg?d A binary variable equal to 1 if a wave of unloading resources from set s € S ends
in time period ¢ € {1,...,T}

tspan The makespan, i.e. the duration of the operation

Parameters  Explanation

d, The last delivery period of route r € R

N, The number of resources of type m € M that have to be transported

Nrm The number of resources of type m € M that are transported in route r € R
T The number of time periods

II The number of priority levels

Furthermore, we introduce the following notation. Let R(c) for ¢ € C be the set
of routes for connector ¢ and R(c,m) for ¢ € C and m € M be the set with routes for
connector ¢ that delivers at least one resource of type m. For ¢ € C and i € N, we
define R(c, i) as the set of routes for connector ¢ that visit node ¢. Finally, R(c, {m,t})
forceC,me{l,...,I} and ¢t € {1,...,T} denotes the set of routes for connector ¢
that deliver priority 7 resources in time period t and R(c, {s,t}) for c€ C, s € § and
t € {1,...,T} is the set of routes for connector c that deliver resources from resource

set s in time period t.

Now, an Integer Linear Programming (ILP) formulation can be defined as follows:

min tspan (2.1)

s.t. Z Z NpmTre > Tom, meM (2.2)

ceC reR(c,m)
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> =1 cec (2.3)

reR(c)

Y. D we<l ieN (24)

c€C reR(c,i)

S e S ym ceCte{l,....,Th,me{l,...,1I} (2.5)
reR(c,{m,t})

iywtgl te{l,..., T} (2.6)
=1

T2 <ty + T(1 — Yrt) te{l,..., T}, me{l,....II} (2.7)
T >ty te{l,...,T},me{l,...,I} (2.8)
(R refl,...., -1} (2.9)
> e <D vy seS,te{l,...,T} (2.10)

ceC reR(c,{s,t})

vt Y Y e seS,te{l,....T} (2.11)

ceC reR(c,{s,t})

Vst — Vs g1 = W — wsefﬁl se8,tef2,...,T} (212)

wi +wt, <1 seS,tef2,...,T} (213)
T

D wiert <1 seS (2.14)
t=1

tspan > Z drTrc ceC (215)

reR(c)

ZTrc €B ceC,r e R(c) (2.16)

Yt €B tef{l,...,Ty,me{l,....,0} (2.17)

Tstart end ¢ NF me{l,..., I} (2.18)

Vst € B seS,te{l,...,T} (2.19)

wstert wend ¢ B seS,te{l,...,T} (2.20)

tspan € NT. (2.21)

The objective (2.1) is to minimise the makespan, i.e. the duration of the operation.
This is set by constraints (2.15). Constraints (2.2) ensure that all resources are
transported from a sea base to a landing area. Constraints (2.3) assign a route
to each connector. Note that a route can also be a route directly from the start
location of a connector to the end location of that connector, i.e. not all connectors

have to transport resources. To ensure the (un)loading capacities are respected,
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constraints (2.4) are imposed. Constraints (2.5) force the decision variable y.; equal
to 1 if a route is selected that transports priority = € {1,...,II} resources in time
period t € {1,...,T}. Constraints (2.6) ensure that it is not possible to unload

resource types from different priorities in the same time period.

Constraints (2.7) and (2.8) set the start and end time of unloading resources from
a certain priority while constraints (2.9) ensure the ordering in the priorities. The
term T'(1 — y,¢)in constraint (2.7) ensures that no bound is imposed on T when
Yrt €quals 0, ¢.e. when no priority 7 resource types are delivered in time period t.
We impose a strict priority ordering, where priority levels cannot be mixed even if
they correspond to different locations. However, a more lenient interpretation where
priority levels are destination specific is possible in our model. Namely, we can define
variables T and T for each destination separately and add constraints (2.9)

for each separate location.

All resources in a resource set s € S have to be delivered in the same time period or
in consecutive time periods, 7.e. in the same wave. Constraints (2.10), (2.11), (2.12)
and (2.13) ensure that w!** and w? denote whether a delivery wave of resource
set s starts or ends in time period t € {1,...,T}, respectively. Constraints (2.10)
and (2.11) jointly set vy equal to 1 if there is at least one route selected that delivers
at least one resource from resource set s in time period ¢t. Here |D’| is used as
there can be at most |D’| connectors delivering resources in a single time period.
Constraints (2.12) and (2.13) jointly set w3t** and we?? equal to 1 if period ¢ is part
of the delivery wave for resource set s and if £ — 1 is not or ¢ + 1 is not, respectively.
An example of how these constraints work is given in Example 2.2. Constraint (2.14)

ensures that there is only one wave for each resource set.

Example 2.2. To illustrate, Figures 2.2 and 2.3 present the nodes of a beach (LA)
in a time-space network. The arcs in these figures correspond to the connectors trips

to this beach that deliver resources from resource set s € S. In Figure 2.2, vso, Vg4,

wstart wend - and wit®t are forced to one and all other variables vy and weP? are

forced to zero. This solution violates constraint (2.14) and hence is infeasible. In

Figure 2.3, vsa, Vg3, w;”%‘"t and wggd are forced to be equal to 1 and all other vy and

wer? are forced to be equal to 0. This satisfies constraint (2.14) and thus forms a

feasible wave for resource set s.
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Time period 1

2 3 4 2 3 4
Beach (LA) ° ° v Beach (LA) ° v °

Figure 2.2: Wave example 1 (infeasible) Figure 2.3: Wave example 2 (feasible)

Time period 1

2.5 Branch-and-Price Algorithm

In the ILP formulation defined in Section 2.4.2, we consider routes which are paths
through the time-space network where each trip from an SB to an LA has an assigned
loading. To avoid enumerating an exponential number of routes, we resort to column
generation within a branch-and-price framework (Barnhart et al., 1998). We solve a
restricted master problem (RMP) containing a subset of all feasible routes and use
dual information of the LP-relaxation of this RMP to find improving routes via a
Pricing Problem (PP), until no improving routes exist. We solve the PP using a
fast heuristic labelling algorithm which is backed up by an exact MIP formulation
to ensure we find an improving column if one exist. As the optimal solution of the
LP-relaxation of the RMP may be fractional, branch-and-price is used to ensure we
find an exact integer solution.

The RMP and PP used in the column generation are explained in Sections 2.5.1
and 2.5.2. Thereafter, the branching strategies will be explained in Section 2.5.3. We

conclude with some ideas to strengthen the formulation in Section 2.5.4.

2.5.1 Restricted Master Problem

The aim of the RMP is to assign a route to each connector such that the makespan
is minimised and all constraints are met. However, contrary to the mathematical
model in Section 2.4.2, we only consider a subset of the routes, namely R’ C R. The
set of routes is extended using the PP within the branch-and-price framework.

To ensure that a feasible solution can be found for any subset of routes, variables
pm € RT for m € M and p, € RT for ¢ € C are introduced and added to the left
hand side of constraints (2.2) and (2.3), respectively. Assigning positive values to
these variables is penalised in the objective such that all resources are transported
by the routes in an optimal solution, if possible. To ensure that the penalty is high
enough to avoid using them if possible, their costs are set to the upper bound on the

number of time periods in the time-space network.
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2.5.2 Pricing Problem

After solving the LP-relaxation of the RMP, the dual variables can be used to find
new routes that will improve the solution, if any remain. Thus, the objective of the
PP is to find routes with negative reduced costs. These routes can then be added to
the set of available routes in the RMP, such that it can be solved again with a larger
set of routes. From the RMP defined in Section 2.5.1, the reduced costs for a route

r by connector ¢ € C can be found as:

R == 3 w9 Y 0
’"GM( ) iEN (F\{r,7'}
DD IRIEES DS (A7 AGT) Y (222)
m=1teT (m,r) SES teT (s,r)

where A2 ? | AZD | AGD 25 ZE1050a AP are the dual values of the LP-

ctm
relaxation of the RMP and T (i) corresponds to the set of time periods in which

resource types with characteristic ¢ are delivered. Here it holds that A$,2L 2) )\(2 4)

)\gf), ,\ﬁ'w’, )\915) € RT, while )\9'3) € R as these correspond to equality con-
straints.

The PP can be solved using a mixed-integer programming model using the for-
mulation provided in Appendix 2.B. Alternatively, it can be solved as a shortest path
problem with resource constraints (SPPRC) on the time-space network using an ap-
propriate labelling algorithm (Irnich and Desaulniers, 2005). Since solving the PP in
an exact manner as an SPPRC is very time-consuming when all resources/constraints
are considered, we opt for a hybrid approach. First, we use a heuristic pricing method,
where we limit the number of labels we store in each node. Second, once this heuristic
procedure fails at finding routes with reduced costs below some threshold, we switch
to exact pricing using the mixed-integer programming model until the node is solved
to optimality.

In the labelling algorithm, we define a label as L(C, f, 7, S), where C denotes
the reduced costs, f denotes the current fuel level, m denotes the current priority
level, and S C & denotes the set of resource sets of priority level = of which at least
one resource has been delivered. Labels are created by extending paths through the
time-space network and appropriately updating the reduced costs based on the dual
variables, the fuel level, the current priority level and the current set of resource sets
covered. Whenever a path is extended from a node at an SB to a node at an LA, a

label is constructed for each possible loading. Namely, if the current priority level is
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m, it is only possible to assign loadings with priority level 7’ > 7. Furthermore, due
to the delivery waves, if resources of a resource set in S C S are already delivered in
a route, it is not possible to assign a loading that contains resources of a resource set
in S as this route cannot be used. Label L,(C4, f1,71,51) then strictly dominates
label Lo(Co, fa,me,S2) if (i) C1 < Cs, (ii) f1 > fo, (iii) m = ma, (iv) S1 C So, and
(v) at least one of these conditions is strict.

We use this labelling algorithm heuristically by limiting the number of labels
at each node (Desaulniers et al., 2002). Here we use a different parameter for the
sink and the bound on the number of labels at the other nodes in the network.
Furthermore, to limit the number of routes that are added to the RMP in each
iteration, a similarity score is used to select routes that are disjoint in the nodes
that it visits and/or resources that it delivers (Breugem, 2020). Namely, we sort
the candidate routes in ascending order of reduced costs and select the first route.
Then, for each following candidate route x, we compute its similarity score with all
routes y that are already selected. The route x is selected if none of the similarity
scores exceeds 0.5, 7.e. each route is at least 50% dissimilar to the other routes.
We define the similarity score of routes x and y as an overlap coefficient known as
the Szymkiewicz-Simpson coefficient which is based on both the nodes visited and

resources delivered (Simpson, 1947; Szymkiewicz, 1934):

1 W (z) NN (y)| 1 > mer M Nam; nym }
2min {|NV(@)], NI} 2min {32, ¢ 0 Mams Dment ym

(2.23)

for N'(z) the set of nodes in route x, and ng,, the number of resources of type m
delivered in route x. We perform this step for each connector separately and do not
compare routes of different connectors as the demand of a resource can be fulfilled

by different connectors.

2.5.3 Branching Strategies

To complete the branch-and-price algorithm, branching strategies have to be defined
that will exclude the fractional solution we obtain at a branching node, but do not
exclude any feasible integer solutions in that branch.

Let a;; be a binary variable representing the usage of an arc from ¢ to j and z;
a binary variable representing the delivery of loading ! to location i. We then apply
branching on the arcs a;; and the deliveries z;; used. We need to branch on both
variables as solely branching on one of them does not guaranteed an integer solution:

branching on the arcs only can mean that a connector is assigned to a set of routes
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that use the same arcs, but executes different deliveries in different routes; branching
on the deliveries only can mean that deliveries are split by the different connectors.
We choose to first branch on the arcs until a solution with integer a;;’s is found,
whereafter we branch on the deliveries.

When branching on an arc (7, j), one of the children nodes is not allowed to use
this arc whence all routes using (4, j) are removed from the corresponding RMP and
(4,7) is removed from the PPs. In the other child node, the usage of arc (i,j) is
imposed by which, all routes that use arcs (i,5’) for j° # j or (¢',j) for i’ # i are
removed, and these arcs are not used in the corresponding PPs.

Branching on a delivery implies branching on a combination of a loading I € £
and a delivery node ¢ € D’. When a combination (I,4) is forbidden, all routes that
deliver loading ! to node i are removed from the RMP and the delivery of | at i is
forbidden in the PPs. When a combination (I,%) is obligatory, all routes that deliver
loading I’ for I’ # [ to node i are removed from the RMP and the delivery of I’ to i
is forbidden in the PPs.

For imposing an arc or a delivery, the arc/loading removal operations above are
not sufficient yet as they affect only variables a;;/2;, and do not enforce the fact that
in the RMP, only . decisions have to be allowed that respect the a;;/2; impositions.
For this reason, in the corresponding child nodes, we require constraints that would
not be needed, e.g. in the classical vehicle routing problem where each node should
be visited. These constraints ensure that among the available routes, at least one is

selected that respects the given arc/delivery imposition:

YooY w1 (i,7) € A° (2.24)

ceCreR’(c,{i,5})

o> ae>1, (1,i) € L£° (2.25)

ceC reR’(c,{l,i})

where A° is the set of obligatory arcs and £ the set of obligatory loading and delivery
pairs.

Adding constraints (2.24) and (2.25) to the restricted master problem changes
the objective function of the pricing problem. Hence, the following terms are added
to the objective in (2.27):

- 2 ATy = 30 N (2:26)

(i,5)€A° (Li)eLe

where /\55'24) and /\1(3'25) are the dual variables of constraints (2.24) and (2.25), re-
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spectively.

There are multiple ways to select which arc or delivery to branch on. Here, the
least, i.e. closest to 0 or 1, and most, i.e. closest to 0.5, fractional arc or delivery

strategy will be used. Ties are broken arbitrarily.

As with arc or loading selection, different methods exist to determine which node
in the branching tree to branch on next. Here, after preliminary experimentation,

the depth first approach is used. Again, ties are broken arbitrarily.

2.5.4 Strengthening the Formulation

The objective for the Ship-to-Shore Problem is to minimise the makespan. The
makespan is determined by constraints (2.15) in the RMP. However, in the branch-
and-price algorithm, decision variables can be fractional and hence constraints (2.15)
bound the makespan by the weighted average of the last delivery period of the as-
signed routes. Minimising this weighted average gives incentives to combine long
routes in which many resources are transported with very short routes to reduce the
bound on the makespan. This negatively affects the quality of the solution at a node
in the branching tree. Therefore, with the aim of strengthening the formulation,

bounds on both the length of routes and on the makespan will be used.

First, we can explicitly bound the lengths of routes. Short routes cannot be
prohibited because it is possible for a connector to have a short route in an optimal
solution. However, routes longer than the current upper bound (makespan of the
initial greedy solution or the best integer solution so far) can be prohibited as we

know these will not be chosen in an optimal integer solution.

Second, we can find a lower bound on the optimal makespan by relaxing the
constraints on the (un)loading capacities and resource sets. This relaxation can be
solved as a job-shop scheduling problem in which resource-transporting trips to the
shore are assigned to the connectors and can easily be solved in a pre-processing
phase. Because this lower bound can be higher than the optimal value at the root
node of the branching tree, it can improve the estimates of the optimality gaps of
the integer solutions from the branch-and-price algorithm. Secondly, we can add this
bound explicitly in the RMP as a constraint on the makespan, which will accelerate

the solution time per node.
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2.6 Greedy Heuristic

The greedy heuristic aims to mimic the current scheduling procedure and will also
serve as an upper bound of the makespan for the purpose of constructing the time-
space network. Routes for the connectors are extended by iteratively adding new
trips, i.e. a visit to a loading location to pick up a specific set of resources, followed
by a visit to an unloading location to deliver these resources. A forbidden list is used
to denote trips that are not allowed to be added as they have previously resulted in
infeasible solutions.

In the algorithm, we need to use some measure to determine which trip should
be added. Since we are interested in minimising the makespan, this measure should
include the change in the makespan when the trip is executed. When solely the
change in the makespan is used, faster connectors are preferred over slower, but larger,
connectors. We therefore want to compensate a larger change in the makespan with
the quantity of resources that are transported. As there are both people and large
vehicles that can be transported, using the number of resources that are transported
is not an appropriate measure. This would namely imply that large resources, which
can only be transported by a certain connectors, are left until the smaller resources
are transported. Therefore, we have chosen to use the surface area measured in square
meters, a in Step 2, that is transported as a measure of the quantity of resources
that are transported.

In the greedy heuristic, the following steps are executed:

STEP 0: Let m = 1 be the current priority level and let T = 0 be the last delivery
period.

STEP 1: For every connector determine the first possible delivery period t for
a loading with priority 7= resources that is not forbidden. Here both
the capacity constraints at the different locations and the priority con-
straints are taken into account. Furthermore, we keep track of the fuel
level of the connector, hence if necessary, the connector remains one or
more additional time periods at the SB for refuelling purposes.

STEP 2: For each loading with priority level 7, determine the total area in m? of
resources that have not been delivered yet, let this area be a.

STEP 3: Select the connector-loading pair with minimum %, i.e. the minimum
ratio of the change in the makespan divided by the area of resources that
are transported. Here, ties are broken arbitrarily. Add this trip to the
current schedule and set T' = ¢.

STEP 4: While there is an incomplete resource set, i.e. a trip was added in which
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part of the resources from a resource set are delivered, the completion
of the delivery of this resource set is prioritised before considering the
delivery of resources that are not part of this resource set. This is done
by repeating versions of Steps 1-3 until all resources in the resource sets
are completed. In Step 1, besides the capacity and priority constraints,
the resource sets now also have to be considered, i.e. only consecutive
time periods to the current delivery of the incomplete resource set are
considered. In Step 2, only the area of the resources that belong to the
incomplete resource set are considered. If no feasible pair exists in Step
3, i.e. the resource set constraint cannot be met, the last trip that was
added to the schedule is removed and marked as forbidden.

STEP 5: If all priority 7 resources are delivered, m = 7w + 1.

STEP 6: If all resources are delivered, return 7T, else go to Step 1.

2.7 Computational Experiments

In this section we present the results of computational experiments on both artificial
instances and instances constructed using data from the Royal Netherlands Navy.
In these experiments, we first analyse the effect of using the bounds as explained in
Section 2.5.4 and the heuristic pricing method as explained in Section 2.5.2. There-
after, we analyse the performance of the branch-and-price algorithm and the greedy
heuristic for different types of instances.

In Section 2.7.1 we describe the data and instance construction, and in Sec-

tion 2.7.2 the corresponding results are presented.

2.7.1 Experimental Design

We consider both artificial instances and instances constructed using data from the
Royal Netherlands Navy. FEach instance consists of a demand set containing the
resources that should be delivered and the corresponding SBs and LAs, and a supply
set in terms of the available connectors and (un)loading capacities at the SBs and
LAs. Furthermore, an instance is characterised by the operational constraints that
are considered. We define the following naming scheme for instances: d-s-o, where d
denotes the demand set, s the supply set, and o the set of operational constraints that
are considered. We first discuss each of these three aspects of an instance and then
give an overview of the constructed instances for the instances constructed with data

from the Royal Netherlands Navy. Thereafter, we describe the artificial instances.
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Table 2.2: Overview of the demand sets containing the identifier, number of SBs, number
of LAs, the distance between the SBs and LAs in nautical miles, the number of priority
levels, the number of resource types, and the number of resource sets for each demand set.

Distance # Priority  # Resource  # Resource
Demand Set  #SBs  #LAs SB - LA (nm) Levels Types Sets

1A 2 2 15 1 10 1
1B 2 2 15 2 15 2
1C 2 2 15 2 18 2
2A 2 3 15 1 10 1
2B 2 3 15 2 15 2
2C 2 3 15 2 20 2
3A 2 1 15 2 10 2
3B 2 1 15 2 18 3
3C 2 1 15 2 25 3

Royal Netherlands Navy Instances

In this section we describe the instances constructed with data from the Royal Neth-
erlands Navy. The demand at the shore consists of a set of resource types that have
to be transported. For each resource type, the origin and destination is defined.
Furthermore, it is denoted what the priority number of the resource type is and to

what resource set it belongs to, if any.

To test the performance of the greedy heuristic for different sized instances, the
demand sets have different sizes, where it holds that iA C iB C iC, for i € {1,2,3}.
We thus define nine demand sets d, of which the descriptive statistics are shown in
Table 2.2. This includes the number of SBs, LAs, priority levels, resource sets, and
the distance between the SBs and LAs. The table shows that demand sets 1A and

2A contain one priority level, i.e. all resources have the same priority level.

The supply consists of the number of available connectors and the (un)loading
capacity at both the SBs and LAs. There are three types of loadings spots: docks,
davits, and landing platforms, and there is one type of unloading spot: landing zones.
The different types of (un)loading spots can be used by different connector types.
Namely, landing platforms can only be used by helicopters, while docks and davits
can only be used by surface connectors. Furthermore, not all surface connectors can
access a davit. This can only be used by the smaller surface connectors. An overview

of the supply sets s is given in Table 2.3.

The operational constraints consist of, amongst others, constraints regarding the
order of the delivery of the resources. As we are interested in the performance of our
branch-and-price algorithm and our greedy heuristic under different circumstances,
we vary these operational constraints. These constraints are the priority constraints

and resource set constraints. For instances without a priority ordering, this implies
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Table 2.3: Overview of the supply sets containing the identifier, the number of connectors,
the number of different connector types, and the number of each type of (un)loading spot
available at each SB/LA for each supply set.

Supply # Connector  # Docks  # Davits # Landing Platforms # Landing Zones
Set # Connectors Types per SB per SB per SB per LA

1 4 2 1 2 1 2

2 6 2 1 2 1 2

3 12 2 2 4 2 2

4 16 4 2 4 2 2

5 8 3 2 2 2 2

that all resources have the same priority level. When either or both of these co-
ordinating constraints are absent from an instance, there are fewer constraints. This
affects the number of choices in each step of the greedy heuristic and the number of
variables and constraints in the branch-and-price algorithm.

We define four options for o. Let N denote the case in which neither the priority
nor the resource set constraints are considered. Let P denote the case in which the
priority constraints are added to case N, and let W denote the case in which the
resource set constraints are added to case N. The full and default model we consider
contains both constraints, denoted by F.

Using the demand sets, supply sets, and the set of operational constraints, we
can construct the instances. Large demand sets with low supply in terms of the
number of available connectors can result in feasibility issues due to the resource
set constraints. Namely, it should be possible to deliver all resources of the same
resource set at the same time or shortly after each other. Since travel times between
the SBs and LAs are large, it is not possible to assign a connector to multiple trips
transporting resources of the same resource set, as this would lead to a violation of
the resource set constraint. Therefore, for each resource set in a combination of a
demand set and a supply set, we verify whether it is possible to assign loadings to
the connectors such that all resources of this set are transported and each connector
is used at most once. If this is not possible, the instance is not feasible when resource
set constraints are imposed and hence we only consider the instances with options
P and N. On the other hand, small demand sets in combination with a large supply
set, are not realistic. Hence, not all combinations of demand and supply sets are
considered.

Taking both the feasibility as well as the realism of combinations of demand
sets and supply sets into account results in the instances shown in Table 2.4. Here
‘All’ implies that all four subsets of the operational constraints are considered. The

instances used for only options P and N imply that the other combinations of demand
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set and supply set are infeasible in terms of the resource set constraints, e.g. for
demand set 3C with supply set 5. Demand sets 1A and 2A have a single priority
level, hence there is no difference between incorporating the priority constraints or
not. Therefore, for these demand sets only options W and N are considered. This

results in 96 instances.

Artificial Instances

In this section, we describe the artificially constructed instances. The instances
and solutions can be obtained from Wagenvoort (2023). The artificial instances are
constructed from a set of connectors and a set of available resources. From these
sets, five combinations of a demand and supply set are generated. We consider all
four configurations of the operational constraints, resulting in 20 instances.

We consider four different types of connectors and seven different types of re-
sources. For the connector types, we consider one type of helicopter and three types
of surface connectors: large, medium, and small. For each connector type, given in
Table 2.5, we specify the (un)loading time, capacity, fuel related parameters, speed
when loaded and empty, and at which locations it can be (un)loaded. For each of
the resources, given in Table 2.6, we specify the size of the resource and for each con-
nector type whether it can be placed on this connector type. Note that for simplicity
we have defined the capacity of a connector and the size of a resource in terms of
one dimension only. We consider a loading feasible for a connector type when it does
not contain any resources that are not compatible with the connector type and the
sum of the sizes of the resources in the loading does not exceed the capacity of the
connector.

To construct the artificial instances, we randomly select a set of connectors, where
we always include at least one connector of type ‘Large’ to ensure feasibility. We

then randomly select a set of resources, for which we randomly generate a priority

Table 2.4: Overview of the instances where for each demand set and supply set combination
that is used, the corresponding set of operational constraints is denoted. In total, this results
in 96 instances.

Supply Demand Set
Set 1A 1B 1C 2A 2B 2C  3A 3B 3C
1 W, N Al W,N P/ N All P, N
W, N All W, N All All Al

s

2

3 All All All
4 P, N Al All All P, N All
5 W,N P, N All W,N All All  All All P, N
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level, resource set, and quantity. Here we select the smaller resources with a higher
probability. Furthermore, we generate for each resource an origin and destination.
We let there be either one or two SBs and one or two LAs reachable by surface
connectors and at most one LA reachable by helicopters. The distance between the
SBs and LAs is set to 15 nm for each instance.

We construct five demand sets Di and supply sets Si for ¢ € {1,...,5}. The
contents of these five demand and supply sets can be found in Appendix 2.C. These
can be used to obtain all 20 instances, namely we consider instances Di — S% — o for
i€{l,...,5}and o € {F, P, W, N}. We then consider all maximal loadings for each
connector based on the compatibility of the resources and the size of the connector.

The loadings can be found in Wagenvoort (2023).

2.7.2 Results

In this section, the computational results are presented. The algorithms are imple-
mented in Java using CPLEX 12.10. The experiments are executed on the Dutch
national SurfSARA Lisa cluster consisting mostly of nodes with 16 core Intel Xeon
6130 processors and 96GB RAM. We choose a cut-off point of one hour for the
branch-and-price algorithm. Whenever we refer to the gap, we mean the optimality
gap between the lower bound and the best integer solution.

For the labelling algorithm, parameters must be defined. Namely, we have to
determine the maximum number of labels to store at each node, the maximum num-
ber of labels to store at the sink, and the threshold for switching from the heuristic
labelling algorithm to the exact MIP. Based on early experiments, we choose the
following parameters. We allow, in each pricing problem, at most ten labels at the
sink and at most five at all other nodes, i.e. at most ten columns per connector are

added in each iteration. When no route with negative reduced costs smaller than

Table 2.5: Overview of connector types used for the artificial instances. For each connector
type we indicate the (un)loading times in minutes, the capacity for resources, the fuel
capacity, the fuel consumption rate (per minute), the refuel rate (per minute), the speed
while being (un)loaded in nautical miles per hour, and the type of (un)loading locations it
can access.

Loading  Unloading Fuel Refuel Speed  Speed .
. ! . . Fuel . Location
Type Time Time Capacity Capacity Consumption Rate Loaded Empty Is atibilit

(min.) (min.) apactty (per min.) (per min.)  (knts)  (knts) ~Ompatibitty
Large 15 15 150 10 0.005 0.15 10 12 dock, beach
Medium 10 10 75 10 0.005 0.15 20 25  dock, beach
Small 5 5 25 10 0.01 0.15 30 30  dock, davit, beach
Helicopter 5 5 8 10 0.01 0.15 125 15 |landingplatform (SB),

landing zone (LA)
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Table 2.6: Overview of resource types used for the artificial instances, their size, and what
connector can carry them.

Connector Compatibility

Name Size Large Small Medium Helicopter
Pax 1 X X X X

VehA 60 X

VehB 40 X

VehC 35 X

VehD 30 X X

VehE 25 X X

VehF 20 X X

-0.05 is found by the labelling algorithm, we switch to the MIP and use the MIP
until the node is solved to optimality.

The remainder of the section is structured as follows. First, the effect of us-
ing the bounds and the labelling algorithm is analysed. Second, the performance
of the branch-and-price algorithm and greedy heuristic are discussed. Finally, the
performance of the artificial instances are analysed to compare with the findings of

the instances from the Royal Netherlands Navy.

The Effect of Bounds and Labelling

Intuitively, using the bounds to strengthen the formulation as explained in Sec-
tion 2.5.4 and using heuristic pricing in combination with the exact MIP as explained
in Section 2.5.2, speeds-up the branch-and-price algorithm. To validate our intuition,
some instances with different characteristics and demand are run for different config-
urations. We run each instance for both the most and least fractional branching rule
with a cut-off point of one hour and use the result of the branching strategy with the
lowest running time or lowest gap after one hour. The change in the optimality gap
over time for this branching strategy is presented in Figure 2.4.

Figure 2.4a shows that none of the instances terminate within an hour. In fact,
only for one instance, instance 3C-4-F, the gap decreases within an hour. For three
of the four instances, the lower bound obtained by solving the machine scheduling
problem as explained in Section 2.5.4, is better than the initial root node without the
bound. Therefore, in Figure 2.4c, we see a decrease in the gap for these instances.
When both bounds are added, see Figure 2.4b, we see that instances 3C-4-F and 2C-
4-W now terminate within an hour. Note that the gap instantly drops to zero from
the initial gap. Since we are using a depth first approach, it can occur that the lower
bound within the branching tree could not have been updated before termination of

the algorithm. This results in an instant drop in the gap. We also see that the gap
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Figure 2.4: The change in the optimality gap, the gap between the lower bound and best
integer solution, over time in the branch-and-price algorithm with a cut-off point of one
hour for different configurations. For the configurations we consider with/without actively
using the lower and upper bound as described in Section 2.5.4, and with/without heuristic
labelling as described in Section 2.5.2.

obtained for instance 3C-4-N when both bounds are used is lower compared to the
gap when only the lower bound is used. Figure 2.4d shows the change in the gap over
time when the heuristic labelling algorithm is used in combination with the exact
MIP. We see that now also instance 3C-4-N terminates and that all other instances

terminate faster.

Results of the Branch-and-Price Algorithm and Greedy Heuristic

In this section, the results of the branch-and-price algorithm and the greedy heuristic
are presented. Here both bounds and the labelling heuristic are used in the branch-
and-price algorithm. We analyse the performance of the branch-and-price algorithm
and the greedy heuristic based on the instance characteristics, namely, the instance
type (A, B, or C), and which operational constraints are present in the instance.

Summarising results for the different instance types are given in Table 2.7, full results
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Table 2.7: Performance measures of the branch-and-price algorithm with a cut-off point
of one hour. This includes the percentage of instances that terminate within an hour, the
average number of columns generated, the average number of times the labelling heuristic is
used per node, the average number of times the exact MIP is used per node, and percentiles
of the total running times. Here o denotes the set of operational constraints regarding the
order of the resources that are present, namely either the full set (F), only the priority
constraints (P), only the resource set constraints (W), or neither of these constraints (N).

Running Time (sec.)

Num. Term. Avg. # Avg. # Avg. #

o 5 th th th .
o Type Instances <1h (%)  Columns Heur MIP . 2 50 5 max
A 3 100 140.00 5.00 1.00 0.14 0.19 0.24 0.29 0.34
F B 7 100 6422.29 5.50 1.00 0.36 0.43 0.65 2.21 2.84
C 8 87.50 2045.88 7.26 1.12 0.65 0.99 1.23 2.28 3600
Total 18 94.44 3623.71 6.27 1.06 0.14 0.49 1.10 2.45 3600
A 3 100 27058.50 1.42 1.00 14.81 588.84 1162.87 1736.90 2310.93
P B 12 58.33 15306.13 3.06 1.00 0.42 136.76 3600 3600 3600
C 9 22.22 22156.00 1.31 1.02  10.64 3600 3600 3600 3600
Total 24 50.00 19656.33 2.10 1.01 0.42  714.30 3600 3600 3600
A 9 100 165.60 5.20 1.80 0.13 0.13 0.18 0.70 1.02
W B 7 100 448.33 5.44 1.00 0.42 0.46 0.63 0.74 1.06
C 8 100 960.63 5.92 1.00 0.27 0.55 1.04 2.91 8.17
Total 24 100 589.63 5.58 1.21 0.13 0.42 0.70 1.10 8.17
A 9 100 7556.00 2.80 1.00 0.05 0.10 4.31 21.08 58.81
N B 12 100 3060.00 1.78 1.01 0.27 1.38 6.80 93.55 182.08
C 9 77.78  182202.30 3.87 1.00 0.31 1.31 88.25  2643.81 3600
Total 30 93.33 66659.00 2.72 1.01 0.05 0.57 7.65 120.33 3600
Total 96 84.38 23781.08 4.12 1.07 0.05 0.55 1.64 182.08 3600

can be found in the supplementary materials.

In Table 2.7 we see that all small instances (type A) terminate within an hour
and that, with the exception of the instances with only priority constraints (P), all
terminate within a minute. All type B instances terminate within approximately
three minutes, with the exception of the instances with only priority constraints (P).
For type C instances, all the instances with only the resource set constraints (W)
terminate within an hour. We thus see, both from the percentage of instances that
terminate within an hour and the running times, that the instances with only the
priority constraints are hardest to solve. On average, 84% of all instances could be

solved within an hour of which 75% are solved in approximately three minutes.

Regarding the usage of the MIP after heuristic labelling, we observe that the
average number of times the MIP is used is only slightly above one, indicating that
the heuristic labelling algorithm is able to find good negative reduced costs columns.
We see that the number of generated columns varies a lot. If the number of columns
is high, this can be caused by two things, the number of iterations at a node is high
resulting in many routes, and/or the number of nodes in the branching tree is high

resulting in many nodes that are solved. For the ‘P’ and ‘N’ instances, we see that,
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Table 2.8: The effect of priority level constraints and resource set constraints on the
performance of the greedy heuristic with a cut-off point of one hour for the branch-and-
price algorithm on the instances from the Royal Netherlands Navy. Here o denotes the set
of operational constraints regarding the order of the resources that are considered, namely
either the full set (F), only the priority constraints (P), only the resource set constraints
(W), or neither of these constraints (N). For each set of operational constraints, we denote
for each instance type separately as well as for all instances types combined, the number
of such instances, the % of these instances for which we know the greedy heuristic found
the optimal solution, and the % of instances for which the BP found improvement. For
the instances for which improvement was found, the average gap with the solution from the
greedy heuristic is given as well as the average time it took to find the best integer solution.

Instances with Improvement

o Instance Num. Greedy BP finds Avg. Gap Avg. T. till
Type Instances  Optimal (%) Improvement (%)  Greedy (%) Best Sol. (sec.)
A 3 100 0 - -
F B 7 85.71 14.29 14.29 2.69
C 8 87.50 12.50 10.00 5.85
Total 18 88.89 11.11 12.14 4.27
A 3 66.67 33.33 127.27 14.81
P B 12 50.00 16.67 38.96 91.64
C 9 11.11 55.56 24.89 31.93
Total 24 37.50 33.33 41.21 44.72
A 9 100 0
B 7 100 0
w C 8 100 0
Total 24 100 0
A 9 88.89 11.11 63.64 8.51
N B 12 33.33 66.67 44.35 50.05
C 9 33.33 55.56 24.18 484.24
Total 30 50.00 46.67 38.52 202.15
Total 96 66.67 25.00 37.22 133.19

although the labelling heuristic is only used between two and three times on average,
the number of columns is significantly larger compared to the ‘F’ and ‘W’ instances.
These results thus show that, as we would expect, these less constrained instances

have more feasible routes making the problem harder to solve.

Comparing the results of the branch-and-price algorithm with the solutions of
the greedy heuristic, we find that for two thirds of the instances the greedy solution
is proven to be optimal. Table 2.8 shows the percentage of instances for which the
greedy solution is proven to be optimal, the percentage of instances for which the
branch-and-price algorithm finds improvement, and the average gap with the greedy
solution and average time to obtain these improvements for these instances. We see
from these results that the greedy heuristic performs best when there are resource
sets (F and W). In the cases with resource set constraints and no priority levels (W),
all greedy solutions are optimal, and proven to be optimal within an hour. When

priority levels do exist (F), the greedy heuristic finds the best and optimal solution
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in almost 90% of the cases. When an improvement is found, the solution of the
greedy heuristic has, on average, a makespan that is 12% higher compared to the
optimum. These improvements are found in a few seconds. Although instances with
both constraints (F') are more constrained compared to instances with only resource
set constraints (W), we observe that improvements are found in F instances while
for all W instances the solution of the greedy heuristic is optimal. As the greedy
heuristic is an iterative method, it does not anticipate on future trips. Hence, it
might select connectors at the end of a priority level that are required at the start of
the next priority level. The branch-and-price algorithm is then able to find a solution
where these essential connectors are not used at the end of a priority level resulting

in a better solution.

For instances with no resource set constraints (P and N), we see that the greedy
heuristic performs worse. Furthermore, not all large instances (type B and C in-
stances) without resource set constraints terminate within an hour. This is the case
for all instances with resource set constraints. Hence, we see that while there are
instances where no improvement compared to the solution of the greedy heuristic
is found, the solution of the greedy heuristic is also not proven to be optimal. In
37.50% and 50.00% of the instances with (P) and without (N) priority constraints,
respectively, the greedy solution is known to be optimal. In 33.33% and 46.67% of the
instances, respectively, we find an improvement. On average, the gaps between the
solution of the greedy heuristic and the solution of the branch-and-price algorithm
are 40%. If we compare the gaps for the different instances types (types A, B and
C), we see that the smaller the instances, the larger the gaps. This can be explained
by the smaller makespan, i.e. a difference in the makespan of one time period gives
a larger gap for smaller instances where the makespans are smaller. When improve-
ments can be found, these are found within five minutes in most of the cases. Only
for the largest instances (type C) when there are no operational constraints regarding

the order of delivery (N), there are instances where it takes more than five minutes.

Overall, we thus see that the branch-and-price algorithm is able to solve the
majority of the instances in limited time. We see that instances with only priority
constraints are hardest to solve, while instances with both constraints or only resource
set constraints are easiest to solve. Although priority constraints restrict the solution
space compared to having neither of these constraints, they do not restrict it as much
as resource set constraints while still having to consider some coordination between
the schedules of the different connectors. Furthermore we find that when resource

set constraints exist, the greedy solution is often optimal. When these constraints
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Table 2.9: The effect of priority level constraints and resource set constraints on the
performance of the greedy heuristic with a cut-off point of one hour for the branch-and-
price algorithm on the artificial instances. Here o denotes the set of operational constraints
regarding the order of the resources that are considered, namely either the full set (F),
only the priority constraints (P), only the resource set constraints (W), or neither of these
constraints (N). For each set of operational constraints, we denote the % of these instances
for which we know the greedy heuristic found the optimal solution, and the % of instances
for which the BP found improvement. For the instances for which improvement was found,
the average gap with the solution from the greedy heuristic is given as well as the average
time it took to find the best integer solution.

Instances with Improvement

Greedy BP finds Avg. Gap Avg. T. till
¢ Optimal (%) Improvement (%) Greedy (%) Best Sol. (sec.)
F 20 40 25.48 1032.01
P 40 20 47.83 104.43
w 20 80 42.05 32.09
N 20 80 30.10 15.00
Average 25 55 35.22 214.25

are not present, improvements were found compared to the solution of the greedy
heuristic in about 40% of the instances. These improvements are on average found
within a few minutes and have an average gap of approximately 40% with the solution

of the greedy heuristic.

Artificial Instances

The results in Section 2.7.2 show that the greedy heuristic performs well when in-
stances are constrained, especially when resource set constraints exist. In this section,
we compare the performance of the greedy heuristic and branch-and-price algorithm
for the artificial instances and compare this finding with the results from the instances
from the Royal Netherlands Navy.

The 20 artificial instances are run under the same configurations as the instances
from the Royal Netherlands Navy. The full results of the artificial instances can
be found in the supplementary materials. Summarising results comparing the per-
formance of the greedy heuristic and branch-and-price algorithm can be found in
Table 2.9. The results in this table show that for some instances the greedy heur-
istic finds the optimal solution, but that quite often improvement is found. When
improvement is found, the average gap between the greedy heuristic and the best
solution found by the branch-and-price algorithm is quite large, on average 35%.
Furthermore, generally this solution is found relatively soon, on average within a
couple of minutes.

When we compare the results of the artificial instances in Table 2.9 with the
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results of the instances from the Royal Netherlands Navy in Table 2.8, we notice the
difference in the results for the different types of instances. Namely, while the greedy
heuristic is optimal for all instances with resource set constraints from the Royal
Netherlands Navy, this is not the case for the artificial instances. A potential reason
is that instances from the Royal Netherlands Navy are constructed by experts that
have knowledge of the capacities and the potential loadings on the connectors that

can be encoded in defining the resource sets.

2.8 Conclusion

In this chapter, we provide a formulation for the Ship-to-Shore Problem that allows
for coordination between the connectors. We prove that the Ship-to-Shore Problem
is NP-hard, even in restricted special cases. We develop (i) a branch-and-price al-
gorithm, and (ii) a tailored greedy heuristic. Our branch-and-price algorithm makes
use of an upper and lower bound and we incorporate a pricing heuristic that im-
proves the running time of the algorithm. We investigate, using data from the Royal
Netherlands Navy, under which circumstances, which method is preferred. We find
that the branch-and-price algorithm is able to solve the majority of the instances
within an hour and that it performs best in very constrained cases in terms of the
coordination of delivering sets of resources. We also find that the greedy heuristic
is often able to find the optimal solution in such restricted cases. However, in less
restricted cases the branch-and-price algorithm finds an improvement compared to
the greedy algorithm in approximately 40% of the instances. For those instances,
the average gap with the greedy heuristic is around 40% and those improvements are
found within a few minutes.

We then use artificial instances to compare with the instances from the Royal
Netherlands Navy. We find no difference in the performance of the greedy heuristic
under different circumstances for these instances. This shows that potentially the
greedy heuristic performs well when coordination between the resources is required
due to a bias in the instances constructed by experts in the field. The artificial in-
stances do confirm the ability of the branch-and-price algorithm to find improvements
fast. Namely, for the instances where improvement compared to the solution from the
greedy heuristic is found, the average gap with the solutions of the branch-and-price
algorithm is 35% and found within a few minutes.

Therefore, in practice when these coordinating constraints exist, current practices

mimicked by the greedy heuristic, might perform well. However, the branch-and-price
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algorithm is able to find large improvements to the solutions of the greedy heuristic
fast, hence it is worthwhile to try and find a better schedule as large gains can be
made.

There are a number of options for further research related to our model. As
distances and therefore travel times are large compared to the (un)loading times in
these instances, we chose to set the time period length such that (un)loading for all
connectors can take place within one time period. Depending on the application,
the loss in exactness can be more significant and a shorter time period length is
preferred. In that case, this would require small changes to the model, namely, arcs
should be added between a node for an (un)loading location in time period ¢t and the
node corresponding to the same location in time period ¢ + 1. Furthermore, when
(un)loading at a location takes n > 1 time periods, constraints should be added that
require a connector to remain at this location for n time periods if it is visited.

The results show that the greedy heuristic performs well in case the problem
is very constrained, but there may be opportunity for better heuristics in different
situations. For less constrained problems, one can apply additional local search steps
to the solution of the greedy heuristic, or running the greedy heuristic multiple times
with a randomisation parameter, can result in better outcomes. To test whether
a tailored heuristic works well for other similar applications, the branch-and-price
algorithm can be used as a benchmark.

By using discrete time periods, some slack occurs in the schedule. A potential
benefit of this slack is that it can serve as a buffer in case a delay occurs. However,
the moments at which this slack occurs are not chosen and therefore accounting
for delays while constructing the schedule can result in a lower expected makespan.
Hence, for future research, it would be interesting to incorporate the uncertainty
about the travel and (un)loading times to construct schedules with a lower expected

makespan.
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Appendix

2.A Notation Problem Definition

In this section, an overview of the notation used in the problem description (Sec-

tion 2.2) and the description of the time-space network (Section 2.2.1) is given.

Table 2.10: List of sets and parameters in the problem description.

Set Explanation
C Set of connectors
i Set of unloading locations at landing area i € A
D Set of unloading locations such that D = U;cp D;
P Set of loading locations at sea base i € &
P Set of loading locations such that P = U;ex P;
Le Set of feasible loadings for connector ¢ € C
M Set of resource types
S Set of resource sets
x Set of sea bases
A Set of landing areas
Parameters Explanation
e Refuelling rate for connector ¢ € C
he Fuel consumption rate for connector ¢ € C
Nom, Demand for resource type m € M
Qe Fuel capacity for connector ¢ € C
tije Travel time between locations i,j € P U D
th. (Un)loading time at location ¢ € P U D for connector ¢ € C
II The number of priority levels

Table 2.12: List of sets and parameters in the time-space network.

Explanation

Set of arcs

Set of unloading nodes, D’ = {(i,t) | i€ D,t=1,...,T}
Set of nodes, N =P ' UuD ' uUW urur’

Set of loading nodes, P’ = {(i,t) | i€ P,t=1,...,T}
Set of waiting locations, W = {(i,¢) | i € S UA,c € C}
Set of waiting nodes, W' = {(j,t) | j € W,t=1,...,T}

Set of starting nodes, 7 = {(7¢,1) | c € C}
Set of ending nodes, 7’ = {(7.,T) | c € C}

Explanation

Number of time periods in the time-space network
Start location of connector ¢ € C
End location of connector ¢ € C




52 Chapter 2

2.B Mathematical Formulation of the Pricing
Problem

In the Pricing Problem (PP), we aim to find a route such that the reduced costs (2.22)
are minimised. Additionally to the notation introduced in Table 2.1, the notation in
Table 2.14 is used in the PP.

Table 2.14: List of sets, variables and parameters for the Pricing Problem.

Set Explanation

A Set of arcs

D’ Set of landing area nodes

L Set of loadings

P’ Set of sea base nodes

T Set of time periods

w'’ Set of waiting nodes

Variables Explanation

aij A binary variable equal to 1 if arc (¢,j) € A is used, 0 otherwise

bm The number of resources of type m € M transported

d The last delivery period

fi A binary variable equal to 1 if the connector refuels at node i € P’, 0 otherwise
w; The fuel level upon reaching node i € N/

Z1i A binary variable equal to 1 if loading I € £ is delivered to i € D’, 0 otherwise

Parameters Explanation

e The refuelling rate per time period for connector ¢ € C

he The fuel consumption rate per time period for connector ¢ € C

kiq A binary parameter equal to 1 if loading | € £ is available at/heading to location i € N,
0 otherwise

Nonl The number of resources from type m € M in loading I € L

Din A binary parameter equal to 1 if loading | € £ has priority level # = {1,...,II}, 0
otherwise

Qe The fuel capacity of connector ¢ € C

Te The starting node of connector ¢ € C

Té The ending node of connector ¢ € C

We can then define the PP for a specific connector ¢ € C as follows:

min — Z /\,(721'2)bm+)\(2'3)
meM

+ Z Z )\52‘4)0,1‘]‘

i€N(c) jeN (¢):(i,5)EA(c)

T T
LD DED DEED DR

t=1 m=11eL(c,x) i€D’(c,t)
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2.10 2.11
S Y Sl SN (LRI B
seSleLl(c,s) t=14ieD/(c,t)
+ A2 1) (2:27)
s.t. Z arj =1 (2.28)
JEN (e):(T.5)€Ale)
3 4 =1 (2.29)

ieN(c):(i,7")EA(c)

> ay- )

i€N(c):(i,5)EA(c) 1€N(c):(4,1)€A(c)
Ji < Z i
JEN (c):(i,5)€Alc)
—ey
uj < Qe — he(ty —t;)ai;
uj < ui + gofi — he(ty —ti)ai + Qc(1 — asj)

e D aj

leL(c) 1€P! (c)UW’ (c):(3,5)EA(c)

2215 < kyy + Z

1€P’ (c)UW' (¢):(4,5)EA(c)

aji:()

ks a5

b < N

bm < Z Z NmiZli

leL(c,m)i€D’'(c)

IS

leL(c,m) jJED! (c,t)

II
Z Yrt S 1
=1

T3 < tymy + T (1 — yme)
Tend > tyfrt

T;T{t > Tend

Z Z z;; <1

€D’ (c) lEL(c,s)

Yoo D tmi<d

i€D’(c,t) l€L(c)

215 < Yrt

aijEB
bm € NT

jeEN(@)\{r, 7'} (2.30)

ieP'(c) (2.31)

m e M (2.37)

m e M (2.38)
teT,me{l,... IO} (2.39)
teT (2.40)
teT,me{l,... I} (2.41)
teT,me{l,....I1I} (2.42)
me{l,....II} (2.43)
seS (2.44)

teT (2.45)

(i,5) € Alc) (2.46)
me M (247)
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de Nt (2.48)
Tstart Tend ¢ NF e {l,..., I} (2.49)
[i€B i€ P'(c) (2.50)
u; € RT i€ N(c) (2.51)
wii wepd € B s€S,teT (2.52)
Yrt €B teT,me{l,...,II} (2.53)
zi; € B. l€ L(c),ieD(c) (2.54)

The aim is to minimise the reduced costs (2.22) as represented by the objective
(2.27).

Constraints (2.28), (2.29) and (2.30) ensure that a connector departs from its
starting location, terminates at its ending location and ensure flow conservation
throughout the network. The connector can only be refuelled at a pick-up location
if this location is visited (constraints (2.31)). It is assumed that all connectors start
with a full tank (constraint (2.32)). Constraints (2.33) and (2.34) update the fuel level
throughout the network. They ensure that the fuel level is set to min {u; + g, Qc}
after refuelling at ¢ € P’(c) and that no constraint is imposed on the fuel level if the

arc is not used, but decreased if an arc is used.

Constraints (2.35) and (2.36) ensure that the connector can only be assigned one
loading for each trip from a SB to a LA and that a loading can only be assigned
when the loading is available at the SB and the connector is heading to the LA
corresponding to the destination of the loading. Constraints (2.38) set by, to the
number of resources of type m € M that are transported in the selected loading.
This variable is upper bounded by the number of resources of type m that have to be
transported in constraints (2.37) to avoid deducting the reduced costs of the resource

in the objective too much.

To satisfy the priority order, constraints (2.39)-(2.43) are imposed and to ensure
that there is at most one delivery for each resource set, constraints (2.44) are imposed.
If within a route, multiple deliveries with resource types from the same resource set
occur, this route cannot be used as this will violate the resource set constraints.
Imposing this constraint will avoid generating routes that cannot be used in a feasible
RMP solution. The last delivery period of the route is determined in constraints
(2.45).
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2.C Artificial Instances

This section contains the contents of the artificial instances. Tables 2.16 - 2.18 are

the contents of the supply sets. Table 2.19 are the contents of the demand sets.

Table 2.16: Available connectors in the supply sets for the artificial instances.

Number of Connectors
Supply Set Large Medium Small Helicopter

S1
S2
S3
S4
S5

2

[CESENECEN)
—hooo
[SEESENECES

0
2
4
0

Table 2.17: Sea base locations in the supply sets for the artificial instances.

Docks per  Davits per  Landing Platforms

Supply Set  Number SB SB per SB

S1
S2
S3
S4
S5

SN CEVECEY)
SN CH N
ok ooOO
=N O -

Table 2.18: Landing area locations in the supply sets for the artificial instances.

Supply Set  Number ]z:ci‘zs Number Lan;hel;gLaones
S1 1 2 1 2
S2 1 2 0 0
S3 2 2 1 2
S4 1 2 1 2
S5 1 2 1 2

2.D Results

This section contains the full results. For each instance and branching rule, we report
the objective value of the solution of the greedy heuristic, the initial lower bound,
the number of loadings, the number of nodes and arcs in the time-space network, and
output from the branch-and-price algorithm. The output from the branch-and-price
algorithm contain the objective value, the lower bound of the algorithm, the running
time of the algorithm, the time after which the best integer solution was found, if

applicable, and the gap, if applicable.
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Table 2.19: Demand sets for the artificial instances. When the resource set equals @, this
implies that these resources are not part of any resource set.

Demand Set Name Origin Destination Quantity Priority Level Resource Set
VehE LPD1 LA1 11 1 0
Pax LPD2 LA1 100 1 0
Pax LPD1 LS1 106 1 0
VehE LPD1 LA1 1 1 A
Pax LPD1 LA1 4 1 A

D1 VehA LPD1 LA1 4 2 B
VehF LPD1 LA1 1 2 B
VehC LPD2 LA1 1 2 C
VehF LPD2 LA1 1 2 ¢}
VehE LPD2 LA1 2 2 0
VehE LPD1 LA1 1 2 0
VehF LPD1 LA1 4 1 0
VehF LPD2 LA1 1 1 0
VehF LPD1 LA1 2 1 A
VehC LPD1 LA1 1 1 A
VehE LPD1 LA1 1 1 A
VehE LPD2 LA1 1 1 B
VehF LPD2 LA1 1 1 B
VehC LPD2 LA1 1 1 B

D2 VehB LPD1 LA1 1 2 l¢]
VehC LPD1 LA1 1 2 ¢
VehF LPD1 LA1 2 2 C
VehE LPD1 LA1 1 2 c
VehC LPD2 LAl 2 2 D
VehE LPD2 LA1 2 2 D
VehB LPD2 LA1 1 2 D
VehF LPD2 LA1 2 2 0
VehF LPD1 LA1 2 2 0
VehF LPD1 LA1 5 1 0
Pax LPD2 LA1 1 1 0
Pax LPD1 LS1 2 1 0
VehF LPD1 LA2 1 1 0
Pax LPD1 LA1 1 1 A
VehF LPD1 LA1 1 1 A
VehE LPD2 LA2 1 1 0

D3 VehD LPD1 LA2 2 2 B
VehF LPD1 LA2 2 2 B
VehE LPD1 LA2 2 2 0
VehF LPD2 LA1 2 2 0
VehF LPD1 LA2 4 2 0
VehF LPD1 LA1 4 2 0
VehE LPD2 LA1 2 2 0
VehE LPD1 LA1 2 2 0
VehF LPD1 LA1 10 1 0
Pax LPD2 LA1 80 1 0
Pax LPD1 LS1 100 1 0

D4 VehF LPD1 LA1 1 1 A
Pax LPD1 LA1 4 1 A
VehC LPD2 LA1 4 2 B
VehF LPD2 LA1 1 2 B
VehF LPD2 LA1 1 2 0
VehE LPD1 LA1 4 1 A
VehF LPD1 LA1 1 1 A
Pax LPD1 LA1 4 1 A
VehA LPD1 LA1 1 1 0
VehF LPD1 LA1 2 1 0
Pax LPD1 LS1 80 1 0

D5 VehB LPD1 LA1 1 2 0
VehE LPD1 LA1 2 2 B
VehF LPD1 LA1 2 2 B
VehE LPD1 LA1 3 2 0
Pax LPD1 LA1 4 2 0
VehC LPD1 LA1 2 2 c
Pax LPD1 LA1 1 2 ¢
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Table 2.21: Performance of the greedy heuristic and branch-and-price algorithm for instances with o = F with a cut-off point of one

hour.

Branch-and-Price Algorithm

Greedy Initial Branching T il Int.

Instance  Solution LB #Loadings  #Nodes  #Arcs Rule! Makespan LB T (sec.)  Sol. (sec.)  Gap (
1B-1-F 42 41 38 308 12134 DL 42 41 0.74

1B-1-F 42 41 38 308 12134 DM 42 41 0.36

1B-2-F 27 25 38 192 4816 DL 27 25 3600 8.00
1B-2-F 27 25 38 192 4816 DM 27 25 2.84

1C-3-F 41 10 10 461 24224 DL 41 10 1.42

1C-3-F 41 10 10 462 24224 DM 41 10 1.10

1C-4-F 14 9 19 264 5608 DL 14 9 0.82

1C-4-F 14 9 19 264 5608 DM 14 9 0.65

1C-5-F 41 19 21 484 26204 DL 41 19 1.54

1C-5-F 41 19 21 484 26204 DM 41 19 1.32

2B-2-F 41 25 16 366 16080 DL 41 25 1.09

2B-2-F 41 25 16 366 16080 DM 41 25 0.49

2B-4-F 8 6 62 164 2811 DL 8 6 3600 33.33
2B-4-F 8 6 62 164 2811 DM 7 7 2.70 2.69

2B-5-F 26 25 53 428 22127 DL 26 25 2.13

2B-5-F 26 25 53 428 22127 DM 26 25 1.73

2C-3-F 36 25 26 448 23933 DL 36 25 1.37

2C-3-F 36 25 26 448 23933 DM 36 25 1.15

2C-4-F 11 9 60 3649 DL 10 9 3600 370.36 11.11
2C-4-F 11 9 60 3649 DM 10 9 3600 5.85 11.11
2C-5-F 26 19 51 14243 DL 26 19 1.07

2C-5-F 26 19 51 14243 DM 26 19 0.65

w>|H|~UM 41 41 18 4452

3A-2-F 27 25 18 1743 DL 27 25 0.19

3A-2-F 27 25 18 1743 DM 27 25 0.14

3A-5-F 26 11 33 4752 DL 26 11 0.59

3A-5-F 26 11 33 4752 DM 26 11 0.34

3B-2-F 59 41 61 11151 DL 59 41 1.26

3B-2-F 59 41 61 210 11151 DM 59 41 0.65

3B-5-F 26 11 33 146 4752 DL 26 11 0.61

3B-5-F 26 11 33 146 4752 DM 26 11 0.36

3C-3-F 54 26 154 288 18654 DL 54 26 2.09

3C-3-F 54 26 154 288 18654 DM 54 26 1.54

3C-4-F 27 11 232 346 14876 DL 27 11 4.96

3C-4-F 27 11 232 346 14876 DM 27 11 4.50

1,

D = depth first, L = least fractional, M = most fractional

2, UB = LB, hence the branch-and-price algorithm is not used
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Table 2.23: Performance of the greedy heuristic and branch-and-price algorithm for instances with o = W with a cut-off point of one
hour.

Branch-and-Price Algorithm

Greedy Initial Branching T Il Int.
Instance  Solution LB #Loadings  #Nodes  #Arcs Rulel Makespan LB T (sec.)  Sol. (sec.)  Gap (%)
1A-1-W?2 25 25 5 164 3574
1A-2-W 11 10 5 64 632 DL 11 10 0.21
1A-2-W 11 10 5 64 632 DM 11 10 0.13
1A-5-W2 9 9 9 84 832
1B-1-w?2 41 41 136 292 10934 41
1B-2-W 26 25 136 184 4436 DL 26 25 0.92
1B-2-W 26 25 136 184 4436 DM 26 25 0.55
10-3-W 11 9 28 270 8480 DL 11 9 0.46
1C-3-W 11 9 28 270 8480 DM 11 9 0.27
1C-4-W 25 9 30 108 1124 DL 25 9 3.66
1C-4-W 25 9 30 108 1124 DM 25 9 2.86
1C-5-W 25 18 46 292 9564 DL 25 18 1.04
1C-5-W 25 18 46 292 9564 DM 25 18 0.94
2A-1-W?2 25 25 5 198 4762
2A-2-W 25 9 5 206 5168 DL 25 9 0.25
2A-2-W 25 9 5 206 5168 DM 25 9 0.18
2A-5-W 10 9 9 120 1667 DL 10 9 0.13
2A-5-W 10 9 9 120 1667 DM 10 9 0.15
2B-2-W 40 25 29 356 15218 DL 40 25 0.78
2B-2-W 40 25 29 356 15218 DM 40 25 0.42
2B-4-W 7 6 68 142 2073 DL 7 6 3600 16.67
2B-4-W 7 6 68 142 2073 DM 7 6 0.42
2B-5-W 31 18 62 414 20693 DL 31 18 1.05
2B-5-W 31 18 62 414 20693 DM 31 18 0.75
2C-3-W 25 9 32 98 1187 DL 25 9 0.92
2C-3-W 25 9 32 98 1187 DM 25 9 0.53
2C-4-W 10 9 66 164 2915 DL 10 9 3600 11.11
2C-4-W 10 9 66 164 2915 DM 10 9 0.55
2C-5-W 25 18 60 330 13097 DL 25 18 1.31
2C-5-W 25 18 60 330 13097 DM 25 18 1.15
3A-1-W?2 41 41 18 132 4452
3A-2-W 27 25 219 82 1743 DL 27 25 1.37
3A-2-W 27 25 219 82 1743 DM 27 25 1.02
3A-5-W 25 11 274 140 4368 DL 25 11 1.08
3A-5-W 25 11 274 140 4368 DM 25 11 0.70
3B-2-W 43 41 266 146 5423 DL 43 41 1.83
3B-2-W 43 41 266 146 5423 DM 43 41 1.06
3B-5-W 25 11 274 140 4368 DL 25 11 1.08
3B-5-W 25 11 274 140 4368 DM 25 11 0.70
3C-3-W 53 25 1021 282 17890 DL 53 25 9.54
3C-3-W 53 25 1021 282 17890 DM 53 25 8.17
3C-4-W 26 11 1204 346 14876 DL 26 11 4.19
3C-4-W 26 11 1204 346 14876 DM 26 11 3.08

1. D = depth first, L = least fractional, M = most fractional

2, U

B = LB, hence the branch-and-price algorithm is not used



61

Chapter 2

posn jou st wyILIoB[e ootid-pue-youriq oYY 0dUSY ‘AT = €A iy

[ruonORly Jsow = N ‘[euorory jsee] = 7T ‘3say usdep = ( iy

0052 29 LTT 009€ ze oy wa [43%41 9€T szg ze 32 N-¢-D€

00°6€ £8°00L 009€ 43 6€ 1a [d3%4 9ge szg 43 134 N-¢-D€

10°679T 29'2891 vI vI wa 00LET zee 0€0T 11 sz N-#-D€

82'6¢ VL G9€T 009€ 01T 61 1a 00LET zee 0€0T 11 sz N-¥-D€

89'6¢ 1201 9z 9z Na [a 21 921 LV <14 Lz N-€-D€

90°69 5288 9z 9z 1a [a g1 921 LEV 14 22 N-€-D€

08'9 089 1T 1T na 8212 86 z0T1 11 81 N-g-d€

98°9 98°'9 1T 1T 1a 821¢ 86 20T 1T ST N-g-€g€

[ 444 TSIV 1T 1T wa z189 vEeT €g1 1T 81 N-F-d€

80°Z81T 80°Z8T 1T 1T 1a z189 VT eg1 11 8T N-¥-d€

4944 zeT 60T 132 132 ¢N-z-dg

TELE 961 601 L8 28 o N-1-9€

1g'8 1¢°8 1T 1T wNa 821¢ 86 20T 1T 8T N-g-VE

z8'8 28’8 1T 1T 1a 8212 86 201 11 81 N-G-VE€

18°'8¢ sz 9z wa 89T 8L SL sz 9z N-Z-Ve

00'% 009¢ 14 9z 1a 18ST 8L SL 14 9z N-2-VE

4944 zeT SL jid 34 N-1-vE

z16S [444 9z ST ST ZN-6-D02

L'y LY 6 6 na 6v9¢ z81 314 6 1T N-#-DC

9T'g 91T 6 6 1a 679¢ z8T 614 6 1T N-7-0¢

(4444 009¢ 6 1T wNa L8TT 86 €1 6 1T N-€-0¢T

[44k44 009€ 6 1T 1a L8TT 86 €1 6 1T N-€-DC

90°LV 009¢ LT <14 wa L60€T ose 8T LT <14 N-¢-92

€112 0922 8T 8T 1a L60ET ose 8T LT sz N-g-€¢

€1 Le1 9 9 wa 1182 ¥o1 e 9 8 N-¥-d2

991 99°T 9 9 1a 1182 ¥oT1 1€ 9 8 N-v-€¢

22°0 L2°0 sz sz wNa 0L9¢ 91e 43 14 9z N-z-€¢

29°0 L9°0 14 sz 1a 0L9¢ 91T Tt 14 9z N-z-492

9€°0 19°0 9z 9z WNa 188¢T 79€ 4 14 132 N-T-€2

19°L Tr'8 9z 9z 1a T88GT 7o€ 4 14 34 N-T-€2

(238" 96 L 6 6 N-6-vT

S0°0 6 ot wa 4514 9g 4 6 ot N-2-Ve

60°0 6 o1 1a 4214 9g 14 6 o1 N-C-VT

z9LY 861 g sz fet4 ZN-I-VT

PYIT T61 8¢ 8T 8T gN-g-O1T

70 70 6 6 wa T61T 98T 8T 6 ot N-7-DOT

QLT SLT 6 6 1a 2612 9gT 8T 6 ot N-7-OT

1€°0 6 1T na 9LET z01 ¥e 6 1T N-€-DT

€g0 6 1T 1a 9LET z0T1 ve 6 1T N-€-DOT

60'89 S8°E6 sz 9z wNa 09891 88€ LL 14 €€ N-g-€T

0082 £6°€T 009€ sz ze 1a 09891 88€ LL 14 €€ N-¢-d1

€021 £€°02T 6 6 WNa 889¢ [e1%4 S 6 ST N-b-dT1

(4444 99°6% 009€ 6 1T 1a 889¢ 9ve SL 6 ST N-P-€1

L8 9z 9z wa 9eTY P8I €1 sz 9z N-z-d1

86°E78 9z 9z 1a 9ETF 78T €1 14 9z N-g-41

FE60T 26T €1 34 g N-T-dT

zeR ¥8 [ 6 6 NGV

210 o1 1T wa z€9 79 € o1 1T N-Z-VI

¥1°0 ot 1T 1a z€9 ¥9 € ot 1T N-Z-VI

vLSE 7T € 14 <14 NIV

(%) den (-09s) ‘0§ (-008) I a1 uedsoyey ey so1y#  sepoN#  s8uipworT# a1 uognjog  eoueysur
39T (113 L Sunouelg rerrug AposiD

W30Sy 0ol d-pue-youeig

“moy
ouo Jo qurod Jo-1nd © YHM N = 0 UM S9OURISUI 10] W}LI0Se 9o1Id-pue-youriq pue JIISLINSY APaais oY) JO 9oUBULIOJS] T T O[qelL






Chapter 3

Evaluating Ship-to-Shore

Schedules using Simulation

This chapter is based on Wagenvoort et al. (2025b).
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3.1 Introduction

During military operations in coastal regions, resources are brought from large am-
phibious ships to the shore using smaller ships and helicopters, called connectors. It
is essential to carry out the transportation of the resources efficiently to facilitate
the earliest possible start of the tasks on land. Hence, the aim is to schedule the
connector trips to the shore such that the makespan, the duration of the operation,
is minimised. Therefore, the need for a fast algorithm to construct a schedule for this
transportation problem arises. This problem is called the Ship-to-Shore Problem and
is described in Chapter 2. Various versions of this problem have been studied, e.g.,
considering single or multiple resources that should be transported (Christafore Jr.,
2017; Danielson, 2018; Strickland, 2018; Villena, 2019; Wagenvoort et al., 2025a).

In the Ship-to-Shore Problem, the aim is to find, for each connector, a route
that should be executed such that the makespan is minimised. A route defines a
set of round-trips between a sea base (SB) and a landing area (LA) location that
should be executed as well as the resources that should be transported in each trip.
Based on interviews with experts at the Defence, Safety and Security unit of the
Netherlands Organisation for Applied Scientific Research (TNO), we have identified
various constraints that have to be adhered to in a schedule. These can be split into
constraints regarding the connectors, the delivery of the resources to the shore, and
the (un)loading of the resources.

Connectors have a space and weight capacity that determines what set of resources
can be simultaneously transported. There can be specific limitations in the way
connectors can be loaded, e.g., the load of the connector should be balanced and
resources might have to be secured which can only be done at limited spots, restricting
the number of ways connectors can be loaded. Furthermore, the connectors have a
fuel capacity and might therefore have to be refuelled at a sea base. The speed of a
connector can be dependent on the weight of the load on the connector.

Resources have different priority levels that determine a partial ordering of the
delivery of resources to the shore. Here a strict ordering exists where all resources
with a higher priority should be delivered before resources with a lower priority are
delivered. Additionally, certain resources can belong to the same resource set and
have to be delivered at the same time or closely after each other, called a resource
set constraint. An example of a resource set is a unit that trained together plus
the vehicles containing their personal supplies. To avoid the situation where either
the vehicle or the personnel has to wait on the shore, we impose that these are

delivered together or closely after each other (Pagonis and Cruikshank, 1992). The



Chapter 3 65

time interval in which resources from a resource set are delivered is called a delivery
wave. Furthermore, at a sea base and landing area, a limited number of (un)loading
spots is available. Hence, there is a limit on the number of connectors that can be

(un)loaded at the same time.

In Chapter 2, we consider the ship-to-shore problem as described above, and
design an exact branch-and-price algorithm, as well as a greedy heuristic. Christafore
Jr. (2017), Danielson (2018), Strickland (2018), and Villena (2019) also study the
ship-to-shore problem. Compared to our problem, they do not consider all constraints
regarding the coordination of the delivery of resources. Therefore, we use schedules

constructed using the method of Chapter 2.

Given a schedule for the Ship-to-Shore Problem, preparations are made accord-
ingly. This implies that switching the order of resources in which they are loaded is
not always possible (Vhilen, N, 2022). Once the resources are placed in a certain order
on the large amphibious warfare ships, resources scheduled to be transported earlier
may block other resources that are scheduled to be transported later. Furthermore,
the schedule is communicated to the staff on the ship and they make preparations
accordingly. This prevents them from departing to the shore significantly before their
planned departure time as they are not ready for departure and might have other
conflicting tasks. Therefore, when executing a schedule for the transport operation,
the schedule is followed as closely as possible. However, travel times and (un)loading
times are stochastic and weather conditions can be different than predicted, also af-
fecting the travel times of the connectors. This means that delays can occur, which
can propagate through the schedule as the order in which the resources are loaded
onto a connector is fixed when a schedule is executed and connectors are not allowed

to depart ahead of time.

Research on the Ship-to-Shore Problem has assumed deterministic parameters re-
garding the speed and the (un)loading time of the connectors. The resulting schedules
might therefore not be robust for delays and this can greatly affect the duration of
the transportation of the resources. In general, adding slack to a schedule can help
capture these delays and can therefore be beneficial for the realised makespan. One
way to add slack is to schedule with more conservative parameters. However, adding
too much slack, by being too conservative in the parameters, or by adding slack at
the wrong moments, can negatively affect the realised makespan as the order of the

connectors is fixed and connectors cannot depart before their scheduled time.

In Chapter 2, we make use of a time-space network to model the Ship-to-Shore

Problem. The time-space network consists of nodes that correspond to a location
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at a certain discrete time period. Arcs connecting nodes correspond to transitions
through both time and space. The inputs are deterministic and the length of the
discrete time period is set to the maximum (un)loading time of all connectors such
that all connectors can be (un)loaded within one time period. Discrete time periods
create buffer time in the schedule when a connector can (un)load faster or when the
travel time between two locations is not equal to an integer multiple of the time
period length. This buffer time could help capture delays. However, the buffer time
occurs due to the design choice for the time-space network and is not incorporated
as slack by the model to avoid delays. Therefore, it might not be sufficient to handle
the delays and it is of interest how well such a schedule performs.

We are therefore interested in the following questions:

Q1: How well does a schedule generated using discrete time periods perform when

parameters are stochastic?

Q2: What is the trade-off between using a schedule constructed using more conser-

vative parameters and the realised makespan?
Q3: What is the effect of being less rigid in the execution of a schedule?

Simulation models can be used to model and evaluate the behaviour of a system
over time (Scheidegger et al., 2018). Therefore, they can be used to assess the ro-
bustness of a planning as well as the effectiveness of new policies (Corpuz et al., 2017;
Jnitova et al., 2017; Siswanto et al., 2023). Simulation models can be particularly
useful when limited data is available about the performance of a system, as is the
case for the Ship-to-Shore Problem which is usually only executed once (Gu et al.,
2021).

Horne and Irony (1994) use a simulation to analyse the trade-off between the
number of connectors, (un)loading positions, and travel time between the SB and
LA. They do however not consider different types of connectors that can use different
(un)loading spots, priorities, and resource sets. We therefore develop a simulation
model in which a schedule is given as input and its execution is evaluated given
uncertainty in the speed and (un)loading time as well as changes in the predicted
weather conditions that affect the travel time. The simulation model follows the
schedule, by adhering to the order in which connectors are loaded at an SB, and
by only allowing connectors to start a limited amount of time ahead of schedule.
Furthermore, the simulation model considers the constraints that arise in the Ship-
to-Shore Problem.
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We use the simulation model to analyse the performance of schedules constructed
using the approach from Chapter 2. We find that uncertainty in the parameters has
a significant effect on the performance of the schedule. Hence, the buffer time in
the schedule arising from the discrete time periods does not suffice to capture these
delays. In fact, on average, connectors arrive late in over 30% of their trips. Us-
ing a conservative schedule can improve the performance when a more conservative
(un)loading time is used. However, using more conservative (un)loading times can
produce worse results, especially when you are not interested in the average perform-
ance, but a worst-case performance. Being less rigid in the execution by allowing
connectors to depart a limited time ahead of schedule generally has a positive effect
on the performance of the schedule. However, this comes at the cost of violating the
resource set constraints.

This chapter is organised as follows. We describe how we simulate the execution
of a schedule and the types of uncertainties we consider in Section 3.2. In Section 3.3,
we describe the set-up of the experiments. We report and discuss the results of the

experiments in Section 3.4 and give a conclusion in Section 3.5.

3.2 Discrete-Event Simulation

We use a discrete-event simulation in which we take a schedule as input and model
the movement of the connectors over time while incorporating uncertainty in de-
viations from the wind and current used in generating the schedules, the speed of
the connectors, and the (un)loading time. The schedule specifies for each connector
what trips it should make and thus when it should start (un)loading, when it should
depart, and what it should carry in each trip from an SB to an LA. We model the
movement of the connectors using the following events: Arrival at an SB, departure
from an SB, arrival at an LA, departure from an LA. During the simulation, certain
policies have to be adhered to while executing the schedule. In this section, we de-
scribe the types of uncertainty we consider in the simulation, the policies we have to
adhere to, and the output of the simulation model. An overview of the procedure for

each event is given in Appendix 3.A.

3.2.1 Uncertainty in the Ship-to-Shore Problem

During the planning of the Ship-to-Shore Problem, deterministic parameters are
used, while in reality these are stochastic. Furthermore, the weather conditions can

differ from the expected weather conditions, affecting the speed of the connectors.
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adjustment

actual

predicted

Figure 3.1: Vector representation of the effect of a change in the current/wind in direction
compared to the predicted current/wind.

In this section, we explain the types of uncertainty that arise in the execution of the
Ship-to-Shore Problem in more detail.

The speed of a connector is used to determine the required travel time between
the locations. The speed can be constant or dependent on the weight of the load it
carries. However, a connector does not always travel at maximum speed due to, for
example, small navigation errors or detours. This will result in a net speed slightly
below the maximum speed. We therefore determine the net speed of a connector
for each trip made by the connector according to a distribution that is input to the
simulation.

Furthermore, the travel time is dependent on the weather conditions. Namely, the
current and/or wind affect the speed at which a connector travels. In the planning
phase, the predicted water current and/or wind can be taken into account. However,
the actual current or wind can be different. We consider a change in the current or
wind as denoted by Figure 3.1. Namely, if a planning was made with the net speed
and direction according to the predicted current/wind, and the actual current/wind
deviates, the speed and direction will have to be adjusted according to the vector
labelled as ‘adjustment’ in Figure 3.1. This affects the travel time as the connector

has to adjust its direction for the change in the current/wind (see Example 3.1).

Example 3.1. Two examples are given in Figure 3.2. Here the angle of the change
in the current and/or wind is denoted by a and the strength is r nautical miles. If
the direction and strength of the current and/or wind is not taken into account, the
connectors will not end up at the landing area (LA), but to the left of it. Therefore, the
connectors will have to steer to the right in order to arrive at the LA. The connector
will thus travel at a speed v in the denoted direction and have a realised speed of v’
towards the LA.

This means that in case A the realised speed v’ is higher than the speed of the
connector, and in case B the realised speed v’ is lower than the speed of the connector.
When returning to the SB from the LA, the reverse will hold.
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SB e
B

Figure 3.2: Vector representation of the effect of a current or wind in direction o and with
strength r on the speed v.

Besides changes in the speed of the connectors, changes in the (un)loading time
of a connector at a sea base/landing area can occur. Delays in (un)loading are
caused by small delays in placing or removing the resources on/from the connectors.
Furthermore, small repairs and refuelling can be done at the sea base which could
cause delays. At the landing area, connectors can get stuck in sand and therefore
take longer to depart the landing area. Therefore, we determine the (un)loading time
of a connector for each time it (un)loads according to a distribution that is input to

the simulation.

3.2.2 Simulation Policies

We consider the following simulation policies.

Firstly, we adhere to the (un)loading ordering provided by the schedule. Due to
the uncertainty in the simulation parameters, it is possible that a connector that is
scheduled to (un)load at a later time than another connector, arrives first. Prepar-
ations are made according to the schedule, e.g., at the sea base the resources are
gathered that should be loaded onto the connector. In this case, the resources for the
next loading should be gathered instead including personnel, which can result in ad-
ditional delays. Furthermore, this could lead to violations of the priority or resource
set constraints. Hence, a connector cannot be (un)loaded before the connectors that
are scheduled to (un)load before have finished or started (un)loading.

Secondly, we limit the time the connectors can be ahead of schedule. For the
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same reasons as mentioned above, being far ahead of schedule can cause difficulties
as preparations have not been completed yet. Therefore, we set a limit to how far

ahead of schedule a connector can be (un)loaded.

Finally, we adhere to all constraints of the Ship-to-Shore Problem, if possible.
This implies that we adhere to the capacity constraints at the SBs and LAs. Namely,
there is a maximum number of connectors that can be (un)loaded at the same time at
a SB or LA. If a connector arrives and should be (un)loaded next, but all (un)loading
spaces are occupied, the connector has to wait. Additionally, some connectors are
only compatible with certain (un)loading locations and they are therefore not able
to (un)load at a free spot that is not compatible. Furthermore, we adhere to the
constraints regarding the ordering of resources. Namely, a strict priority ordering of
the resources exists which implies that a connector carrying priority m + 1 resources
will wait until all priority 7 resources are delivered. Finally, we adhere to the resource
set constraints, if possible. These constraints ensure that resources that belong to the
same resource set are delivered at the same time or closely after each other. Hence,
if it is known in advance that a connector taking part in a delivery wave is delayed,
the start of the wave will be postponed. However, it is possible that a connector
taking part in a delivery wave experiences a delay when another connector is already
delivering resources from that wave. In that case, the wave might be broken up and

we consider this a violation of the resource set constraint.

3.2.3 Output of the Simulation Model

Our main interest is the realised makespan when executing a schedule with stochastic
parameters. Besides the makespan, we also determine, from the simulation, the
percentage of time a connector is late for loading at an SB and the percentage of
time a connector is late for delivery at the LA. Additionally, we determine the average
delay at an SB or at an LA. Finally, since resource set constraints might be violated,
we determine the percentage of delivery waves that are violated. We consider a
delivery wave violated when the time between the completion of a delivery till the
time of the start of the next delivery of that resource set differs by more than the
length of one discrete time period. An overview of the performance measures we

consider is given in Table 3.1.
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Table 3.1: An overview of the performance measures determined in the simulation model.

Performance Measure Description

Standardised Makespan  The standardised time until all resources are brought to land, i.e.,
the realised makespan divided by the planned makespan

Latesp The percentage of times a connector is late at an SB to be loaded

Later a The percentage of times a connector is late at an LA to be
unloaded

Delaysp The average time in minutes a connector arrives after the scheduled
time at an SB

Delaysn,; The average time in minutes a connector arrives after the scheduled
time at an SB, given that it was late

Delayr, 4 The average time in minutes a connector arrives after the scheduled
time at an LA

Delayra, The average time in minutes a connector arrives after the scheduled
time at an LA, given that it was late

Wave The percentage of waves that were violated

Figure 3.3: Change in the current/wind.

3.3 Experimental Design

In this section, we describe the design of our experiments. We first describe the dis-
tributions we use for the different parameters. Then, we describe which experiments

and tests we perform to answer our research questions.

3.3.1 Simulation Parameters

Input for the simulation are the distributions for the stochastic parameters defined
in Section 3.2. Here we determine the change in the current/wind at the start of each
replication, i.e., this effect is fixed within a replication. The travel time and (un)load-
ing time uncertainty is considered for each individual trip and (un)loading activity.
The distribution of the change in current/wind and the speed and (un)loading time
is an input to the simulation and can thus be varied. We consider the following
distributions in our experiments.

For the change in the current/wind, we consider a direction as an angle, «, and
speed in nautical miles, r, as given in Figure 3.3. Here we take & ~ U(0,360)
degrees and r ~ U(0,1) nautical miles. This implies that each direction is equally
likely to occur as well as each speed up to one nautical miles.

For the speed of the connectors, we consider a deviation of the maximum speed.
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Figure 3.4: Simulation parameter data.

In other words, the speed the connector has during a trip is equal to s(1 — x) where
s is the maximum speed of the connector and z a realisation of X ~ fx(z) =
4cos(4mx) + 4 for 0 < x < 0.25. This implies that a connector will have a speed
of at least 75% of its maximum speed. Furthermore, small reductions in the speed
are likely, while large reductions in the speed are unlikely. The distribution of the
reduction in the speed is given in Figure 3.4a.

For the (un)loading time of the connectors, we consider an addition to the min-
imum required (un)loading time. In other words, the time it takes for the connector
to be (un)loaded is equal to #(1 + y) where ¢ is the minimum required time and y
a realisation of Y ~ fy(y) = 2cos(2my) + 2 for 0 < y < 0.5. This implies that a
connector will take at most 1.5 times its minimum required time to be (un)loaded.
Furthermore, small increases in the time are likely, while large increases in the time
are unlikely. The distribution of the additional time is given in Figure 3.4b.

To make a fair comparison between the simulation output of different schedules,
we use different streams of random numbers. Namely, we use one stream of random
numbers to determine the deviation of the wind and current, such that the nt!
replication of each simulation has the same weather conditions. Furthermore, we
specify for each connector two separate streams of random numbers, one for the

travel times and one for the (un)loading times.

3.3.2 Experiments

In the simulation model, we take a schedule as input. We then simulate the execution
of the schedule according to the policies defined in Section 3.2.2 and the distribution
for the parameters in Section 3.3.1 for 100,000 replications.

To answer our first research question, we analyse the performance of a schedule
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constructed using discrete time periods. We therefore compare the simulation output
with the planned makespan using a t-test. We analyse the performance with respect
to the makespan, the percentage of times a connector is late to (un)load, the average

delay when (un)loading, and the percentage of times a wave is violated.

To test the performance of the schedule with respect to the makespan, we test
whether the average realised makespan deviates significantly from the planned make-
span. Hence, we test the null hypothesis Hy : X = X, against the alternative
hypothesis H; : X > X, using a one-sided t-test. Here X is the planned makespan
and X is the average makespan obtained from the simulation model. To test the per-
formance of the schedule with respect to delays and wave violations, we test whether
the average of the metric deviates significantly from 0 and thus use the above de-
scribed one-sided t-test with Xy = 0 and X the average value of the corresponding

metric.

Our second research question relates to the trade-off between using more con-
servative parameters and using the most optimistic parameters in the construction
of a schedule. We therefore generate schedules using more conservative parameters
by running the branch-and-price algorithm from Chapter 2 using these more conser-
vative parameters for the speed of the connectors or for the (un)loading times. We
then simulate the execution of these schedules and compare them to the simulated
performance of the base schedule, that is, the schedule created using the maximum
speeds and (un)loading times equal to the maximum (un)loading time of all connect-
ors. We test whether these differ significantly from each other using a paired t-test.
This test is possible as the samples are dependent due to the usage of different
streams of random numbers for different purposes. For example, each i*" replication
has the same weather conditions because these are generated using a separate stream

of random numbers.

Let X; and X5 denote the samples of the execution of the two schedules. Let
r; = T1; — Io; be the difference of pair i between sample 1 and 2 and Xp the
average of the difference between the pairs. As we are interested in whether the
samples are significantly different, we define the null hypothesis Hy : Xp = 0 and
the alternative hypothesis H; : Xp # 0 and apply the paired t-test.

However, in the paired t-test, we compare the averages with each other, while
the schedule is only executed once and we thus do not observe the average real-
ised makespan when executing a schedule in practice. We therefore additionally
consider a quantile comparison to see whether the schedules perform significantly
different at the 95th percentile. We follow the approach of Wilcox et al. (2014)
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to determine whether the 95th percentiles of two samples are significantly different
(see Algorithm 3.1). In this test, random samples are generated from each original
sample and the difference between the 95th percentile in each of the paired samples
is determined. Then, the one-sided p-value is determined by counting the number of
times the difference is negative or equal. We do this based on B = 2000 draws and
samples of size m = 1000000. The generalised p-value, p*, can then be determined

as p* = 2 min {p,1— p} and can be used for a two-sided test.

Algorithm 3.1 Quantile Comparison

Input: z;, y; fori = 1,... n the samples that we wish to compare, B and m are
parameters denoting the number of samples and the number of draws per sample,
respectively

Output: p, the p-value
1: for j=1: B do

2 for k=1:m do

3 Let Uy ~ U(1,m) and Uz ~ U(1,m).

4 Set zj, = xzy, and Y}, = yu,-

5: end for

6 Let ¢ and 0 be the 95th quantiles of 2 and y'.
7. Letd; =07 — 0.

8: end for

9: Let A =371 I(_oo,0)(d;) and C = 3277 Tjg)(d;).
10: Let p = A"ﬂfﬁc.

11: Let p* = 2min{p, 1 — p}.

The final research question relates to the effect of being less rigid in the execution
of a schedule. Therefore, we give an additional input to the simulation model defining
how many minutes a connector is allowed to be ahead of schedule. We simulate the
execution of each schedule while being allowed to be z € {10, 30,60} minutes ahead
of schedule. We then compare the performance of these schedules with the execution
of the schedule with x = 0. We perform both the paired t-test and the quantile

comparison on the samples similarly as for the second research question.

3.4 Results

In this section, the results of our simulation model are presented, where a 5% signi-
ficance level is used for all tests. The experiments are conducted using 15 instances
of which the data is provided by the Royal Netherlands Navy. The instances all have

multiple SBs and LAs that are 15 nautical miles apart. There are 4 to 6 connectors
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available in each instance. The number of resources that are transported during the
operation ranges from 20 to 244 items and vary from people to large vehicles. These
resources are transported in up to 15 trips taking between 6.5 and 20 hours.

The schedules are generated using deterministic values. However, the conditions
during the execution of the schedule can vary as described in Section 3.2.1. Therefore,
we perform two experiments. In both experiments, schedules are constructed using
deterministic parameters. In the first experiment, we use a schedule constructed
using the most optimistic parameters, namely the maximum speed and minimum
(un)loading time, which we call the base schedule. We then analyse the effect of
stochastic parameters when executing the base schedule using the simulation. In the
second experiment, we use more conservative parameters for the speed or (un)loading
time to construct a schedule. We then compare the simulation output of these sched-
ules with the simulation output of the base schedule to analyse the effect of using
more conservative parameters in the schedule construction. Finally, we analyse the
effect of being less rigid in executing a schedule by allowing connectors to (un)load

and depart ahead of schedule.

3.4.1 The Performance under Stochastic Parameters

To analyse the effect of stochastic parameters on the execution of a schedule, we
simulate the execution of a schedule 100000 times for each instance. The schedule
taken as input is generated using the most optimistic parameters for the speed and
(un)loading time of the connectors. A summary of the simulation output can be
found in Table 3.2. Here, for each of the performance measures, the average mean,
the between sample standard error and the worst-case within-sample standard error
is given as well as the percentage of instances for which the null hypothesis of the
t-test defined in Section 3.3.2 is rejected. We report the worst-case within-sample
standard error to give an indication of how much the replications for a given instance
could deviate. We see that the within-sample standard errors are low. Therefore, in
the remainder of this chapter, we only report the between sample standard errors.
We see that on average, the operation takes 1.8% longer than planned and that for,
on average, 47% of the trips, the connector arrives late at the SB. The average delay of
these late arrivals is a bit over 5 minutes. The number of trips for which the connector
arrives late at the LA is lower, however the delay at the LA is approximately one
minute larger than at the SB. This can be caused by the policy that connectors
cannot be loaded before the scheduled time at an SB, while it is possible to start

unloading at an LA before the scheduled time. Therefore, connectors that arrive
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Table 3.2: Descriptive statistics of the simulation output of the base schedules when you
are not allowed to be ahead of schedule. For each performance measure we give the average
mean, the between sample standard error (SE), the worst-case within-sample standard error
(SEw), and the percentage of instances for which the null hypothesis is rejected.

Performance Measure Mean SE SEw % Reject Ho
Standardised Makespan ~ 1.018  0.003  9.6x10~° 100
Latesp (%) 47.04  2.944 0.064 100
Latera (%) 31.63  3.767 0.089 100
Delaysp (min) 2.68 0.514 0.019 100
Delaysp,; (min) 5.38 0.889 0.032 100
Delayr, 4 (min) 3.10 1.100 0.030 100
Delayy 4,; (min) 6.31 1.133 0.034 100
Wave (%) 0.63 0.271 0.040 0

earlier at an LA can already unload and depart to the SB and therefore potentially
arrive before the scheduled time, which is less likely to occur at LAs. Waves are
rarely violated, which is also caused by the inability of connectors to depart before
schedule. Therefore, having a significant time difference between two consecutive
deliveries is not likely to occur.

In the t-tests, we test whether the realised performance measures differ signific-
antly from the predicted performance measures. In other words, whether the realised
makespan is significantly larger than the planned makespan, the percentage of times
a connector is late is significant, the delays are significant, and the percentage of
waves that are violated is significant. We find that for all instances, the makespan is
significantly larger than planned and that connectors incur significant delays. How-
ever, the percentage of waves that are violated is not significant. The results show
that the buffer time arising in the schedule from the discrete time periods is not suf-
ficient to capture delays when the most optimistic parameters are used to construct
the schedule.

We thus find that executing the schedule takes significantly longer than the
planned duration. Namely, on average, the realised makespan is 1.8% higher than the
planned makespan. However, if connectors would always travel at average speed and
have an average (un)loading time, the realised makespan would be on average 2.8%
higher. Hence, although the realised makespan is significantly higher, the variability
in the speed and (un)loading time results in a better solution compared to when the

average speed and (un)loading time is observed.

3.4.2 The Performance of more Conservative Schedules

To analyse the effect of using more conservative parameters, we determine a schedule

using more conservative parameters for the speed of connectors or the (un)loading
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time using the branch-and-price algorithm of Chapter 2. Using a paired t-test we
analyse whether the more conservative parameters have a positive, negative, or in-

significant effect on the realised makespan.

Table 3.3 shows the average simulation output for a given reduction in the speed
and increase in the (un)loading time. The percentage of the maximum speed or
minimum (un)loading time is given by ps and p;, respectively. The corresponding
statistical value is given by vs and v, respectively, where ‘pctl’ is used as short
for percentile. The average realised makespan is scaled to the planned makespan
according to the base schedule constructed using the most optimistic parameters. We
see that the average makespan over the instances is increasing in the conservativeness
for the (un)loading time. We see that, generally, the number and value of delays is
decreasing as well as the probability that waves are violated. This is not surprising,
since connectors are not allowed to be ahead of schedule and more time is scheduled

for (un)loading. This allows for capturing delays better.

Planning more conservatively in terms of the speed, results in a realised makespan
that is only slightly higher than the average realised makespan for the base schedule
given in Table 3.2. This is likely caused by the fact that there is already some
buffer time to capture delays in the basic schedule due to the discretisation of the
time periods. Using a slightly slower speed can therefore result in the same optimal
schedule. For example, if first 2.5 time periods are required and therefore 3 are
scheduled, a slight reduction in the speed used for planning might result in requiring
2.7 time periods for which still 3 time periods are scheduled. If this is the case for all
connectors, the optimal solution is the same resulting in an insignificant output of
the paired t-test. If the speed reduction does result in requiring an additional time
period in order to transport the resources, this has a relatively large effect as a full
extra time period is scheduled for each trip between a sea base and landing area,
and/or reverse. For example, if first 2.9 time periods are required and therefore 3 are
scheduled, a slight reduction in the speed can result in requiring 3.1 time periods and
therefore 4 need to be scheduled when this connector is used resulting in a different

optimal solution.

Since there is no effect of different parameters for the speed in our results, we

jointly report them in the remainder of this chapter.

Table 3.4 gives the results of the paired t-test. Here, for a given percentage of the
maximum speed and minimum (un)loading time, Table 3.4 indicates the percentage
of instances a positive, negative, or insignificant change in the realised makespan

is observed. We see that being a bit more conservative in the (un)loading time,
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Table 3.3: Descriptive statistics of the simulation output of the schedules using more conservative parameters for the speed (s) or
(un)loading time (¢). The percentage of the maximum speed and minimum (un)loading time used is given by ps and p;, respectively.
The corresponding statistical value is given by vs and v, respectively. For each performance measure, the average mean is given with
the corresponding standard error in brackets. The makespan is scaled with the planned makespan for that schedule.

Vg ps(%) vt pe(%) mWMMMHMWMQ Latesp  Lateps Delaysp Delaygp,; Delaypq Delaypa, Wave
- 100 5 pctl. 101.3 0.994 52.809 60.855 4.828 8.656 10.218 15.739 2.095
(0.006)  (2.407)  (4.834) (0.814) (1.106) (1.324) (0.898)  (0.895)
- 100 10 pctl. 102.5 0.998 49.260 57.342 3.819 7.233 8.502 13.735 1.960
(0.005)  (2479)  (4.784)  (0.609) (0.861)  (1.058) (0.673)  (0.831)
- 100 15 pctl. 103.8 1.002 45.906 53.510 3.075 6.203 7.098 12.074 1.781
(0.005)  (2531)  (4.629)  (0.421) (0.639)  (0.831) (0.467)  (0.747)
- 100 25 pctl. 106.3 1.014 39.339 44.588 1.881 4.388 4.736 9.252 1.355
(0.005)  (2.55) (3.993)  (0.168) (0.341)  (0.493) (0.201)  (0.555)
- 100 mean 113.2 1.023 42.158 29.900 2.882 6.368 3.015 7.632 1.008
(0.005)  (2.085) (2.969)  (0.376) (0.508)  (0.399) (0.315)  (0.444)
5 pctl. 994 - 100 1.019 46.095 28.403 2.217 4.620 2.045 5.230 0.632
(0.005)  (2.943)  (1.492)  (0.152) (0.308)  (0.204) (0.226)  (0.271)
10 pctl. 98.7 - 100 1.019 46.095 28.403 2.217 4.620 2.045 5.230 0.632
(0.005)  (2.943)  (1.492)  (0.152) (0.308)  (0.204) (0.226)  (0.271)
15 pctl. 98.1 - 100 1.019 46.095 28.403 2.217 4.620 2.045 5.230 0.632
(0.005)  (2.943)  (1.492)  (0.152) (0.308)  (0.204) (0.226)  (0.271)
25 petl. 96.8 - 100 1.019 46.095 28.403 2.217 4.620 2.045 5.230 0.632
(0.005) (2.943) (1.492)  (0.152) (0.308)  (0.204) (0.226)  (0.271)
mean 934 - 100 1.019 46.095 28.403 2.217 4.620 2.045 5.230 0.632
(0.005)  (2.943)  (1.492)  (0.152) (0.308)  (0.204) (0.226)  (0.271)
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Table 3.4: Results of the paired T-test and quantile comparison of the standardised make-
span comparing the simulation output of the schedule with more conservative parameters for
the speed (s) or (un)loading time (t) with the output of the base schedule. The percentage
of the maximum speed and minimum (un)loading time used is given by ps and p;, respect-
ively. The corresponding statistical value is given by vs and v, respectively. We denote
the percentage of instance for which there is a positive, negative, or insignificant effect. A
positive effect implies that the schedule outperforms the base schedule. Here * corresponds
to the case vs € {5 pctl,10 pctl,15 pctl,25 petl;mean} and ps € {99.4,98.7,98.1,96.8,93.4}.

Paired T-test Quantile comparison
vs  ps(%) v pt(%)  pos. neg.  insign. pos. neg.  insign.
- 100 5 pctl 101.3  93.33 6.67 0 86.67 6.67 6.67
- 100 10 pctl 102.5  93.33 6.67 0 80.00 13.33 6.67
- 100 15 pctl 103.8  93.33 6.67 0 46.67  20.00 33.33
- 100 25 pctl 106.3  93.33 6.67 0 6.67 93.33 0
- 100 mean 113.2 6.67  93.33 0 6.67  93.33 0
* * - 100 0 6.67 93.33 0 6.67 93.33

can have a positive effect on the realised makespan. When the speed is decreased,
the realised makespan on all instances is higher or insignificantly different from the
realised makespan of the basic schedule. The results thus suggest using a slightly
more conservative (un)loading time when constructing a schedule, and therefore a

slightly longer time period length, is a more effective way to construct a schedule.

The negative and insignificant results of the schedules constructed using more
conservative speeds is likely caused by the two situations that can occur. Namely,
a slight reduction can either result in the same optimal schedule as the number of
required time periods to travel between the SBs and LAs remains the same. This
gives an insignificant difference in the realised makespan as the schedules, and hence
the simulation outputs, are identical. Alternatively, a slight reduction can result in
scheduling a full additional time period when scheduling a trip from a sea base to
a landing are, and/or reverse. This can result in a negative effect on the realised
makespan as connectors are not allowed to be ahead of schedule and planning a full

additional time period can result in a schedule that is too conservative.

Increasing the (un)loading time of the connector affects the schedule in two ways.
Firstly, the time scheduled for (un)loading increases, adding more buffer time in the
schedule for delays. Secondly, the time required for a connector to travel between an
SB and an LA can both increase or decrease. For example, if initially 15-minute time
periods are used and it takes 40 minutes to travel from an SB to an LA, 45 minutes
(3 time periods) are scheduled. If the time period length is increased to 20 minutes,
40 minutes are scheduled (2 time periods), reducing the scheduled time. If however
the time period length is increased to 17.5 minutes, 52.5 minutes are scheduled (3

time periods), increasing the scheduled time. Therefore, changing the time period
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Figure 3.5: Simulation output for the average realised makespan scaled to the planned
makespan of the base schedule. Here the horizontal axis denotes the types of schedule used
of the form (vs,v:) and * corresponds to the case vs € {5 pctl,10 pctl,15 pctl,25 pctl,mean}
and ps € {99.4,98.7,98.1,96.8,93.4}.

length will always increase the time scheduled for (un)loading, but can both increase
or decrease the time scheduled for travelling between the locations.

These effects can be seen in Figure 3.5. Here we present the distribution of the
average realised makespan of the instances for the types of schedules. These show
that schedules constructed using a more conservative speed can result in a schedule
with a higher makespan and therefore higher realised makespan, but are also likely
to result in the same schedule and therefore same realised makespan. When the time
period length is adjusted, resulting schedules can both be faster and slower.

In practice, a schedule is only executed once and the mean is thus not observed.
Therefore, we are also interested in a worst-case performance and we analyse the
performance at the 95th percentile. When looking at the quantile comparison, we
see that only for the small increases in the time period length, the conservative
schedule performs better and that more often the results are insignificant or negative.
Hence, the best performance is observed when being only slightly conservative in the

(un)loading time for connectors.

3.4.3 Price of Being Rigid

The previous results are generated given the policy that a connector is not allowed
to be ahead of schedule, which is imposed as preparations are made according to the
schedule. This can however have a large effect on the realised makespan as can be seen

in Figure 3.6 which provides an example of an instance that shows the distribution
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Figure 3.6: The effect on the distribution of the makespan when you are allowed to be =
minutes ahead of time.

of the realised makespan as a fraction of the planned makespan. The figure shows
that being allowed to be ahead of schedule has a positive effect on the expected
makespan, but that the effect stagnates the more you are allowed to be ahead of
schedule. Namely, the density curve is steep when you are allowed to be no or a
limited time ahead of schedule, as there is a high chance you are close to the lowest
possible makespan you can attain. However, when you are allowed to be significantly
ahead of schedule the effect stagnates as you are not likely to be significantly ahead
of schedule, as can be seen by the scenario x = 60. When comparing at the 95th
percentile, the performance seems to be similar. Therefore, we analyse the effect of
being allowed to be x minutes ahead of time, for x € {10, 30,60}, using a paired t-test
and quantile comparison with respect to the scenario in which you are not allowed
to be ahead of schedule.

The simulation output when you are allowed to be 10, 30 or 60 minutes ahead
of schedule, can be found in Appendix 3.B. We highlight some results in Figure 3.7
regarding the change in the realised makespan and percentage of wave violations for
the base schedule. Figure 3.7a shows a decreasing trend in the realised makespan
when the minutes you are allowed to be ahead of schedule increases. We see that
for some instances this flexibility does not provide much reduction in the realised

makespan, but for others the makespan can decrease significantly.

Figure 3.7b shows the percentage of wave violations. We see an increasing trend
in the wave violations, hence, the more you are allowed to be ahead of schedule, the

higher the probability of violating the resource set constraints. This increase comes
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Figure 3.7: Simulation output for the base schedules when you are allowed to be x €
{0, 10, 30,60} minutes ahead of schedule.

from the fact that connectors only wait if they know the other connectors joining in
the wave will be delayed. If they are still on track, a connector can depart earlier,
which can result in a wave violation if the later connectors experience a delay while
loading or travelling. When you are allowed to be ahead of schedule, you are thus at
a higher risk of violating a resource set constraint. This can result in undesirable and
dangerous situations where units that trained together arrive separately from each
other and/or the vehicles and other resources they require for their further operation
on land. This can result in delays in the operations on land and blockages at the

landing area.

In the paired t-test, we compare the realised performance measure when you are
not allowed to be ahead of schedule with the corresponding realised performance
measure when you are allowed to be z € {10, 30,60} minutes ahead of schedule. We
find that for all instances, and all schedules, the realised makespan is significantly
lower when you are allowed to be ahead of schedule. However, the results from the
quantile comparison show that at the 95th percentile, the realised makespans do not
differ significantly. Hence, being less rigid will on average ensure the duration of the
operation is significantly lower, but in the worst-case the performance is the same.
For the basic schedule, the average realised makespan is 1.8% longer than scheduled
(Table 3.2), which reduces to 0.4%, -0.8%, or -1.3% when you are allowed to be 10,

30, or 60 minutes ahead of schedule, respectively.

We also find that the percentage of times a connector is late to (un)load reduced

significantly when you are allowed to be ahead of schedule. Furthermore, the average



Chapter 3 83

Table 3.5: Results of the paired T-test comparing the simulation output for the conditional
delay at an SB (Delaysp,;) of the schedule where you are allowed to be z minutes ahead of
schedule with the output of the schedule with £ = 0. We denote the percentage of instances
for which there is a positive, negative, or insignificant effect. A positive effect implies that
being allowed to be x minutes ahead of schedule outperforms = = 0. The percentage of the
maximum speed and minimum (un)loading time used is given by ps and p:, respectively.
The corresponding statistical value is given by vs and v, respectively.Here * corresponds to
the case vs € {5 pctl,10 pctl, 15 pctl,25 petl,mean} and ps € {99.4,98.7,98.1,96.8,93.4}.

x = 10 x = 30 x = 60
vs  ps(%) vt pe(%) pos. neg.  insign. pos. neg.  insign. pos. neg. insign.
- 100 - 100  80.00  20.00 0 80.00 6.67 13.33 80.00 6.67 13.33
- 100 5 petl 101.3  46.67 53.33 0 46.67  53.33 0 46.67  53.33 0
- 100 10 pctl  102.5  46.67 53.33 0 46.67  53.33 0 46.67  53.33 0
- 100 15 pctl 103.8 46.67 53.33 0 46.67  53.33 0 46.67  53.33 0
- 100 25 pctl 106.3  46.67 53.33 0 46.67  53.33 0 46.67  53.33 0
- 100 mean 113.2  73.33  20.00 6.67 86.67 0 13.33 86.67 0 13.33
* * - 100 80.00  20.00 0 80.00 6.67 13.33 80.00 6.67 13.33

delay of connectors is significantly lower as well. However, the average delay given
that you are late, is not always significantly lower. The conditional delays are given
in Tables 3.5 and 3.6 which show that for some instances the effect on the conditional

delay is negative or insignificant.

We can identify two types of delays. First, incidental delays, which are delays
occurring at one event. For example, a delay during the last trip of a connector, or a
small delay upon arrival at a location, due to a longer (un)loading time or travel time,
that can be compensated before it arrives at its next location. Second, propagating
delays, which are delays that cause delays in the next arrivals too. For example,
a connector can have a delay during one of its first trips, which causes subsequent
delays as it requires (almost) the full time period to (un)load and/or (almost) the

full time periods to travel between the sea base and landing area.

When a connector is allowed to depart before schedule, the first type of delay
is less likely to occur. Namely, a connector can be ahead of time when starting a
trip, and therefore still finish on time even though it takes longer to (un)load or
travel. However, the second type can still occur, namely, delays at the start can
still propagate through the schedule as the connector did not benefit (much) from
being allowed to depart before the scheduled time. This can negatively affect the
conditional delay.

Table 3.7 shows the results of the paired t-test on the wave violations. It shows
that the results are either insignificant or negative. In the cases where the wave viol-
ations do not differ significantly, no wave violations were present. After inspection of

these solutions, it appeared that the resource sets were small and either all resources
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Table 3.6: Results of the paired T-test comparing the simulation output for the conditional
delay at an LA (Delayra,;) of the schedule where you are allowed to be  minutes ahead of
schedule with the output of the schedule with £ = 0. We denote the percentage of instances
for which there is a positive, negative, or insignificant effect. A positive effect implies that
being allowed to be x minutes ahead of schedule outperforms x = 0. The percentage of the
maximum speed and minimum (un)loading time used is given by ps and p:, respectively.
The corresponding statistical value is given by vs and v, respectively.Here * corresponds to
the case vs € {5 pctl,10 pctl, 15 pctl,25 petl,mean} and ps € {99.4,98.7,98.1,96.8,93.4}.

x =10 =30 T = 60
vs  ps(%) t pe(%)  pos. neg.  insign. pos. neg.  insign. pos. neg.  insign.
- 100 - 100 100 0 0 100 0 0 100 0 0
- 100 5 petl 101.3  46.67 53.33 0 33.33  66.67 0 33.33  66.67 0
- 100 10 pctl 102.5 66.67 33.33 0 53.33  46.67 0 53.33  46.67 0
- 100 15 pctl 103.8 80.00 20.00 0 80.00  20.00 0 80.00 20.00 0
- 100 25 pctl 106.3 100 0 0 100 0 0 100 0 0
- 100 mean 113.2 100 0 0 100 0 0 100 0 0
* * - 100 100 0 0 100 0 0 100 0 0

Table 3.7: Results of the paired T-test comparing the simulation output for the wave
violations of the schedule where you are allowed to be x minutes ahead of schedule with
the output of the schedule with x = 0. We denote the percentage of instances for which
there is a positive, negative, or insignificant effect. A positive effect implies that being
allowed to be x minutes ahead of schedule outperforms x = 0. The percentage of the
maximum speed and minimum (un)loading time used is given by ps and p;, respectively.
The corresponding statistical value is given by vs and v, respectively.Here * corresponds to
the case vs € {5 pctl,10 pctl, 15 pctl,25 petl,mean} and ps € {99.4,98.7,98.1,96.8,93.4}.

z =10 z =30 z =60
vs  ps(%) v pt(%) pos. neg. insign. pos. neg. insign. pos.  neg.  insign.
- 100 - 100 0 33.33 66.67 0 33.33 66.67 0 33.33 66.67
- 100 5 pctl 101.3 0 3333 66.67 0 3333 66.67 0 33.33 66.67
- 100 10 pctl 102.5 0 33.33 66.67 0 33.33 66.67 0 33.33 66.67
- 100 15 pctl  103.8 0 3333 66.67 0 33.33 66.67 0 33.33 66.67
- 100 25 pctl 106.3 0 33.33 66.67 0 33.33 66.67 0 33.33 66.67
- 100  mean 113.2 0 3333 66.67 0 33.33 66.67 0 33.33 66.67
* * - 100 0 33.33 66.67 0 33.33 66.67 0 33.33 66.67

were transported on one large connector, or the wave was small and had high priority
such that they were transported immediately at the start of the operation and hence
they could not experience large enough delays for there to be a violation. In the other
cases, we observe a negative effect on the wave violations caused by the higher risk

of violating a resource set constraint when you are allowed to be ahead of schedule.

3.5 Conclusion

In this chapter, we developed a discrete event simulation model that can be used
to analyse the performance of a deterministically constructed schedule when these

parameters are actually stochastic. This simulation model follows certain policies
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specifying the order of events and the amount of time connectors are allowed to be
ahead of schedule and can be used to evaluate the realised makespan, the percentage
of times a connector is late, the average observed delays of connectors, and the per-
centage of times a resource set constraint is violated. Using such a simulation model
can give interesting insights into the effect of using more conservative parameters in
the scheduling phase as well as the effect of using different policies in the execution of
a schedule. Especially in situations where a schedule is usually only executed once,
as in the Ship-to-Shore Problem, a simulation model can be used to gather insights

as new policies cannot be evaluated in experiments.

We use the simulation model to evaluate the performance of a schedule under
uncertainty regarding the speed and (un)loading times of connectors as well as the
weather conditions. We use a schedule constructed using discrete time periods to ana-
lyse whether the room in the schedule is able to capture these delays. Furthermore,
we analyse the effect of using more conservative parameters in the construction of a
ship-to-shore schedule and the effect of being less rigid in the execution of a schedule,

i.e., by allowing connectors to depart earlier than the predicted scheduled time.

Using schedules constructed using the branch-and-price algorithm with discretised
time periods from Chapter 2, we find that the realised makespan is significantly
higher (1.8%) when parameters are stochastic, hence, the room in the schedule arising
from the usage of discretised time periods does not suffice to compensate the delay
incurred. In more than 30% of the trips, a connector arrives significantly late at the
sea base or landing area. However, the resource set constraints are not significantly

often violated.

For the same instances, we generated schedules constructed using the branch-
and-price algorithm using more conservative parameters. Here we either used a more
conservative speed or a more conservative (un)loading time. We find that using a
more conservative speed does not result in a significantly better performance. In fact,
this resulted in either an insignificant or a negative effect on the realised makespan.
Using a more conservative speed can result in the exact same schedule due to the
discretisation of the time periods. When a more conservative (un)loading time is
used, we found for most instances a positive significant effect. However, being too
conservative can have a counterproductive effect. Since a schedule is not likely to
be executed often, the mean performance is never observed. Therefore, we also look
at a worst-case performance by evaluating the performance at the 95th percentile.
We find that this negative effect being too conservative can have, is observed earlier

when the worst-case is considered.
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One of the simulation policies is that a connector cannot be ahead of schedule.
This can have a large effect on the realised makespan as only negative effects of the
stochastic parameters are observed. We therefore consider what happens when the
execution of a schedule is less rigid, i.e., a connector is allowed to be a limited time
ahead of schedule. Here we considered 10, 30, and 60 minutes. This has a positive
significant effect on the realised makespan and the percentage of time a connector is
late. However, this comes at a risk of violating the resource set constraints.

In practice, if a slight increase in the probability of violating resource set con-
straints is acceptable, we recommend adopting a less rigid approach in the execution
of a schedule. Our findings indicate that allowing departures to be up to ten minutes
ahead of schedule can lead to significant reductions in the realised makespan. This
strategy offers more consistent reduction compared to constructing the schedule using
more conservative parameters. However, if minimising wave violations is a priority,
we recommend using more conservative parameters for the (un)loading time in con-
structing the schedule. Although these showed both positive and negative effects
on the realised makespan, we observe only negative and insignificant results when
adjusting the speed of the connectors. To limit negative effects, we advise analys-
ing the buffer time in connector trips before applying more conservative parameters.
Furthermore, we advise using only slightly longer (un)loading times to maximise the

chance of a smaller expected and worst-case realised makespan.
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Appendix

3.A Events in Discrete-Event Simulation

For each of the events in the discrete-event simulation, we present a flow chart (Fig-
ure 3.8 - 3.11) describing the procedure that is followed. Here, ¢ is the time at which
the event takes place, tpiqn is the time at which the next (un)loading event is sched-
uled to start, and 0 is the amount of time a connector is allowed to be ahead of

schedule. The simulation is initialised by scheduling the first arrival event for each

Arrival SB

connector.

Is there a connector :
scheduled before? |

”””””””””” No

Determine the loading

I

I

I .

| time tjoading-

. Schedule Departure SB
l at time ¢ + tioading-

Figure 3.8: Flow chart for the event Arrival SB. Here the current time is ¢, tpiqan is the
time at which the loading is scheduled to start, and § is the amount of time a connector is
allowed to be ahead of schedule.
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Departure SB
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the wave delayed? .

********* [~~~ No

Determine the

Set tgeray equal to the :
l travel time t¢ygypel-

current delay of the wave.

: Schedule Departure SB : Schedule Arrival LA at
[ at t + tdelay- | max{t + tiravel, tpian — 0}-

Figure 3.9: Flow chart for the event Departure SB. Here the current time is ¢, tpian is
the time at which the next loading is scheduled to start, and ¢ is the amount of time a
connector is allowed to be ahead of schedule.
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Is there a free compatible |
I
I

unloading spot?

Are all resources with :
higher priority delivered? |

”””””””””” No

T
Determine the unloading |
time tynioading- }

Schedule Departure LA :
at time ¢ + tunloading: |

Figure 3.10: Flow chart for the event Arrival LA. Here the current time is ¢, tpian is the
time at which the unloading is scheduled to start, and ¢ is the amount of time a connector
is allowed to be ahead of schedule.
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Is there a connector

I
I
l in the queue?

Determine the

I
I
l travel time tirqpel-

Figure 3.11: Flow chart for the event Departure LA. Here the current time is ¢, tpian is
the time at which the next unloading is scheduled to start, and ¢ is the amount of time a
connector is allowed to be ahead of schedule.

3.B Simulation Output

Table 3.8: Descriptive statistics of the simulation output when you are allowed to be
x = 10 minutes ahead of schedule. The makespan is scaled with the planned makespan for
that schedule. The percentage of the maximum speed and minimum (un)loading time used
is given by ps and p;, respectively. The corresponding statistical value is given by vs and
v, respectively. Here * corresponds to the case vs € {5 pctl,10 pctl,15 pctl,25 pctl,mean}
and ps € {99.4,98.7,98.1,96.8,93.4}.

vs  ps(%) vt pt(%) Makespan Latesp Latepa Delaysp Delaysp; Delaypa  Delaypa, Wave
- 100 - 100 1.004 25.142 22.093 1.720 4.642 2.536 5.279 1.245
(0.004)  (2.549)  (4.176)  (0.554) (0.887)  (1.108) (1.17)  (0.526)
- 100 5 pctl 101.3 0.991 39.634 56.285 4.393 9.653 9.765 15.863 2.304
(0.006)  (2.766)  (4.806)  (0.797) (0.967)  (1.255) (0.807)  (0.992)
- 100 10 petl 102.5 0.993 35.556 51.796 3.361 7.914 7.906 13.56 2.259
(0.006)  (2.331)  (4.443)  (0.575) (0.72)  (0.962) (0.582)  (0.971)
- 100 15 petl 103.8 0.996 31.076 47.308 2.582 6.529 6.427 11.619 2.180
(0.006)  (2.055)  (4.101) (0.38) 0.478)  (0.717) (0.371)  (0.934)
- 100 25 pctl 106.3 1.004 22.982 35.632 1.360 4.141 3.840 8.278 1.897
(0.005)  (1.663) (3.011)  (0.132) (0.168) (0.36) (0.147)  (0.805)
- 100  mean 113.2 1.012 25.827 23.331 1.887 5.421 2.379 6.149 1.696
(0.005)  (1.961) (2.224)  (0.251) (0.319)  (0.291) 0217)  (0.723)
* * - 100 1.005 22.987 18.277 1.182 3.733 1.446 4.086 1.245

(0.005)  (1.796)  (1.167)  (0.087) (0.113)  (0.134) (0.117)  (0.526)
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Table 3.9: Descriptive statistics of the simulation output when you are allowed to be
x = 30 minutes ahead of schedule. The makespan is scaled with the planned makespan for
that schedule. The percentage of the maximum speed and minimum (un)loading time used
is given by ps and pq, respectively. The corresponding statistical value is given by v, and
v, respectively. Here * corresponds to the case vs € {5 pctl,10 pctl,15 pctl,25 pctl,mean}
and ps € {99.4,98.7,98.1,96.8,93.4}.

vs  ps(%) vt pt(%) Makespan Latesp Lateps Delaysp Delaygp; Delaypq  Delaypa; ‘Wave
- 100 - 100 0.992 24.239 21.358 1.674 4.516 2.494 5.150 2.140
(0.005)  (2.65) (4.202)  (0.556) (0.895)  (1.109) (1.177)  (0.92)

- 100 5 petl 101.3 0.989 39.579 55.354 4.388 9.641 9.693 15.943 2.346
(0.007)  (2.742)  (4.673)  (0.793) (0.958)  (1.249) (0.784)  (1.012)

100 10 pctl 102.5 0.990 35.467 50.73 3.353 7.894 7.828 13.612 2.352

(0.007)  (2.295)  (4.269)  (0.568) (0.706)  (0.951) (0.558)  (1.015)

100 15 petl 103.8 0.992 30.948 46.247 2.571 6.499 6.352 11.633 2.353

(0.007)  (2.014)  (3.925)  (0.372) (0.459)  (0.702) (0.344)  (1.015)

- 100 25 pctl 106.3 0.997 22.739 34.036 1.343 4.076 3.734 8.205 2.326
(0.006)  (1.679)  (2.784)  (0.126) 0.152)  (0.342) (0.143)  (1.002)

- 100  mean 113.2 1.004 24.736 22.567 1.816 5.245 2.328 5.998 2.355
(0.006)  (1.838) (2.085)  (0.228) (0.27)  (0.275) (0.179)  (1.014)

* * - 100 0.992 21.976 17.475 1.130 3.588 1.401 3.945 2.140
(0.005)  (1.883)  (1.089)  (0.078) (0.107)  (0.125) (0.11)  (0.92)

Table 3.10: Descriptive statistics of the simulation output when you are allowed to be
x = 60 minutes ahead of schedule. The makespan is scaled with the planned makespan for
that schedule. The percentage of the maximum speed and minimum (un)loading time used
is given by ps and pq, respectively. The corresponding statistical value is given by vs and
v, respectively. Here * corresponds to the case vs € {5 pctl,10 pctl,15 pctl,25 pctl,mean}
and ps € {99.4,98.7,98.1,96.8,93.4}.

vs  ps(%) vt pt(%) Makespan Latesp Lateps Delaysp Delaygp; Delayra Delaypa; Wave
100 - 100 0.987 24.238 21.357 1.674 4.516 2.494 5.150 2.334

0.007) (265 (4.202)  (0.556) (0.895)  (1.109) (1.177)  (1.007)

100 5 petl 101.3 0.985 39.579 55.321 4.388 9.641 9.692 15.951 2.346

(0.01) (2.742) (4.671)  (0.793) (0.958)  (1.249) (0.782)  (1.012)

- 100 10 pctl 102.5 0.987 35.467 50.719 3.353 7.894 7.827 13.615 2.354
(0.01)  (2.295)  (4.267)  (0.568) (0.706)  (0.951) (0.557)  (1.016)

- 100 15 petl 103.8 0.989 30.948 46.229 2.571 6.499 6.351 11.636 2.36
(0.009)  (2.014) (3.924)  (0.372) (0.459)  (0.702) (0.344)  (1.018)

- 100 25 petl 106.3 0.993 22.739 34.027 1.343 4.076 3.733 8.206 2.376
(0.008)  (1.679) (2.782)  (0.126) 0.152)  (0.342) (0.143)  (1.026)

100  mean 113.2 1.000 24.735 22.566 1.816 5.245 2.327 5.998 2.427

(0.009) (1.838) (2.085)  (0.228) (0.27)  (0.275) (0.179)  (1.047)

* * - 100 0.987 21.975 17.474 1.130 3.588 1.401 3.945 2.334

(0.007)  (1.883)  (1.089)  (0.078) (0.107)  (0.125) (0.11)  (1.007)







Chapter 4

Policies for the Generalised

Resupply Problem

An earlier version of this chapter appeared as Wagenvoort et al. (2023).
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4.1 Introduction

Timely replenishment of essential commodities, such as food, fuel and medical sup-
plies, is a critical component of military operations. It is vital that the stock of the
commodities never drops below a critical level for a sustained period of time. Tra-
ditionally, large units stay together, requiring the delivery of commodities to a few
locations to sustain these units above the critical level. These resupply operations
are typically performed using motorised (off-terrain) vehicles. Recent advances in
drone technology make fast resupply at remote locations increasingly possible, and
are particularly useful to deliver medical supplies and small spare parts.

Developments in military strategy favour operating in smaller, dispersed units
(Dictorate of Land Concepts and Design, 2007). In these operations, numerous small
units at different locations must be sustained. This shift in the operating style poses
significant challenges on the replenishment of the units. An interesting tactical ques-
tion is how many vehicles are needed to sustain all stocks of the commodities above
the critical level. Although motivated by a military context, this is also an interesting
question in other applications in which locations require a periodic resupply.

We consider a periodic resupply problem for a single commodity. In this problem,
which we call the Generalised Capacitated Resupply Problem (GCRP), we have a set
of locations with associated capacities, deterministic demand rates, and the required
number of time periods to perform a resupply operation at this location. The goal is
to determine whether the stock levels can be indefinitely sustained above a critical
threshold by a set of vehicles that have an associated payload. The locations can
either be homogeneous or heterogeneous in their parameters and each vehicle may
or may not have a sufficient payload to fully restock locations to maximum capacity.
Hence, upon a visit of a vehicle, a location may be only partially restocked. We con-
sider, in addition to the GCRP, three variants where the locations are homogeneous
in terms of their capacity and demand rate and/or their resupply time.

The GCRP is a generalisation of the Windows Scheduling Problem, which involves
assigning a set of jobs, each with a specific processing time and a window, to a
minimum number of machines (Bar-Noy et al., 2012). The window of a job represents
the maximum number of time periods between two executions of a job, i.e., each job
must be scheduled at least once in any set consecutive time periods with a length
equal to the window of that job. So, independent of the time period in which we
execute a job, the jobs has to be scheduled again within its window. This corresponds
to the case of GCRP in which the payload of a vehicle is larger or equal to the capacity

of a location, i.e., after a visit, the location is always fully restocked.
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The Windows Scheduling Problem is studied with either homogeneous or hetero-
geneous job lengths. For instances with homogeneous job lengths, a 2-approximation
exists (Bar-Noy and Ladner, 2003). For instances with heterogeneous job lengths,
but with homogeneous windows, the problem can be reduced to a Bin Packing
Problem. This results in a solution with at most (1 + ¢)OPT + 1 machines, us-
ing a polynomial-time approximation scheme with input parameter ¢ and runtime
O(nlog(1/e€)) + Oc(1), where O.(1) is a function that only depends on 1/¢ (Fernan-
dez de La Vega and Lueker, 1981). If job lengths are heterogeneous, the problem is
sometimes referred to as the Generalised Windows Scheduling Problem. This case
can be reduced to the case with homogeneous windows. This results in a schedule
requiring at most 2(1 + €)OPT + log wye; machines (Bar-Noy et al., 2012), where
Wmae 18 the maximum window. Bar-Noy et al. also present an 8-approximation for

the problem with heterogeneous inputs.

Other related problems are the Pinwheel Scheduling Problem (Holte et al., 1989)
and the Periodic Latency Problem (Coene et al., 2011). In the Pinwheel Scheduling
Problem, a set of jobs with an associated period have to be scheduled. In each time
period, we can schedule one job. The question is whether there exists a schedule such
that each job is executed at least once in any set of consecutive time periods with a
length equal to the period of that job. Note that this problem is concerned about
feasibility only.

The continuous version of the Windows Scheduling Problem, in which time con-
tinuously passes while travelling, is known as the Periodic Latency Problem. In this
problem, a set of clients with associated windows and travel times are given. Coene
et al. consider two variants. In the first, the goal is to find one perpetual route that
maximises the total collected profit. In the second, the goal is to minimise the num-
ber of vehicles needed to serve all clients. The decision version of these problems are
known to be PSPACE-complete (Ho and Ouaknine, 2015), whereas the complexity
of the Windows Scheduling Problem and the Pinwheel Scheduling Problem is open.

From our problem’s perspective, the above mentioned problems all implicitly
assume that each time a visit to a location is scheduled, its inventory is restocked
to its full capacity. In our problem, it is possible that a vehicle’s payload is not
sufficient to restock a location to its full capacity, introducing interplay between
payload and capacity. Also, the UAV Resupply Scheduling Problem considered in
Arribas et al. (2023) has some similarities with our model, but again locations are

restocked (recharged) to their full capacity at each visit.
In this chapter, we formally introduce the GCRP and variants of the problem
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based on the homogeneity/heterogeneity of the locations in terms of the capacity
and demand and/or the resupply time. We provide complexity results for the GCRP
and two of its variants. We then provide policies with an approximation guarantee
for the different variants of the problem and describe the complexity of finding the
required number of vehicles.

The problem description and computational complexity analysis can be found in
Section 4.2. The policies for the different variants can be found in Section 4.3 - 4.6.

We end with a conclusion in Section 4.7.

4.2 Problem Description and Complexity

In this section, we formally introduce the Generalised Capacitated Resupply Problem
(GCRP) and the variants of this problem considered in this paper in Section 4.2.1.

Thereafter, we discuss the complexity of these problems in Section 4.2.2.

4.2.1 Problem Description

We consider a single commodity problem as there is often a commodity that is most
important in terms of size and weight. We consider discrete time periods, and at the
start of the first time period, each location starts with an initial stock at maximum
capacity. Vehicles with a given payload resupply locations by making round trips
from the depot to the locations. If a location is resupplied, the payload from the
vehicle is added to the stock at the location up to its capacity. At the start of a time
period, before a potential resupply takes place, consumption decreases the stock level
of locations by the demand rate. If the stock drops below zero after consumption, we
call this a stock-out, a situation we want to avoid. We formally define the decision

variant of our problem as follows:

Generalised Capacitated Resupply Problem (GCRP)

Instance: A set of n € N locations N = {1,...,n} to be supplied, m € N vehicles
available for resupply, vectors ¢ € N, r € N" and ¢t € N" with the maximum
capacity, the deterministic demand rates, and the number of required time periods
to resupply per location, respectively, and p € N the maximum payload of the
vehicles.

Question: Is it possible to perform resupply of the locations with the given
number of vehicles, such that there is never a time period during which a stock-out

occurs and where locations can only be resupplied up to their capacities?
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We are interested in policies and their approximation guarantee for the optimisa-
tion variant of this problem, i.e., we seek the minimum number of vehicles m such
that no stock-out occurs. We denote the minimum number of required vehicles by
m* and the number of vehicles required for Policy A by m(A4). We assume without
loss of generality that r; < p, i.e., the vehicle payload is greater than the demand at a
location. If the demand does exceed the payload, we can assign dedicated vehicles to

T

these locations and derive an instance with m’ =m — 3,y t; {;J L Ch=ci—p {%J ,

and v} =m; —p{%J for all i € N’, where N’ = {i | ; > p}. This instance has r, < p
for all i € N'.

In the long-run, it is not necessary to make an assumption about the proportion of
the resupply time required for the onward and return journey, respectively. However,
this is important for the start-up period. We assume that the resupply operation is
executed at the end of the resupply time. Therefore, for feasibility, it is necessary to
assume that ¢; < % for all ¢ € N. Furthermore, we assume without loss of generality
that ¢; < T% for all i € N. When ¢; > T%, we know that in any ¢; consecutive time
periods location 7 has a demand of more than p. Hence, to be feasible in the long-run,
we need to visit location ¢ at least once in any consecutive ¢; time periods. We can
thus assign dedicated vehicles, where each vehicle causes a decrease in the demand
rate of tﬂ

In this problem, locations are defined by their capacity, demand rate, and the
number of time periods it requires to be resupplied, which potentially consists of
travel time and (un)loading time. We consider three variants of this problem where
the locations are homogeneous in terms of the capacity and demand rate and/or
the number of required time periods to perform the resupply operation. If input
parameters are homogeneous, we drop their corresponding indices. We define the
Capacitated Resupply Problem (CRP) as the version of the GCRP where the resup-
ply times are homogeneous, i.e., t; =t for all i € N. The Generalised Homogeneous
Capacitated Resupply Problem (GHCRP) assumes homogeneous capacities and de-
mand rates compared to the GCRP, i.e., ¢; = c and r; = r for all ¢ € N. Finally,
the Homogeneous Capacitated Resupply Problem (HCRP) assumes that all input
parameters are homogeneous. An overview of these variants and their corresponding
sections is given in Figure 4.1.

Finally, whenever capacities and demand rates are homogeneous (GHCRP and
HCRP), we assume that p < ¢, since vehicles can only restock locations up to their
capacity. Whenever the resupply times are homogeneous (CRP and HCRP), we

assume these are unit length. If an instance has t > 1 for all i € N, we can derive



98 Chapter 4

Arbitrary CRP GCRP
¢; and 7; Section 4.5 Section 4.6
c=c HCRP GHCRP
T, =T Section 4.3 Section 4.4
t; =1 Arbitrary ¢;

Figure 4.1: Overview of the variants of the Generalised Capacitated Resupply Problem
and their corresponding sections.

an instance with ¢ = 1 and , = r;t for all i € N. Since all parameters are integer,

r} is integer too and the instance is valid.

4.2.2 Complexity

In this section, we present complexity results for (variants of) the GCRP and give
inapproximability results, i.e., we show that there is likely no polynomial-time ap-
proximation algorithm with an approximation ratio below a certain threshold. We
first show that the GHCRP is NP-hard by a reduction from the Bin Packing Prob-
lem. Then, we show that the CRP is intractable by a reduction from the Pinwheel
Scheduling Problem. Finally, we show that the GCRP is strongly NP-complete by a
reduction from 3-Partition.

In the reductions, we apply the sufficient condition outlined in Lemma 4.1, which
relies on the fact that the timing of the visits matters if the capacity is restrictive,

i.e., c; <r;pforie N.

Lemma 4.1. To avoid stock-outs, it is necessary to visit location i € N at least once
every < time periods and sufficient to visit each location at least once every £ time
periods. Hence, if ¢; = p, it is both necessary and sufficient to visit location i once

every & = £ time periods.
T T

Proof. After a visit to location i, its stock level is at least equal to p and at most

equal to ¢;. This stock lasts at least 2 and at most & time periods. Therefore, a

visit once every £ time periods is necessary to avoid a stock-out. If p < ¢;, a visit

T4
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at least once every £ ensures that no stock-out occurs. Hence, if ¢; = p, it is both

necessary and sufficient to have a visit once every - = 2 time periods. |

To show that the GHCRP is NP-hard, we use a reduction from the Bin Packing
Problem, which is strongly NP-complete (Garey and Johnson, 1979). In this problem
we have n items with sizes s1,..., s, and bins of size B. The question is whether we

can fit these items in m bins.
Theorem 4.1. The GHCRP is strongly NP-hard.

Proof. Given an instance of the Bin Packing Problem, i.e., n items with sizes s1, ..., s,
and bins of size B, create an instance of the GHCRP as follows. Create a location
for each item, where location ¢ has t; = s;, r = 1 and ¢ = B. Let the payload of
the vehicles be equal to p = B. Now, we can verify there exists a feasible resupply
schedule for this instance of the GHCRP on m vehicles if and only if there is a feasible
solution with m bins for the original instance of the Bin Packing Problem.

If there is a feasible solution for the original instance of the Bin Packing Problem,
then all items fit into m bins of size B. The locations corresponding to the items in a
bin can be executed by a vehicle with a recurring schedule of B time periods. Since
P = B, no stock-outs occur by Lemma 4.1. If there is a feasible schedule for GHCRP,
then each location is visited at least once during the first B periods as 7 = B.
Therefore, for each vehicle a bin can be created with the items corresponding to the
locations visited within the first B periods of the schedule of the vehicle, removing
any duplicates arbitrarily. Hence, there exists a feasible schedule on m vehicles for
the GHCRP if and only if there exists a feasible schedule with m bins for the Bin
Packing Problem. [ ]

For the Bin Packing Problem, it is NP-hard to determine whether it is possible
to use two bins as opposed to three. This implies that for any a < %, there is no
polynomial-time a-approximation for the GHCRP, unless P=NP (Vazirani, 2001).

Now, we show that the CRP is intractable by a reduction from the Pinwheel
Scheduling Problem. Recall that in this problem, we have n jobs with periods
w1, ..., W,. In each time period, we can schedule one job. The question is whether
we can construct a perpetual schedule such that job i is scheduled in any period of w;
consecutive time periods. It is not known whether the Pinwheel Scheduling Problem
is NP-complete, or even contained in NP. It was shown by Jacobs and Longo, 2014
that there cannot be a polynomial time exact algorithm for the Pinwheel Scheduling
Problem, unless Satisfiability can be solved in expected time O(n'°8 1981087 " which

is deemed unlikely.
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Theorem 4.2. There is no polynomial-time exact algorithm for the CRP, unless the

Satisfiability Problem can be solved in expected time O(n'°gn1oslogn),

Proof. Given an instance of the Pinwheel Scheduling Problem, i.e., wq, ..., w,, create
an instance of the CRP as follows. Create a location for each job, where location ¢
has r; = (1/w;) H?Zl wj, and ¢; = ¢ = H?:1 w;. Furthermore, we set p = ]_[?:1 wj,
and m = 1. Now, we can verify there exists a feasible resupply schedule for this
instance of the CRP if and only if there is a feasible schedule for the original instance
of the Pinwheel Scheduling Problem.

If there is a feasible solution to the original instance of the Pinwheel Scheduling
Problem, then all jobs fit onto one machine and therefore job i is executed at least
once per w; periods, for all ¢ = 1,...,n. For a solution to the CRP, it is both
necessary and sufficient to schedule a visit to location i once every TE periods, for all
i=1,...,n,as ¢; = p (Lemma 4.1). Since T% = w;, it thus also holds that a solution
is feasible if each location is visited at least once every w; periods. Therefore, there
exists a feasible schedule for the created instance of the CRP if and only if there exists

a feasible schedule for the original instance of the Pinwheel Scheduling Problem. B

The proof above shows it is hard to distinguish instances of the CRP where
one vehicle is sufficient, and instances for which at least two vehicles are necessary.
This implies that for any a < 2, there is no polynomial-time a-approximation for
minimising the number of vehicles in the CRP, unless we can solve Satisfiability in

lognloglogn) = Using a similar reduction, one can show that the

expected time O(n
same holds for the Windows Scheduling Problem with unit job lengths. For the
Windows Scheduling Problem with unit job lengths, a 2-approximation is known
(Bar-Noy and Ladner, 2003).

Next, we show that the GCRP is strongly NP-hard by a reduction from 3-
Partition, which is known to be strongly NP-complete (Garey and Johnson, 1979).
In this problem, we have 3n numbers, a1, ...,as,, for which B/4 < a; < B/2 with
B = % 2?21 a;. The question is whether we can partition these numbers in n disjoint
subsets such that each subset contains exactly 3 numbers and the sum of the numbers
in each subset is equal to B, i.e., whether there exist Si,...,5, C {1,...,3n} such
that S; N.S; =0, |S;| = 3 and 37, a; = B for each j,j’. We show that GCRP
is strongly NP-hard, even for the case with only one vehicle and homogeneous capa-
cities. The same holds for homogeneous demand rates, as these can be scaled in the
reduction. A similar reduction to Windows Scheduling on one machine was used by
Bar-Noy and Ladner (2003).
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Theorem 4.3. The GCRP is strongly NP-hard, even on one vehicle and with ho-

mogeneous capacities.

Proof. Given an instance of 3-Partition, i.e., 3n numbers, aq,...,as,, for which
B/4 < a; < B/2 with B = % ZZ 1a; for all i € {1,...,3n}, create an instance of
GCRP as follows. Create a location for each number, where location ¢ has t; = a;,
r; = 1, and ¢; = n(B + 1). Create another location with ts,4+1 = 1,73,+1 = n, and
cant1 = n(B +1). Let the payload of the vehicles be equal to p = n(B + 1). Now,
we can verify there exists a feasible resupply schedule for the instance of GCRP on
one vehicle if and only if we can partition the numbers of the original instance of
3-Partition in subsets of size 3, i.e., if there exist subsets Si,...,S5, C {1,...,3n}
with |S;| = 3 for all j, S; NSj =0 for all 4,5, and > ies, @i = B for all j.

If there is a 3-Partition of the original instance, then we can construct a resupply
schedule on one vehicle following a periodic schedule of length n(B + 1) as follows.
Schedule a visit to location 3n + 1 during time periods B+1,2(B+1),...,n(B+1).
We can schedule visits to the locations corresponding to the numbers in subset S,
between the (j —1)th and jth visit to location 3n+ 1, since these take exactly B time
periods to visit. Since location 3n + 1 is visited every - 3"“ = Bnil — B 4] time

T3n
periods, and each other location is visited every {* = fL il n(B 3—|—+1) time periods,
this schedule is feasible by Lemma 4.1.

If there is a feasible resupply schedule on one vehicle, then locations 1,...,3n
must be visited at least once during the first n(B +1) time periods as {* = n(B+1)
for alli € {1,...,3n}. Location 3n+ 1 must be visited at least once every B+1 time

periods since C3”+1

= B+ 1. During the first n(B+1) periods, the minimum required
number of tlme perlods to avoid a stock-out is thus equal to 2321 t;+n-tsny1. Since
S bt ntaar = Yo", a; +n = n(B + 1), these lower bounds on the number of
visits during the first n(B + 1) time periods are tight. Location 3n + 1 must thus be
visited exactly n times during the first n(B+1) time periods. Since & = 2 = B 41,

these visits should be evenly spread such that location 3n + 1 is v181ted exactly once
every B+ 1 time periods. Let S; be the set of locations visited between the (j —1)th
and jth visit to location 3n + 1 for j € {1,...,n}. Since each location is visited
exactly once during the first n(B + 1) time periods and all B time periods should be
used, S; NS =0 for all j, j' and des Zjesj a; = B. Furthermore, |S;| =3
must hold since B/4 < t; < B/2. Si,...,S, thus form a 3-Partition of the original

instance. u

The proof above shows it is hard to distinguish instances of GCRP where one

vehicle is sufficient, and instances for which at least two vehicles are necessary. This
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implies that for any a < 2, there is no polynomial-time a-approximation algorithm

for minimising the number of vehicles in the GCRP, unless P = NP.

4.3 Homogeneous Capacitated Resupply Problem

In this section, we consider the HCRP, the variant of the GCRP in which all input
parameters are homogeneous. Specifically, we have n locations each with a capacity of
c and a demand rate of r that can be resupplied within one time period by vehicles
with a payload of p. We describe some simple analytical policies from which the
required number of vehicles immediately follows in Section 4.3.1. In Section 4.3.2,
we present an optimal policy.

We observe that for the HCRP, the total supply per time period (at most mp)
should exceed the total demand per time period (nr), otherwise the stocks will keep

decreasing in the long-run. It follows that m* > [%—‘

4.3.1 Simple Analytical Policies

The first policy is based on the fact that when the capacity is large enough, the
precise timing of the visits does not matter, as long as each region is visited on

average once every £ periods.

Policy 4.1 (Wrap Around (WA) Policy). Define the schedule length as p. Initially,
let the first vehicle be the active vehicle. In each step, schedule the next location for
the next r time periods on the active vehicle. If the schedule of the active vehicle is
full, i.e., all p time periods are allocated, continue on the next vehicle, which becomes
the active vehicle.

Mathematically, during time period T, vehicle j will visit location

- {(T—lmodf)Jr(j—l)pJ_

For example, if r = 3 and p = 5, vehicle 1 visits location 1 in the first three time
periods and location 2 in time periods 4 and 5, whereas vehicle 2 visits location 2 in
the first time period, location 3 in time periods 2, 3, and 4, and location 4 in time

period 5, and so on.
Theorem 4.4. Policy 4.1 is optimal with m(WA) = [%—‘ vehicles if & > p.
Proof. Consider the first time period of a location where the stock starts decreasing

below the maximum stock level c. Since it takes at least £ > p time periods for a

r
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stock-out to occur, and there are fewer than p time periods until the next visit since
the schedule length is p, no stock-out can occur. The total decrease in stock level is
at most (p — r + 1)r. Then, the location is visited in the next r time periods where
the stock level can increase by rp — (r — 1)r. After these visits the location is at full

capacity again. We establish that no location can run out of stock. |

If the capacity is not large enough and the timing of the visits matters (¢ < rp),
then Policy 4.1 can result in an infeasible schedule. In that case, we can use the
sufficient condition in Lemma 4.1 to define two different policies. The first policy
is the No Migration Policy in which we assign locations to a vehicle such that each
vehicle executes a recurring schedule visiting a subset of the locations. The second
policy is the Shift Policy, in which vehicles execute a schedule visiting all locations,

but the schedules of the vehicles are shifted compared to each other.

Policy 4.2 (No Migration (NM) Policy). Divide the locations in the minimum num-
ber of groups of size at most HJ Then, each vehicle visits the locations in one group
in a recurring schedule.

Mathematically, during time period T, vehicle 5 will visit location

1+(j—1)[§J + ((7—1) mod FD.

r

For example, the first vehicle visits locations 1, ..., LgJ, vehicle two visits loca-

tions [2] 4+ 1,...,2[2], and so on.

T
Policy 4.3 (Shift (SH) Policy). Let each vehicle visit the same sequence of locations
1,...,n, but vary the starting point of each vehicle such that location 1 is visited L%J
time periods later each time.

Mathematically, during time period T, vehicle j will visit location
. p
1+ (7’—14—(]—1){#) mod n.
r

For example, if n = 10, p = 9 and r = 3, vehicle 1 starts at location 1, vehicle 2
starts at location 8, vehicle 3 starts at location 5, and vehicle 4 starts at location 2.

Then, location 1 is visited in time period 1, 4, 7, and 10.
Theorem 4.5. Policies 4.2 and 4.3 are 2-approzimations with m(NM) = m(SH) =

p
T

h"J-‘ vehicles, and optimal if 2 € N.

Proof. From Lemma 4.1, it follows that no stock-out occurs with Policies 4.2 and 4.3.

In Policy 4.2 each vehicle has a periodic schedule of length HJ and in Policy 4.3 each
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vehicle operates with a shift of length L%J compared to each other. Therefore, these

policies result in a solution with hgj vehicles. Using that |z| > z/2 for x > 1,

T

and [nz] <nfz] for n € N, we get an approximation guarantee of

T

m(NM) = m(SH) = wﬂ < uﬂ < 2mﬂ < om*

r

If 2 €N, |2] = 2 and therefore m(NM) = m(SH) = th-‘ = {%—‘ =m*. |
The next example shows that the analysis for both Policy 4.2 and Policy 4.3 is
tight.

Example 4.1. Consider an instance with n = 10, r = 10, p = 19, and ¢ = 30.
Then, Policy 4.2 and 4.3 both result in a schedule with m = [ﬁ—‘ = 10 vehicles.
However, the optimal number of vehicles is equal to 6 with the following schedule.
Apply the idea of Policy 4.3 to 5 vehicles with a shift of [p/r] = 2. Then, add a sizth
vehicle with a schedule that is out of sync with the other schedules. This implies that
both policies are a factor g off. In general, we can setr =n, p=2n—1, and c = 3n,
with n even. Then, Policy 4.2 and 4.3 use n vehicles, whereas there is an optimal
schedule that uses n/2 + 1 vehicles.

For all policies presented in this section, the number of required vehicles can be

found by using elementary operations.

4.3.2 A Greedy Policy

Up until now we considered policies for which the required number of vehicles can be
easily derived. Alternatively, we can consider a policy that assigns vehicles based on
the current stock level. We consider a greedy policy that aims to maximally postpone

stock-outs.

Policy 4.4 (Greedy (G) Policy). Assign the m locations with the lowest current stock
to each of the m wvehicles.

Mathematically, during time period T, vehicle j will visit location
(j—1+(t—1m) modn—+1.

Theorem 4.6. Policy 4.4 is optimal, i.e., m(G) = m*.
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Proof. Given the current stock level z] of a location 7 at time period 7, and assuming
no future restocks occur, the time until a stock-out occurs can be expressed as %
In order to detect a stock-out, we only need to be concerned with the lowest stock
level 2] ;, = min;—1_,27.

First, we argue that the total stock level over all locations increases by the max-
imum amount possible with the greedy policy. Consider another policy that prefers
restocking a location ¢ which has a higher stock level than a location j that is not
restocked by that policy. We thus have z] > z7. It is clear to see that the max-
imum amount that can be restocked at location 7 is at most the amount that can be
restocked at location j, as ¢ — ] <c¢—zj.

Second, we argue that the greedy policy maximally postpones stock-outs. Con-
sider another policy that at time period 7 prefers restocking a location ¢ which has

a higher stock level than a location j that is not restocked by that policy. In case
T+1 T+1 T+1
>

min ? min

of the greedy policy will be greater than or equal to that

location j is not critical and = will be equal for both policies. In

case 9:;“ =27t the 711
value of the other policy.
We conclude that among all policies, the greedy policy maximally postpones
stock-outs as it maximally increases the total stock at the most critical locations.
As locations are otherwise identical, the greedy policy can avoid stock-outs with m*

vehicles. ]

If n/m is integer, the greedy schedule visits each location exactly once in each
period of n/m consecutive time periods. It is easy to check if no stock-out can occur.
If n/m is not integer, the time between two visits to a location in the greedy schedule
is either [n/m] or [n/m]. Observe that for the HCPR, the greedy policy coincides
with a round-robin policy, where a cyclical pattern follows. For each location this
results in a schedule with ng periods of |n/m| time periods and n; periods of |n/m |+

1 time periods. To check whether this schedule is feasible, Theorem 4.7 can be used.
Theorem 4.7. If n/m ¢ N, the following statements hold.

o If[n/m] < |p/r|, then the greedy schedule is feasible.

o If[n/m] > |p/r| + 2, then the greedy schedule is infeasible.

o FElse, the greedy schedule is feasible if and only if

min {c, (ns + 1)p —ns|p/r]r} > n (|p/r] +1)r — (ny — D)p. (4.1)
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Proof. If [n/m] < |p/r], then every location is visited at least once every |p/r| time
periods. Hence, by Lemma 4.1, the schedule is feasible.

If [n/m] > |p/r] + 2, then the number of time periods between any two visits to
a location is at least |p/r| + 1 which therefore consumes more than p between any
two consecutive visits. Thus, the stock will eventually drop below zero.

Else, the refill after ng periods of length |p/r] time periods should be at least
the decrease in n; periods of length |p/r| + 1 time periods. If this inequality holds,
the greedy schedule is feasible. It is also necessary, since a violation will lead to a
stock-out. |

By using a binary search, we can solve the optimisation variant by solving the
decision variant O(logn) times. For this, Theorem 4.7 can be used which takes at
most O(n) time as the schedule produced by the Greedy Policy has a period of at
most n time periods. More precisely, when [n/m| = |p/r| + 1, we can find ng and
n; from the periodic schedule with length at most lem(n,m)/m. Hence, we can find
m* for HCRP in O(nlogn) time.

4.4 Generalised Homogeneous Capacitated Resup-

ply Problem

In this section, we consider the GHCRP, the variant of the GCRP where the demand
rate and capacity are homogeneous. Namely, we have n locations each with a capacity
of ¢ and a demand rate of r. It takes ¢; time periods to resupply location i €
N by vehicles with a payload of p. First, in Section 4.4.1, we describe the effect
of heterogeneous resupply times on the simple policies for the HCRP defined in
Section 4.3. Second, in Section 4.4.2, we describe another policy that can be applied
to the GHCRP by reducing the problem to a Bin Packing Problem.

4.4.1 HCRP Policies Applied to the GHCRP

In Section 4.3.1, we defined simple analytical policies for the HCRP. In the GH-
CRP, compared to the HCRP, we have heterogeneous resupply times. Therefore, the
HCRP policies cannot be (directly) applied. In this section, we discuss the effect of
heterogeneous resupply times for each of these policies.

First, we consider the Wrap Around Policy (Policy 4.1). This policy is based
on the fact that, if the capacity is large enough, the exact timing of the visits does

not matter. It is then sufficient to schedule at least r visits every p periods for each
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location. This policy is optimal for the HCRP if ¢ > rp. When resupply times are
heterogeneous, this is not the case, as the order of the visits matters due to the

varying lengths of the visits we need to schedule, as illustrated in Example 4.2.

Example 4.2. Consider an instance withn =5, r =2, p=7, ¢ = 20, and resupply
times of 1, 1, 2, 3, and 3, respectively. From the Wrap Around Policy defined in
Policy 4.1, we need to allocate two visits for each location on a periodic schedule of
length 7. We start by scheduling visits to location 1 during time periods 1 and 2 on
vehicle 1. Then, we schedule visits to location 2 during time periods 3 and 4. For
location 3, for which it takes two time periods to resupply, we can schedule the first
visit during time periods 5 and 6. However, we need to schedule the second visit on
vehicle 2, leaving an empty time period on vehicle 1. Continuing like this, we find
the schedule with 4 vehicles depicted in Figure 4.2.

Time-unit | ; ; ; ; ; ; {

Vehicle 1

Vehicle 2

Vehicle 3

Vehicle 4

Figure 4.2: Illustration of the Wrap Around Policy for Example 4.2.

On the other hand, an optimal solution only requires 3 wvehicles, as shown by
Figure 4.5.

Time-unit | ; ; ; ; ; ; {

Vehicle 1 -L0c2|Loc2|ffff

Vehicle 2 ‘

Vehicle 3

777

Figure 4.3: Optimal solution for Example 4.2.

Second, we consider the No Migration Policy (Policy 4.4). This policy is based
on Lemma 4.1, which states that a schedule is feasible if a location is visited once

every LgJ time periods. This policy results in a schedule that requires at most twice
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as many vehicles compared to the optimal solution, and is optimal if £ € N. Similar
to the Wrap Around Policy, the order in which the visits are scheduled matters when

the resupply times are heterogeneous, as illustrated in Example 4.3.

Example 4.3. Consider an instance withn =5, r =2, p=7, ¢ = 10, and resupply
times of 1, 1, 2, 2, and 3, respectively. For the No Migration Policy defined in
Policy 4.2, we need to allocate one visit for each location on a periodic schedule
of length LgJ Here, HJ = 3. We start by scheduling a visit to location 1 on
vehicle 1, which takes place in time period 1. Then, we can schedule a visit to
location 2 during time period 2, but we are not able to schedule a visit to location
3 on vehicle 1 anymore, as this requires 2 time periods. This leaves an empty time
period on vehicle 1. Continuing like this, we find the schedule given in Figure 4.4 on
4 vehicles.
However, an optimal solution only requires 3 vehicles, as shown in Figure 4.5.

1 2 3 1 2 3
Time-unit } - - { Time-unit } + + {

Vehicle 1 Vehicle 1
Vehicle 2 Vehicle 2
Vehicle 3 Vehicle 3
Vehicle 4

Figure 4.4: Illustration of the Wrap Around Figure 4.5: Optimal solution for Ex-
Policy for Example 4.3. ample 4.3.

For both the Wrap Around Policy and the No Migration Policy, the order in which
the visits are scheduled thus matters when resupply times are heterogeneous. Using
the Wrap Around Policy or the No Migration Policy can be seen as solving a Bin
Packing Problem. For the No Migration Policy, this comes at the price of imposing a
strict deadline of scheduling a visit at least once every L%J consecutive time periods.
The price of imposing a strict deadline of L%J is discussed in Section 4.4.2.

Finally, we consider the Shift Policy (Policy 4.3). In this policy, which is also based
on Lemma 4.1, vehicles execute the same schedule, but shifted relatively compared
to each other. Due to the heterogeneous resupply times, this can result in issues in
the start-up period as the times of the locations that are shifted might not add-up
to the length of the shift, which equals L%J This is illustrated in Example 4.4.
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Example 4.4. Consider an instance withn =5, r =2, p=7, c =7, and resupply
times of 1, 1, 2, 2, and 3, respectively. From the Shift Policy defined in Policy 4.3,
each vehicle visits the same sequence of locations, but with a shift of LfJ compared
to each other. Here, {%J = 3. Vehicle 1 wvisits locations 1 up to 5 in order. Then,
the schedule of vehicle 2 is shifted forward, i.e., it starts with location 5 such that
location 1 is visited exactly 3 time periods later. However, when we shift the schedule
for vehicle 3, vehicle 3 can only start in the second time period at the start of the
operation, as can be seen in Figure 4.6. While in the long-run the schedule is feasible,
a stock-out occurs during the start-up period as the capacity is depleted before the first

visit to location 3 is completed.

. s |
Time-unit f T T T T T T T T 1

Vehicle 1

Vehicle 2

[ L |
Vehicle 3 'LLoc 3 //- Loc 2'[Loc 3!
IO BTN 777777 77777 7727 SR

Figure 4.6: Illustration of the Shift Policy for Example 4.4.

For some instances, this issue could be resolved by altering the sequence of the
locations. However, this is not always possible. In that case, an adjusted version of
the policy can be used in which additional vehicles are added such that also in the

start-up period locations are visited frequently enough.

Policy 4.5 (Adjusted Shift (ASH) Policy). Let each vehicle visit the same sequence
of locations 1,...,n, but vary the starting point of each vehicle such that location 1
is visited L?J time-units later each time. If ¢ < 2p and a shift does not align with the
start of a new resupply operation, a new vehicle is added that executes the sequence

starting with the misaligned job.

1#]

vehicles, a 2-approzimation if £ € N or ¢ > 2p, and optimal if both conditions hold.

Theorem 4.8. Policy 4.5 is a 4-approzimation with at most m(ASH) < 2 {M-‘

Proof. We first prove that, in general, the policy is a 4-approximation. Then, we
discuss the conditions under which the approximation ratio is reduced by a factor of
2.

From Lemma 4.1, it follows that no stock-out occurs if each location is visited at

least once per L’;JJ time periods. Whenever a shift of L%J would violate this condition
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and the capacity is not sufficient to capture the start-up period, an additional vehicle
is scheduled. Therefore, the Adjusted Shift Policy results in a feasible solution.

For the GHCRP, a lower bound on the number of required vehicles is equal to

ZieN Tti
p

each other and an additional vehicle is added whenever there is a misalignment in

—‘. In Policy 4.5, vehicles operate with a shift of length Lﬂ compared to

the shift. Therefore, the policy results in at most 2 [thf] ti—‘ vehicles. We thus get

an approximation guarantee of

m(ASH) = 2 {Zﬁf]’tl-‘ <2 {Zﬁvtﬂ < 4[2161\’”1] < 4m*.

2r

If 2 € N, [2] = L and therefore [Z[,i’j’ ti—‘ = [XLGPNM , resulting in a 2-
approximation. If ¢ > 2p, no additional vehicles are required and hence m(ASH) =
m(SH), resulting in a 2-approximation. When both conditions hold, the policy is

thus optimal. |

To determine the number of required vehicles, we have to construct the schedule
consisting of n visits on at most n vehicles. Therefore, we can find m(AHS) for

GHCRP in O(n?) time, which is polynomial in the input size.

No additional vehicles are required if all resupply times are a power of 2. Here, we
can construct a feasible schedule by arranging locations in ascending order of resupply
times and using a shift of £ rounded down to the nearest power of 2. This leads to a
feasible schedule, since the shift length is larger than or equal to all resupply times
and, due to the order of the visits, no visit will be disrupted by applying this shift.
Hence, the policy is then a 2-approximation and optimal if £ is also a power of 2.
This is illustrated by Example 4.5.

Example 4.5. Consider an instance withmn =5, r =2, p =8, ¢ = 8, and resupply
times of 1, 1, 1, 2, and /4, respectively. Note that all resupply times are a power of 2
and that £ = % =4 1is also a power of 2.

Then, we can apply the shift policy with a shift of £ = 4 where the locations
are visited in ascending order of resupply times. This gives the schedule given in

Figure 4.7, which is optimal.
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. s |
Time-unit f T T T T T T T T 1

Vehicle 1 - Loc 2 | Loc 3 |

Vehicle 2 E

Figure 4.7: Illustration of the Shift Policy for Example 4.5.

4.4.2 Bin Packing Algorithm

An instance of the GHCRP can be solved by converting it to a Bin Packing Problem
(Policy 4.6).

Policy 4.6 (Bin Packing (BP) Policy). Construct from an instance of GHCRP,

I={p,e,r,t1,...,tp}, an instance of Bin Packing, I® = {Ltle, ce Ltp"J} with unit
capacity bins. Let S1,...,Sm be a solution to IP, where S; is the subset of items
that are packed in bin i. Then, let vehicle j € {1,...,m} execute a recurring scheme

visiting the locations corresponding to the items in S; in order.

Policy 4.6 imposes the restriction that each location is visited exactly once per
HJ time periods, and therefore results in a feasible schedule by Lemma 4.1. By
Theorem 4.9, when ¢ < 2p, the price of imposing this strict deadline for the GHCRP

is a factor 3.

Theorem 4.9. When ¢ < 2p, there exists a schedule using 3m™* vehicles for GHCRP

such that each location is visited exactly once during any Lﬂ consecutive time periods.

Proof. In an optimal solution, each location is visited at least once in the first LfJ <
2 L%J time periods. Now, consider an arbitrary vehicle, and create three vehicles in the
new schedule. The first vehicle repeatedly visits the locations that are (completely)
visited by time period LgJ by the original vehicle. The second vehicle repeatedly
visits the locations that are (completely) visited after time period L%J until time
period 2 L%J by the original vehicle. The third vehicle repeatedly visits the location
that is not scheduled yet, i.e., the location whose visit partially takes place during
the first L%J time periods and partially during the second L%J time periods in the
schedule of the original vehicle, if it exists. Otherwise, it remains empty. Since we
assume that t; < T% for all ¢ € N, this vehicle also repeats its schedule after at most

L’;JJ time periods.
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If we perform this procedure for each vehicle in the optimal schedule, we obtain

the desired structure using 3m* vehicles. |

Corollary 4.1. For any e > 0, Policy 4.6 results in m(BP) < 3(1+¢)m*+1 vehicles
when ¢ < 2p.

Proof. By reducing the problem to a Bin Packing instance, a strict deadline of HJ is
imposed. This comes at the cost of a factor 3 by Theorem 4.9, i.e., OPT(I?) < 3m*,
where OPT(I®) denotes the optimal number of bins for instance IZ. From an
instance of Bin Packing, a solution with (1 + ¢)OPT(I?) + 1 vehicles can be found
in polynomial-time (Fernandez de La Vega and Lueker, 1981). Therefore, we get at
most (1 + €)OPT(IB) +1 < 3(1 + €)m* + 1 vehicles. |

The Bin Packing algorithm of Fernandez de La Vega and Lueker (1981) is a
polynomial-time approximation scheme with a runtime of O(nlog1/¢)+O.(1), where
Oc(1) is only dependent on 1/e. Therefore, for a given € > 0, Policy 4.6 has a
computational complexity of O (nlog1/e) + O, (1).

If we combine Theorem 4.8 and Corollary 4.1, we observe that we have a 2-
approximation for the GHCRP when ¢ > 2p, and otherwise we can obtain a schedule

using a number of vehicles of at most

min{4m*,3(1 + ¢)m* + 1}.

4.5 Capacitated Resupply Problem

In this section, we consider the CRP, the variant of the GCRP where the resupply
times are homogeneous. Recall that if resupply times are homogeneous, we can
assume these are unit length as we can transform an instance with ¢ > 1 to an
instance with ¢/ = 1. We thus consider an instance with n locations that take one
time period to resupply by vehicles with a payload p. Location ¢ has a capacity of ¢;
and a demand rate of r; where r; < p as we can transform an instance with r; > p
to an instance with r; < p. The input size of the CRP is dependent on n. Therefore,
a policy is polynomial if the runtime is polynomial in n.

Each location should on average be visited at least once every T% periods to
ensure the total supply is at least equal to the total demand. When the capacity is
restrictive, ¢; < p, we can tighten this bound to ‘rj— Observe that at least % time
should be spent on locations where the capacity is not restrictive, i.e., on locations

in A={i €N |[p<c} and at least 7t time should be spent on locations where
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the capacity is restrictive, i.e., on locations in B = {i € N | p > ¢;}. This results in
a lower bound on the number of vehicles of {ZZEA T+ D ien o -I By dividing the
locations in these two groups, one group where the capacity is not restrictive and one
group where it is, we can define a 2-approximation policy. This policy generalises
the 2-approximation by Bar-Noy and Ladner. An example of this policy is given in
Example 4.6.

Policy 4.7 (Power of 2 (Po2) Policy). Let A= {i € N | p < ¢;} and B = {i €
N |p>e¢} Letd; = T% forie A and d; = % for i € B. Round each d; down
to the nearest power of 2 and denote this by d;. Use a periodic schedule of length
max;—1,...n d; periods. Assign the demand locations to vehicles in non-decreasing
order of d}, adding a new vehicle whenever all time slots of the previous vehicle are
full. This results in a schedule with m = {ZZEN %—‘ vehicles.

Theorem 4.10. Policy 4.7 is a 2-approximation with m(Po2) < 2 [ZieA St e %—‘
vehicles for A={i e N|p<c¢} and B={i € N|p>c¢}.

Proof. In Policy 4.7, the period of each location, d;, is rounded down to a factor of
2 denoted by d}. Scheduling a visit every d} periods results in a feasible schedule by
Lemma 4.1, as d; < d; = min {T%, < & periods. Locations are added to vehicles in
non-decreasing order and all periods d} are factors of 2. Hence, following the above
described algorithm gives a schedule with m = [Zle N %—‘ vehicles. This implies
that we have at least m — 1 full vehicles and we cannot coilstruct a schedule for the
instance where locations ¢ € N have periods d} using fewer vehicles.

We then find the following:

e = |3 5] < [ 5 g | <2 S| -2 e g <o

Here we use that i < d% as we round d; down to the nearest factor of 2. Hence, the

above described algorithm is a 2-approximation. [ |

Determining the number of required vehicles requires calculating d; for each loc-

ation, which can be done in O(n) time. This bound is tight by Example 4.6.

Example 4.6. Consider an instance with n = 5 locations. The demand rates and
capacities of the locations are given in Table 4.1. The vehicles have a payload of
p=10.
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It holds that A = {i € N|p < ¢;} = {1,3} and B = {i € Np > ¢;} = {2,4,5}.
We can then determine d; and d; by setting d; = min{2, 7t} and rounding it down
to the nearest power of 2 to define d;. These parameters are also given in Table 4.1.

Figure 4.8 shows the schedule following from Policy 4.7. This schedule uses two
vehicles, while a feasible schedule using one vehicle exists, such as the schedule in

Figure 4.9. Therefore, the approximation bound is tight.

Table 4.1: The demand rate, capacity, and algorithm parameters.

Location r; ¢ d; d;
1 4 20 min{i, 20} =3 2
2 1 5 min %TO %} =5 4
3 1 20 mln{% ,2Y=10 8
4 1 10 mln{T, 2r=10 38
5 1 9 mn{i?dt=9 8

Vehicle 2

Figure 4.8: Illustration of the Po2 Policy for Example 4.6.
1 2 3 4 5 6 7 8 9 10

. s | . . . . . . . . . \
Time-unit f T T T T T T T T T 1

Figure 4.9: Optimal solution for Example 4.6.

4.6 Generalised Capacitated Resupply Problem

In this section, we consider the GCRP, i.e., the most general problem in which
capacities, demand rates, and resupply times are heterogeneous. Namely, we have n
locations that are resupplied by vehicles with payload p, where location ¢ € N has
capacity ¢;, demand r; and resupply time ¢;. In Section 4.6.1, we discuss using a
reduction to the CRP or the GHCRP to construct policies for the GCRP. Then, we
discuss the relation with the Windows Scheduling Problem in Section 4.6.2.
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4.6.1 Reduction to Simplified Variant

In this section, we discuss the reduction of the GCRP to one of its simplified variants,
the CRP. The CRP is a variant of the GCRP where resupply times are homogeneous
and can be solved by a 2-approximation policy (Policy 4.7). To solve the GCRP,
we can therefore reduce the instance to CRP-instances based on the resupply times
(Policy 4.8).

Policy 4.8 (Reduce (R) Policy). Let T be the set of unique resupply times. Create
instances I = {i € N | t; =7} for 7 € T and transform each instance to an equival-
ent instance with unit-length resupply times. Fach instance I is now a CRP-instance
and can be solved using Policy 4.7. Finally, merge all schedules using the original

resupply times.

For an instance I of the GCRP, we can define a lower bound similar to the lower
bound defined for the CRP in Section 4.5. Namely, if we let A ={i € N | p < ¢;}
and B = {2 € N | p > ¢}, then all locations ¢ € A should be visited on average
once every £ time periods and all locations i € B should be visited once every £

tiri

Therefore, the vehicles need to spend at least time on locations i € A and at

least %7 time on locations i € B. This implies that a lower bound on the required

number of vehicles is equal to [ZieA tl;" + D ien tcr—‘

Theorem 4.11. Policy 4.8 uses at most 2m* + |T'| vehicles, where T is the set of

unique resupply times.

Proof. In Policy 4.8, the instance is split in instances I, for 7 € T such that all
locations in instance I have a resupply time equal to 7. Remember that we can
transform any instance with homogeneous resupply times to an instance with unit-
length resupply times. Specifically, for each instance I, we can set ¢t = 1 and r, = 77;
for each location i € I.. Each instance I, is then a CRP-instance that can be solved
using Policy 4.7, which results in a feasible solution by Theorem 4.10. For location
i € I, it then follows that d; = mm{ﬂ 7} = mm{ 2 } Let A, and B, be

)
o Tr; Tn

the set of locations i € I for which p < ¢; and p > ¢;, respectively. Then,
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We can thus solve the GCRP by reducing it to multiple CRP-instances. Finding
the number of required vehicles can therefore be done in O(n?) time, since at most
n instances of CRP are constructed and the number of vehicles required for a CRP
instance can be found in O(n) time. However, when the number of unique resupply
times is large, the policy can perform poorly due to the large number of instances
created. Therefore, we can alternatively reduce the number of unique resupply times

at the cost of scheduling longer resupply times (Policy 4.9).

Policy 4.9 (Round & Reduce (RR) Policy). For each location i € N, round t; up
to the nearest power of 2 and denote this by t,. Then, let T" be the set of rounded
resupply times and create instances I, for each 7 € T, where each instance consists
of the locations with the same resupply time. After scaling the resupply times, each

instance I, is now a CRP-instance and can be solved using Policy 4.7.

Corollary 4.2. Policy 4.9 uses at most 4m* + [log tmax| vehicles, where tpmas =

max;enN ti.

Proof. In Policy 4.9, the instance is split in instances I for 7 € T', where T” is the
set of rounded resupply times. Since for each I, we can set t = 1 and 7} = 7r; for all
i € I, each instance I, is then a CRP-instance that can be solved using Policy 4.7.
This results in a feasible solution by Theorem 4.10. For location i € I, it then
follows that d; = min {ﬂ %} = mm{ £ } Then,

)
rioorl T, 7—7"7

m(RR):Z{Z;-‘ <> (Zd+1> ZZ—HT,

TeT’ | i€l TET' \iel TeT’ i€l
T"r; T"r;
2395 3F BIAREI I k-2 ok BN
TET" i€l 7T’ \i€A, p B,
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Since it holds that |T7| < |T'|, we can decrease the additive term at the cost of
rounding the resupply times. This policy also requires O(n?) time to find the number
of required vehicles.

The problem can also be reduced to the GHCRP, which is the variant of the
GCRP where locations are homogeneous in terms of their capacity and demand
rate. Using a similar approach to Policy 4.8 requires creating instances for each
unique combination of capacity and demand rate, resulting in many instances. To
reduce the number of instances, both the capacity and demand rate would have to
be adjusted, which comes at a higher cost than solely adjusting the resupply time.
Since the approximation guarantee for the CRP is better than for the GHCRP, this
approach is unlikely to perform better than a reduction to the CRP.

Alternatively, a reduction to the GHCRP can be made by imposing a strict dead-
line on the visits to each region. This creates an instance of the Windows Scheduling

Problem, which we discuss in Section 4.6.2.

4.6.2 The Relation to the Windows Scheduling Problem

An instance of the Windows Scheduling Problem consists of n jobs with windows
w1, ..., w, and lengths ¢1,...,¢,. The aim is to find the minimum number of ma-
chines such that each job ¢, which takes ¢; time periods to execute, is scheduled at
least once in any w; consecutive time periods. This problem relates to the GCRP in
which visits of length ¢; have to be scheduled to locations to avoid stock-outs. The
difference between the Windows Scheduling Problem and the GCRP is that there is
more flexibility in the timing of visits in the GCRP. Namely, while on average a visit
should take place at least once every T% time periods, locations can have capacity to
keep stock above the level of the vehiclre payload. Therefore, the time between visits
can sometimes be longer if compensated by a shorter time between visits at other
times.

Since the Windows Scheduling Problem and the GCRP are related, a natural
thing would be to consider a reduction to this problem. Namely, by reducing an
instance of the GCRP, I = {p, (¢1,71,%1), .-, (Cn, Tn,tn)}, to an instance of the Win-
dows Scheduling Problem, IV = {(t1,w1), ..., (tn, wy,)}, with w; = min { {C—J , {EJ }

T T

For all locations where w; < “—J , this comes at the price of imposing a strict deadline

of scheduling a visit once every L”EJ time periods.

It is unknown what the price of imposing a strict deadline of LEJ forallz € N is.

However, we expect this price to be low for locations ¢ € N for which ¢; is relatively
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low compared to p, as the flexibility in scheduling the visits to these locations is
limited. This is also the case for the GHCRP, where imposing a strict deadline of
Lﬂ costs a factor 3 if the capacity is low (c < 2p). If the capacity is large, there is
more flexibility in scheduling the visits and we expect the price of imposing a strict
deadline to be higher. Since on average a visit should be scheduled once every %
time periods, we expect the price to be bounded. Furthermore, since the precise
timing of the visits is not important when ¢; is large enough, a version of the Wrap

Around Policy (Policy 4.1) can be used in that case.

4.7 Conclusion

In this chapter, we introduced the Generalised Capacitated Resupply Problem (GCRP),
which we proved to be strongly NP-hard through a reduction from 3-Partition. In
the GCRP, vehicles with a given payload have to resupply a set of locations with
a given capacity, demand rate, and resupply time. We aim to find the minimum
number of vehicles such that no stock-out occurs at any of the locations.

In addition to the GCRP, we considered three variants of this problem in which
the locations are homogeneous in terms of the capacity and demand rate (GHCRP),
the resupply times (CRP), or both (HCRP). For each of the variants, we describe
policies that can be used to find a feasible schedule, and provide the corresponding
approximation guarantees. An overview of these results is given in Figure 4.10.

For the GCRP policies, we reduce the instance to an instance of CRP, where
resupply times are homogeneous, and use the corresponding 2-approximation policy.
Alternatively, a reduction to the related Windows Scheduling Problem can be used.
Here, a strict deadline on when the next visit to a location should have been made
is imposed. The price of imposing this strict deadline is an interesting open question

for future research.
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Figure 4.10: Upper bounds on the number of required vehicles for the policies for the
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5.1 Introduction

Public health experts have increasingly recognised the vital role of surveillance, i.e.,
the collection and testing of samples to identify and monitor the spread of pathogens
(Gensheimer et al., 1999; Kelly-Cirino et al., 2019). Emergencies such as the Ebola
outbreaks in 2014 and the COVID-19 pandemic have highlighted persistent gaps in
surveillance infrastructure, particularly in low- and middle-income countries (LMICs)
(Aborode et al., 2021; Worsley-Tonks et al., 2022). Mobile laboratories (labs) have
emerged as an innovative solution to this challenge (Praesens Care, 2024; Racine and
Kobinger, 2019). Mobile labs are vans equipped with advanced diagnostic techno-
logies that enable rapid on-site testing. They can travel across a country, thereby
enhancing surveillance in multiple regions.

However, the implementation of mobile labs faces several challenges. The first
challenge is the high cost of these labs, coupled with chronic underfunding of sur-
veillance systems (Micah et al., 2023). Second, the value of mobile labs compared to
investments in local health facilities remains unclear. Although research has explored
the use of mobile health units (Alban et al., 2022; Breugem et al., 2023; De Vries
et al., 2021), it treats them as stand-alone solutions. Understanding when mobile
labs can add value requires evaluating them within the existing health system and
considering the alternative of improving local health facilities. This comparison is
essential to communicate their value to stakeholders. Finally, equity is an import-
ant concern in public health resource allocation (Cooper et al., 2018; Smith, 2015).
Resource allocations that fail to account for equity concerns between multiple re-
gions may lack the necessary support from regional stakeholders, even if they offer
nationwide benefits.

This chapter aims to assess the value of mobile labs while considering limited
budgets, existing health systems, and equity concerns. Specifically, we consider the
perspective of a health ministry tasked with distributing a fixed budget across mul-
tiple regions, either to improve local health facilities or to deploy mobile labs. We
evaluate the impact of these solutions on the speed of outbreak detection, which is
crucial given the exponential spread of diseases at the onset of an outbreak (Kermack
and McKendrick, 1927). We first consider identical regions, after which we consider
regions that differ in the quality of their local health facilities.

We find that mobile labs can offer significant value when budget is tight. From our
analytical analysis we find that the deployment of mobile labs can then result in at
least a 10% additional reduction in outbreak detection time. Our numerical analysis,

based on real-world data, shows that the time reduction can be significantly higher in
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practice. However, even when the regions are identical, the allocated budgets to the
regions may differ. For an equitable solution, mobile labs are preferred when budget
is tight, while investments in local health facilities are superior when there is a large
budget. When regions differ in the current quality of their health facilities, mobile
labs add relatively more value in regions where health facilities are of lower quality.
This can lead to inverse inequality, where regions with initially higher-quality health
facilities face longer times until outbreak detection.

The main contributions of this chapter are twofold. First, we assess the value
of mobile labs while considering investing in the existing health system. Second,
we introduce an equity perspective, addressing a critical issue that has been largely
overlooked in previous research. By considering these important challenges, our
approach offers a more realistic view of when mobile labs can improve the performance
of existing health systems.

The remainder of this chapter is structured as follows. In Section 5.2, we discuss
related literature. We formulate the problem and the underlying assumptions in
Section 5.3. We discuss the value of mobile labs and potential equity concerns in

Section 5.4 and conclude with Section 5.5.

5.2 Literature Review

This research corresponds to the literature on disease surveillance and modelling,

and on resource/budget allocation problems.

5.2.1 Disease Surveillance and Modelling

While health experts have stressed the importance of disease surveillance for outbreak
prevention, recent outbreaks have highlighted gaps in the surveillance infrastructure
(Aborode et al., 2021; Worsley-Tonks et al., 2022). Different solutions have been
raised to improve surveillance in LMIC, which include improved data management
and data access (Fleming et al., 2021), training programs (André et al., 2017), and
increasing diagnostic capacity (Worsley-Tonks et al., 2022). Mobile labs have been
identified as an alternative way of improving surveillance by offering high-quality
diagnostic capacity (Racine and Kobinger, 2019). They have proven to be successful
in outbreak response (Fall et al., 2020; Grolla et al., 2011), but their value in disease
surveillance compared to investments in local health facilities remains unclear. We
consider a budget allocation problem in which we consider both investments in local

health facilities and in mobile labs.
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To assess the spread of an infectious disease, compartment models are often used
(Kermack and McKendrick, 1927). The non-linearity of compartment models makes
analytical analysis challenging or even infeasible. As a result, approximations or
simulations are frequently used (Harweg et al., 2022; Rao and Brandeau, 2021). In
our study, we focus on allocating a limited budget to enhance surveillance of disease
spread in low- and middle-income countries. Since diseases spread exponentially at
the onset of an outbreak (Kermack and McKendrick, 1927), it is critical to implement
preventive measures to reduce the spread of the infectious disease as soon as possible.
Therefore, instead of approximating the number of infectious, we evaluate how a given
budget allocation affects the detection time.

In order to evaluate the value of mobile labs compared to investment in local
health facilities, we thus require the effect of a given mobile lab visit frequency
or investment in local health facilities on the detection time. The effect of a given
healthcare investment on health outcomes is often unclear (Nixon and Ulmann, 2006).
(Hensher et al., 2024) have shown that diminishing marginal returns on investments
in health-care. Therefore, we assume diminishing returns of investments in surveil-

lance on the detection time.

5.2.2 Resource and Budget Allocation Problems

In resource and budget allocation problems, scarce resources have to be distributed
among competing purposes to optimise a cost or benefit function (Patriksson, 2008).
This research relates most to resource allocation problems in epidemic control and
visit allocation problems.

Resource allocation problems in epidemic control focus on distributing scarce
resources to control epidemics through prevention or treatment programs (Brandeau,
2004). The aim is to minimise the impact of an epidemic by determining how and to
whom these resources should be allocated. For instance, decisions may involve how
to distribute vaccines among different populations (Duijzer et al., 2018a; Enayati
and Ozaltin, 2020), or selecting which type of vaccine should be used (Duijzer et al.,
2018b). A general model for allocating scarce resources across populations to mitigate
the effects of an epidemic is presented by Brandeau et al. (2003), who analyse various
cost functions and derive optimality conditions.

Visit allocation problems consider optimal assignment of limited visiting capacity
of mobile units across different regions. Objectives in such problems often relate to
the return time of the mobile unit. For example, De Vries et al. (2021) investigate

the relationship between the mean return time of mobile units and the demand
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for family planning services, aiming to determine the optimal visit frequency for
various regions. Dhanjal-Adams et al. (2016) focus on minimising disturbances to
birds through patrol scheduling, examining both linear and logarithmic relationships
between site disturbance and the number of visits. Breugem et al. (2023) analyse
the effects of providing multiple services with a single mobile unit compared to using

separate units for each service on the overall demand.

Compared to visit allocation problems, we also consider the alternative of invest-
ing in local health facilities. This requires not only determining how to allocate the
limited budget among regions, but also deciding the type of investment that should

be used.

5.3 Problem Formulation

We consider a country’s health ministry that needs to allocate a budget B across
different regions to improve disease surveillance. For each region, the budget can be
spent on either improving local health facilities or on scheduling mobile lab visits.
Investing in local health facilities results in a permanent improvement in surveillance,
while mobile labs provide a periodic improvement for each region since they travel
between multiple regions. In this section, we define the benefits of these two types of
investments in improving surveillance and introduce the corresponding mathematical

model.

Health ministries typically define a threshold for the number of infected individu-
als required to implement preventive measures, such as social distancing for airborne
diseases and mosquito nets for malaria (World Health Organisation, 2022a). We
define outbreak detection as the time when this threshold is observed. Since diseases
spread exponentially at the onset of an outbreak (Kermack and McKendrick, 1927),
the goal is to detect outbreaks as quickly as possible. Therefore, we define the bene-
fit of an investment in surveillance as the expected reduction in outbreak detection

time.

We consider a set of m regions. Let p; be the probability of an outbreak occurring
in region i. The benefit of allocating a budget z; to region ¢, assuming an outbreak

occurs, is denoted by b;(x;). We then define the budget allocation problem as follows,
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in which the aim is to maximise the expected benefit of the budget allocation:
max Zpibi (z;)
i=1
- 1
st. Yz, <B (5-1)
i=1

OSl‘lSCl Vi=1,...,m,

where C; represents an upper bound on the budget that can be allocated to region 3.
Since the budget allocated to a region can be spent either on improving local
health facilities or on scheduling mobile lab visits, the total benefit is given by:
A
bi(xz;) = AEI?]%;,(F} {bi (:1:,)} , (5.2)
where b (x;) denotes the benefit of spending x; on A € {M, F'}, with M correspond-

ing to mobile labs and F' to local health facilities. We define these benefit functions
in Sections 5.3.1 and 5.3.2.

5.3.1 The Benefit of Mobile Lab Visits

We calculate the benefit of mobile lab visits as the reduction in outbreak detection
time achieved when x; budget is spent on mobile lab visits to region i. We define

the cost of acquiring a mobile lab as CM. Following the notation of Breugem et

al. (2023), we express Fir as the proportion of the lab’s visit capacity allocated to
region i over a standardised period. Over a planning horizon of T' time periods, this

Zi

is equivalent to scheduling 77" visits to the region.

We make the following assumptions to derive the benefit function. First, the plan-
ning horizon is the time frame during which a disease is prevalent, i.e., an outbreak
is equally likely in any given time period during the planning horizon. For instance,
the planning horizon might be the summer for malaria and the winter for COVID.
Therefore, the benefit of the planned mobile lab visits is independent of the timing
of the first visit.

Second, we assume that in at least one region mobile labs are more efficient in
detecting outbreaks compared to the current local health facilities. This assumption
is necessary for mobile labs to have potential value. Otherwise, the entire budget
should always be allocated to investments in local health facilities. This assumption

holds for LMICs, where local health facilities often have limited surveillance capab-
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Figure 5.1: The benefit function for allocating a budget x; to mobile lab visits in region 1.

ilities. The potential expected reduction in the detection time from using mobile
labs in region i is denoted as Tja = T — TM | where T and T} represent the
expected outbreak detection time in region ¢ using local health facilities and mobile
labs, respectively. We assume that T;o > 0 for all i € {1,...,m}.

Finally, we assume that the parameters T and TM are known. In practice, these
could be estimated by, for example, using an SIR model or one of its variants (Ker-
mack and McKendrick, 1927) to determine the time it takes to reach the threshold for
the number of infected people beyond which the government will impose preventive
measures.

Using these assumptions, we define the benefit function for mobile labs as:

172 x; . CM
pM _ Jaliagr  0<@i < 77 53
i (‘rl) - CZM CJVI M ( : )
Ti ~ 2%, Tin < T < C )

with visits to the region spread equally over the planning period (see Appendix 5.A
for the derivation).

We observe that the benefit of mobile labs is concave in the amount of budget
invested. Namely, it first increases linearly and then increases at a diminishing rate

as more budget is allocated. This concavity is illustrated in Figure 5.1.

5.3.2 The Benefit of Investment in Local Health Facilities

LMICs often face two main challenges related to the surveillance capacity of local

health facilities. First, many people do not get tested due to limited access, especially
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in poor, rural areas (World Health Organisation, 2022b). Second, samples often need
to be sent elsewhere for testing, as local health facilities lack on-site laboratories. This
leads to delays in obtaining test results (Yadav et al., 2021). Investing in local health
facilities can enhance surveillance by improving access to testing and reducing delays.
For example, access can be improved by using motorbikes to collect samples from
remote areas. Additionally, acquiring diagnostic equipment or using motorbikes to
transport samples faster and more frequently to laboratories can reduce the delay in
obtaining test results. bf (z;) denotes the benefit of investing z; in these measures.

We note that no benefit is obtained when the budget is zero, i.e., bf'(0) = 0. We
make the following assumptions about the benefit function for local health facilities.
First, investing in local health facilities should provide at least the same benefit
as permanently allocating a mobile lab. Mathematically, this can be expressed as
bE(CM) > bM(CM) = Tin — %

Second, we assume diminishing marginal returns. Research on the effect of health
expenditure on health outcomes has shown diminishing marginal returns (Hensher et
al., 2024; Nixon and Ulmann, 2006). Furthermore, research on the effect of improving
accessibility and capacity has also shown diminishing returns (Levinson and Wu,
2020; Palvannan and Teow, 2012). Mathematically, we assume that dimibf (x;) >0
and d%bf(xi) <0.

5.4 Analysis and Results

We are interested in (i) the value of mobile labs, i.e., the additional reduction in
detection time they enable, and (ii) when inequity can arise and the price of fair-
ness, i.e., the percentage difference between the optimal and equitable solutions. We
analyse the budget allocation problem both analytically and numerically.

For the numerical analysis, we use data on the spread of COVID-19 and the
deployment of mobile labs in Mombasa County, Kenya, by Praesens Care, a company
that designs and deploys mobile labs (Praesens Care, n.d.). Mombasa County consists
of six sub-counties, of which two sub-counties are urban regions (Mvita and Nyali).
Praesens Care deployed mobile labs in Mombasa County to m = 13 health facilities
spread over the six sub-counties (see Table 5.1). On average, these health facilities
monitor approximately 9,700 households, equivalent to almost 38,000 people using an
average household size of 3.9 (Statista, 2020). Samples taken at these health facilities
are tested at a public hospital, which is, on average, located 4.7 km from the health

facilities. During the 16-week pilot of Praesens Care, 3,000 patients were targeted
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Table 5.1: The number of monitored households and distance to the nearest level-4 health
facility for the 13 health facilities in Mombasa, Kenya.

Sub-County  Health Facility Monitored Households®  Distance Nearest Public Hospital (km)?
Likoni NYS Health Center -3 5.9
Mbuta Dispensary 2200 5.7
Jomvu Jomvu Model 25000 8.1
Miritini CDF Health Center 35110 8.5
Kisauni Junda Dispensary 15000 4.1
Myvita Mvita Health Center 2000 1.9
Majengo Dispendary 1997 1.5
Ganjoni CDC Health Center 2000 3.9
Changamwe  Magongo Health Center 12500 4.5
Bokole CDF Health Center 6110 5.2
Nyali Kongowea Dispensary 5210 2.6
Maweni Health Center 5555 4.4
Ziwa La Ngombe Health Center 3999 4.9
Average 9723.42 4.71

1: obtained from Ministry of Health, Kenya (n.d.)
2: obtained from Praesens Care (n.d.)
3: not available

for various tests, which is equivalent to almost 40 tests per day. The turnaround
time of the tests offered ranged from 10 minutes to 3 hours. The same tests had a
turnaround time of 30 minutes to 24 hours at the public hospital.

To numerically analyse the value of mobile labs, we need to calculate the expected
detection time for local health facilities and permanently allocated mobile labs. We
model the spread of COVID-19 in Kenya using an SEIR model (Cooke, 1967) and
determine the number of positive tests per day based on the testing capacity to
find the expected detection time for local health facilities and mobile labs. The SEIR
model and its parameters are given in Appendix 5.C from which we derive a potential
reduction in the detection time for mobile labs of Th = 4.42 weeks. We normalise
the value of the budget such that one unit of budget corresponds to the price of
one mobile lab.! We refer to this case using the parameters in Appendix 5.C as the
base case. The benefit function for mobile labs is represented by the black line in
Figure 5.2.

We use a logarithmic benefit function for investment in local health facilities
defined as b¥(x) = dln (2 + 1). The grey area in Figure 5.2 shows the benefit function
of investment in local health facilities for d € [10,20], where the expected benefit is
increasing in d. This range ensures that the assumptions stated in Section 5.3 hold.
We use d = 15 (dashed line) for the numerical analysis in this section and consider
budget levels B € {0,0.05,0.1,...,m x C™M}. Appendix 5.D, presents a sensitivity
analysis on the parameter d and the SEIR model parameters, which shows similar

trends to those presented in this section.

IThe price of a mobile lab (C™) is approximately 0.5 million Euros.
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Figure 5.2: Benefit functions for mobile labs and investment for the base case. The grey
region shows the range in which the benefit function for health facilities lies for d € [10, 20],
while the black dashed line shows the benefit function for d = 15.

We first consider the case where all regions are identical in Section 5.4.1. This
simplified version allows us to analytically analyse the benefit that can be obtained
using mobile labs. Then, we consider the case where the regions are non-identical in
Section 5.4.2.

5.4.1 Identical Regions

In this section, we assume all regions are identical, i.e., T;a = Ta, C; = C, p; = p,
and b;(z;) = b(x;) for all i € {1,...,m}. We first describe the conditions an optimal
solution adheres to. Then, we discuss the value of mobile labs, potential equity

concerns, and the price of fairness.

Given that all regions are identical, all regions that receive mobile lab visits
are visited with equal frequency and all regions that receive investment in local
health facilities receive the same budget (see Theorem Bl in Appendix 5.B). This
allows us to simplify the model. Let S = {z €[0,C]|b™(z) > b"(z)} be the
set of budget levels for which the benefit is larger for mobile lab visits, S =
{z €10,C] | b¥(x) > b™(z)} be the set of budget levels for which the benefit is larger
for investments in local health facilities, and S = {z € [0,C] | b (z) = b¥'(x)} for
which the benefit is equal for both types of investment. If two regions are allocated
the same investment type, they are assigned the same budget. That is, if regions

i and j receive the same investment type, then x; = x;. Based on this, we can
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formulate the problem as follows:

max nb™ (zM) + (m — n)b" (2F)
st. nz™ + (m —n)2 < B
MesMus!
Festus!
0<n<m

n €N,

This problem has a non-linear objective function and an integer decision variable,
which makes it difficult to solve. However, the number of regions that receive mobile
lab visits, n, is bounded by m. We can thus consider the problem for each possible
value of n and solve the corresponding problem. If n = 0, all regions are assigned
investment in local health facilities, each receiving a budget of %. If n =m, all
regions receive a budget of % each for mobile lab visits. For intermediate values of

n, we have:

Theorem 5.1. Given the number of regions that receive mobile lab visits, n, the
budget is allocated such that either the marginal benefit of additional investment is
equal for both investment types (VM (xM) = bEF' (zF)), or such that the budget for at
least one investment type is allocated to a level where the benefit functions intersect
(M e STval e ST).

We compare the reduction in outbreak detection time when mobile labs are in-
cluded or excluded from the solution space to analyse the value of mobile labs. Co-

rollary 5.1 shows that mobile labs can detect outbreaks significantly faster (proof in
Appendix 5.B).

Corollary 5.1. If the benefit function for investment in local health facilities is
logarithmic, i.e., b¥' (z) = dln (z + 1), mobile labs can reduce the outbreak detection

time by at least 10% compared to investments in local health facilities alone.

Mobile labs thus add value when they are assigned to at least one region in
the optimal solution, i.e., when n > 0. The question is whether this added value
is significant. Our numerical analysis reveals that the value of mobile labs can be
significantly higher than the 10% lower bound stated in Corollary 5.1. Figure 5.3
shows the optimal n, the number of regions receiving mobile lab visits (dotted line,
right y-axis), and the expected benefits in the optimal solution (solid line, left y-

axis). It also displays the expected benefits of the counterfactual scenario in which
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Figure 5.3: The expected reduction in the detection time in the optimal solution and the
solution when all budget is invested in local health facilities (HF) for the base case (right
y-axis). The dotted line (left y-axis) shows the number of regions that receive mobile lab
visits. The shaded area shows the value of mobile labs, i.e., the additional benefit that can
be obtained in the optimal solution compared to only considering investment in local health
facilities.

the entire budget is allocated to investment in local health facilities (dashed line, left
y-axis). The shaded area shows the value of mobile labs, i.e., the additional benefit
in the optimal solution compared to the counterfactual scenario. A darker colour
indicates a greater value of mobile labs.

The optimal solution allocates at least one mobile lab, unless the budget is very
high (equivalent to dedicating almost one mobile lab per region). Mobile labs provide
the most value at lower budget levels, where all regions receive mobile lab visits. As
the budget increases, the value rises up to 40%, then decreases as higher budgets
enable significant investments in some local health facilities.

In Appendix 5.D, we present a sensitivity analysis to the SEIR parameters that
affect the potential time reduction of mobile labs, Ta, for the base case with d = 15.
This shows similar trends, ¢.e., the value of mobile labs is largest for small budget
levels and (almost) negligible for very large budget levels where investment in local
health facilities is prioritised.

In an equitable solution, identical regions should receive the same budget. How-
ever, Theorem B1 implies that identical regions may receive different budgets in an
optimal solution. Namely, if n € [1,m — 1], the regions are split into two groups.
One group receives mobile lab visits and the other group receives investment in local
health facilities. The two groups are allocated different amounts of budget, which

creates inequality between the regions. As indicated by the dotted line in Figure 5.3
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Figure 5.4: The expected reduction in the detection time in the optimal solution and the
expected reduction in the detection time for regions that receive mobile lab visits (ML)
and investment in local health facilities (HF) for the base case. The shaded area shows the
price of fairness, i.e., the percentage difference between the optimal and equitable budget
allocation in which all regions receive the same budget.

all regions receive the same investment type only when the budget is tight or very
large.

Figure 5.4 shows the expected reduction in the detection time for all regions,
the regions that receive mobile lab visits, and the regions that receive investment in
local health facilities. The shaded area shows the price of fairness, i.e., percentage
difference between the optimal and equitable solution in which all regions receive the
same budget. A darker colour corresponds to a higher price of fairness.

For small and very large budget levels, the price of fairness is zero as all regions
receive the same investment type (mobile labs for small budget levels and investment
in local health facilities for very large budget levels). For medium budget levels, the
regions are treated differently as they receive different types of investment. The
regions that receive investment in local health facilities receive a budget that is
between 2.5 and 3 times as high, which corresponds to a time reduction that is

almost twice as high. The price of fairness is at most 8.9%.

We thus see that when mobile labs add most value (small budget levels), the
optimal solution is equitable since all regions receive mobile lab visits. The optimal
solution is also equitable at the other extreme, where there is enough budget for signi-
ficant investments in all regions. Equity becomes a concern at medium to high budget
levels, where large investments in some regions lead to significant improvements but

limit resources for others.
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5.4.2 Non-identical Regions

The simplified version in Section 5.4.1 in which all regions are identical, allowed us
to give an analytical bound on the added value of mobile labs. In many contexts,
particularly in low- and middle-income countries, the accessibility of health facilities
and the availability of equipment can vary across regions (Lewis et al., 2019; Peters
et al., 2008). As a result, the baseline detection times differ between regions. In this
section, we incorporate this differentiation into the model by considering two types of
regions, regions with low-quality local health facilities and regions with high-quality
local health facilities, which we denote by low-resource and high-resource regions,
respectively. We first discuss the value of mobile labs and then potential equity
concerns. For the numerical analysis, we assume that the health facilities in the
urban sub-counties (Mvita and Nyali) are of higher quality than the health facilities
in the other sub-counties. We then have my = 6 high-resource regions and my =7
low-resource regions. We assume that testing is faster in high-resource regions, e.g.,
due to better access to public hospitals. We assume a testing duration of df = 10
days for the low-resource regions and of d¥; = 7 days for the high-resource regions. In
Appendix 5.E, we present the results when the regions differ in terms of the testing
capacity.

The benefit of mobile labs is dependent on the current quality of the local health
facilities as low-resource regions have a higher detection time T}". This results in
a larger potential gain from mobile labs, T;a, and therefore a larger benefit for the
same visit frequency. The benefit function for investment in local health facilities is
not directly dependent on the current detection time. We assume that regions with
lower quality local health facilities can be compensated through investments, i.e., we
treat higher quality local health facilities as if some investments in the region have
already been made.

Similar to the case where regions are identical, we can find the following condition
for an optimal solution, where S = {z € [0,CM] | bM(z) = b (x)} is the set of
budget levels for which the benefit is the same for mobile labs and investment in

local health facilities for region i:

Corollary 5.2. In an optimal solution, regions get assigned a budget such that either
the marginal benefit of additional investment is equal to the marginal benefit of other
regions, or at a budget level for which the benefit functions intersect, i.e., z; € S for

region 1.

Figure 5.5 indicates the added value of mobile labs at different budget levels. We
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Figure 5.5: The expected reduction in the detection time in the optimal solution and the
solution when all budget is invested in local health facilities (HF) (right y-axis) for the base
case with testing durations df = 10 days and di; = 7 days. The dotted line (left y-axis)
shows the percentage of the available budget that is allocated to mobile lab visits. The
shaded area shows the value of mobile labs, i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities.

find similar results as for the case where regions are identical. Mobile labs are used
unless the budget is very high and their added value is largest for small budget levels

(over 60% at its maximum).

To analyse potential equity concerns in the optimal solution for the two types
of regions, we consider two regions — one low-resource region and one high-resource
region — and examine the implications for the division of the budget and the expected

detection time for both types of investment.

Figure 5.6 shows the optimal budget allocation for mobile labs visits. The grey
area (left y-axis) shows the percentage of the budget that is allocated to the low-
resource region. The lines (right y-axis) show the detection time for the two regions.
At low budget levels, the entire budget is allocated to the low-resource region, re-
ducing the detection time gap between the regions. However, the gap widens in the
opposite direction as the budget increases further. At medium and high budget levels,
the frequency of mobile lab visits is sufficient to make them the primary factor in de-
tecting outbreaks in both regions, making detection time independent of the quality
of local health facilities. As a result, both regions receive the same budget and have

the same detection time.

Figure 5.7 shows the optimal budget allocation for investment in local health

facilities. For small budget levels, the budget is allocated to the low-resource region
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Figure 5.6: Graphical illustration of the budget allocation for mobile labs to two regions
with different quality local health facilities. The grey area shows the percentage of the total
budget allocated to the low-resource region (left y-axis). The lines show the detection time
for the two regions (right y-axis).

which causes its detection time to converge with that of the high-resource region.
For medium and large budgets, the percentage of the budget allocated to the low-
resource region decreases. Once this region is sufficiently compensated for its initial
disadvantage, the remaining budget is distributed between both regions, resulting in
equal detection times.

We thus see that non-identical regions can receive different budget levels, even if
the investment type is the same. While there is no universally accepted definition of
equity (de Oliveira et al., 2024), the expected detection time for each region serves
as a reasonable measure in our context. Specifically, we consider a solution to be
equitable when identical regions receive the same budget, and the detection times
of the regions do not differ more than the current difference in the detection times.
Using this definition, we observe that when all regions receive mobile lab visits,
inverse inequality can arise, where regions with higher current detection times, have

a significantly lower detection time in the optimal solution.

Corollary 5.3. When regions differ in the current quality of local health facilities,
inverse inequality can arise, where regions with currently a higher detection time have

a significantly lower detection time in the optimal solution.

Figure 5.8 shows the expected reduction in the detection time for different regions.
The shaded area shows the price of fairness, i.e., percentage difference between the

optimal and equitable solutions as defined above. A darker colour corresponds to a
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Figure 5.7: Graphical illustration of the budget allocation for investment in local health
facilities to two regions with different quality local health facilities. The grey area shows
the percentage of the total budget allocated to the low-resource region (left y-axis). The
lines show the detection time for the two regions (right y-axis).

higher price of fairness.

For small budget levels, all budget is allocated to the low-resource regions. This
leads to inverse inequality, as the reduction in the detection time exceeds the current
difference in the detection time of almost half a week. This puts the high-resource
regions at a disadvantage. For medium budget levels, investments are made in the
local health facilities of some high-resource regions. The expected reduction in the
detection time is then larger for the high-resource regions, which results in more in-
equality compared to the current situation. The price of fairness is at most 7.9%, i.e.,
the expected reduction in the detection time is at most 7.9% lower for an equitable

solution compared to the optimal solution.

Mobile labs thus add most value when the budget is small. The budget allocation
can be inequitable since inverse inequality can arise. In an equitable solution, mobile
labs can however still add value. For small budget levels, the value of mobile labs in

the equitable solution is more than 30%.

In Appendix 5.F, we present the results when the regions differ in the testing
capacity (cf =5 versus cf; = 10). We find, similar to the results in this section,
that mobile labs add most value when the budget is small. While investments in
high-resource local health facilities are also prioritised for medium budget levels, this
does not necessarily result in an inequitable budget allocation. Inequality thus only

occurs for small budget levels.
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Figure 5.8: The expected reduction in the detection time for all regions, the low-resource
regions, and the high-resource regions for the base case with testing durations df = 10 days
and df; = 7 days. The shaded area shows the price of fairness, i.e., the percentage difference
between the optimal and equitable expected benefit.

5.5 Conclusion

Recent global health crises, such as the Ebola outbreaks and the COVID-19 pan-
demic, revealed gaps in the surveillance, i.e, the collection and testing of samples to
identify and monitor the spread of pathogens, in low- and middle-income countries.
Mobile laboratories (labs), which provide on-site diagnostic testing capabilities, have
emerged as a potential solution to enhance surveillance across multiple regions. How-
ever, their high costs and uncertain comparative value to investments in local health
facilities complicate decision-making for health ministries. Moreover, equity concerns
regarding resource allocation between different regions are important, as inequitable
solutions may fail to gain the necessary support. Addressing these issues is crucial for
improving outbreak detection capabilities and ensuring that resources are allocated

effectively and fairly within constrained budgets.

We consider a budget allocation problem in which a limited budget must be
allocated across different regions, either to improve the local health facilities or to
schedule mobile lab visits. We aim to maximise the reduction in the detection time
such that preventive measures can be imposed quickly. We analyse the value of mobile
labs, i.e., the additional reduction in detection time they enable, and the price of
fairness, i.e., the percentage difference between the optimal and equitable solutions.
We analysed the problem both analytically and using data from the deployment of
mobile labs by Praesens Care in combination with data on the spread of COVID-19



Chapter 5 139

in Mombasa County, Kenya.

We find that large benefits can be obtained by including mobile labs in the sur-
veillance system, especially at small budget levels. We identify a few potential equity
concerns in the optimal budget allocation but find that even in equitable budget al-
locations, mobile labs can add significant value when the budget is tight. Here we use
an outcome-based measure for equity where we consider a solution equitable based
on the post-intervention detection time. We discuss advantages and disadvantages
of this method and discuss the effect of using an allocation-based measure for equity
where equity is defined based on the allocated budget.

We highlight three potential areas for future research. First, we have used some
assumptions regarding the benefit function for investments in local health facilities.
While we have some support for choosing a concave benefit function, it would be
interesting to (empirically) analyse the effect of investments on the detection time
of local health facilities. Second, regions may differ in other ways that affect the
detection time. We have considered differences in the testing duration, i.e., the time
it takes to obtain the test result once a sample is taken, and the testing capacity.
While these showed similar trends, it would be interesting to analyse which regional
characteristics affect the detection time of an infectious disease and whether these
follow similar trends. Finally, we considered a one-time investment as a first step in
analysing the value of mobile labs compared to investment in local health facilities.
In reality, the budget may become available over multiple time periods. In this case,
mobile labs can be used as an intermediate solution until enough budget is available to
make significant improvements in local health facilities, which can reduce (temporary)
inequity. It would be interesting to analyse the value of mobile labs and the effect of

using mobile labs on the equity of the budget allocation in a multi-period setting.
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Appendix

5.A Derivation of the Benefit Function of Mobile
Labs

We derive the benefit function (5.3) for a single region and therefore drop the sub-
script ¢ denoting the region. We are interested in the expected benefit, measured
as the expected time reduction in outbreak detection, when x budget is spent on
mobile lab visits. Here we use the notation of Breugem et al. (2023). We let =5 be
the fraction of a mobile lab that is allocated to the region, where C™ is the cost of
acquiring a mobile lab. The mean return time of the lab to the region is then equal

M . . . . . M .
to CT periods, i.e., a visit is scheduled on average once every CT periods.

By our assumptions, it takes TF time periods to detect an outbreak by local
health facilities and T time periods to detect an outbreak by a mobile lab that
is permanently allocated to a region. The difference in outbreak detection time is
defined by Ta = TF — T™ > 0. The benefit of scheduling mobile lab visits can be
defined as max {Ta — J,0}, where J is equal to the time until the first mobile lab

visit to the region after the disease has been active for T™ periods.

Let t; be the time between visit i — 1 and ¢ and assume the disease has not been
identified during the (i — 1)*® visit and is identified during the i*! visit at the latest.
Since the disease is equally likely to emerge in each time period, J is a random
variable with probability density function f;(j) = % for j € [0,¢;). Let E[b](t;)
denote the expected benefit of scheduling the next visit after ¢; time periods. We
consider two cases. First, we consider the case where t; < Ta. Second, we consider

the case where t; > Th.

If t; < Ta, the outbreak will be detected by the next mobile lab visit. Namely,
given that the outbreak was not detected during the previous mobile lab visit, less
than TM time periods had passed since the first infection. Therefore, if ¢; < Th,
local health facilities will not detect the outbreak before the next mobile lab visit.
The benefit is then equal to Ta — J such that

t;

Eb|t; <TAl(t;) =E[Ta —J|=Ta — E[J] =T — 3

If t; > Ta, the outbreak can either be detected by the mobile lab during the next
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visit, or by the local health facilities. It then holds that
E[b|t; > Tal(t;) = [maX{TA — J,0} | t; > Tal(ts)

= ; f]( i) max{Th — j,0}dj

Th 1 t; 1
2/ f(TA—j)dj—F/ 0x —dj
o ti Ta t;

T

1 1 1 A1 11 1,1

= |=Thj— — x =j° = T3 - ——T% =_T3—.

|:ti Al tix2j ]0 A LA AL

We thus find the following expected benefit given that we will detect the outbreak

at the latest during the next visit scheduled in ¢; time periods:

12 1 ti >T
B[ (t) =42 20 " A
Th — sti 1 < Th.

For a given budget, x, n = C—MT visits are scheduled during a planning horizon T
Therefore it should hold that the average return time is equal to €— " and L ZZ 1t =
. We now show that in an optimal solution, visits are equally spread i.e,t; = C—M
forallz—l,...,
Consider scheduling two visits in ¢; and ¢y time periods, for ¢; < to. It should
hold that % = CTM Since we assume the disease is equally likely to emerge in

each period, the expected benefit is defined as

t1 to
- th[b](tl) + & +t2E[b](t2).

We show that the expected benefit is lower than or equal to scheduling two visits
in CTM time periods, E[b] (%), based on the value of Th relative to ¢; and t».

1. If Th <ty < tg, we find

t t 1,1 oty 1,1
EIb](t1) + Eb|(ta) = =T 7+ fT —
t1 +t2 101(22) t1 + 12 1bi(t2) t+t22 0t Lt 2 Bty
1 1 T cM
= T2 = -T2 " __F
o+t & 27ACM ( )

2. If t] <ty < TA, we find

t1

B () + Bl )

t1 + 12
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tq 1 to 1
= Th — =t Ta — =t
t1+t2(A 21>+t1+t2<A 22)

C Ta(ti+t2) 188 +63 113 +t3
Tttty 2t +ta S 2t 4+t
1 C]M C]W
<TA—(t;+to) =Th — — = E[b] [ =——
A 4(1+2) A o7 H(x)’

2 2
where 7572 > (11 + t2) holds since (ty — t2)? = £} + 13 — 2t1t5 > 0.

3. Ift) <Tha < to, wWe find

t t t 1 ty 1,1
Ebl(t) + Eb|(ty) = Ta — =t | + -T2 =
t1 + to [b)(t1) t + to [b](t2) t1—|—t2<A 21> +ta2 Aty
_ tTa — 5t + 57X
N t1 + 1o '

We now consider two cases:

(a) If Ta < %, we find

tTa — 518 + 573
t1 +t2

1, 1, 4 T
“TA‘2“+2TA>20M

13 e = 0 (5.

T

IA

Il
| =

where t1Ta — %t% + %Ti < Ti holds since

1 1
tTA — §t§+§T§ <TE = t2-26TA+ T2 >0

— (t1 —Ta)* >0.

(b) If Ta > S, we find

t1TA — 587 + 5TX 01 Ta + toTa — t2Ta — 567 + 3T
t1 + to N t1 +to
. TA(tl + tg) tolTa + %t% — %Ti
T b +ty ty +to
toTa + 243 — 172
t1 +to ’

:TA_




Chapter 5 143

Then,

toTn + 142 — 172 oM

TA_ 24A 21 2T A SE[b] ~

t1 4 to x
toTa + 57 — 173 cM 1
< Th — Z 28 <TA——=Tar— ~(t; +1
A tl +t2 =-a 2z A 4( ! + 2)
1 2 1 2 1 2

For a given t; and to, %(tl + t2)2 is a constant and toTA + %t% — %Ti is
a parabola in Ta. Therefore, it suffices to show that this condition holds
for both Ta = to and Ty = & = Ltz

If Ta = to, we get
(tl +t2)27

where we use that $t3+1t3 > 1(t1+12) since (t1—t2)* = t3-+13—2t1t5 > 0.

IfTh = %,W@ get

2
t1 + 1o 12 1/t +1ts 1 9
t e >t +t
2( 2 >+21 2( 2 )-4(1+2)

ttt 1, 1
<:>t2( ! 5 2>+2t§—8(t1+t2)22

1
=t 4ty — 1(t1 +t9)2 >

1, 1, 1 1, 1,
<:>Zt1+1t2+t1t27§t1t22itltg <~ Zt1+1t220

In an optimal solution visits are thus equally spread. We can write the benefit

function in terms of the budget spend, x, as follows:

M cM 5TRchr  0<a< %
b (JC) =F [b] I B oM oM M

5.B Mathematical Proofs

Theorem B1. Regions that get the same type of investment (mobile lab visits or

investment in local health facilities), get the same amount of budget.

Proof. Consider an optimal solution z7,...,x},, where there exist regions ¢ and j

»mo
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such that zj < zj, and both regions ¢ and j receive the same type of investment.

Since both benefit functions are concave, we have:
264 (7) > b4 (a3) + b2 (a})  for T=-L1_2

This creates a contradiction, which implies that the optimal solution cannot have
two regions with unequal budget that receive the same type of investment. Hence,

the budget must be the same for regions receiving the same type of investment. W

Theorem B2. Let hy : R — R and hy : R — R be convex, decreasing, and differen-
tiable functions. Let n,m € N such that n < m. Furthermore, let b > 0 be such that
h1(b) = ha(b) and let 0 < a < b be such that h)(a) = h4H(b). Consider the following
budget allocation problem:

min nhi(z1) + (m — n)ha(z2)
s.t. ney + (m—n)ze < B
a<xz <b

b<azy<ec.
Then,

(a) if B < na+ (m —n)b, there exists no feasible budget allocation.

(b) if B =mna+ (m —n)b, the only feasible, and hence optimal, solution is x1 = a

and xo = b.
(¢) if B> na+ (m —n)b, then either of the following cases occur:
(c.1) z1 € (a,b) and x4 € (b,c) such that B = nx1 + (m — n)zy and hi(x1) =
hb(z2).
(c.2) 1 =b and x2 € (b, c) such that B = nxz1+ (m—n)za and by (b) < h(x2).
(c.8) z1 € (a,b) and xo2 = ¢ such that B = nxy + (m—mn)xs and h(x1) > hb(c).
(c.4) 1 =b and 5 = c.

Proof. To prove Theorem B2, we prove each of the cases, displayed in Figure 5.9,

separately:

(a) As 1 > a and x2 > b, the minimum required budget is equal to na+ (m —n)b.

Hence, if B < na + (m — n)b, there exists no feasible solution.
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T2
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Figure 5.9: Overview of the cases of Theorem B2. The grey area shows the feasible range
for z1 and x2. The black lines correspond to different budget constraints. A feasible budget
allocation lies within the grey area, on or below the black line.

(b)

()

As x1 > a and z3 > b, if B = na + (m — n)b, the only feasible, and hence

optimal, solution is 1 = a and x5 = b.

Both hi(z) and ho(x) are convex functions, hence the objective is convex.
Furthermore, the constraints in the problem are affine. Therefore, the problem
is convex. Furthermore, as B > na + (m — n)b, there exists an € > 0 such that
x1 = a+ € and xo = b+ € is feasible with nx; + (m —n)xs < B, a < z1 < b,
and b < x2 < c¢. Hence, Slater’s conditions hold. Therefore, any point that
satisfies the Karush-Kuhn-Tucker (KKT) conditions is an optimal solution.
We therefore first define the KKT conditions, which are then used to prove

optimality for each of the cases and argue why another solution is not possible.
The Lagrangian function for this problem is
E(Il,l‘g, /\17 ey /\5) = nhl(zl) + (m - n)hg(l‘g)

+ A(nzy + (m —n)ze — B) + Aa(a — x1) + Asz(z1 — b)
+ )\4(1) - 56‘2) + )\5(1‘2 - C).

Thus, for any optimal solution, there exists A1,..., A5 € R such that

nhi(z1) + Mn— A2+ A3 =0
(m —n)hy(x2) + (m —n)A\1 —Ag+ X5 =0

nxy + (m—n)rxy < B
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We now consider the different cases:

(c.1)

(c.2)

If 21 € (a,b) and x5 € (b, ¢), then the KKT conditions hold for Ay = --- =
As =0, and Ay = —hf (1) = h(x2) such that nzy + (m — n)xe = B an
hi(z1) = hy(z2).

If 1 = b and 25 € (b,¢), then the KKT conditions hold for Ay = Ay =
As = 0, Ay = —hb(z2) and A3 = nhb(z2) — nhi(z1). In other words, as
A1 > 0, n1xy + noxe = B, and as A3 > 0, hll(l'l) < h/Q(SCQ)

If 1 € (a,b) and 29 = ¢, then the KKT conditions hold for Ay = A3 =
Ay =0, \y = =R} (z1) and A3 = (m — n)hi(x1) — (m — n)h5(z2). In other
words, as A\; > 0, n1x1 + noxe = B, and as A3 > 0, k) (z1) > hb(x2).

If x4 = b and x5 = ¢, then the KKT conditions hold for Ay = Ay = Ay =0,

A3 = —nh)(z1), and A5 = —(m — n)h, (7).

The remaining cases are x1 = a and/or 2o = b.

If z1 = a and x5 = b, then the KKT conditions hold for \3 = A5 = 0,
A2 = nhi(x1) + Mn and Ay = nhb(x2). As it should hold that Ay > 0
and Ay > 0, it should hold that A; > 0 because h}(z) < 0 and h5(z) < 0.
However, as B > na+ (m—mn)b, this provides a contradiction as we require
A1 =0.

If 1 = a and 23 € (b,¢), then the KKT conditions hold for A3 = Ay =
As = 0, A\ = —hh(z2), and Ay = nhf(x1) — nhh(z2). As Ay > 0, this
implies that hf(x1) > h4(z2). However, as hi(a) = h5(b) and ha(z) has
diminishing marginal returns by assumption, h(a) < hb(xs) for o > b

and we have a contradiction.
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o If 21 € (a,b) and x5 = b, then the KKT conditions hold for Ay = A3 =
As = 0, Ay = =hfi(z1), and Ay = (m — n)hb(z2) — (m — n)hi(x1). As
Aq > 0, this implies that b} (z1) < h4(x2). However, as h}(a) = h4(b) and
hi(z) has diminishing marginal returns by assumption, b} (z1) < h%(b) for

x1 > a and we have a contradiction.
[ ]

Theorem 5.1. Given the number of regions that receive mobile lab visits, n, the
budget is allocated such that either the marginal benefit of additional investment is
equal for both investment types (b (2M) = bF (xF)), or such that the budget for at
least one investment type is allocated to a level where the benefit functions intersect
(M e STval e ST).

Proof. Consider the minimisation version of the problem, i.e., minimise —nb™ (zM)—
(m — n)bF (z). Since b (z) and bF (x) are concave, increasing, and differentiable,
the functions —nb™ (z) and —(m—n)b¥ (z) are convex, decreasing, and differentiable.
By applying Theorem B2 from Appendix 5.B, it follows that the budget allocation
will be such that either the marginal benefit of spending an additional euro is the
same across all investment types, or at least one of the budget values will be set at

an intersection point between the two benefit functions. |

Theorem B3. If the benefit of investment in local health facilities is defined by
a logarithmic function, i.e., b (x) = dIn(x + 1) for some d > 0, then the benefit

functions of investing in local health facilities and mobile labs intersect at most twice.

Proof. Tt holds that both benefit functions are concave and that 6™ (0) = b¥'(0) = 0.
Furthermore, by our assumptions, it must hold that ™ (C™) < b'(CM).

For the benefit of mobile lab visits the marginal benefit is defined as

d 1p 1 gcp<cC™

Moy _ ) 2tAacH N

%b (1‘)— oM oM M
brel KSZSO )

where it holds that %TAC% > % for any = > %f
For the benefit of investment in local health facilities the marginal benefit is
defined as

d d
—bF(z) = .
dx z+1

First, we determine how many times the functions can intersect. For the range

x € [O, %], bM(x) is a straight line. Therefore, the benefit functions intersect
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at most twice. Since b (0) = b¥'(0), there is at most one intersection point on
M
T e (O < }

N
For the range z € [CT—:, CM}, it holds that
cM d
—pF =z =7
(2) = 202 xr+1
2dz? = CM(x +1)

Mi\/W:CM(lj:\/l—ch)
4d 4d '

d
b (2) =

J

< Tr=

Since d > 0 and CM™ > 0, it holds that /1 + CM > 1. This implies that z =

(1o /1 )

yr < 0 and that this point is outside the range x € [ ,CM } There-
fore, the slopes of the benefit functions are equal on at most one point in the range
T € [%M cM ] Therefore, there are at most two intersection points on the range
x € [ ,CM }

We can identify the following three cases:

o BM(z) > bF (z) for all = € [0, %}

Since M (CM) < b¥'(CM), the benefit functions must intersect exactly once on
cM M
the range = € {K,C }
CM
o WM(z) < bF(z) forall z € {0, ﬁ}

Since it must hold that 6™ (CM) < bF(CM), the function must either never

intersect or intersect exactly twice on the range = € [CT—f, cM } .

o bM(x) < bF(z) for all x € [0,z] and bM (x) > bF (z) for all x € [@ %}

Since it must hold that b (CM) < b¥(CM), the function must intersect one

more time on the range x € {CM CM}

Hence, given a logarithmic benefit function for investment in local health facilities,

the benefit functions intersect at most twice. |

Corollary 5.1. If the benefit function for investment in local health facilities is
logarithmic, i.e., b¥ (x) = dIn (x + 1), mobile labs can reduce the outbreak detection

time by at least 10% compared to investments in local health facilities alone.
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Proof. By Theorem B3, it follows that a logarithmic benefit function intersects at
most twice. Consider the case where they intersect once, i.e., b (z) = dIn (z + 1)

with d < %Tiﬁ. Then, by Theorem B3, it holds that

WMz) =<z

b(z) = max {b" (2),b" ()} = b () -

_ oM
for z € (ﬁ’ C) .
The optimality gap, i.e., the additional reduction that can be obtained by de-

ploying mobile labs instead of investing in local health facilities, is equal to

bM (z) — bF (2)
b* (x)

Since b (x) > b¥(x) and %bM(x) =112 5 > dibF(x) for all z € [0, %], it

1
2
follows that max,cp,c {b™ (z) — b (x)} > oM (;,—JZ) — bt (%) Therefore,

M\ _ 1F bMLM_bFﬂ bMﬂ_bFﬂ
e MOV (TZF)<CTJW>(TA)> (ZL)@M)(TA)

Ta

By using a Taylor expansion, 3t € (0,1) such that b¥'(z) = b¥(0) + z-Lb"(0) +

%xQ%bF(m). Therefore,

1 d 1 1 1 1 1 22
br(2)=do— 22— cdfe—2?— ) < i (o).
(@) =dv = 52" Gy < (“”” 2" (1‘—1—1)2) Syraem \" T re

cM cM 1 1 1 cM 1
Atz = Ta we thus have bF (ﬁ) < §TA — ZOMW and bM (ﬁ) = iTA’
Ta

which gives

M(CcM\ _F(cM TN —ATh + 1CM — 1
M (z) — bF () _ 0 (ﬁ) b (ﬁ) 2 2 T (¢ )T
max = > > 1
2€[0,C] b (x) pM (CT7M> 5TA
A
10M 1
(&) e
s T (g )
A

This expression is positive on [0, C] with a maximum at % = 1 where the additional
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time reduction is at least 12.5%. We find that for % € (0.056,17.94), it holds

that %%@ > 10%. Hence, for a wide range of values of C™ and Ta, the
N
additional time reduction is at least 10%. |

Corollary 5.3. When regions differ in the current quality of local health facilities,
inverse inequality can arise, where regions with currently a higher detection time have

a significantly lower detection time in the optimal solution.

Proof. Consider assigning mobile lab visits to region with different quality local
health facilities, and let the regions be sorted such that Tio > Toa > -+ > Tha-
Let i and j be such that T;a > Tja, i.e., region ¢ has lower quality local health
facilities and therefore a larger detection time. Region j will not be assigned budget
until %bi(m‘i) = d%bj(O) = %T]‘Qaﬁ' This holds for z; = % for which b; (%—Z) =
Tin — %TjA. The detection time for region ¢ is then equal to

TF —Tia + 5Ta = TF = (TF = TV) 4 5 (TF = 1) = 3 (TF + 7).
Region j has a detection time of TjF , and since TM < TjF by definition, the detection
time of region i is smaller than the detection time of region j.

We consider a solution equitable when the difference in the detection time is at
most equal to the current difference in the detection time. Since the current difference
is equal to T — TjF , inverse inequality arises when TjF — % (TJF +TM ) >TF - TjF ,
i.e., when TM < 3TJF —2TF. |

(2

5.C SEIR Model

The SEIR model is an extension of the SIR model used to model exposure to a
disease before someone is infectious. Let S be the fraction of the population that is
susceptible, E the fraction of the population that is exposed to the disease, but not
yet infectious, I the fraction of the population that is infectious, and R the fraction
of the population that is recovered. Let [y be the transmission rate of the disease, a
the rate of transition from being exposed to being infectious (1/« is the incubation
time), and p the rate of recovery (1/p is the infectious period). Then, we can define
the SEIR model as follows:

ds
o~ oSt
E
df = B()SI —aF

dt
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When a pre-defined threshold for the number of positive tests is reached, (non-
pharmaceutical) preventive measures are imposed. These reduce the transmission
rate By to 81 (with a delay).

To find the detection time, we determine the number of positive tests each day
using a binomial distribution. In other words, we randomly determine the number
of successes given a number of trials (tests) and a probability p (the probability that
someone is positive). We assume that people with symptoms, the infectious popu-
lation I, are more likely to get tested. Furthermore, we assume that, since testing
capacity is very limited and many people will not know they have been infected, the
recovered population might also be tested. We define the probability that someone
who is tested is positive as

E I
p = P(positive | tested) = ST E _—:: mI R
m

where m is a multiplier denoting how much more likely someone with symptoms is

to get tested.

Table 5.2 shows the data used in the base case, which we use in our main results.
We vary the parameters to analyse the effect of our parameters on our results. Using
the parameters of Table 5.2, we model the spread of the disease using the SEIR model.
Without testing, we see that almost everyone gets infected (Figure 5.10a). When
testing is done by the local health facility, the disease is identified after approximately
54 days. This reduces the transmission rate after 61 days, which is shown in the S
and F curves. This reduces the fraction of the population that gets infected from
98% to 86%, a reduction of more than 4500 people. When testing is done by a mobile
lab, the disease is identified after approximately 23 days. Since measures are imposed
after 30 days when the exposed and infectious population are still quite small, the
disease is prevented from spreading too much. The total fraction of the population

that gets infected is 6.4% in this case, a reduction of almost 35000 people.
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Figure 5.10: Evolution of the spread of the disease over time with and without testing.
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Table 5.2: Parameters used to model the spread of COVID and determining the number
of positive tests per day by health facilities (HF) or mobile labs (ML) for the base case.

Parameter  Value Description Note
e 0.25 Rate of transitioning from E to I Incubation time is 1/a = 4 clays1
" 0.2 Recovery rate Infectious period is 1/u =5 days!
Ro 3.77  Basic reproduction rate (3/pu) Estimated with a 90% confidence interval
of [3.49, 4.02]*
Bo 0.754 Rate of transmission Calculated from estimated Rgz
B1 0.126 Rate of transmission after measures Based on a 82% reduction in the reproduc-
tion rate®
N 38000 Population size Avg. number of monitored households X avg.
household size®'®
eo 1 Initial number of exposed people
T 100  Threshold for the number of infected people
8 7  Days until preventive measures are effective
M 40  Testing capacity per day of the ML Avg. number of patients reached per day
during the pilot®
aM 0 Days to get test results of a ML Equal to the turnaround time®
m™M 1000  Multiplier for determining p for ML Due to the mobility, more targeted tests can
be done
F 10  Testing capacity per day of a HF Reflects lower access and lower quality tests
compared to ML
ar 7  Days to get test results for a HF Based on the turnaround time® and delay in
delivering samples
mt 100 Multiplier for determining p for HF Due to limited access, samples are less likely
from I
L (Iyaniwura et al., 2022)
2

: follows from Ry = g (Van den Driessche, 2017)
: (Flaxman et al., 2020)

(Ministry of Health, Kenya, n.d.)
: (Statista, 2020)

(Praesens Care, n.d.)

> oo ow

5.D Sensitivity Analysis Numerical Results - Iden-

tical Regions

The results obtained in Section 5.4 are for the base case presented in Appendix 5.C
and for a benefit function for investment of local health facilities with d = 15, i.e.,
b¥(x) = 15In (z + 1). We now present a sensitivity analysis on the parameter d used
in the benefit function for investment in local health facilities and the parameters
from the SEIR model that affect the potential time reduction of mobile labs, Ta.

First, we consider the effect of the parameter d. Figure 5.11 shows the value of
mobile labs for different values of d. We see that, regardless of the value of d, mobile
labs add most value when the budget is tight. When d is small, i.e., when a lot of
budget is required to reduce the detection time, we can attain time reductions that
are approximately twice as high compared to only investing in local health facilities.
When d is large, i.e., small investments in local health facilities result in significant
reductions in the detection time, the value of mobile labs is smaller.

Second, we consider the effect of the transmission rate. In the base case, we

used a transmission rate of Sy = 0.754, which was determined from an estimated
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Figure 5.11: The value of mobile labs, the additional reduction in the detection time we
can achieve using mobile labs, for d € [10, 20].

basic reproduction rate Ry = 3.77 and a recovery rate u = 0.2 (Iyaniwura et al.,
2022), using that Ry = g (Van den Driessche, 2017). Iyaniwura et al. (2022) find a
90% confidence interval for the basic reproduction rate in Kenya of [3.49,4.02]. We
therefore consider the case with S min = 0.698 and g maez = 0.804, which provides

a 90% confidence interval for the transmission rate.

Figure 5.12 shows the number of regions that receive mobile lab visits (black,
left y-axis) and the value of mobile labs (grey, right y-axis) for the three different
transmission rates. We see that mobile labs are used unless the budget is very high.
The threshold after which all budget is allocated to investments is lower for higher
transmission rates. For all transmission rates, mobile labs add most value when the
budget is small and all regions receive mobile labs. When the transmission rate
increases, the value of mobile labs decreases. This is caused by a reduction in the
potential reduction in the detection time from using mobile labs. Namely, when
the transmission rate increases, the disease spreads faster, reducing the detection
time. Since diseases spread exponentially at the onset of an outbreak (Kermack and
McKendrick, 1927), this reduces the detection time for health facilities more than for
mobile lab visits.

Third, we consider the effect of the multiplier for determining the probability
that a test is positive for the local health facilities. We assume less targeted tests
are performed when the access to local health facilities is lower. In the base case, we

used m* = 100 and m™ = 1000.

Figure 5.13 presents the number of regions that receive mobile lab visits and the
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Figure 5.12: The number of regions that receive mobile lab visits (black, left y-axis) and
the value of mobile labs (grey, left y-axis), i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities for
various transmission rates, So.

value of mobile labs for m? € {10,50,100,250}. Similar to earlier findings, mobile
labs add most value when the budget is small and they are used unless the budget is
very high. We see that mobile labs add more value when the multiplier is smaller, as
expected. This is caused by a decrease in the potential time reduction of mobile labs,
T, since health facilities have a lower detection time. For large multipliers (small
potential time reductions) the gap can become zero as is the case for mf" = 250.
In this case investment in local health facilities will dominate While there is still a
potential time reduction (T = 3.71), investment in local health facilities dominates
scheduling mobile lab visits in this case, i.e. b™(z) < b¥(z) = 15In(z + 1) for all
x € [0,CM].

Next, we consider the effect of the quality of the local health facility. Figure 5.14
shows the effect of the duration to obtain the test results, d”. In the base case, we
took df" = 7 days and now present the results for d" € {2,5,7,10,14}. A longer
duration to obtain test results increases the detection time for health facilities and
therefore increases the potential time reduction for mobile labs. Larger durations thus
result in a higher value of mobile labs. Figure 5.15 shows the effect of the testing
capacity at local health facilities, ¢’. We present the results for ¢’ € {5, 10, 15,20},
where ¢ = 10 corresponds to the base case. When local health facilities are able
to execute more tests per day, they will detect the disease earlier. We see thus that
the value of mobile labs increases when the number of tests decreases. For ¢ = 15,

we see that the number of regions that receive mobile lab visits first increases, and
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Figure 5.13: The number of regions that receive mobile lab visits (black, right y-axis) and
the value of mobile labs (grey, left y-axis), i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities.
for various multipliers for local health facilities, m®. Note that for m¥ = 250, n = 0 for all
budget levels and therefore the value of mobile labs is zero at all budget levels.

then decreases. For the corresponding benefit function for mobile lab visits, the
benefit function for investing in local health facilities is larger for both small and
large budgets and smaller for medium-sized budgets. Therefore, when the budget is
small or large, (almost) all budget is assigned to investing in local health facilities.
For a medium budget, (almost) all budget is assigned to mobile labs, resulting in an

additional reduction in the detection time of almost 6%.

Finally, we analyse the effect of 7, the detection threshold. In the base case
we assumed a threshold of 7 = 100 positive tests. Figure 5.16 presents the results
for € {50,100, 150,200,380}, where 7 = 380 corresponds to a positive test for
1% of the population. When the detection threshold increases, it takes longer to
detect the disease. We observe that this increase in detection time is larger for local
health facilities. Therefore, for increasing threshold 7, the potential time reduction
for mobile labs increases. This results in a larger value of mobile labs for larger
thresholds. For 7 = 50 positive tests, we find a value of 21%, which increases to
almost 240% for 7 = 380.
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Figure 5.14: Number of regions that receive mobile lab visits (black, left y-axis) and the
value of mobile labs (grey, right y-axis), i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities,
for various durations to obtain the test results for local health facilities, d¥'. Note that for
d¥ =2, n =0 for all budget levels and therefore the gap is zero for all budget levels.

=
[SA]
[}
)

—
[}

100

w

50

Number of regions that
receive mobile lab visits (n)
Added value of mobile labs (%

Budget (# labs)

Figure 5.15: The number of regions that receive mobile lab visits (black, left y-axis) and
the value of mobile labs (grey, right y-axis), i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities,
for various testing capacities at local health facilities, ¢F'. Note that for ¢/’ = 20, n = 0 for
all budget levels and therefore the gap is zero for all budget levels.
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Figure 5.16: The number of regions that receive mobile lab visits (black, left y-axis) and
the value of mobile labs (grey, right y-axis), i.e., the additional benefit that can be obtained
in the optimal solution compared to only considering investment in local health facilities,
for various detection thresholds, 7.

5.E Additional Numerical Results - Non-Identical

Regions

The results in Section 5.4.2 are for the base case with d = 15 where lower quality
regions have a testing duration of df = 10 days and higher quality regions have a
testing duration of df; = 7 days. We now present the results for differences in the
testing capacity (cf =5 tests versus cl; = 10 tests).

Figure 5.17 and 5.18 show the results for differences in the testing capacity. Fig-
ure 5.8 shows the percentage of the budget allocated to mobile lab visits (dotted line,
right y-axis). The solid and dashed line (left y-axis), show the expected benefit in the
optimal solution and the solution in which only investment in local health facilities
is considered. The shaded area shows the value of mobile labs, i.e., the additional
benefit in the optimal solution compared to the solution in which all budget is alloc-
ated to investment in local health facilities. A darker colour corresponds to a larger
value of mobile labs. Figure 5.18 shows the expected reduction for all regions, the
low-resource regions, and the high-resource regions. The shaded area shows the price
of fairness, i.e., the percentual difference between the optimal and equitable solution
in which identical regions receive the same budget and the difference in the detection
time between the two types off regions is at most equal to the current difference. A
darker colour corresponds to a higher price of fairness.

Similar to our findings in Section 5.4.2, we find that lower quality regions are
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Figure 5.17: The expected reduction in the detection time in the optimal solution and the
solution when all budget is invested in local health facilities (HF) (right y-axis) for cf =5
and ¢f = 10. The dotted line (left y-axis) shows the percentage of the available budget that
is allocated to mobile lab visits. The shaded area shows the value of mobile labs, i.e., the
additional benefit that can be obtained in the optimal solution compared to only considering
investment in local health facilities.

prioritised for small budget levels. Mobile labs add most value when the budget is
tight and are used unless the budget is very large. Currently, the difference in the
detection time is around 1.5 weeks. We thus observe inverse inequality for low budget
levels since the reduction in the detection time for low-resource regions surpasses 1.5
weeks before budget is allocated to high-resource regions. The price of fairness is less
than 14% for the small budget levels.

When the budget is sufficiently high to invest in the local health facilities in
some regions (for medium budget levels), investment in the local health facilities
of high-resource regions is prioritised over those in low-resource regions. While in
Section 5.4.2 we observed higher reductions in the detection time for high-resource
regions, and thus more inequity, this is not the case for this scenario. Therefore,
for medium and large budget levels, the only inequity that arises is through treating
identical regions differently. The price of fairness is thus low for medium and large
budget levels (at most 3.5%).
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Figure 5.18: The expected reduction in the detection time for all regions, the low-resource
regions, and the high-resource regions for the base case with ¢f = 5 and 55 = 10. The
shaded area shows the price of fairness, i.e., the percentual difference between the optimal

and equitable expected benefit.
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Conclusion and future

research

In this thesis, we considered optimisation problems with applications in military
and humanitarian logistics. These problems often differ in the objective and/or
requirements compared to related problems in the private sector. Therefore, problems
with applications in military and humanitarian logistics require tailored approaches
as solution approaches in the private sector can usually not be (directly) applied.
In this chapter, we present the main findings of this thesis. Then, we discuss the

practical implications and ideas for future research.

6.1 Main Findings

In Chapter 2, we considered the construction of schedules for the Ship-to-Shore Prob-
lem. In this problem, resources have to be transported from large amphibious warfare
ships to the shore, using smaller ships and helicopters, called connectors. The aim is
to minimise the time required to transport all resources, while adhering to various re-
quirements. We proved that this problem is NP-hard and we formulated the problem
such that coordination between the delivery of complementary resources can be im-
posed, e.g., to ensure that personnel and their vehicles are delivered closely after each
other. We presented two solution approaches, an exact and a heuristic method that
mimics current practice. To evaluate their performance, we conducted experiments
on both real-world and artificial instances, considering different practical constraints.

Our results demonstrated that the heuristic method performed particularly well on

161
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instances with coordination requirements, which are common in practice due to the
need for synchronisation in the delivery of resources. For most real-world instances,
the heuristic produced solutions that were optimal, as confirmed by the exact method.
In cases where significant improvements were possible, the exact method provided

these within a reasonable time.

In Chapter 3, we considered the evaluation of schedules constructed for the Ship-
to-Shore Problem such as those of Chapter 2. These schedules are constructed using
deterministic parameters and might therefore not be robust to delays. On the other
hand, the schedules constructed in Chapter 2 are made using discrete time periods
which can result in room in the schedule to capture delays. We developed a simulation
model that considers uncertainty in the speed of connectors, the (un)loading times
of connectors, and changes in the weather conditions compared to the predictions.
In this simulation model, the schedule is followed as closely as possible, as is done
in practice. We analysed the effect of uncertainty on the performance of a schedule
and found that significant delays can be incurred. We constructed schedules using
more conservative parameters for the speed and (un)loading times of the connectors.
We found that using a more conservative speed had an insignificant or even negative
effect on the performance of the schedule. Namely, small reductions in the speed
can result in the same schedule due to the discretisation resulting in an insignificant
effect. Large reductions in the speed can result in a full additional time period that is
scheduled, resulting in a negative effect as the additional room in the schedule is too
large. Using more conservative (un)loading times, which were linked with the time
period length, could however improve the realised makespan. Finally, we analysed
the effect of rigidity in the execution of the schedule and found that being a bit
less rigid in allowing connectors to depart ahead of time, can significantly reduce
the realised makespan. This can however come at the risk of violating requirements

regarding the coordinated delivery of resources.

In Chapter 4, we formally defined the Generalised Capacitated Resupply Prob-
lem in which we aim to find the minimum number of vehicles required to resupply
locations with a given capacity, periodic demand, and resupply time. We introduced
different variants of the problem based on the homogeneity or heterogeneity of the
input parameters, and proved the problem to be NP-hard. For three of the variants,
we provide an inapproximability result, i.e., we provide a conditional lower bound
on the approximation guarantee. We presented different policies that can be used
to find a feasible schedule and gave corresponding approximation guarantees on the

number of vehicles used in these schedules. When the locations are homogeneous in



Chapter 6 163

all parameters — capacity, demand rate, and resupply time — we present a policy that
can solve the problem to optimality, 7.e., that results in a schedule using the optimal
number of vehicles. When only the resupply times are homogeneous, our policy at-
tains the lower bound. For instances with homogeneous capacities and demand rates,
we present a policy with a constant-factor approximation, i.e., the resulting number
of vehicles at most a multiple of the lower bound. For the general problem in which
all parameters are heterogeneous, we present an additive approximation policy. The
problem is a generalisation of the Windows Scheduling Problem. Therefore, a nat-
ural thing would be to reduce an instance to an instance of the Windows Scheduling
Problem and use an approximation algorithm for this problem. However, this reduces
the feasible region as a more strict deadline would be imposed on the period during
which a location must be visited. The price of imposing this stricter deadline is an
open question.

In Chapter 5, we analysed the value of mobile labs in improving surveillance of
infectious diseases in low- and middle-income countries. We formulated a budget
allocation problem, where the budget is allocated to different regions that can either
use it to invest in their local health facilities or in deploying mobile labs. The aim
is to maximise the expected reduction in the detection time, which allows for impos-
ing preventive measures earlier, reducing the impact of an outbreak. We also dis-
cussed potential equity concerns, which are important in allocating resources in public
health. We analysed the problem both analytically and numerically for identical re-
gions and for regions that differ in the current quality of their local health facilities.
We found that for a tight budget, mobile labs can add significant value. Inequity
can arise in different forms. Even when regions are identical, they can be treated
differently as some receive budget to invest in their local health facilities and others
to deploy mobile labs, resulting in different detection times. When regions differ in
the current quality of their local health facilities, we found that inverse inequality can
arise. Namely, regions that currently have lower quality local health facilities and
thus higher detection times can be overcompensated for this lower quality, resulting
in lower detection times. When we considered equitable budget allocations, we found

that mobile labs can still add significant value for tight budgets.

6.2 Practical Implications

Chapter 2 shows that for practical instances of the Ship-to-Shore Problem, where

complementary resources require coordinated delivery, current practices captured by
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our heuristic may often perform well. Our analysis shows that using the branch-
and-price algorithm can provide significant improvements, especially for scenarios
with minimal coordination requirements. We suggest to use the heuristic method
when time is limited, as this often finds good solutions for practical instances. Since
the branch-and-price algorithm is often able to find improvement relatively fast, we
recommend using it to help identify quick improvements to the schedule, as long as

time allows.

During the execution of a ship-to-shore schedule, delays can propagate through
the schedule. If coordination between the deliveries is not critical, we recommend
being less rigid in the execution of the schedule by allowing connectors to depart up to
ten minutes ahead of schedule. This small adjustment has been shown to consistently
reduce the realised makespan, providing more consistent reductions compared to
using more conservative parameters. When the coordination between deliveries is
critical and violations should be avoided as much as possible, we recommend using

slightly longer time periods.

A concern for using dispersed operations is whether there is sufficient logistical
capacity to sustain these dispersed units. Our policies for the Generalised Capa-
citated Resupply Problem in Chapter 4, although it is a simplified version of the
actual resupply operation, provide a first step in assessing the operational feasibility
of dispersed operations. These policies can be used to determine a feasible number of
vehicles required to sustain a given operation. Furthermore, additional insights can
be gained such as the impact of varying the number of dispersed locations or vehicle

payload capacities.

In Chapter 5, we analysed the value of mobile labs and discussed potential equity
concerns. Our findings indicate that mobile labs provide significant values, partic-
ularly when the budget is limited and the local health facilities are of low quality.
However, when the budget is large, it is better to invest in the local health facilities.
We therefore recommend considering mobile labs when the available budget is tight
and the current quality of the local health facilities is low. We found that equity con-
cerns can exist in the optimal solution. Namely, even when regions are identical, they
may receive different budgets in the optimal budget allocation, creating differences
in their detection times. When regions are different, either the low or high resource
regions are prioritised, depending on the available budget. When the low resource
regions are prioritised, inverse inequality can arise, where the low resource regions
have lower detection times than the high resource regions. When the high resource

regions are prioritised, the difference between the regions becomes larger. Inequit-
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able budget allocations may lack the necessary support from local stakeholders that
prevent them from being implemented. We found that the price of fairness, i.e., the
percentage difference between the optimal and equitable solution, is relatively low.
Therefore, we recommend imposing equity constraints in the problem to ensure a fair

allocation.

6.3 Future Research

The problems presented in this thesis offer several directions for future research.

Our simple greedy heuristic of Chapter 2 performs well in constrained instances
for the Ship-to-Shore Problem. However, the exact method is able to find significant
improvements for some instances. For such instances where the heuristic does not
perform well, it would be interesting to develop an improved heuristic, such as a
local search on the solution of the heuristic to find improvements faster compared
to our exact approach. In the current approach, we set the time period length as
the maximum of all (un)loading times, such that each connector can be (un)loaded
in one time period. In scenarios where the travel times are relatively short, it could
be useful to consider shorter time period lengths. This requires adjustments to the
model to ensure connectors remain long enough at the short or sea base to (un)load.

In Chapter 3, we analysed the effect of uncertainty in the weather conditions,
speeds, and (un)loading times and found that these can significantly effect the realised
makespan. Instead of using less optimistic parameters, as evaluated in Chapter 3, a
more robust schedule could be made by considering the uncertainty in the parameters
in the construction of the schedule.

In Chapter 4, we studied the Generalised Capacitated Resupply Problem (GCRP)
in which locations with a given capacity, demand rate, and resupply time have to be
sustained using vehicles with a given payload. We present an additive approximation
policy for instances in which all parameters are heterogeneous, however, we aim to
find a constant-factor approximation. A related problem for which a constant-factor
approximation algorithm exist, is the Windows Scheduling Problem. In this problem,
the implicit assumption is made that the capacity is smaller than the payload of the
vehicles, such that each time a location is visited, its inventory is restocked to its full
capacity. We can therefore reduce an instance of GCRP to an instance of Windows
Scheduling and use a constant-factor approximation for this problem. However, this
requires imposing more strict deadlines on the visit frequency of the locations and it

is unknown what the price of this is.
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In Chapter 5, we used some assumptions regarding the functional form of the
benefit function for investments in local health facilities. While we have some jus-
tification for choosing a concave benefit function, it would be valuable to (empiric-
ally) investigate the relationship between investments and the detection time of local
health facilities. Additionally, it would be valuable to identify which regional char-
acteristics affect the detection time. We considered regions that differ in the current
quality of their health facilities based on the testing capacity or the testing duration,
but other differences can have an influence as well. Finally, we consider a one-time
investment to improve the surveillance as a first step in analysing the value of mobile
labs while considering the alternative of investing in local health facilities. In prac-
tice, budget may become available over multiple time periods, which may affect the

decision on how to allocate the budget.
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Summary

Military and humanitarian logistics present unique challenges that distinguish them
from logistical problems in the private sector. While logistical challenges in the
private sector often focus on cost-minimisation or profit-maximisation, military and
humanitarian logistics focus on the effective and efficient use of scarce resources,
often in unpredictable and challenging environments. The problems often involve
unique constraints that are not present in other domains, such as the need for co-
ordination and equity. Consequently, military and humanitarian logistics problems
require tailored solution approaches. In this thesis, we study various military and
humanitarian optimisation problems.

In Chapter 2 and 3, we consider the Ship-to-Shore Problem. In this problem, re-
sources must be transported from large amphibious warfare ships to the shore using
smaller ships and helicopters, called connectors. The aim is to transport the resources
as soon as possible, such that they can be used on land. A transportation sched-
ule must comply with various constraints, such as coordination of complementary
resources.

In Chapter 2, we present two solution approaches to construct a schedule for this
problem, an exact approach and a simple heuristic that mimics current practice. We
analyse the performance of these models on both real-world and artificial instances.
Our findings show that the simple greedy heuristic performs well on the practical
instances involving significant coordination requirements. For less constrained in-
stances, the exact algorithm is able to find significant improvements in reasonable
time. This suggests that, in practice, the greedy heuristic can be used and can be
supported by the exact branch-and-price algorithm when time allows.

In Chapter 3, we simulate the execution of deterministically constructed schedules
for the Ship-to-Shore Problem. We consider uncertainty in the (un)loading times and
travel times of the connectors and follow the schedule as closely as possible to replicate

current practice. We analyse the effect of using more conservative parameters for the
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construction of a schedule as well as the effect of being less rigid in the execution of
a schedule. We find that being less rigid in the execution significantly improves the
realised makespan. Even when connectors are allowed to depart ten minutes ahead of
time, significantly better results can be achieved. However, this improvement comes
at the cost of potentially violating coordination requirements.

In Chapter 4, we consider the Generalised Capacitated Resupply Problem. In
this problem, a set of dispersedly located units with a given periodic demand rate,
capacity, and resupply time must be sustained, i.e., they must be resupplied on
time such that they do not run out of stock. The aim is to find the minimum
number of vehicles with a given payload required to sustain all locations. We present
policies with corresponding approximation ratios, i.e., guarantees on the quality of
the solution, that can be used to find a feasible resupply schedule for different versions
of the problem.

In Chapter 5, we analyse the value of mobile laboratories (labs) for the surveillance
of infectious diseases in low- and middle-income countries compared to investments
in local health facilities. Mobile labs are vans equipped with high-quality diagnostic
equipment designed to perform on the spot testing of infectious diseases. Due to their
mobility, they can be deployed at different locations, temporarily improving disease
surveillance. We consider a budget allocation problem where a limited budget must
be allocated to different regions, either for investments in local health facilities or for
deploying mobile labs. We find that mobile labs can add significant value, especially
when the budget is limited and the regions have low-quality local health facilities.

We evaluate equity concerns and find that the price of fairness is relatively low.



Nederlandse Samenvatting

(Summary in Dutch)

Militaire en humanitaire logistiek brengen unieke uitdagingen met zich mee die zich
onderscheiden van logistieke problemen in de private sector. Waar logistieke vraag-
stukken in de private sector vaak gericht zijn op kostenminimalisatie of winstmaxima-
lisatie, draait het in militaire en humanitaire logistiek om het effectieve en efficiénte
gebruik van schaarse middelen, vaak in onvoorspelbare en veeleisende omgevingen.
Deze problemen gaan gepaard met specifieke randvoorwaarden die in andere domei-
nen afwezig zijn, zoals de noodzaak tot cotrdinatie en een eerlijk verdeling van mid-
delen. Hierdoor vereisen militaire en humanitaire logistieke vraagstukken aangepaste
oplossingsmethoden. In dit proefschrift bestuderen we verschillende optimalisatiepro-

blemen binnen militaire en humanitaire logistiek.

In hoofdstuk 2 en 3 behandelen we het Schip-tot-Strand Probleem (Ship-to-Shore
Problem). Dit probleem betreft het transport van middelen vanaf grote amfibische
transportschepen naar de kust met behulp van kleinere schepen en helikopters, ook
wel connectoren genoemd. Het doel is om deze middelen zo snel mogelijk aan land
te brengen, zodat ze daar kunnen worden ingezet. De planning moet voldoen aan

verschillende voorwaarden, waaronder de codrdinatie van complementaire middelen.

In hoofdstuk 2 presenteren we twee oplossingsmethoden voor dit planningspro-
bleem, een exacte methode en een eenvoudige heuristiek die de huidige praktijk na-
bootst. We analyseren de prestaties van deze methoden op zowel instanties uit de
praktijk als op artificiéle instanties. Onze bevindingen laten zien dat de eenvoudige
heuristiek goed presteert op instanties uit de prakrijk waarin veel coérdinatie vereist
is. Voor minder beperkende instanties kan het exacte algoritme binnen redelijke tijd
significante verbeteringen opleveren. Dit suggereert dat in de praktijk de heuristiek

effectief ingezet kan worden en kan worden ondersteund door de exacte methode
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wanneer de beschikbare tijd dit toelaat.

In hoofdstuk 3 simuleren we de uitvoering van deterministisch geconstrueerde
planningen voor het Schip-tot-Strand Probleem. Hierbij houden we rekening met on-
zekerheid in de laad- en lostijden en de reistijden van de connectoren, terwijl we het
oorspronkelijke plan zo nauwkeurig mogelijk volgen om de praktijk realistisch te mo-
delleren. We analyseren zowel het effect van de parameters bij het opstellen van een
planning als de impact van een flexibelere uitvoering ervan. De resultaten laten zien
dat een minder rigide uitvoering van een planning de duur van de transportoperatie
aanzienlijk kan verkorten. Zelfs het toestaan van een vertrek van connectoren tot
tien minuten eerder kan al tot substantiéle verbeteringen leiden. Deze efficiéntiewinst
gaat echter gepaard met het risico dat bepaalde randvoorwaarden met betrekking tot
de coordinatie van middelen worden geschonden.

In hoofdstuk 4 behandelen we het Gegeneraliseerde Capaciteitsbegrensde Bevoor-
radingsprobleem (Generalised Capacitated Resupply Problem). Dit probleem richt
zich op het bevoorraden van verspreid geplaatste eenheden met een bepaalde peri-
odieke vraag, capaciteit en bevoorradingstijd. Dit betekent dat elke locatie tijdig
bevoorraad moet worden om te voorkomen dat voorraden opraken. Het doel is om
het minimale aantal voertuigen met een gegeven laadvermogen te bepalen waarmee
de locaties kunnen worden onderhouden. We presenteren regimes met bijbehorende
benaderingsratio’s, d.w.z., garanties op de kwaliteit van de oplossing, die kunnen wor-
den gebruikt om een haalbare bevoorradingsplanning op te stellen voor verschillende
varianten van het probleem.

In Hoofdstuk 5 analyseren we de waarde van mobiele laboratoria voor het mo-
nitoren van infectieziekten in lage- and middeninkomenslanden, in vergelijking met
investeringen in lokale gezondheidsfaciliteiten. Mobiele laboratoria zijn voertuigen
uitgerust met geavanceerde diagnostische apparatuur waarmee ter plaatse testen op
infectieziekten kunnen worden uitgevoerd. Dankzij hun mobiliteit kunnen ze op ver-
schillende locaties worden ingezet, wat een tijdelijke verbetering van het toezicht
op infectieziekten mogelijk maakt. We bestuderen een budgettoewijzingsprobleem
waarin een beperkt budget moet worden verdeeld over verschillende regio’s, hetzij
voor investeringen in lokale gezondheidszorg, hetzij voor de inzet van mobiele la-
boratoria. Onze bevindingen tonen aan dat mobiele laboratoria van grote waarde
kunnen zijn, met name wanneer het budget zeer beperkt is en de bestaande ge-
zondheidszorginfrastructuur van lage kwaliteit is. Daarnaast evalueren we mogelijke
zorgen over de eerlijkheid van een budgettoewijzing en concluderen we dat de kosten

van het vereisen van een eerlijkere verdeling van het budget relatief laag zijn.
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Military and humanitarian logistics present unique challenges that distinguish them from logistical
problems in the private sector. While logistical challenges in the private sector often focus on
cost-minimisation or profit-maximisation, military and humanitarian logistics focus on the efficient
and effective use of scarce resources, often in unpredictable and challenging environments. The
problems often involve unique constraints that are not present in other domains, such as the need for
coordination and equity. Consequently, military and humanitarian logistics problems differ significantly
from those in the private sector, requiring tailored solution approaches.

In this thesis, we consider various military and humanitarian optimisation problems. In Chapter 2 and 3,
we consider the Ship-to-Shore Problem, in which resources have to be transported from the ship to the
shore using smaller ships and helicopters, called connectors, such that the duration of the transportation
of these resources is minimised. A feasible schedule for the Ship-to-Shore Problem has to adhere to
various constraints that require coordination between the pick-up and delivery of the resources by the
connectors. In Chapter 4, we consider the Generalised Capacitated Resupply Problem. In this problem,
locations with a given periodic demand, capacity, and resupply time have to be resupplied by vehicles
from a central depot. The aim is to determine the minimum number of required vehicles to ensure
none of the locations runs out of stock. We present simple policies with a corresponding approximation
guarantee. In Chapter 5, we analyse the value of mobile laboratories for the surveillance of infectious
diseases in low- and middle-income countries compared to investments in local health facilities. We
consider a budget allocation problem where a limited budget must be allocated to different regions,
either for investments in local health facilities or for deploying mobile laboratories. We also discuss
potential equity concerns.
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