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Distribution system operators (DSOs) often lack high-quality data on low-voltage distribution networks
(LVDNs), including the topology and the phase connection of residential customers. The phase connection
is essential for phase balancing assessment and distributed energy resources (DERs) integration. The existing
load profiles-based approaches rely on stepwise subtraction of the identified customers in a step-by-step
identification procedure, while the accuracy of each step is not guaranteed. This paper introduces a siamese
neural network model to identify single-phase connections without requiring stepwise subtraction. It comprises
self-taught learning (STT) and a phase-label identification strategy. The introduced self-taught learning enables
DSOs to train a recurrent neural network-based Siamese network (RSN) only relying on an unlabelled dataset.
Besides, the siamese network (SN) is robust to noise and fluctuations in the data to a certain extent, making
the proposed method robust to measurement errors. A Kendall correlation-based phase modification strategy
is introduced to modified phase labels with lower confidence, aiming to mitigate the accuracy loss induced
by the limited generalization of SN. The proposed approach is tested on the IEEE European low voltage test
feeder and a residential network in the Netherlands Simulation results illustrate the feasibility and robustness
of the proposed approach on incomplete datasets. The accuracy exceeded 83% and 90%, respectively, when
using datasets of less than 20 days with and without measurement errors.

1. Introduction state-of-the-art research focuses on data-driven approaches, which rely

on increasing amounts of time-series SM data and machine learning

Phase connection of customers in distribution networks (DNs) is (ML) methods. According to the utilized data, the SM data-based ap-

crucial for distribution system operators (DSOs) to perform active man-

agement, e.g., load balancing, congestion management and distributed proach could be divided into voltage-based and active power-based

energy resources (DERs) integration [1-3]. However, this informa-
tion might be incomplete due to the missed and uninformed phase
switching. Compared to three-phase customers, the large amount of
single-phase customers in LVDNs, especially in European LVDNs [4],
imposes pressure on the timely updating of phase connectivity. More-
over, the uncertainty of DERs impacts the variation of load and the
correlations between measurements, challenging the phase identifica-
tion [5,6]. Approaches relying on phasor measurement units (PMU)
might be infeasible since there is a lack of PMU in LVDNs [7]. Although
smart meters (SM) are gradually installed in LVDNSs, privacy issues
and communication errors make it hard to obtain a complete dataset
[8]. Thus, flexible phase identification approaches for single-phase
customers are needed.

Traditional approaches, such as manual phase identification, are
rarely used due to their high cost and low efficiency [9]. Instead,
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approaches. Voltage magnitude of the customers that are connected
to the same phase shows similar variations when the load changes,
indicating a higher correlation among voltage magnitude within the
same phase compared to different phases [10,11]. However, voltage
correlations on the same phase are also impacted by other factors, such
as customer electrical distance. For instance, the voltage correlation
between customers located far apart may be lower than the voltage
correlation between customers in closer proximity to each other but
connected to different phases. Meanwhile, adequate time-series voltage
datasets are not commonly available in LVDNs, which are required by
most of the approaches based on voltage [12]. Conversely, time-series

load profiles are normally recorded and stored for billing [13].
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Compared to voltage profiles, there is no strong correlation among
load profiles in the same phase since the electricity consumption pat-
terns vary across households. However, there exists a correlation be-
tween the customer and transformer data. Similarities of paired data
samples (i.e., customer data and the corresponding phase data) should
be larger than those of unpaired data samples. Thus, phase identifica-
tion using load profiles could be taken as a time-series data pairing
problem, illustrated in Fig. 1. The general process of data pairing
is summarized into four steps: (1) calculate the correlations between
households and the three phases. (2) if the highest correlation coeffi-
cient of a household is higher than the pre-set threshold, the phase label
of the household is set as the corresponding phase. (3) The dataset of
households with assigned phase labels is removed. (4) Repeat steps 2
to 3 until all the households are assigned one label. To reveal the sim-
ilarities between time-series data, feature extraction can be integrated
into the pairing strategies. Wavelet decomposition (WD) was adopted
to extract expressive features to enhance the identification accuracy
of power cable faults in [14]. Saliency analysis (SA) was integrated
to pre-process the raw time-series data, and correlation analysis was
used to determine the phase label [15]. Based on SA, the approach
in [16] integrated statistical tests to guarantee the identification accu-
racy of the data pairs with weak correlations. A clustering approach
with a high-pass filter was introduced in [13] to identify the phase
connections under random and consecutive incompleteness datasets.
The above approaches are similar to hard classification, i.e., labelling
the customers as 0/1. Besides, phase identification could be taken as a
soft classification problem. A Bayesian-based fuzzy phase identification
method was proposed to assign three probabilities to label customers,
with the sum of probabilities equalling one [4]. The common step
in the above approaches is the stepwise subtraction of the identi-
fied customers, which enhances the correlations between transformers
and the customers who are located far away from the substation.
However, the accuracy of the current step is subject to the accuracy
of the previous step, leading to error accumulation. To address this
challenge, a data-driven approach in [17] was constructed based on
a genetic algorithm and correlation analysis to identify the customer
phase under incomplete period datasets. Nevertheless, most of the
above approaches require a complete time-series dataset, and some are
sensitive to missing data points and measurement errors. [18].

Siamese network (SN) is a common structure network in meta-
learning and it is commonly used in similarity analysis of images [19]
and visual objection tracking [20]. The main advantage of SNs is that
their training does not require a large number of samples from the
same category, which alleviates the workload of collecting labelled
training datasets. Thus, SN is a promising solution for analysing the
similarity between the transformer and customer datasets. For phase
identification, there are only limited or no labelled customer datasets
for training an SN. To address this issue, self-supervised learning (SSL)
[21] and self-taught (ST) process [22] are potential solutions, originally
proposed to learn transferable and representative knowledge from un-
labelled data or the generated pseudo data. ST aims to complete the
tasks only relying on given datasets by the combination of unsupervised
and supervised learning schemes [22,23]. A deep SN was constructed
to identify the electricity theft behaviour in [24] and a robust classifica-
tion approach was proposed based on recurrent neural networks (RNN)
to identify the grid disturbances [25]. To locate the fault in DNs without
requiring real-word labelled datasets, an SN was designed based on
Transformers Neural Network (TNN) [26]. Based on a modified TNN,
an SSL-based load forecasting approach was proposed to predict the
DERs power [21]. In [27], a feature extraction strategy was integrated
into the SSL to assess the reliability of the power systems. Although SN
and ST are used to analyse time-series measurements in power systems,
they have not been used to address phase identification. Moreover,
there is no ST technique for SN training, hindering the application of
SN for the phase identification problem. It is important to highlight
that the similarity between transformer and customer data is impacted
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Fig. 1. Phase identification process: blue, orange, and red blocks represent customer
data in phases a, b, and c, respectively. Darker blocks represent transformer data. Blocks
with a red triangle indicate wrongly identified customers.

by multiple factors, including measurement errors, line loss, and the
number of customers connected to the same phase, which makes simi-
larities analysis in phase identification more complex and difficult than
that of images. Table 1 summarizes the approaches discussed in the
aforementioned papers and the proposed approach.

This paper proposes a siamese neural network model to identify the
phase of single-phase customers in LVDNs, which is not subjected to
stepwise subtraction while showing strong robustness to measurement
errors. The proposed approach consists of two stages: self-taught train-
ing (STT) and phase label identification. The first stage is composed
of pseudo-data generation, feature extraction and recurrent neural
network-based SN (RSN) training procedures, deployed to prepare the
input dataset using unlabelled SM data for training RSN. In the second
stage, a sliding window strategy is adopted to calculate the probability
phase labels by aggregating the output of the trained RSN in each win-
dow. Finally, a Kendall correlation-based phase modification strategy
is proposed to determine the final phase labels. The main contributions
of this paper are summarized as follows:

+ An RSN is constructed to analyse the similarity between high-
dimension transformer and customer load profiles, which is used
to calculate the probability of phase label by each customer. The
obtained similarity score and phase identification accuracy are
not subject to the stepwise subtraction of the identified customers.
To train the constructed RSN without requiring labelled datasets,
a self-taught training strategy is proposed. WD was first uniquely
adopted to extract features for phase identification. By leveraging
pseudo data, the STT strategy enables the trained RSN to effec-
tively calculate similarity in time-series data, even in the absence
of labels, ensuring accurate phase identification.

A Kendall correlation coefficient-based phase label modification
is introduced to determine the final phase label by modifying the
probability phase labels obtained through the trained RSN. This
step aims to mitigate the accuracy loss induced by the inherent
limitation of neural networks (e.g., limited generalization) by
revising labels with less confidence.

The remainder of this paper is organized as follows: Section 2
illustrates the framework of phase identification, the process of self-
taught and the phase identification based on the trained RSN. Sec-
tion 3 describes the case of studies and results. Section 4 presents the
conclusions.
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Nomenclature
Acronyms Pian Training dataset for RSN
LVDNs Low-voltage distribution networks Py/Py, The mth row in matrix Py /Py,
DNs Distribution networks St Dataset consists of samples with label 1
DSOs Distribution system operators E Error Matrix
DERs Distributed energy resources y Pre-set margin for calculating loss
STT Self-taught training € Threshold for Az}
SN Siamese Network 4P, /AE,, Variation of real/identified phase data
RNN Recurrent neural network p:‘/ /Efll Real/identified phase data at time ¢
RSN Recurrent neural network based SN N/N, Number of customers in LVDN/each phase
SM Smart meter N/ ﬁw Number of customers whose labels are
PMU Phasor measurement units correctly identified in three phases/each phase
SA Saliency analysis N, Number of customers whose labels are
WD Wavelet decomposition labelled as phase y
ST Self-taught
SSL Self-supervised Learning Variables
TNN Transformers Neural Network 40 Output of the RSN
Lossgy Loss of the RSN
Index/Set dr, Euclidean distance
n/N Index/set of customers in the networks between customer n and three phases
t/T Index/set of time step ’2,w [ty Aggregated/normalized distance
v/F Index/Set of the phases l;LlV Binary phase label of customer n
m/ M Index/set of the windows between customer n and three phases
1 Set of customers whose Ly’ Identified probability phase labels
labels with lower confidence L, Identified hard phase labels
T Kendall correlation coefficient
Parameters K- /K, / K;/ Kendall correlation coefficient vectors
P,/P, Data from N customers/transformer between transformer data/variation
P,./P, Reconstructed data from customers/transformer across the same phases
PPy Split data from each customer/each phase 4K, Residual vectors of Kendall correlation
PPy Split data from all customers/transformer coefficients between adjacent iterations
P/Y Input dataset/label for proposed approach Vit Maximum difference in the
Von Label of the sample in the mth window that three aggregated distances for customers n
consists of the pseudo transformer data G Vector of Az
Py and the nth customer data P,
Table 1
Summary of literature of approaches for phase identification.
Method Ref. Feature Incomplete Measurement No stepwise Probability
extraction dataset error subtraction label
[10] X v v X X
Voltage-based [11] X 4 X X X
[12] X X X v v
[41 SA v v X v
[13] High-pass filter v X X X
Active power-based [15] SA v X X X
[16] SA+selection v X X X
[17] SA v x X x
Proposed method SA+WD v v v v

2. Phase identification framework

Phase Identification based on time-series load profiles could be
taken as a data-pairing process, incorporating feature extraction, sim-
ilarity calculation, etc. The framework of the proposed phase identifi-
cation based on RSN is depicted in Fig. 2. The proposed phase identi-
fication approach consists of two stages: self-taught training (i.e., the
lower level in Fig. 2) and phase label identification (i.e., the upper level
in Fig. 2).

In the first stage, the proposed STT strategy consists of three steps:
(1) pseudo-data generation, (2) feature extraction and (3) RSN training.
The first step is to generate a pseudo transformer dataset, and the

pseudo-phase labels of customers are derived from the pseudo-phase
data to which the customer is grouped. The second step is feature
extraction based on WD, which is used to construct the input dataset
for RSN training. The third step is to train the RSN on the reconstructed
dataset. The second stage consisted of phase label estimation and
modification. The reconstructed datasets of initial SM data are first
obtained by the same process in the first stage. The phase labels of
customers are estimated by aggregating and normalizing the output
of trained RSN in each window. Finally, a phase label modification
strategy based on the Kendall correlation coefficient is introduced to
assess and obtain phase labels. Next, a detailed explanation of each of
the stages is presented.
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Fig. 2. Framework of the proposed phase identification approach: the self-taught
training process of RSN in the lower level and the phase label identification in the
upper level.

2.1. Self-taught training

The training of the RSN requires labelled datasets (i.e., the phase
labels), which are not available and are the destination of our approach.
To address this issue, a self-taught training strategy is proposed using
pseudo datasets. Fig. 3 illustrates the detailed framework of the STT
strategy, which corresponds to the lower level in Fig. 2. The STT
strategy consists of pseudo-data generation, feature extraction and RSN
training. The constructed RSN is introduced first.

2.1.1. Recurrent neural network-based siamese network

In meta learning, SN is a common structure for analysing the
similarity among datasets, including images and time-series data, which
does not depend on the amount of training samples from the same
distribution. SN is normally used in image identification, e.g., objection
detection in videos, image classification and faulty identification of
bearing. As shown in Fig. 2, the first half of the SN network is two
networks with the same structure and shared parameters, indicating
that two inputs are required for the training of SN and two feature
embeddings are obtained after the feature extraction networks. The
latter part of the SN network typically consists of a single-layer fully
connected network, providing the distance or similarity of the two
inputs.

Compared to image classification, self-correlation and dependencies
exist in time-series data. Specifically, the data at the present time
step shows a stronger correlation with the data preceding it but ex-
hibits relatively weak correlations with the data from several weeks
earlier. RNN is designed to deal with sequence datasets, which are
capable of grasping the dynamic features and transferring them to the
subsequent neurons through the recurrent neuron [28]. Thus, com-
pared to feedforward neural networks and 1-dimensional convolutional
neural networks (CNNs), RNN is more suitable for time-series data pre-
processing and is taken as the siamese part of SN in our problem.
Besides, the final layer of our network also employs a fully connected
neural network, similar to the common structure.

2.1.2. Pseudo data generation

The pseudo-data generation aims to randomly divide the customer
load profiles into three sub-datasets, which is consistent with the goal
of phase identification. Given the 7' dimension customer data P,, of N
customers (as expressed as (1)), the nth row P, , represents the data of
the nth customer. The process of pseudo-data generation is summarized
into two steps:

(1) Shuffle the time-series dataset P,, and randomly divide it into
three balance sub-datasets, which contain comparable numbers of cus-
tomers.
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(3) Pseudo label generation: based on the clustering results in step
(1), the pseudo-phase label of households is determined according to
the sub-datasets to which the customers are assigned. For example,
if the dataset of household » is put into sub-dataset A (i.e., pseudo
transformer dataset for phase A), the pseudo phase label of household
n is set as A.

2.1.3. Feature extraction

There are three sub-steps in feature extraction: normalization,
Wavelet decomposition and reconstruction. In order to alleviate the
impact of SM data amplitudes on phase identification, the dataset P,,
and P, are first normalized. Then, to reveal the similarity between
transformer and customer data, Wavelet decomposition, as an efficient
technique in time-series data analysis, is adopted to decompose the
time-series datasets P,, and P, into multiple high-frequency H and low-
frequency L components. An illustrated example of two-level Wavelet
decomposition of load profile P, is formulated in expressions (3) - (6).

Py=L, ®H, 3
Li=L,®H, 4
P=L,® H,® H, 5
PBy=I[L,, Hy, H|] (6)

where @ represents the Wavelet reconstruction. The subscripts of L
and H represent the level of Wavelet decomposition. For instance, H,;
and H, represent the high-frequency components extracted through
Wavelet decomposition at the first and second levels, respectively.

Given the extracted components, a reconstructed dataset B, is ob-
tained according to (6), which has the same dimension as the initial
data. The reconstructed datasets of the initial datasets P,, and P, are
represented by P,, and P,. In the phase identification problem, we take
the time-series SM data from the transformer and customers as the two
inputs for the RSN, respectively. To define the dimension of the input
layer of the RSN, the two time-series datasets P, and P, are split into
short-term data based on a pre-set window width w.

b, b, B
Pw+1 p-w+2 p-2w
P = v v Yl vweF %)
(M-1w (M —=1w+1 Muw
p'l’ v cee pu/ w
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where y and F represent the phase index and its set (i.e., F =
{a,b,c}), and M represents the total number of windows. The split data
Py, of customers has the same structure as P;. Parameters with star
superscripts represent the split data.

The width w of the window is taken as the input dimension of the
RSN. The vectors Py and P represent the mth row in matrix i and
Py, respectively. In our approach, the P; and P are concatenated to
construct the training datasets (i.e., each row in the matrix P in (9)).
The first and the second columns of P are the transformer and customer
data, respectively. Each row in P represents a sample, and the two
columns are used as the two inputs for SN. This dataset is unlabelled
data since it is assumed that there are no available phase labels and
pre-knowledge of the topology.

According to the obtained pseudo phase labels in Section 2.1.2,
the labels of the samples in dataset P are obtained. Specifically, if
the nth customer belongs to the sub-dataset N, (i.e., the index set of
the customers who are connected to the pseudo phase a), the sample
[P, Py, 1is taken as positive sample and its label is set as 1. The samples
[P™, Pz:’n] and [P, Pz:’n] are taken as negative samples and their labels
are set as 0.y, represents the label of the sample in the mth window
that consist of the pseudo transformer data P" and the nth customer
data P, which is defined by (10). The labels of samples, comprising
customer data belonging to pseudo phases b and ¢, are defined using
the same procedure.

- 1 1
Pa Pu,l
1 1
Pb Pu,l
Pl PI
c u,l
P=]: : ©)
M M
Pa PM,N
M M
Pb Pu,N
M M
L Pc Pu,N i

Vn e N,,Vme M
Vi & N, ¥m e M

o= L y=a
00 we{be),

where M is the index set of the windows and W is the index set of the
customers in the LVDN. Y is the dataset of labels, i.e., consisting of all
labels for each row in P.

A balanced training dataset contributes to enhancing the perfor-
mance of the training of RSN, the positive samples S* (i.e., the samples
with pseudo label 1 in P) are duplicated since the rate of negative
samples to positive samples is 2 in the dataset P. Moreover, a normally
distributed error matrix E with the same dimensions are added to
the pre-processed customer datasets, preventing identical samples and
over-fitting. Thus, the training dataset P,,,;, for training RSN is obtained

(10)

rain

by Eq. (11).
P
Ptrain = [S+] +E (11)

2.1.4. RSN training

The final step of the STT strategy is to train RSN with given hyper-
parameters, e.g., learning rate, batch size, the maximum iteration, the
optimizer, etc. The loss function of the constructed RSN is formulated
as Eq. (13) [29].
D(P}, Py = Ilfp(P)) = S (Pr)II 12)

u,n

N M
— 1 m m  pm \\2
Losssy = = 2, Dy, (D(Ry. Bl
n m
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Fig. 4. Framework of probability phase label estimation based on trained RSN.

+(L= Y ) - (max(y = D(PI, P),0)) (13)

where D(., ) represents the Euclidean distance and f,(-) represents the
output of the RSN. Hyperparameter y is the margin parameter for the
negative and positive samples.

The loss function Lossgy is used to measure the dissimilarity be-
tween the two outputs f¢(P$) and fe(Pl) for each sample and each
window m. It consists of two terms. For positive samples, the loss is
calculated as the squared Euclidean distance between the two outputs
f¢(Pv'j') and fo(P), denoted by (D(PII’,",Pu'f'n))z. This term aims to min-
imize the distance between the two columns of positive samples. For
negative samples, the loss involves the term (max(y — D(Pv'/", P, 0))2.
This term is zero when the D(P}, Pl) is larger than the margin y.
Otherwise, it is (y — D(Pu’/", P;’n))z. This term aims to enlarge the distance
between the two columns of negative positives and to enforce a distinct
separation between positive and negative samples within the feature
space. By minimizing the loss function in (13) during training, the
model aims to identify the phase labels while maintaining a mar-
gin of separation between positive and negative samples, improving
robustness in phase identification.

2.2. Phase label identification

A phase label identification strategy is proposed to identify the
phase label using the output of the trained RSN and phase-to-phase
correlation coefficients, which consists of probability phase label esti-
mation and modification. The reconstructed datasets of initial SM data
(i.e., the transformer and customer data) are first obtained by the same
process as the second step in the lower level (i.e., Section 2.1.3), which
has the same format as in (9).

2.2.1. Phase label estimation

The framework of the proposed phase label estimation based on RSN
is demonstrated in Fig. 4. The data in each window W,, are the pro-
cessed initial SM data (i.e., the high-frequency and low-frequency com-
ponents of the data). Given the trained RSN, the distance d::,'u/ between
customers and the three phases are obtained in each window. The
probability phase labels L,, of customers are calculated by aggregating
the distance in each window, as formulated in Eq. (14)—(16).

M
lﬁ,w = Z d;'fw, Vne N,Vy € F as
m

0
!
by = ;'W , VneN,VyweF (15)
0
w 'ny

Ha» b e

L,=| 1 i : (16)

INa> INp»  INe



D. Liu et al

Algorithm 1: Phase Label Identification

Input: Trained RSN Fo()s Reconstructed data P'*, Thresholds e
fori < N do
|8, = I N PY) = FoPE I
end
Calculate L, using Eq. (14) and (15)
ﬁw <« aggregation based on L,
Obtain K, by Eq. (17) to (20)
Calculate G and L;/ using L,
Obtain index vector I, based ¢ and G
forie 1 do
for j <2 do
Exchange label in the row i in L
Obtain 4K, by (20) and (24)
end
Obtain position index j*
L;,<— Update L;/ based on j*

end
Ky~ Update K,, based on L:V
Output: Phase label matrix L;/ and matrix K,

The aggregated distance 12W € [0, o] and probability phase labels
Ly € [0, 1]. The smaller the value of :2, o the greater the similarity
between the nth customer data and transformer data in phase a, and
vice versa. Thus, the position index corresponding to the minimum
value in each row of L, is considered as the index of the phase to

which the customer is most likely connected.

2.2.2. Phase label modification

As the number of correctly aggregated load profiles within the same
phase increases, the phase-to-phase correlation coefficients exhibit a
larger disparity [16]. Meanwhile, the growth rate of the correlation
coefficients between different phases with the aggregation of load
profiles is significantly lower than that of the correlation coefficients
between the same phases. Thus, a Kendall correlation coefficients-based
phase label modification strategy is introduced to evaluate the obtained
phase labels (i.e., L,) and modify the labels with lower confidence.
Specifically, the Kendall correlation coefficient is employed to evaluate
the correlation between variations in transformer data across the same
phases (i.e., the real data P, and identified data }3;,).

AP, = (D}, = p, 0y = Pye by — By V1 VW EF an
AP, =B, =Py By — oDy =By V1. VwET as)
7(4P,. AP,) = Fy(4P,.AP,), Vy €F (19)
K, = [t(4P,, AP,),1(AP,, AP,), (AP, AP,)], (20)
K} = [1(P,, Py, 7(Py, By, 7(P., P, @D

where Fw and AE‘, represent identified transformer data and the vari-
ations, respectively. The function Fg(-) represent the function that is
used to calculated Kendall correlation coefficient [30].

Meanwhile, the Kendall correlation coefficients K;, between trans-
former data across the same phases are used as the indicator to show
the credibility of the final phase labels in each phase while revealing
the recall and precision of phase identification, which is similar to the
purity in the classification field. The closer the value of z(,-) is to 1,
the higher the precision and recall rate of the phase identification.
The process of phase label identification based on RSN is shown in
Algorithm 1.

The maximum difference 4, among the three aggregated distances
[zf{a, lF),b’ z?c] of each customer is calculated by (22) and stored in vector
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Fig. 5. Topology of the 188-bus LVDN in the Netherlands.

G. Matrix L,, is converted to hard phase labels L;, by converting the
smallest value in each row to 1, the other values are replaced by 0.
The hard labels are subjected to the constraint (23). If the maximum
difference Ai, of customer i is smaller than the threshold ¢, the phase
labels of the customer i are taken as a label with lower confidence.
The indexes of these customers are stored in set Z. Then, the position
of label 1 in row i is exchanged with the other two, respectively. For
instance, [1,0,0] are replaced by [0, 1,0] and [0, 0, 1], respectively. The
residual phase-to-phase correlation coefficients before and after the
label modification are calculated by (24). If the residual 4K, of phase-
to-phase correlation is positive, the swapped position j* that leads
to the most significant increase is taken as a correlate one and the
corresponding results are taken as the modified phase label of customer
i. After modifying all phase labels with lower confidence, the phase-to-
phase correlation coefficients K, obtained under the final phase labels
are taken as the credibility of labels in each phase.

Aln = max{ |ln,a - ln,bls |la,n “lne |7

[tp = tnel}s Vne N (22)
F
Z I:W =1, VheN (23)
W
Lo By e €10,1]
_ !’
4K, =K, - K, (24)

where K l;/ represents the phase-to-phase correlation coefficients during
the phase label modification process, which will be identical to K, after
the final step.

3. Case of study

In this section, the feasibility and accuracy of the proposed phase
identification approach are verified on the IEEE 116-bus test feeder
case (denoted as LV-116) and an 188-bus LVDN (denoted as LV-188)
in the Netherlands with different types of cables. These two LVDNs
are obtained from [31] and [32]. The topology of the 188-bus LVDN
is illustrated in Fig. 5. The base three-phase voltage is 0.4 kV. Three
datasets are used:

(1) Dataset I: time-series profiles for each household with 15 min
time resolution are selected and scaled from [33].

(2) Dataset II: time-series profiles with 1 h time resolution are
collected from the SM in the Netherlands.

(3) Dataset III: a synthetic dataset is generated from a chi-square
distribution, with Gaussian errors introduced simultaneously.
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Table 2

Summary of key parameters in the proposed approach.
Parameter Values
Power factor (cos ) 0.95
WD base function (Haar wavelet) dbl
Margin parameter (y) 1
Number of neurons in hidden layer 500
Learning rate 0.005
Activation function ELU

The power factor cosf is set at 0.95 for each household, which is
a common value for customers. The time-series load profiles of trans-
formers are generated by a power flow model [34]. For the training of
RSN, the learning rate is 0.005, the maximum iteration is set at 100
and the margin parameter y is set at 1. The input dimension of the
RNN is 96 (i.e., the same as the dimension of a one-day sample with
a 15 min time resolution) and the number of neurons in the hidden
layer is 500, which is also the dimension of the fully connected layer.
The activation function is ELU. The SGD optimizer is used to train the
RSN. The Haar wavelet and the dbl base function are adopted in the
Wavelet decomposition. Besides, the threshold ¢ is set the same as the
margin parameter y (i.e., 1). These parameters were chosen as a result
of the cross-validation method, aiming to ensure the performance of
the proposed approach. For instance, the pre-set maximum iteration is
used to avoid overfitting while ensuring the accuracy of identification.
The general process of the parameter tuning is depicted as the yellow
lines in Fig. 6, and the parameters are summarized in Table 2.

3.1. Performance evaluation

Two LVDNs with similar load profiles but different topologies were
used to test the feasibility and accuracy of the proposed phase identifi-
cation strategy. The load profiles in both two LVDNs were selected and
scaled from Dataset I. This case aims to analyse the impact of topology
and power loss on the performance of our approach. Moreover, there
are measurement errors in SM data induced by SM and communication
issues, which is a common phenomenon in DNs. Thus, Gaussian noise
was generated according to the SM class and added to the initial dataset
to emulate the measurement errors. According to the IEC 62053-21 [4],
four classes of SM were considered in this case, including 0%, 0.5%, 1%
and 2%. Meanwhile, the amount of available time-series data (i.e., the
value T) will impact the aggregated distance matrix L, and correla-
tion matrix K,,, influencing the accuracy of phase identification. The
amount of available data represents the number of days during which
households’ data were measured and collected. Thus, the datasets with
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Fig. 7. The correlation coefficients in (a) and (d); the normalized distance matrix L,
in (b) and (e) and the phase label in (c) and (f). The correlation coefficients between
identified and real phase data are shown in brackets.

Table 3
Accuracy of proposed approach (%) under dataset I with multiple measurement
error.

DNs Class of  The amount of SM Data (Day)
SM 5 10 15 20
0 92.90 + 2.2 97.42 + 2.2 97.85 + 1.5 99.35 + 0.6
Lv-188 0.5% 9355 +36 9699 +14 9763 +14 99.57 + 0.6
1% 90.75 + 3.3 9548 + 1.2  96.77 + 0.8  99.57 + 0.6
2% 91.82 + 1.2 94.41 + 1.8 9591 + 1.4 99.14 + 1.2
0 88.00 + 2.4 89.82+49 9273 +74 9346 + 2.8
LV-116 0.5% 86.54 + 28 91.27 + 1.5 89.45 + 2.0 92.73 + 4.5
1% 86.54 + 1.0 87.27 + 1.3 89.09 + 6.7 93.09 + 4.5
2% 85.45 + 4.1 86.55 + 6.0 89.45 + 27 90.18 + 2.8

5, 10, 15 and 20 days under the above four types of errors were used to
evaluate our approach. On the other hand, the quality of the generated
pseudo dataset, as the training datasets, influences the training of RSN,
which therefore impacts the calculation of distances i, ,,. The approach
was executed twenty times, and the average accuracy of five solutions
with large K|, and the corresponding standard deviation were recorded,
which are summarized in Table 3 and Fig. 7.

As shown in Table 3, given more than 10 days of the Dataset I with
measurement errors, the proposed approach correctly identified phase
labels for at least 90% of customers in both networks. As expected, with
the increasing measurement error magnitudes, there is a slight decrease
in phase identification accuracy in both LVDNSs, specifically ranging
from 2% to 4%. With the increase in the amount of available SM data,
the phase identification accuracy increases. Compared to the negative
impact of measurement error, the positive impact of the amount of
SM data is more significant, indicating more SM data could mitigate
the negative effect induced by the measurement error of SM on the
phase identification accuracy. Besides, there exists a discrepancy of
approximately 5%-10% in the phase identification accuracy between
the two LVDNSs, showing that power losses and errors impact the phase
identification accuracy.

Given the 15-day dataset with 1% measurement error, the Kendall
correlation coefficients, normalized distance (i.e., the matrix Lw) and
the modified phase labels (i.e., the matrix L;, ) are demonstrated in
Fig. 7. From Fig. 7(a) and (d), it is hard to directly identify the phase
labels by the correlations among the initial SM data. However, the
normalized distance L, in Fig. 7(b) and (e) show clearer boundaries
between positive and negative samples. After the phase label modifica-
tion, the hard phase label in Fig. 7(c) and (f) described the output of
the proposed approach, which reveals the majority of the true labels
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Fig. 8. Accuracy comparison under Dataset I in (a) and (b) and Dataset II in (c) and
(d) without and with a 2% measurement error, respectively.

of customers. The phase-to-phase correlation coefficients K* in the
brackets also depicted the purity of the phase labels in each phase.

3.2. Method comparison

The accuracy, recall, and precision of the proposed phase identifi-
cation approach were compared to that of similar approaches (i.e., the
approaches based on load profiles) under multiple scenarios, including
the ML-based clustering approach [13], the saliency analysis (SA)-
based approach [15], and the genetic algorithm(GA)-based approach
[17]. These three methods represent three typical phase identification
approaches: (1) phase identification using classical machine learning
techniques, such as clustering algorithms; (2) approaches that rely
heavily on the saliency or variability of time-series data; and (3)
optimization-based solutions for phase identification. Dataset I and
Dataset I with and without 2% measurement error were used to evalu-
ate the performance of the above approaches in LV-188. The accuracy
is depicted in Fig. 8, and the recall and precision are summarized in
Table 4.

Accuracy = % x 100% (25)
ﬁw
Recall = R wEF (26)
NV/
ﬁw
Precision= —, wEF 27)

where N and ﬁw are the number of households whose labels are
correctly identified in three phases and each phase, respectively. N,, is
the true number of households in phase . N, represents the number
of households whose labels are labelled as phase y.

As depicted in Fig. 8, the accuracy of the SA-based and GA-based
approach is lower than 70% and does not increase when given more SM
data, which is also not sensitive to time resolution and measurement
errors. The performance of the proposed approach is similar to that of
the ML-based clustering approach, i.e., above 80% with higher amounts
of SM data and not sensitive to measurement errors. Given more than
10 days of data, the accuracy of the proposed approach reached above
93% and 82% under the two datasets with 2% measurement errors,
respectively, indicating that the larger time resolution decreases the
accuracy of the approach. The ML-based clustering approach demon-
strates robust performance across variations in the time resolution of
SM data, effectively managing datasets with both regular and irregular
temporal intervals. However, the proposed approach exhibits superior
capabilities in capturing the variations within the lower-time resolution
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Table 4
Recall (%) and precision comparison (%) under dataset with measurement errors.
Approach Phase Dataset I Dataset II
Recall Precision Recall Precision
a 96.77 85.71 90.32 87.50
ML b 100 96.88 87.10 90.00
c 80.65 96.15 93.55 93.55
a 35.48 44.00 48.39 55.56
SA b 48.39 51.72 41.94 56.52
c 54.84 43.59 77.42 55.81
a 67.74 72.41 74.19 76.67
GA b 77.42 66.67 67.74 60.00
c 67.74 75.00 64.52 71.43
a 93.55 100 87.10 87.10
ST b 96.77 96.77 80.65 86.21
c 100 93.64 87.10 81.82

data, making it particularly effective in scenarios characterized by
irregular consumption patterns or datasets with fine-grained temporal
dependencies. This ability to model complex relationships highlights
the versatility of the proposed method in handling real-world SM data,
where such irregular variations in the time-series dataset are often
encountered. Moreover, the proposed method offers distinct advan-
tages beyond accuracy. In addition to outperforming some existing
approaches, it provides not only probabilistic and hard labels but also
indicators of phase purity. These outputs offer deeper insights into the
phase identification process and can be instrumental for applications
such as load balancing in DNs, where understanding the confidence
level of accurate labels in each phase and its distribution is critical for
operational efficiency.

As shown in Table 4, the recall and precision metrics follow a
trend similar to the accuracy results observed in Fig. 8. Notably, the
recall and precision across all phases for the proposed method are
more consistent and balanced compared to the other approaches. This
consistency is crucial for ensuring reliable phase identification across
the three phases, minimizing the risk of phase misclassification, which
provides a reference for load balancing in DNs.

3.3. Impact of incomplete data

On the other hand, the collected load profiles might be incomplete
due to communication issues. The incompleteness of SM data point
is random or continuous [13]. To evaluate the impact of incomplete
datasets on the accuracy of the proposed approach, two scenarios under
Dataset I and Dataset III were considered in this case: datasets with
random missed data points and datasets with unmetered customers.
The incomplete percentage was set between 0% and 20% in the first
scenario and the incomplete ratio represents the proportion of missing
data points relative to the dimension of the input data (i.e., T). In the
second case, the incomplete ratio was set between 0% and 40%, which
represents the ratio between the number of unmetered households and
the total number of households. The missed data points and unmetered
households were removed from the initial data, and the remaining
data were used as the input data for the approach. The proposed
approach was executed twenty times, and the five solutions with the
correlation coefficients K, closest to 1 were saved. To ensure a diverse
range of missing data scenarios and maintain statistical significance, the
positions of missing data points and the identities of unmetered house-
holds were randomly selected for each simulation, following a uniform
distribution. The average accuracy under the above two scenarios is
depicted in Fig. 9.

As shown in Fig. 9(a)-(c), the average accuracy decreases with
the increase in incomplete ratio while increasing with the increasing
amount of available SM data. The removed missing data points impact
the variation of time-series data, influencing the extracted features
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and Dataset III in (¢) and (f) with random missing data and unmetered households,
respectively.

and the similarity calculation, which impacts the accuracy of phase
identification. Given 10-day datasets with 5% missing data points, the
proposed approach accurately identifies at least 85% of the customer
phase labels in the LV-188 network and 80% in the LV-116 network.
When the incompleteness ratio increases to 20%, the accuracy drops to
77% in the LV-188 network and 75% in the LV-116 network. However,
as shown in Fig. 9(c), when the available simulation data are less
than 5 days, the phase identification accuracy declines below 80%.
Conversely, when the data exceeds 5 days with varying incompleteness,
the phase identification accuracy remains above 99%, indicating that
the impact of missing data is negligible in such scenarios.

Fig. 9(d)-(f) depict the relationships between accuracy, the number
of unmetered households, and the amount of available SM data. The
average accuracy decreases as the percentage of unmetered households
increases, attributable to the limited available SM data resulting in a
limited training dataset. Additionally, the accuracies exhibit a rapid
decline with the increasing incompleteness ratio, particularly when 5-
day datasets are available. For datasets containing more than 10-day
time-series data, the accuracy under the scenarios decreased by 13%,
20%, and 2% as the percentage of unmetered households increased
from 0% to 40%, respectively. On the other hand, compared to mea-
surement errors in SM data and the presence of unmetered households,
the negative impact of missing data points in time-series data on phase
identification is more pronounced, resulting in lower accuracy.

4. Conclusion

A meta learning based self-taught phase identification approach was
proposed based on SM data in this paper. Compared to existing methods
and conventional neural networks training, the proposed STT strategy
enables the RSN to identify phase labels without requiring extensive
months of labelled datasets. This strategy reduces the dependency on
large-scale, labelled data, making the approach more efficient and prac-
tical in real-world applications where data is limited or incomplete. The
feasibility and accuracy of the proposed approach were evaluated on
three datasets and multiple scenarios, including datasets with missing
data points, unmetered households and multiple dimensions. Not only
the probability and hard phase labels of customers but also the purity
of each phase were provided by the proposed approach. The results
showed that the probability phase labels could be represented by the
distance matrix obtained from the trained RSN, and the Kendall corre-
lation coefficients were validated to assess the purity of the phase labels
in each phase. Furthermore, the experimental results demonstrated that
the proposed approach outperformed existing methods that rely on
stepwise subtraction of identified users’ data from transformer data in
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terms of accuracy while requiring a smaller amount of SM data. The
results also indicated that the proposed approach is more robust to
unmetered houses and measurement errors in comparison to missing
data points. On the other hand, more available data alleviated the
negative impact caused by missing data on the phase identification
accuracy.
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