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The rise of Human-AI teams

Advancements in computer hardware and software technology have enabled the partial 
or complete replacement of functions previously performed by people (i.e., automation) 
(Parasuraman et al., 2000). The introduction of automated systems, such as machines 
on assembly lines in manufacturing, has revolutionized productivity and efficiency by 
executing repetitive tasks faster and with greater accuracy than humans in a wide variety 
of routine, initially mostly physical tasks (Cremer & Kasparov, 2021). With the emergence 
of Artificial Intelligence (AI) and deep neural networks, the possibilities of automation 
further expanded as machines gained the capability to learn, to make decisions, and to 
mimic human cognitive functions (Schraagen & van Diggelen, 2021). As AI technology 
advances, its capabilities are expanding rapidly. From healthcare to finance, transportation 
to entertainment, AI is driving innovation, enabling new possibilities, and fundamentally 
altering how we interact with technology and each other. 

With the term AI, we refer to “systems that display intelligent behaviour by analysing 
their environment and taking actions – with some degree of autonomy – to achieve specific 
goals” (AIHLEG, 2019) (p. 1). In addition to their level of autonomy, AI-based systems, 
referred to as AI agents, can differ in various aspects, including their form and function. 
They can be completely software-based (e.g., voice assistants, image analysis software, 
search engines), or AI can be embedded in hardware devices, such as advanced robots, 
autonomous cars, or drones (AIHLEG, 2019). Examples of software-based AI agents 
include AI chatbots such as OpenAI’s ChatGPT or voice assistants such as Apple’s 
Siri or Amazon’s Alexa. Examples of AI agents with a physical embodiment that allows 
them to interact with the physical world include the humanoid robots Nao and Pepper 
(from Softbank Robotics) and Spot, a quadruped robot developed by Boston Dynamics. 
Throughout this dissertation, I will use various terms such as “machine”, “robot” or “drone” 
to describe AI agents, reflecting the diverse contexts in which these systems are discussed. 
All these terms are intended to refer broadly to AI agents.

The initial goal of the field of AI was to create systems that could mimic or replicate 
human intelligence (Lake et al., 2017). The term “artificial intelligence” itself implies an 
effort to create intelligence that resembles a “natural”, biological intelligence. However, 
over the years, a new perspective emerged. Researchers began to strive for Hybrid 
Intelligence, a situation where machine intelligence is combined with human intelligence, 
aiming to augment human intellect rather than replace it (Akata et al., 2020; M. Johnson 
et al., 2011, 2012; Peeters et al., 2021). Researchers now explore how we can harness 
various types of intelligences and skills to find new solutions and discover new types of 
relations – instead of re-creating what we already have (Darling, 2021). 

As a result, the idea of Human-AI Teams (HATs) emerged: teams consisting of at least 
one human and one AI agent (Bobko et al., 2022; de Visser et al., 2018, 2019; O’Neill et 
al., 2022). As AI agents become more intelligent, they are increasingly self-governing, gain 
decision authority within their functioning (Bobko et al., 2022; Hancock, Billings, Schaefer, 
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et al., 2011a; Hou et al., 2021; O’Neill et al., 2022; Sheridan, 2019), and require less 
human involvement and control (Lyons et al., 2023; C. A. Miller, 2014). Future AI agents 
are expected to have increasingly advanced capabilities, enabling them to observe and 
act upon an environment autonomously and to communicate and collaborate with other 
agents, including humans, to solve problems and achieve (common) goals (Ferguson & 
Allen, 2011; O’Neill et al., 2022; Wynne & Lyons, 2018). In literature alternative names 
are used, including human-machine teams, human-agent teams, and human-automation 
teams (Jorge et al., 2024). In this work, I will use the terms human-AI teams or human-
robot teams as appropriate, depending on the type of AI agent discussed in each chapter. 

A team is defined as “a set of two or more people who interact dynamically, 
interdependently, and adaptively toward a common and valued goal/objective/mission, 
and who each have some specific roles or functions to perform” (Tannenbaum et al., 
1992) (p. 118). The premise of teamwork is that individuals in a team can achieve more 
and solve more difficult problems collectively than any of the members could do alone, 
by combining their diverse skills, perspectives, and resources (Akata et al., 2020). This 
requires the strategic delegation of tasks, where specific responsibilities are aligned with 
each team member’s unique set of skill and expertise. This allows members to share the 
workload, monitor each other’s progress, and develop expertise on subtasks, ultimately 
contributing to the achievement of their common goal (Salas et al., 2018). 

Based on this understanding of teamwork, the idea of HATs is promising, since humans 
and AI have complementary skills that can be pooled together, to elevate performance 
beyond the capabilities of its individual members. Namely, on the one hand, AI agents 
can process and recognize patterns in large amounts of data and perform fast and highly 
accurate computations. This can, for example, be applied to the diagnosis of diseases 
based on the classification of radiological images, where AI has, in certain narrowly defined 
tasks and specific occasions, demonstrated the ability to exceed the performance of clinical 
experts (Bejnordi et al., 2017). People, on the other hand, are flexible and adaptable 
and can use their creativity and common sense to find solutions for open and ill-defined 
tasks and to improvise in changing or unforeseen conditions (Jarrahi, 2018; Korteling et 
al., 2021; Xiong et al., 2022). In other words, AI can augment people’s cognitive abilities 
to tackle complex problems, while people excel in offering intuitive and comprehensive 
solutions to uncertain situations (Jarrahi, 2018). 

However, the real challenge is not merely determining which tasks are better suited for 
humans or AI agents working independently, but in finding ways to optimise collaboration, 
enhancing their respective strengths through effective interaction (Bradshaw et al., 
2012; Dekker & Woods, 2002; Hayes, 2016; M. Johnson et al., 2012). Most AI agents 
are able to perform tasks for people, but often lack the skills necessary to work together 
with people and other agents (Bradshaw et al., 2012, 2013). Working together towards 
a common goal requires good cooperation, coordination, and communication (Ososky 
et al., 2012b; Salas et al., 2018), and it is within these areas that the true challenges lie. 
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A key component in these activities is trust, because it allows team members to depend 
on each other’s contributions and to navigate the uncertainties and risks associated with 
teamwork (A. Y. Lee et al., 2010). To reap the potential collective benefits of teamwork, 
individuals must be willing to put aside individual interests for the greater good of the 
team and make investments (e.g., time, energy, or expertise) in the collective effort, 
trusting that the rewards of collaboration will eventually outweigh the risks. This thesis 
will investigate how to maintain trust in HATs to support safe and effective collaboration. 

Trust

We define human-AI (H-AI) trust as a human’s willingness to make oneself vulnerable 
to an AI agent’s decisions and recommendations in the pursuit of some benefit, with 
the expectation that the AI agent will help achieve the overall task goal in a context 
characterized by uncertainty and risk (Gambetta, 2000; Hoff & Bashir, 2015; J. D. Lee 
& See, 2004; Madsen & Gregor, 2000; Raue et al., 2019; Shariff et al., 2017). In other 
words, the trustor (i.e., the one bestowing trust) must actively decide whether to trust 
the trustee (i.e., the one receiving trust) in a situation where there is potential gain (i.e., 
the pursued benefit) and potential loss (i.e., the risk). This decision is shaped by beliefs 
and expectations regarding the trustee’s future actions and is heavily influenced by the 
specific task at hand (Costa, 2003; Kessler et al., 2016; Li et al., 2019; Raue et al., 2019).

Teamwork is inherently a process that involves risk and requires trust because it 
involves individuals depending on each other’s contributions to collectively complete 
tasks and achieve objectives (A. Y. Lee et al., 2010). When team members delegate 
tasks or responsibilities to each other, they become vulnerable in the sense that they 
are relying on others’ competence and commitment. For example, in lead climbing, 
climbers work in pairs where one ascends while the other secures the rope to prevents 
falls (i.e., belays). The climber relies on the belayer’s skills and quick response to arrest 
any potential falls, requiring significant trust. This trust allows climbers to reach heights 
they could not achieve alone. 

While the importance of trust is evident in the climbing example, the same principle 
applies to H-AI collaboration. Imagine a military reconnaissance mission (e.g., see 
Chapter 4), where a soldier relies on a robotic agent equipped with advanced sensors 
and navigation capabilities for coverage and its ability to detect and warn of threats. 
Their mission is to gather intelligence on enemy movements by counting objects in a 
remote, hostile area. The soldier’s role is to manually count and record observations, 
relying on their training and sharp eyesight, while the robot scans the terrain for threats 
and obstacles. The soldier depends on the robot to alert them to any detected dangers, 
allowing them to focus on their specific tasks. In this scenario, as in in the previous one, 
trust is essential for the team’s success.
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The climber and the belayer, as well as the soldier and the robot, do not need to know 
each other very well “personally” in order to establish a successful trusting relation. What 
matters is that the trustor believes that the trustee has a shared understanding, known 
as a shared mental model, of the procedures, equipment and tasks necessary to achieve 
a certain objective (i.e., the taskwork) as well as an understanding of other teammates’ 
knowledge, skills, preferences and responsibilities within the team (i.e., the teamwork) 
(Driskell et al., 2018; Mathieu et al., 2000). This belief in a shared mental model might 
stem from knowing that the belayer is an experienced climber themselves or that the 
robot was designed by a certified manufacturer for a specific purpose (Mathieu et al., 
2000). Mental models are personal, internal (cognitive) representations of external reality, 
based on unique life experiences, perceptions, and understandings of the world (Jones 
et al., 2011). We use these cognitive frameworks to interpret and make sense of the 
world around us and to construct expectations for what is likely to occur next (Mathieu 
et al., 2000; Rouse & Morris, 1985). They shape our reasoning processes and result in 
predictions about the external environment, guiding our decision-making, actions and 
behaviours (Jones et al., 2011). A shared mental model greatly contributes to team process 
and performance, as it allows people to determine what is required to achieve a shared 
goal and which teammate can be best entrusted with which task (Salas et al., 2005). 

An important difference between the provided examples, however, is that the trustee 
in the latter example (i.e., the soldier and the robot) being AI-based adds uncertainty to 
an already risky situation. As AI agents become more complex and go beyond a simple 
tool with sharply defined and easily understood behaviours, it becomes impossible, 
even for experts, to have a complete understanding and accurate mental model of the 
system. As a result, the importance of trust further increases as trust plays a crucial role 
in people’s ability to overcome and accept the cognitive complexity and the uncertainty 
that is associated with increasingly sophisticated AI systems (J. D. Lee & See, 2004). 

As illustrated by the scenarios above, the role of trust in teamwork encompasses more 
than just the initial decision to collaborate and allocate tasks (Hancock et al., 2020; Lubars 
& Tan, 2019). During the collaboration, team members must maintain an appropriate 
level of trust in that everyone is performing as required in order to accomplish a specific 
goal (A. Y. Lee et al., 2010). That is, overly and unnecessarily monitoring the activity of 
other team members slows down progress and adds unnecessary workload, but team 
members should also avoid blind trust and maintain a healthy level of vigilance to ensure 
everyone is meeting expectations. This process is referred to as trust calibration.

Trust calibration

For safe and successful collaborations, people should be able to determine when it is 
appropriate to rely on AI agents and when it is best to override them (J. D. Lee & See, 
2004). In situations involving consequential decisions, such as military operations or 
healthcare, it is essential to know when AI is safer than human intervention and vice 
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versa (Barnes et al., 2014). To minimize the risks and maximize the benefits of a H-AI 
collaboration, H-AI trust should be well-calibrated (Lewis et al., 2018). Calibrated trust 
refers to a balanced relation between the perceived trustworthiness of an AI agent and 
its actual trustworthiness (J. D. Lee & See, 2004). Here, trustworthiness is a property of 
the AI agent, while perceived trustworthiness is a judgement by the human (Duenser & 
Douglas, 2023). In other words, trust is calibrated when the trust that an individual grants 
the AI agent matches the trustworthiness of the AI agent, which is supposed to lead to 
appropriate use (J. D. Lee & See, 2004). 

Miscalibration, represented as either ‘overtrust’ or ‘undertrust’, can lead to inappropriate 
reliance, which can compromise safety and profitability respectively (Baker et al., 2019; 
de Visser et al., 2019; J. D. Lee & See, 2004). In case of overtrust (i.e., excessive 
trust), a trustor accepts too much risk, which can lead to complacency and can cause 
costly disasters (Robinette et al., 2017a). For example, human error and overtrust were 
identified as the primary causes of a fatal crash involving an Uber self-driving car, where 
the vehicle struck and killed a pedestrian. The backup operator, who was later charged 
with negligent homicide, had been distracted by streaming a TV show at the time of 
the incident (Cellan-Jones, 2020). By contrast, undertrust (i.e. insufficient trust) also 
prevents effective collaboration as it leads to scepticism, causing inefficient monitoring 
of the work behaviours of other team members and an uneven distribution of workload 
(de Visser et al., 2019; J. D. Lee & See, 2004). At worst, people may choose not to use 
or even consciously disable systems that could potentially help them (Ullrich et al., 2021). 
In other words, maximizing trust is not the objective in H-AI collaboration, as effective 
and efficient teamwork requires finding the right balance of trust among team members. 
Calibrated trust facilitates cooperation and coordination between interdependent actors, 
which creates a more productive and efficient team (J. D. Lee & See, 2004).

Yet, trust calibration will never be perfect, as humans are not mechanical measuring 
instruments and an agent’s trustworthiness itself is not perfectly defined (Duenser & 
Douglas, 2023; Hoffman, 2017). Knowing when and when not to trust will always remain 
a challenge, due to the multi-dimensional, context-dependent and dynamic nature of 
trust. That is, we may trust elected officials to draft legislature, while we may not trust 
them to make medical decisions. Similarly, while we may expect a medical decision-
support system to provide accurate medical advice, we do not expect the same system 
to provide accurate legal advice (Duenser & Douglas, 2023). Furthermore, an actor’s 
trustworthiness on a given time may vary depending on external situational factors. 
For example, the performance of a self-driving car might be significantly impacted by 
poor weather conditions or missing or faded road markings, just as a human driver’s 
ability to navigate safely can be impaired by fatigue or distractions. As such, the term 
‘calibrated’ does not indicate that the trust was adjusted once and is now fixed (Kox et 
al., 2023). Rather, trust is “a continual process of active exploration and evaluation of 
trustworthiness and reliability” (Hoffman, 2017) (p.146), meaning it is continually subject 
to adjustment and fine-tuning. 
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A Lifecycle Perspective on Trust

To navigate the constant pursuit of an optimal level of trust in ever-changing circumstances, 
we must understand the dynamics of trust. We want to understand how trust develops, 
how it breaks down, and how it recovers (de Visser, Pak, et al., 2017). In prior work, 
researchers have suggested the concept of a ‘trust lifecycle’ (de Visser et al., 2016, 2018; 
Rousseau et al., 1998; Söllner & Pavlou, 2016), consisting of multiple phases. 

First, trust has to be formed. We distinguish between trust formation, when trust is built 
for the first time, and trust repair, when trust needs to be rebuilt after it was violated (Söllner 
& Pavlou, 2016). In the trust violation phase, trust diminishes due to the occurrence of 
unexpected, unfavourable, or unwanted behaviour, resulting in a negative experience 
for the human trustor (Rousseau et al., 1998; Söllner & Pavlou, 2016). Essentially, a 
trust violation is any kind of behaviour from an AI agent that decreases a human’s trust 
in it (Pak & Rovira, 2023). In the trust repair phase, an AI agent can employ strategies to 
restore trust and facilitate reconciliation after it violated trust (Baker et al., 2018; de Visser 
et al., 2018; P. H. Kim et al., 2006; Pak & Rovira, 2023). Lastly, there are phases of trust 
stability, where built or rebuilt trust remains stable over time (Söllner & Pavlou, 2016).

This lifecycle of trust is a theory-based simplification of the complex and dynamic nature 
of trust and, naturally, these phases can occur in any order, perhaps even simultaneously, 
and can be repeated. The phases act as labels used to identify the status of a particular trust 
dynamic, to understand its underlying mechanisms and potential next developments and to 
recognize relevant interventions (Kox et al., 2023). 

In this thesis, I will concentrate on the maintenance of H-AI trust by examining the 
effects of various types of trust violations and investigating methods to reduce their impact, 
both preventatively and reactively, through trust repair strategies. The emphasis will be 
on the phases of trust violation and repair within the trust lifecycle, rather than on trust 
formation or periods of trust stability. 

Maintaining H-AI trust is a key part of the trust calibration process. Understanding 
the breakdowns and recoveries of trust is particularly relevant in situations of undertrust, 
where people are losing trust in an AI agent that is, in fact, trustworthy. We evaluate the 
effectiveness of strategies that aim to address such declines in perceived trustworthiness 
that can lead to disuse, where ignoring an AI agents advice can compromise team 
performance and profitability. 

In the following sections, I will elaborate on the phases of formation, violation and 
repair. Although the formation of trust is not the primary focus of my thesis, I will briefly 
highlight an underlying mechanism that influences H-AI trust formation and continues to 
play a role later in the trust lifecycle. Regarding the trust violation phase, I will discuss three 
types of trust violations: due to poor performance, unexpected behaviour and misaligned 
priorities. In discussing the trust repair phase, I will differentiate between preventative 
and reactive strategies, as well as between informational and affective strategies.
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Trust formation
The formation of trust in an AI agent is influenced by several factors, including prior 
experience with the agent or similar agents, existing knowledge such as the AI agent’s 
or its manufacturer’s reputation, and individual cognitive factors of the trustor, including 
biases (de Visser et al., 2016; Hoff & Bashir, 2015). Like in the lead climbing example 
described earlier, the climber’s initial trust in a belayer they do not know personally may 
be based on the belayer’s reputation as an experienced climber and the subsequent 
expectation that they are motivated and able to execute the necessary tasks accurately. 
Similarly, someone’s initial trust in a new AI agent can be influenced by prior experiences 
with similar systems from the same manufacturer. New users may begin with a certain 
level of faith in the system, but as the interaction proceeds, experiences of predictability 
and dependability will gradually replace this initial faith as the primary foundation of trust 
(Hoff & Bashir, 2015).

Another important factor in the formation of trust that I want to highlight is the cognitive 
bias of anthropomorphism, defined as “the tendency to attribute human characteristics to 
inanimate objects, animals, and others with a view to helping us rationalize their actions” 
(Duffy, 2003) (p.180). Incorporating human-like cues into the design of robots and other 
AI agents (e.g., a face, limbs, or the ability to engage in dialogue) can trigger this bias. 
Research shows that even relatively simple, subtle and superficial anthropomorphic cues 
(e.g., a voice, a gender or a name) can lead to the attribution of fundamental human 
qualities, including perception of mind (Gray et al., 2007; X. Xu & Sar, 2018), rational 
thought (e.g., agency) (Wynne & Lyons, 2018), and the ability to experience emotions 
(Waytz et al., 2008, 2014). According to the Computer as Social Actors (CASA) paradigm, 
the presence of social cues can cause people to treat computers as if they were social 
actors, applying the same social rules, norms, and expectations to their interactions with 
computers as they would to humans (J.-E. R. Lee & Nass, 2010). This can shape how 
individuals develop trust in AI agents.

This idea can be illustrated by Large Language Model-based chatbots, such as 
OpenAI’s AI-chatbot ChatGPT, which produce text that appears very human-like and 
can make the AI agent seem more relatable and capable (Fui-Hoon Nah et al., 2023; 
Harrington, 2023; Ye et al., 2023). The interaction can feel so natural, that people feel 
compelled to say “please” or “thank you” when interacting with the chatbot (Pang, 2023). 
The human-like or social cues can lead people to mistakenly attribute intelligence or 
emotional understanding to these chatbots, even though they lack these capabilities. 
As a consequence, people tend to base their level of trust on attributed characteristics 
rather than on actual experiences with the agent itself (Culley & Madhavan, 2013; Ye et 
al., 2023), creating a discrepancy between the perception and its actual capabilities (Zhan 
et al., 2023). As such, anthropomorphism can lead to misplaced trust and inappropriate 
reliance. Therefore, scholars caution that anthropomorphic characteristics must be used 
with careful consideration (Culley & Madhavan, 2013; de Visser et al., 2016; Taenyun 
Kim & Song, 2021), especially in a military context (J. Johnson, 2024).
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Trust violation
Following trust formation, the focus shifts to trust violations. Erroneous, unexpected, or 
unfavourable AI agent behaviour can lead to a negative experience for the human trustor 
and result in a violation of trust. In other words, a trust violation can have different causes. 
However, most current Human-Robot Interaction (HRI) and Human-AI Interaction (HAI) 
trust repair literature mainly focuses on repairing trust violations that result from errors, 
technical failures or other forms of reduced reliability and performance of the AI agent 
(Cameron et al., 2021; de Visser et al., 2016; Esterwood & Robert, 2023b; Fratczak et 
al., 2021; Hald et al., 2021; Taenyun Kim & Song, 2021; M. K. Lee et al., 2010b; Mirnig 
et al., 2017; Robinette et al., 2017b; Salem et al., 2015; Wang et al., 2018). Yet, losses 
of trust may arise not just from an AI agent’s failure to complete a task correctly, but also 
from performing the task in unexpected ways, or from performing the task in a manner 
that conflicts with a person’s goals or preferences. 

These latter two issues have not received much attention in the HRI/HAI literature 
yet, but they will become increasingly important as AI agents evolve and transition 
from isolated tools to more social roles with greater autonomy, execution flexibility, and 
decision-making authority in complex environments. I will briefly elaborate on these three 
types of trust violations.

As noted above, the primary cause of trust violations is poor performance or failure, 
defined as “a degraded state of ability which causes the behaviour or service being 
performed by the system to deviate from the ideal, normal, or correct functionality” 
(Brooks, 2017) (p.9). Regardless of the advancing capabilities of AI agents, their abilities 
will inevitably remain a source of potential trust violations. AI may not always perform 
optimally due to either technical issues or environmental circumstances (e.g., snow, 
smoke, dust, noise, vibrations, humidity, extreme temperatures, limited bandwidth or 
network congestion). All kinds of environmental factors can pose challenges for AI systems, 
impacting their reliability, accuracy, and overall performance. Additionally, in complex and 
unpredictable situations, such as military operations and city traffic, there will often be 
uncertainty about the appropriate course of action. AI agents lack common sense and 
are unable to fully comprehend context and may come to conclusions that are considered 
inappropriate in a given situation. AI agents may not understand basic concepts or 
principles that humans take for granted, leading to erroneous interpretations of (social) 
information or situations. Concludingly, machine performance, just as the performance 
of people, will rarely be perfect (Greenberg & Marble, 2023).

Second, trust violations might be increasingly caused by AI agents executing tasks 
in unexpected or incomprehensible ways. As AI agents become more autonomous, 
task delegation can become more goal-oriented, giving the AI agent greater degrees 
of freedom in execution. In short, this implies telling the AI agent what to do instead of 
how to do it. When the AI agent lacks appropriate interpretability, meaning it cannot 
explain itself in a way that aligns with the cognitive capacities of a human operator at 
that moment (Lubars & Tan, 2019), this can lead to miscomprehension. When a human 
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operator does not understand what an AI agent is doing, it can become difficult for them 
to trust the AI agent’s decisions or behaviours during collaboration (Lyons et al., 2023). 
Given the anticipated advancements in AI agents’ ability to self-select courses of action, 
it is increasingly likely that humans will fail to understand what the AI agent is doing at 
all times, which could potentially undermine trust.

Third, trust violations may increasingly stem from misaligned values between the trustor 
and the trustee. AI agents are increasingly deployed in more complex environments, where 
they will encounter trade-offs, i.e., situations that require choosing between conflicting 
goals or resources by weighing options and prioritizing one over the other. In solving 
such conflicts, they may chose a solution or operate in a way that does not align with 
the preferences or priorities of a human operator. Trade-off decisions mean that to gain 
something, one has to lose something in return. This dynamic can lead to potential trust 
violations; for example, when an AI agent makes a decision that prioritizes the collective 
over an individual’s interests, that individual may lose trust. Notably, as will be discussed 
in more detail later, AI agents lack intentionality, so the choices and preferences reflected 
in an AI agent’s behaviour in such trade-off decisions are simply the result of how they 
are programmed. As such, they ultimately embody the intentions, values and purpose of 
their developers (J. D. Lee & See, 2004). Nevertheless, the implications of these design 
choices can cause people to lose trust in the AI agent, not because it does not perform 
properly, but because it does not align with the values and priorities of the people it 
interacts with.

Trust repair
In some cases, decreases in perceived trustworthiness are a logical and functional 
adaptive response to suboptimal performance or unexpected behaviour, and they play 
a crucial role in trust calibration. However, sometimes trust violations lead to undertrust. 
Since trust is essential for effective collaboration, these trust violations would make it 
necessary for an AI agent to actively engage in attempts to repair trust (Baker et al., 2018).

Visser et al. (2018) emphasized that trust repair is a fundamental aspect of healthy 
relationships and therefore becomes increasingly important as we transition from simple 
‘interactions’ with machines towards something that resembles ‘relationships’ (de Visser 
et al., 2018). Equipping AI agents with strategies to maintain and repair trust would 
allow sustainable, long-lasting and trusting relations, in spite of the inevitability of trust 
violations. However, the dynamic and multifaceted nature of trust makes it complicated 
to determine when and how repair mechanisms are successful in restoring broken trust. 
Hence, more research is needed on trust repair across different contexts. 

I roughly divide trust repair strategies along two dimensions: preventative versus 
reactive, and informational versus affective (Figure 1). With reactive repair strategies, an 
AI agent addresses a trust violation after it occurred, such as by acknowledging or denying 
responsibility, expressing regret or providing explanations. Additionally, maintaining a 
certain level of trust amid uncertainty and potential errors may also necessitate preventative 
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measures. Preventative repair strategies can proactively address potential trust issues 
before they escalate by, for example, disclosing information about the uncertainty 
associated with certain recommendations as a way of expectation management. The 
informational versus affective dimension pertains to the degree of information content (e.g., 
explaining the cause of an event) and the degree of affective content (e.g., expressing 
regret, such as ‘I am sorry’) included in the trust repair strategy (Pak & Rovira, 2023). I 
will briefly discuss informational and affective trust repair strategies. 

Figure 1 Overview of the three types of trust repair strategies evaluated in this dissertation, categorized 
along two dimensions: preventative versus reactive, and informational versus affective.

Informational repair 
Informational trust repair strategies focus on clarifying facts (Xie & Peng, 2009), reducing 
uncertainty and providing the information needed to reason about the situation and (re)
assess the agent’s reliability. A key component in informational trust repair strategies 
is offering transparency. System transparency refers to the degree to which the inner 
workings, decision-making processes, and capabilities of an AI agent are made clear 
and understandable to users (C. A. Miller, 2020). Without a clear understanding of a 
robot’s decision-making mechanism, humans might find it difficult to trust or adhere to 
a robot’s decisions, especially when those actions or decisions contradict the human’s 
expectations (Luebbers et al., 2023). Informational repair strategies aim to help people 
better comprehend and predict the AI agent’s behaviour. 

Explanations are a typical informational strategy used to maintain and repair H-AI 
trust, but are not always successful (e.g., Cameron et al., 2021; Hald et al., 2021; 
Kohn et al., 2018; M. K. Lee et al., 2010). The field of explainable AI (XAI), concerned 
with developing AI systems that can explain their decisions and actions in a way that is 
understandable to humans, is large and complex, which indicates that providing a good 
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explanation is challenging. Explanations are not just about providing information; they 
occur within a social context, usually as part of a conversation or interaction between 
two or more people. When giving an explanation, the explainer must consider what 
they believe the explainee (i.e., to whom an explanation is directed) already knows or 
believes and tailors its explanation based on those assumptions (T. Miller, 2017). For 
example, an explanation that is understandable to an oncologist may not necessarily 
be comprehensible or logical to an internist. An event may have many causes, but each 
explainee cares about a different subset of those causes, dependent on their knowledge, 
goals and the specific context (T. Miller, 2017). 

Furthermore, it is not always necessary for humans to fully understand every decision 
or action taken by an agent. The goal is to achieve a suitable balance between offering 
enough insight and preventing information overload (Baker et al., 2019). As such, 
transparency can be described more comprehensively as the information that a human 
operator may need or want when dealing with AI agents under high stress, workload, 
and uncertainty (Lyons, 2013). In other words, the level of desired system transparency 
will vary across contexts. In addition to the impact that stress and workload might have 
on the cognitive capacities and available mental space of a human operator at any given 
moment, every human operator is different and may require or desire different information. 
Transparency is therefore not merely a property of the AI agent but an emergent property 
of H-AI collaboration (Ososky et al., 2014).

Another form of informational repair is explored in Chapter 2, where the agent includes 
information about the uncertainty associated with a certain observation in its advice. 
Additionally, we evaluate the effectiveness of combining informational and affective 
repair strategies.

Affective repair
Affective repair strategies are trust repair strategies with affective, emotionally appealing 
content (Pak & Rovira, 2023). Affective strategies aim to restore the emotional “connectivity” 
between the trustor and the trustee (Lewicki & Brinsfield, 2017). An apology, “a statement 
that acknowledges both responsibility and regret for a trust violation” (P. H. Kim et al., 
2004) (p.105), is a common example of an affective repair strategy (Xie & Peng, 2009). 
These strategies focus on restoring positive feelings of trust by acknowledging how 
certain behaviour might have negatively impacted the other party. 

Unlike informational strategies, affective trust strategies are suggested to be 
relatively unaffected by workload because they are less information-rich and processed 
more automatically (Pak & Rovira, 2023). In complex, uncertain, or high-risk situations, 
people can experience attentional overload, which triggers automatic processing based 
on fast and effortless biases and heuristics, with much of causal reasoning occurring 
outside conscious awareness (Kahneman, 2011). Emotions can help people focus their 
limited attentional capacity by filling gaps in rational thought (Loewenstein et al., 2001). 
When cognitive resources are insufficient for rational decision making, feelings may guide 
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behaviour (J. D. Lee & See, 2004). Lee and See note that, in both H-AI and interpersonal 
(i.e., human–human) trust literature, the influence of affect is typically undervalued, while 
the impact of cognitive capacities is often exaggerated (J. D. Lee & See, 2004). Affective 
aspects of trust presumably have the most direct impact on behaviour, as people not only 
think about trust but foremost feel it (Fine & Holyfield, 2006). The effect of emotional 
cues might be quicker as they are thought to require less deep processing, but their 
effects might also be more volatile (Pak & Rovira, 2023). 

While apologizing is typically considered a human behaviour, research has shown 
that expressions of regret can also be effective when coming from artificial agents 
(e.g., T. Kim & Song, 2021; Perkins et al., 2022; Robinette et al., 2015; Zhang, 
Lee, Kim, et al., 2023; Zhang, Lee, Maeng, et al., 2023). More broadly, the use of 
anthropomorphic cues has been studied as a strategy to manage trust (de Visser 
et al., 2016; de Visser, Monfort, et al., 2017; Taenyun Kim & Song, 2021; Pak et al., 
2012; Quinn et al., 2017; J. Xu & Howard, 2022). However, it remains questionable 
whether strategies adopted from interpersonal interaction are desirable in H-AI interaction, 
due to the previously mentioned effects of anthropomorphism. 

Designers of AI agents already employ such strategies inspired by interpersonal 
interactions. For example, ChatGPT apologizes when an answer does not satisfy 
its user. Yet, it remains inconclusive if and when such strategies can be safely and 
effectively transferred to situations in which technology becomes the trustee. Researchers 
have suggested that the future design of AI agent should draw from the social sciences 
and the extensive literature on trust repair in human psychology (de Visser et al., 2018; 
Taenyun Kim & Song, 2021). However, findings from interpersonal interactions cannot 
be directly applied to H-AI interactions and must be tested and validated (de Visser et 
al., 2018).

Human-Human trust vs. H-AI trust

One reason why findings from interpersonal trust literature cannot be automatically 
extrapolated to human–AI interactions is that, among other things, AI agents lack moral 
agency, intentionality, and reciprocity, which are fundamental elements of trust between 
people (J. D. Lee & See, 2004). Consequently, there is ongoing debate in literature about 
whether interpersonal trust and H-AI trust are fundamentally different or similar concepts 
(Atkinson et al., 2012; Baker et al., 2018; Hannibal & Weiss, 2022). 

Interpersonal trust is often said to depend on how a trustor perceives the ability, 
benevolence, and integrity of a trustee, known as the ABI model (Mayer et al., 1995). In 
this model, ability refers to expectations about the competence and skills of the trustee; 
benevolence refers to expectations about caring and supportive motives, including 
loyalty and value congruence; and integrity refers to expectations about a consistent 
adherence to sound principles (Mayer et al., 1995). The critique of using the terms 
“integrity” and “benevolence” for machines is that machines are not moral agents and 
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should not be framed as such, as this creates incorrect expectations about their capabilities 
and responsibilities (Cameron et al., 2023; J. D. Lee & See, 2004). Researchers have 
proposed alternative conceptualizations of human–automation trust, linked to system 
properties such as its performance (i.e., what the automation does), purpose (i.e., why it 
was developed) and process (i.e., how it operates) — referred to as the PPP model (J. 
D. Lee & Moray, 1992; J. D. Lee & See, 2004). In essence, both classifications relate to 
the what, why, and how of the trustee’s actions, respectively.

While it makes sense to link H-AI trust to the properties of the system (e.g., PPP) 
rather than its intentions (e.g., ABI), given that AI systems inherently lack intentionality, 
people are nevertheless likely to attribute characteristics such as motivations, intentions, 
and agency to machines. This tendency is especially common when machines behave 
in a way that people might interpret as intentional, such as making decisions or offering 
suggestions (de Graaf & Malle, 2017; Hannibal & Weiss, 2022). Ultimately, trust revolves 
around people’s perceptions. This rationale bears resemblance to what philosopher 
and cognitive scientist Dennett terms the intentional stance: a method of interpreting an 
entity’s behaviour by treating it as if it were a rational agent that governs its ‘choice’ of 
‘actions’ based on a ‘consideration’ of its ‘beliefs’ and ‘desires” (Dennett, 1981; Duffy, 
2003). Dennett states that “on occasion, a purely physical system can be so complex, 
and yet so organized, that we find it convenient, explanatory, pragmatically necessary 
for prediction, to treat it as if it had beliefs and desires and was rational” (Dennett, 
1981) (p.8). Hence, in this thesis, I will use the ABI terminology and operate under the 
assumption that trust in machines can, to some extent, be understood through the lens 
of interpersonal trust, while acknowledging the crucial differences between the two 
(Hoffman, 2017; Hoffman et al., 2013).

A multi-dimensional conception of trust entails that trust can be ascribed to particular 
aspects or components of an agent (Hou et al., 2021; Langer et al., 2019). As such, 
trust is the outcome of considering different perceptions of trustworthiness. Trust is the 
act of placing confidence in another, while perceived trustworthiness pertains to the 
characteristics and behaviours of the trustee that contribute to the trustor’s decision to 
trust or not. 

The distinction between different perceptions of trustworthiness (i.e., ability, 
benevolence and integrity) is especially interesting when it comes to trust violations 
and repair. As trust is not merely based on an AI agents abilities and performance, trust 
violations are not solely caused by failure. The originality of this thesis lies in its exploration 
of trust violations stemming not only from poor performance but also from deliberate, 
comprehensible, yet impactful decisions made by AI agents that affect a human operator. 
It does so within realistic task environments and corresponding scenarios designed to 
simulate domain-specific interactions.
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Current research

This thesis investigates how the nature of a trust violation and different repair strategies 
(preventative and reactive, cognitive and affective) influence the maintenance of trust 
in AI agents in a HAT. I will cover three types of trust violations, stemming from 1) the 
inadequate abilities of the AI agent, 2) the AI agent’s incapacity to explain itself, and 3) 
perceived value misalignment (Lubars & Tan, 2019). In other words, violations in respect 
to what an AI agent does, how it operates, and why it acts in a certain way.

Data for these studies were obtained using a series of game-like virtual task 
environments portraying military scenarios experienced from a first-person point of 
view. Military scenarios were employed because the studies were conducted as part of 
research projects commissioned by the Ministry of Defence, conducted by TNO (Kox 
et al., 2019). For each study, we invested significant effort in designing and developing 
both the military scenarios and the virtual task environments. Our objective was to 
simulate authentic potential H-AI circumstances as well as realistic operational settings. 
In the environments, participants carried out virtual military missions in collaboration 
with an AI agent, which featured different embodiments (Figure 2). By creating these 
detailed and immersive environments, we aimed to provide a more accurate and practical 
understanding of potential trust violations in HAI and to make our findings relevant and 
applicable to real-world military operations. In the following, I will provide a brief overview 
of each chapter, outlining their key focus areas and contributions to the broader themes 
of this dissertation.

Figure 2 Overview of the different types of AI agent embodiments evaluated in this dissertation, along 
with a human partner, who is also evaluated in one of the studies. Numbers correspond to the relevant 
chapters where they are presented.
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Chapter 2 and 3 examine the effects of trust violations due to the inadequate abilities 
of the AI agent. In Chapter 2, participants are assigned to return to basecamp as fast as 
possible after running out of ammunition, together with a large quadruped robot (a robot 
with four legs). Halfway, the AI agent fails to warn the participant for an approaching 
enemy. Following this failure, the agent employed one of four trust repair strategies: an 
explanation or an expression of regret either individually, combined, or neither (Kox et 
al., 2021).

In Chapter 3, participants witness a house search in an abandoned building supported 
by a drone. The AI agent fails to warn the participant for a hazard. Here, we studied the 
effects of uncertainty communication (i.e., “danger detected with x% certainty”) and an 
apology (i.e., a combination of an ability-based explanation and an expression of regret) 
on the development of trust in a robotic partner, before and after trust has been violated 
respectively. Here we also investigated whether findings are consistent across different 
participant groups (i.e., a civilian vs. military sample) (Kox, Siegling, et al., 2022).

Chapter 4 studies the effect of a trust violation due to unexpected AI agent behaviour 
and the AI agent’s incapacity to explain itself. A quadruped robot finds a faster alternative 
route that emerged due to changes in the environment (i.e., the river had dried up) and 
decides to deviate from the original plan during a reconnaissance mission. We studied 
the effect of transparency (i.e. regular status updates and an explanation for deviation) 
and outcome (i.e., goal attainment) on the perceived trustworthiness of a robotic partner 
in case of an unexpected deviation from the expected manner to reach a delegated goal 
(Kox, van den Boogaard, et al., 2024)

Chapter 5 examines the impact of a trust violation caused by priority misalignment. In 
this study, the AI agent, again a quadruped robot, does not warn the participant in time 
for a hazard down the road. In one condition, the agent explains that this failure was due 
to an underperforming sensor, similar to the explanation in Chapter 3. In the alternate 
condition, the AI agent explains that it deliberately recommended the faster route over the 
safer one, prioritizing timeliness and collective safety over individual safety. Furthermore, 
we examined whether these effects vary depending on whether the partner was human 
or robotic (Kox et al., n.d.)

Additionally, we explored the possibilities of virtual reality (VR) in related studies 
that are not included in this dissertation (Kox, van Riemsdijk, de Vries, et al., 2024a, 
2024b). While these studies address research questions relevant to the broader themes 
of this work, they faced significant challenges, including technical limitations and the 
overwhelming nature of VR environments for participants, which impacted the ability to 
collect sufficient valid data. Despite these limitations, the details of these studies remain 
accessible online and contribute to the broader context of related research.

Although each chapter was originally written as a standalone piece, adjustments were 
made to integrate them into this dissertation. To avoid repetition, overlapping content, 
such as repeated definitions of AI agents, HATs and trust, has been consolidated or 
removed where appropriate.
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This chapter is based on:  
Kox, E. S., Kerstholt, J. H., Hueting, T. F., & de Vries, P. W. (2021). Trust Repair in 
Human-Agent Teams: the Effectiveness of Explanations and Expressing 
Regret. Autonomous Agents and Multi-Agent Systems, 35(2), 30.
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             Abstract
The role of AI agents becomes more social as they are expected to act in direct interaction, 

involvement and/or interdependency with humans and other artificial entities, in Human-AI 

Teams (HAT). Effective teamwork requires trust, yet, trust violations are inevitable. Since 

repairing damaged trust proves to be more difficult than building trust initially, effective 

trust repair strategies are needed to ensure durable and successful team performance. 

This study examined the effectiveness of various trust repair strategies by measuring the 

development of human-AI trust and advice taking over several timepoints in a first-person 

shooter resembling task. Participants (N = 66) collaborated with a robotic AI agent in a 

virtual military mission, where the AI agent halfway failed to detect an enemy, triggering 

a trust violation. The AI agent then employed one of four trust repair strategies (between-

subjects), involving combinations of apology components: explanation and expression 

of regret (either one alone, both or neither). Results showed that expressing regret was 

crucial for trust repair, with greater recovery when both regret and explanation were 

offered. Finally, the implications of our findings for the design of AI agents are discussed.
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Introduction

As AI agents gain autonomy, their role shifts to a more social dimension, where they 
act in direct interaction, involvement and/or interdependency with humans and other 
agents (Akata et al., 2020; M. Johnson et al., 2011; Peeters et al., 2021). As a result, 
AI agents are no longer merely viewed as tools that complete certain tasks in isolation. 
Instead, they are increasingly viewed as entities with which people can develop unique 
social relationships (Madsen & Gregor, 2000; Serholt & Barendregt, 2016). Equipping AI 
agents with social and teaming capabilities is changing how people interact with them, 
while simultaneously introducing new challenges.

Teamwork

Successful human teams excel in both taskwork and teamwork. Taskwork is defined as 
the interaction of individual team members with tasks, tools and systems, while teamwork 
represents a set of interrelated thoughts, actions, and feelings of each team member that 
are needed to function as a team through coordination and cooperative interaction (Salas 
et al., 2005). In other words, human teamwork largely depends on a variety of internal 
processes that are partly unconscious and often communicated implicitly (Kahneman, 
2011). Implicit communication includes emotional, nonverbal exchanges that are, although 
at times subtle, a crucial complement to the explicit information in a verbal interpersonal 
exchange (J. D. Lee & See, 2004). Unconscious reasoning and implicit communication 
are typically human skills. It enables important aspects of human teamwork, such as 
understanding responsibilities, norms and interaction patterns (Ososky et al., 2012a). It 
allows us to create a shared understanding and to assess other members’ commitment 
to the task or the social intent in their communication (Razzouk & Johnson, 2012). As 
human teams will increasingly be complemented by AI agents, new challenges arise on 
whether AI agents can effectively participate in team processes as we understand them 
today (Ososky et al., 2012a). 

Given that even the most advanced AI agents will be fundamentally different from 
human team members and will have fewer social abilities, the question whether the 
psychological mechanisms that shape human collaboration will still operate in the same 
way arises. As technology matured over the last decades, the relationship between 
humans and machines fundamentally changed. It has become more social, as human 
operators are no longer the main controller, but increasingly share control with artificial 
counterparts. With the introduction of artificial team members, researchers explored 
whether humans apply the same rules to computers, machines and robots as they would 
to fellow humans. 
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Social agents

According to the CASA-paradigm (Computers Are Social Actors), people treat computers 
as if they were social actors, applying the same social rules, norms, and expectations 
to their interaction with computers as soon as social cues pertaining to, for example, 
personality traits or gender, are provided (J. E. R. Lee & Nass, 2010). Incorporating 
such social cues in AI agents can trigger anthropomorphism, i.e. the tendency to make 
organic attributions to inorganic entities (Ososky et al., 2012a). Anthropomorphism, in 
turn, may cause human operators to generate a more sympathetic and user-friendly 
mental representation of the agent (Culley & Madhavan, 2013). On the one hand, 
anthropomorphism can be beneficial, as humans are more likely to collaborate with AI 
agents if they show the same qualities and traits that allow humans to team with other 
humans (Teo et al., 2019). Culley and Madhavan (Culley & Madhavan, 2013), on the 
other hand, argued that including anthropomorphic cues may have a considerable impact 
on the calibration of trust in an agent, as it strengthens the human tendency to attribute 
human features to non-human entities. As a result, a human might base its level of trust 
on characteristics attributed to the agent, rather than on actual experiences with the agent 
itself and trust may turn out to be misplaced (Culley & Madhavan, 2013). 

However, other research suggests that human-agent interaction is qualitatively different 
from interpersonal interaction (De Melo et al., 2015; de Visser et al., 2016; Madhavan 
& Wiegmann, 2007). Recent developments in autonomous driving, for instance, show 
that although self-driving cars are statistically safer than human drivers, fatal accidents 
involving self-driving cars evoke a stronger public response than accidents involving 
human drivers (Shariff et al., 2017). Research shows that even a single error from a robot 
strongly affects a person’s trust (Robinette et al., 2017b). Research suggests that people 
often consider a machine as nearly infallible and that they have a natural tendency to 
follow the advice of automation, a phenomenon known as the automation bias (Wright 
et al., 2016). These high expectations result in a steeper decline in trust in case of a 
machine failure than it would in case of a human error, as humans are considered to be 
inherently fallible (Madhavan et al., 2006; Madhavan & Wiegmann, 2007). This is in line 
with the notion of algorithm aversion, the tendency for people to more rapidly lose faith in 
an erring decision-making algorithm than in humans making comparable errors (Shariff 
et al., 2017). Apparently, trust violations by machines are viewed and judged differently 
than trust violations by humans (Hidalgo et al., 2021).

As AI technology matures, agents will become more social and more frequently 
deployed in social roles. Therefore it seems likely that people will increasingly treat AI 
agents as social actors and more readily apply the same rules, potentially triggering 
undesirable biases and heuristics. The challenge is to incorporate social skills in a way 
that supports human-agent teaming and calibrated trust, without being misleading.
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Trust repair

Given the complexity and unpredictability of many situations in which AI agents are 
deployed, like military operations and city traffic, agents will not always be able to make 
perfect decisions or come to correct conclusions. Hence it is conceivable that an AI 
agent will at some point in time provide their human teammate with an incorrect advice. 
An incorrect advice and its potentially damaging consequences may lead to a decrease 
in trust and in the willingness to accept further information from the agent, and as a 
consequence, limited benefit from the advantages that AI agents have to offer (Freedy 
et al., 2007; Hancock, Billings, Schaefer, et al., 2011b). In addition, it has been shown 
that repairing damaged trust is more difficult than building trust initially (P. H. Kim et 
al., 2004), which further underscores the importance of effective trust-repair strategies. 

Interpersonal trust-repair strategies
In interpersonal trust literature, multiple strategies for trust repair are found, such as 
ignoring the occurrence of the trust violation, denying responsibility for the violation, or 
apologizing for the violation (de Visser et al., 2018; P. H. Kim et al., 2004, 2006). The 
current chapter will focus on apology, as this is the most common trust repair strategy 
(Lewicki et al., 2016). Providing an apology is a way for the apologizer to show an 
understanding of the “social requirement” for an apology when any sort of trust violation 
has occurred; the apologizer acknowledges that she is aware that she has done something 
that made the other person feel disadvantaged or hurt. Additionally, the apology may 
include an emotional expression that could provide context for the apologizer’s intentions, 
for example ‘If I had known that the book was that important to you, I would never have 
given it away” (Lewicki et al., 2016). 

An apology can consist of multiple components, including 1) an expression of regret 
about the costly act (i.e. I am very sorry), 2) an explanation of why the failure occurred, 3) 
an acknowledgement of responsibility for the mistake, 4) an offer of repair, 5) a promise 
that it will not happen again in the future, and 6) a request for forgiveness (Akgun et 
al., 2010; de Visser et al., 2018; Lewicki et al., 2016; Olshtain & Cohen, 1983). Some 
components are more common than others. An analysis by Lewicki & Polin (2016) found 
that apologies usually included an expression of regret and an explanation for why the 
violation occurred. Other apology components were less common, less clear or not at 
all included in the apologies that were found. In interpersonal interaction, trust violations 
are shown to result in less damage when apologies for the violation had been provided, 
compared to when no apologies had been given (P. H. Kim et al., 2004; Tomlinson et 
al., 2004). Furthermore, research suggests that the composition of an apology matters. 
An older study in which the number of apology components was manipulated showed 
a linear trend, where more apology components were perceived as more effective than 
fewer components (Scher & Darley, 1997). This implies that the more extensive the 
apology, the smaller the damage. 
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Non-human apology
Research findings of studies dedicated to the effects of apologetic messages by computers 
and other forms of automation are somewhat ambiguous. Generally, research shows that 
providing an apology can benefit the feelings of the human towards an artificial entity 
(Akgun et al., 2010; Brave et al., 2005; Dzindolet et al., 2003; Scher & Darley, 1997; 
Tzeng, 2004). Studies that looked at human-agent trust found that agents that expressed 
empathetic emotions towards the human (e.g. “I am sorry” or “I apologize”) were trusted 
more than agents that did not (Brave et al., 2005; M. K. Lee et al., 2010a). Moreover, 
people are more likely to trust and rely on an automated decision-support system when 
given an explanation why the decision aid might err (Dzindolet et al., 2003), or when 
they inferred such explanations after observing system behaviour themselves (de Vries 
et al., 2015). 

The effectiveness of a trust repair strategy seems to depend on situational factors such 
as timing (Robinette et al., 2015), violation type (Sebo et al., 2019; Tolmeijer et al., 2020) 
and agent type (Taenyun Kim & Song, 2021). Research on the effect of timing suggests 
that apologies for a costly act were only effective when performed not immediately after 
the violation occurred, but rather when a new opportunity for deciding whether to trust 
the robot arose (Robinette et al., 2015). In terms of violation types, an apology appears 
to be the most effective trust repair strategy after a robot performs a competence-based 
trust violation, whereas denial proves to be more effective in case of an integrity-based 
violation (Sebo et al., 2019). Other research suggests that for human-like agents, apologies 
were the most effective when attributed internally, whereas for machine-like agents 
apologizing with an external attribution was more effective (Taenyun Kim & Song, 2021). 

Humans have a natural tendency to follow the advice of automation, even when they 
do not know the rationale behind the suggestions, which can lead to overtrust. Insight 
into agent reasoning appears to allow the human to effectively calibrate their trust in the 
agent, which reduces this automation bias and improves performance (Wright et al., 2016). 
Other research on apologies focused mainly on performance. Akgun et al. (Akgun et al., 
2010) found that apologetic error messages that included both an expression of regret 
and an explanation had a positive effect on participants’ self-appraisals of performance, 
when interacting with a system that errs. Tzeng (2004) showed that the provision of brief 
apologetic feedback (i.e. “Sorry, this is not a correct guess” or “We are sorry that the 
provided clues were not very helpful for you”) did not affect the user’s overall assessment 
of the program, but did make the participants feel better about their interactions with 
the program and think of the computer as less mechanical and more sensitive to their 
emotions. New approaches are needed to understand the potential impact of apologetic 
messages from non-human agents on human-agent trust.
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Current study

The aim of this study is to investigate the effect of the apology components expression 
of regret (i.e. “I am sorry”) and explanation on the development of trust, after it has been 
violated. The experimental environment resembles a first-person shooter game where 
participants carry out a mission whilst being advised by an AI agent. The AI agent is 
represented graphically as a virtual robot. An encounter with the enemy after an incorrect 
advice from the agent is expected to cause a violation of trust and a drop in people’s 
willingness to accept subsequent advice (Robinette et al., 2017b). Intentionally breaking 
trust allows us to examine the effectiveness of different strategies in the trust repair phase. 
Immediately after the violation has occurred, the agent attempts to repair trust by offering 
an apology that consists of an expression of regret or an explanation, a combination of 
both, or neither. The main research question is how trust develops over time when an 
AI agent uses different strategies to repair trust after a trust violation has occurred. We 
expect to find an effect for both expression of regret and explanation. The combination 
of components is expected to be the most effective strategy for trust repair.

Method

Participants

The dataset included sixty-six participants (29 W, 37 M, Mage = 24.6, SD = 5.6, range 
= 19 – 55 y), most of them students at the University of Twente. The participants were 
recruited through SONA, a test subjects pool at the University of Twente. Participants 
received credits for participation. In addition, the fastest participant to finish the experiment 
received a prize of 50 euros. 

Design

A 2 (Regret: provided or not) x 2 (Explanation: provided not) between-subjects design 
was used. Regret and Explanation were both manipulated between-participants. The 
main dependent variables were Trust and Advice Acceptance. Participants were randomly 
assigned to one of the four trust-repair conditions (explanation only: n = 18; regret only: n 
= 16; neither: n = 14; both: n = 18). ‘Time’ was included as a within-participants variable 
in the analysis to refer to the different measurements of trust and advice acceptance 
(T1, T2, T3).
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Task and procedure

The experimental environment that was built in Unity3D resembled a first-person shooter 
game. Participants carried out a mission whilst being advised throughout the game by 
their artificial team member with its robotic embodiment (Figure 3). For the control of 
the AI agent, the Wizard of Oz method was used; the agent was controlled by one of 
the experiment leaders in an adjacent room, while the participant was kept under the 
impression that it was operating autonomously. 

Figure 3 Screenshot of the virtual task environment, designed to resemble a first-person shooter game, 
depicting the robotic agent navigating a hilly, green landscape.

Upon arrival at the laboratory, participants were greeted by the researcher and guided 
to a private room where the study was to be conducted. The researcher provided a brief 
introduction to the study, emphasizing the general purpose and the tasks participants 
would be asked to perform. Participants were presented with an information sheet about 
the study and a consent form. Upon agreeing to participate, participants filled out a 
pre-study questionnaire (i.e., demographics) and received more detailed information 
regarding the scenario and task. After that, participants were provided with headphones 
to hear the auditory messages from the agent and started with a training session to get 
familiar with the controls and to test the volume of the audio.

For the actual task, participants were instructed to head back to basecamp as fast 
and careful as possible, since they were running low on ammunition. In addition to getting 
from A to B as fast as possible, they had to watch out for enemies along the way. The 
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basecamp was marked by a red flag and located on top of a mountain. The basecamp 
was visible for most of the route, so participants knew what direction to go. At three 
points throughout the scenario, the agent provided the participants with information 
on whether it detected enemies or not and the corresponding advice to take shelter or 
continue moving. The agent communicated through auditory messages. Although the 
task environment resembled a first-person shooter game, participants were told to avoid 
hostile contact due to their ammunition shortage. 

Participants were told that, after an advice was given, the game would pause and they 
were asked to turn to a second screen and to rate their willingness to accept the agent’s 
advice through a single-item questionnaire. Advice acceptance was always measured 
directly after the participant received an advice. Figure 4 provides a schematic timeline 
of the experiment. Participants were told that by answering the question, they made their 
decision to accept the advice or not; they did not actually have to seek shelter when 
they returned to the game. Participants were told that during the questionnaire break, 
ten minutes had passed in the game. 

Figure 4 Schematic timeline of the experiment. Each phase consisted of 1) an advice from the agent, 2) 
an advice acceptance questionnaire (clipboard icon with the letter A), 3) a moment of feedback (verbal 
or experienced), and 4) a trust questionnaire (clipboard icon with the letter T)

A few moments after continuing the game, participants received feedback from the agent 
on whether the advice had turned out to be correct or not. Feedback was either provided 
by the agent itself through a auditory message (e.g. “The advice I gave you was correct”), 
or by an external event (i.e. the appearance of an enemy, indicating that the advice to 
move forward had been inaccurate). 

The agent’s first advice was correct (see Table 1). The agent’s second advice was 
incorrect, resulting in the encounter with the enemy and provoking a trust violation. During 
this encounter with the enemy, participants could only continue once they had eliminated 
the enemy with their firearms. During the confrontation, the enemy kept shouting and 
the periphery of the screen coloured red to create a sense of threat. Participants did not 
know that they actually had an endless supply of ammunition or that the enemy could 
not eliminate them in the game. Although some took longer than others, in the end every 
participant succeeded in eliminating the enemy. The rationale behind this confrontation 
was to startle the participant and to provoke a trust violation. There were no further 
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consequences to their performance on this part of the task. After receiving feedback, 
the game paused again and participants were asked to fill out the trust questionnaire 
on the second screen. 
 
Table 1 Overview of messages from the agent throughout the experiment.

Type of message Message from the agent

Advice 1 I have detected enemies, so I advise you to take shelter

Feedback 1
The advice I gave you was correct. The enemy was getting closer, and 
if you had not taken shelter, you would probably have been discovered 
by now.

Advice 2 I am not detecting any enemies, so I advise you to move forward

Feedback 2 -

Trust repair manipulation See Table 2

Advice 3 I have detected enemies, so I advise you to take shelter again

Feedback 3
The advice I gave you was correct. The enemy was getting closer, and 
if you had not taken shelter, you would probably have been discovered 
by now.

A few moments after continuing the game after the second trust measure (i.e. violated 
trust), the trust repair manipulation followed. The agent offered an apology that consisted 
of either an expression of regret or an explanation, a combination of both, or neither. 
To assess the effect of the trust repair strategy, both advice acceptance and trust were 
measured directly after the third advice. The third advice was again correct, but this 
performance feedback about the last advice was provided later on to avoid interference 
with the effect of the trust repair manipulation. After the participant finished the game, a 
final questionnaire measured the concepts ‘anthropomorphism’, ‘likeability’, ‘perceived 
intelligence’, ‘perceived usefulness’, ‘feeling’, ‘game experience’ and demographics. 

 The auditory messages by the agent are displayed in Table 1 and were the same for all 
participants. The trust repair message varied between participants as it depended on the 
factors Explanation and Regret (Table 2). Messages from the agent were communicated 
through computerized speech. Speech was created using an online website for converting 
text into speech0F1, using a male voice speaking US English. 

 
 
 
 
Table 2 The different messages from the agent at ‘repair’ in the four combinations of the factors Explanation 
and Regret.

1	  Text was converted to speech with http://www.fromtexttospeech.com/, using the voice ‘John’ in US 
English at medium speed.

http://www.fromtexttospeech.com/
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Regret No regret

Explanation

The advice I gave you was wrong. The 
enemy was carrying a weapon of an 
ally, because of that, my classification 
led to an incorrect conclusion. I am 
really sorry.

The advice I gave you was wrong.
The enemy was carrying a weapon 
of an ally, because of that, my 
classification led to an incorrect 
conclusion

No explanation
The advice I gave you was wrong.
I am really sorry.

The advice I gave you was wrong.

 
Measures

Advice acceptance was measured repeatedly by a single item, asking participants “how 
likely is it that you will follow your buddy’s advice?” on a seven-point scale ranging from 
‘extremely unlikely’ to ‘extremely likely’. 

Trust in the agent was repeatedly measured with an 11 item scale (α = .84) with three 
subscales: competence (4 items, e.g., “My buddy has a lot of knowledge on navigating 
through this environment.”) (α = .86); benevolence (3 items, e.g., “My buddy puts my 
interests first.”) (α = .72); and integrity (3 items, e.g., “My buddy is honest.”) (α = .61). 
The items were based on the constructs of McKnight & Chervany (2000). Answers were 
rated on a 7-point Likert scales ranging from ‘completely disagree’ to ‘completely agree’.

Perceived anthropomorphism, likeability and intelligence were measured using 
the ‘Godspeed’ semantic differentials (Bartneck et al., 2009). Participants rated their 
perceptions of their partner on a continuum between bipolar adjective. For each 
concept, five word pairs were used, such as ‘artificial’ versus ‘lifelike’ for perceived 
anthropomorphism (α = .65), ‘nice’ versus ‘awful’ for likability (α = .86), and ‘knowledgeable’ 
versus ‘ignorant’ for perceived intelligence (α = .86).

Perceived usefulness of the agent was measured by four items (e.g., “Thanks to my 
buddy I was able to decide faster.”) (α = .84), rated on a 7-point Likert scales ranging 
from ‘completely disagree’ to ‘completely agree’. 

Participants’ feelings during the experiment were assessed with a four item scale, 
where each item starts with ‘I felt…”, followed by the words: ‘nervous’, ‘scared’, ‘worried’ 
and ‘anxious’. Answers were rated on a 7-point Likert scales ranging from ‘completely 
disagree’ to ‘completely agree’ (α = .77). 

Self-efficacy was measured with three items (e.g., “I am sure of my skills for performing 
this task”) (α = .89), rated on a 7-point Likert scales ranging from ‘completely disagree’ 
to ‘completely agree’. 

The demographic items collected information on participants’ age, gender and gaming 
experience . Gaming experience was assessed with a single question, asking participants 
how often they play computer games, on a 6-point Likert scale ranging from ‘never’ to 
‘more than one hour a day’. 
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Results

Advice taking

A Repeated-Measures ANOVA was conducted with the between-subject factors Regret 
(present or absent) and Explanation (present or absent) and the within-subject factors 
Time (prior to violation [T1] versus after violation [T2] versus after repair [T3]). Here, 
advice taking was the dependent variable.

A significant main effect of Time [T1-T3] on advice taking was obtained F(2, 124) 
= 40.16, p < .001, partial η2 = .39 with means of 5.85 at T1, 6.09 at T2 and 4.43 at T3. 
This means that after the first advice turned out the be correct, participants were more 
willing to accept the subsequent advice. When the second advice proved to be incorrect 
however, participants were less inclined to follow up the advice that was provided after 
the trust violation. 

There were no statically significant main effects of Regret and Explanation on advice 
taking. Nor were there any interaction effects between Time, Explanation and Regret on 
advice taking found.

Trust

For the dependent variable Trust, a Repeated-Measures ANOVA was conducted with 
the between-subject factors Regret (present or absent) and Explanation (present or 
absent) and the within-subject factor Time (prior to violation [T1] versus after violation 
[T2] versus after repair [T3]). 

A significant main effect for Time [T1-T3] on Trust was obtained (see Table 3). Means 
were 5.06 at T1, 4.01 at T2 and 4.44 at T3. All three timepoints were included in the 
ANOVA to measure the development of trust. Results of the LSD post-hoc test shows 
a significant difference between T1 and T2 (p < .000), which reflects a violation of trust 
and a significant difference between T2 and T3 (p < .000), which reflects an overall 
trust recovery effect. There were no statistically significant main effects of Regret and 
Explanation.
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Table 3 Analysis of Variance (ANOVA) table for the dependent variable Trust.

Source df F p η 2

Between-subjects effect

Explanation 1 0.05 0.828 0.00

Regret 1 0.09 0.765 0.00

Regret * Explanation 1 4.32 0.042 0.07

Error 62

Within-subjects effects

Time 2 53.66 0.000 0.46

Time * Explanation 2 1.30 0.277 0.02

Time * Regret 2 3.81 0.025 0.06

Time * Explanation * Regret 2 3.31 0.040 0.05

Time (error) 124

a. Computed using alpha = .05

A significant interaction effect between Time [T1-T3] and Regret on trust was found 
(see Table 3). This interaction effect reflects both a difference in how the trust violation 
is perceived across different groups and a difference in the degree of trust repair when 
the agent provided an expression of regret opposed to when the agent did not provide 
an expression of regret in its apology.

A significant interaction effect between Regret and Explanation on trust was found 
(see Table 3). This effect reflects a difference in the level of trust between conditions, 
averaged over time. None of the other two-way interactions were statistically significant.

A significant three-way interaction effect between Time [T1-T3], Explanation and 
Regret on trust was found (see Table 3 and Figure 5). LSD post-hoc analysis shows a 
significant difference between groups in how they react to the incorrect advice prior to 
T2. On average, the participant group in the condition with both regret and explanation 
shows significantly lower levels of trust at T2 compared to participants groups in the 
conditions with solely explanation (p = .007) and the condition with solely regret (p = .010) 
at T2. There were no other significant differences between groups on specific timepoints.

In order to further investigate this interaction, two separate analyses were conducted 
for when regret was absent and when it was present. Splitting the file by regret shows 
an interaction effect between Time and Explanation only when regret was present (F (2, 
64) = 4,69, p = .013). This means that an explanation only affected trust when the agent 
also expressed regret.
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Figure 5 A comparison of trust levels (y-axis) across conditions (represented by separate lines) over time 
(x-axis). The left panel illustrates trust levels in conditions without an expression of regret and the right 
panel shows the conditions with expression of regret. Grey lines correspond to conditions without an 
explanation, and black lines represent conditions with an explanation. Error bars represent standard 
deviations.

In order to measure the effects of the trust repair strategies, simple effects were calculated 
to compare trust scores before and after provision, between T2 (after the violation) and 
T3 (after the attempted repair), for each experimental condition. T1 is left out since this 
analysis focusses on the effects of the trust repair strategy that occurs between the trust 
measures on T2 and T3. As shown in Table 4, increases in trust between T2 and T3 
were only significant when an expression of regret was provided. This effect is marginally 
significant when no explanation is given (p = .056), and stronger when it is accompanied 
by an explanation (p < .001).
 
Table 4 Simple main effects of Regret, Explanation and Time [T2-T3].

Regret Explanation Δ time p

0
0 T2 T3 .199

1 T2 T3 .142

1
0 T2 T3 .056

1 T2 T3 .000

Correlations

For the correlations, initial trust (T1) is used as this is considered the purest trust measure 
with the least interference of occurrences during the experiment. Correlations show that 
trust was higher when the agent was considered more human-like (r(64) = .45, p < .001), 
likeable (r(64) = .45, p < .001), intelligent (r(64) = .48, p < .001) and useful (r(64) = .61, 
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p < .001). Furthermore, the higher the level of trust the more likely the participant was to 
follow the advice (r(64) = .51, p < .001). With regard to advice taking, participants were 
more likely to follow the advice when they perceived the agent as more intelligent (r(64) = 
.29, p = .02) and useful (r(64) = .53, p < .001). Trust (r(64) = -.42, p < .001) and willingness 
to follow the advice (r(64) = -.26, p = .04) was higher when the participant was younger.

Discussion

The results of this study show that apologies including an expression of regret were 
most effective in repairing trust after a trust violation in a human-agent teaming setting. 
After an incorrect advice from the agent caused a decline in human trust, trust was only 
significantly recovered when an expression of regret was included in the apology. This 
effect was stronger when an explanation was added.

Although expressing regret is typically perceived as a human-like quality, these results 
suggest that saying sorry also makes a difference in rebuilding trust when it comes from 
a non-human agent. In line with the CASA-paradigm, it indicates that the interpersonal 
custom of affective apologies can also benefit human-agent interaction (J. E. R. Lee & 
Nass, 2010). Our findings are in line with studies that showed that computers expressing 
empathetic emotions were trusted more (Brave et al., 2005; M. K. Lee et al., 2010a; Riek 
et al., 2009) and studies that find that people prefer to cooperate with virtual agents that 
express moral emotions (De Melo et al., 2009). These results support the notion that 
apology is an effective trust repair strategy in response to a competence-based trust 
violation (Sebo et al., 2019). Current findings contradict earlier findings that indicated 
that apologies where not effective when provided immediately after the agent broke trust 
(Robinette et al., 2015).The important role of affect in trusting a non-human agent is 
strengthened by our finding that trust increased when participants perceived the agent 
as more human-like and likeable (de Visser et al., 2016). It suggests that a feeling of 
sincerity in the expression of regret by the non-human agent is the most important for 
trust repair. This aligns with the belief that affective aspects of trust have the most direct 
impact on behaviour, since people not only think about trust, but foremost feel it (Fine 
& Holyfield, 2006).This underlines the relevance of using engaging game environments 
rather than questionnaires only, since the former method induces physiological responses, 
increasing ecological validity. The immersiveness of the game environment used in the 
present study sets this study apart from simpler, more superficial questionnaire-based 
research and might explain why affect is the predominant factor in our results.

The findings on the effectiveness of the trust repair strategies including regret are 
somewhat ambiguous, since the trust violation is perceived differently across different 
participant groups. Although the participants were randomly assigned to each condition 
and their task was identical up to the point of the trust repair manipulation, the groups 
that received an apology including an expression of regret showed on average steeper 
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declines in trust in response to the trust violation than the groups that did not. This results 
in counterintuitive outcomes in which the conditions without regret barely gain in trust after 
the manipulation, but still end up with higher levels of trust on the final measurement. As 
such, the ‘neither regret nor explanation’ condition scores higher on final trust then the 
‘both regret and explanation’ condition. However, taking the deviating levels of trust at T2 
into account, the results show a steeper increase in trust in the trust repair phase when 
the agent provided an expression of regret opposed to when the agent did not provide 
an expression of regret in its apology. This increase is even steeper when the apology 
consists of both an expression of regret and an explanation, whereas the conditions 
without regret show no noteworthy rise in trust.

Beyond the generic effect of affect, the combination of both the expression of regret 
and an explanation proved to be the most effective trust repair strategy. This is in line 
with the interpersonal study of Scher and Darley (Scher & Darley, 1997), which showed 
that more apology components led to more trust. Our findings align with earlier work that 
found that apologetic error messages that included both an expression of regret and an 
explanation had a positive effect on trust (Akgun et al., 2010). Offering an explanation 
without an expression of regret had no effect on trust repair. The absence of this effect 
may be due to the variability in the interpretation of the provided explanation, as became 
apparent during the debriefing. Some participants reported that they felt more comfortable 
after the explanation, as it gave more context and transparency, whereas others felt 
discomfort and suspicion when confronted with the fallibility of the system and with the 
idea that the agent was functioning on the edge of its abilities. Even though transparent 
communication is an essential aspect for building trust in human-agent teams (Barnes et 
al., 2014), this anecdotal evidence suggests that an explanation does not automatically 
do so.

Generally, explanations contribute to transparency; as it is defined as the provision of 
information to help the human understand various aspects of agent functioning (Lyons, 
2013). A recent study suggests that transparency should be compatible with the user’s 
mental model of the system in order to support accurate trust calibration (Matthews et 
al., 2019). A mental model is an internal representation in the mind of one actor about the 
characteristics of another actor (de Visser et al., 2019). Different forms of transparency 
might be needed dependent on whether the humans representation of the system concerns 
an advanced tool or a teammate. Accordingly, personalized feedback that highlights either 
the machine’s data-analytic capabilities (advanced tool) or its humanlike social functioning 
(teammate) provides a strategy for trust management (Matthews et al., 2019). In that 
sense, an explanation is far more complex than an expression of regret, as there is a 
wider range of possible underlying messages of the explanation and the way they are 
articulated. It would be interesting to include the human’s mental model of the system (i.e. 
tool versus teammate) as a mediating factor in follow-up research to reduce the variability. 
Future personalization could also focus on individual differences that can influence trust 
development and specially trust repair, such as people’s tendency to anthropomorphize 
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(Epley et al., 2007; Waytz et al., 2008), propensity to trust (J. D. Lee & See, 2004) and 
their attitudes and other implicit beliefs and biases towards automation (Haselhuhn et 
al., 2010; Matthews et al., 2019; Merritt et al., 2013, 2015).

Even though our results clearly show the importance of affective factors, there are 
several limitations that need to be taken into consideration. The first one concerns the 
participants, who were almost all students. The homogeneity of this group influences the 
representativeness of the study and the generalizability of the results. We for example 
found a negative correlation between age and trust and age and advice taking, possibly 
suggesting different attitudes of different age groups towards artificial agents. A second 
limitation is the absence of a manipulation check. The agent offered one of four types 
of trust repair strategies: an expression of regret; an explanation; neither, or both. 
However, the condition where the agent offered neither of the apology components, it 
still acknowledged that the advice it gave was wrong. This could be interpreted as the 
agent taking direct responsibility for its mistake and thus an apology component on its 
own. Nonetheless, this acknowledging statement was the baseline in every condition. 
So even if the baseline condition is observed as a form of apology, the other apology 
components proved to significantly more effective in repairing trust. A third limitation is 
that we only used one type of trust violation, i.e. a competence-based trust violation. 
Research suggests that the ground of the trust violation (i.e. competence, benevolence 
or integrity-based) matters in determining which trust repair approach would be the most 
effective. An interpersonal study on repairing customer trust after negative publicity showed 
that emotional reactions are the most effective strategy when aiming to rebuild integrity 
and benevolence, and that providing sufficient information is essential for improving 
consumers’ judgment about competence (Xie & Peng, 2009). In our study the incorrect 
advice resulted from the incorrect application of knowledge, which mostly resembles a 
competence-based trust violation. Accordingly, an explanation would be expected to best 
fit this type of violation (Xie & Peng, 2009). Yet even with the current task design, affect 
proves to be the most influential factor in rebuilding trust. Even though we predict that 
affect would even be stronger in other types of violation, follow-up research is needed 
to investigate a wider range of trust violations and to determine whether the beneficial 
effects will last when the same apology is offered repeatedly. A last limitation concerns 
the ecological validity of the game and its specific content. In the current task the trust 
violation was induced by a confrontation with an enemy. Although this successfully 
caused a decline in trust, it is conceivable that the impact of the trust violation and trust 
repair strategy in the game would differ from its impact in real-life. Possibly an even 
more immersive environment like virtual reality and a different task will trigger other 
psychological mechanisms than we have addressed in the present study.
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Implications

There is an ongoing debate about the appropriateness of providing humanized messages 
by a robot and how far anthropomorphism should go. The current results accords with the 
view that humans are more likely to collaborate with AI agents that show the human-like 
qualities and traits and which states and that, on a relational level, anthropomorphism can 
be beneficial (Teo et al., 2019). As AI agents are increasingly deployed as teammates, 
it seems useful to incorporate social skills into their design. These AI teammates will be 
deployed in many contexts, including complex and unpredictable situations, like military 
operations and city traffic. Even though the technology evolves at a high rate, we must 
prepare for the inevitability of errors. This study contributes to determining what the 
psychosocial requirements are for the maintenance and repair of trust in human-agent 
teaming. Our results suggest that to retain trust in a human-agent team, the ability of 
actively repairing trust after an error or unintended action should be a fundamental part 
of the design of AI agents. In response to a trust violation, a successful active trust repair 
strategy should include an explanation for why the error occurred and an expression 
of regret. Future research in the field of affective computing could explore the potential 
of measuring the affective states of humans in real-time during their interaction with an 
agent. This would allow the agent to adapt its trust repair strategies to the type and the 
intensity of the emotional reaction to the violation, to ensure better calibration. 

It is important to note that trust evolves in a complex individual, cultural, and 
organizational context. Even though the appropriate trust repair strategy depends on 
many contextual factors such as the type, severity and frequency of the trust violation, 
it presumably makes a difference if an AI agent offers an apology that is both affective, 
and informational in an attempt of rebuilding trust. 
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56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

          Abstract 
In many operational situations, flawless performance from AI agents cannot be guaranteed. 

To ensure sustained human-AI collaboration despite potential trust violations, we examine 

both preventative and reactive trust repair strategies. This study aims to explore the 

impact of uncertainty communication and apology on the development of human trust 

in AI agents. Two experimental studies following the same method were performed with 

(I) a civilian group (N = 66) and (II) a military group (N = 65) participants. The online task 

environment resembled a military house search in which the participant was accompanied 

and advised by an AI agent. Halfway during the task, an incorrect advice evoked a 

trust violation. Uncertainty communication was manipulated within-subjects, apology 

between-subjects. Our results showed that (I) communicating uncertainty led to higher 

levels of trust in both studies, (II) an incorrect advice by the agent led to a less severe 

decline in trust when that advice included a measure of uncertainty, and (III) after a trust 

violation, trust recovered significantly more when the agent offered an apology. The two 

latter effects were only found in the civilian study. The difference in findings between 

participant groups emphasizes the importance of considering the (organizational) culture 

of a target audience when designing AI agents.
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Introduction

Human-Agent Teams

The collaboration between humans and AI agents in dangerous and unpredictable 
contexts (e.g., military operations, city traffic) is expected to rise (Ososky et al., 2014). 
Given the complexity of many operational situations, there will often be uncertainty 
about the right action to take. As uncertainty also affects the reliability of the predictions 
that lead to an agent’s advice, the chance of an inappropriate advice increases. An AI 
agent’s advice may be correct given the available information, it may nevertheless have 
negative consequences due to contextual uncertainty. In many operational situations 
flawless performance cannot be guaranteed, neither from a human, nor from an AI agent 
(de Visser & Parasuraman, 2011).

However smart AI agents may be, suboptimal behaviour or mistakes will be inevitable 
at times. Optimal collaboration between humans and AI agents relies heavily on the 
system’s capacity to effectively communicate with the human, especially in face of 
uncertainty and potential error (Fratczak et al., 2021). Ososky et al. (2014) argue that 
a robotic system does not have to be 100% reliable in order to be useful. Today, the 
default option seems either to stop using a machine that makes mistakes or to redesign 
it (Beck & Kühler, 2020). Although overtrust and overreliance should be avoided, one 
misstep by the agent does not mean that it can no longer be trusted and that it should 
be disregarded at all. 

As long as humans understand the capabilities and limitations of the system and 
calibrate their trust and reliance accordingly, human and artificial teammates can 
complement each other’s strengths and weaknesses to reach the full potential of the 
HAT. To foster a balanced trusting relationship, agents should be equipped with social 
tactics to recover from mistakes and to repair trust following trust violations (Albayram 
et al., 2020). Most humans have naturally and implicitly cultivated such social strategies 
throughout life, but these techniques are still all too often lacking in technology (M. Johnson 
& Vera, 2019). Equipping agents with trust repair strategies would allow sustainable, long-
lasting and trusting relations with machines, in spite of uncertainty and potential error. 

The current studies investigate whether uncertainty communication can benefit the 
formation and maintenance of trust in case of an agent’s mistake, and whether offering 
an apology after a mistake can effectively repair trust. Moreover, this chapter explores 
whether the effects of these preventative and reactive social-cognitive repair strategies 
by the agent differ between civilian and military samples. 

Uncertainty communication

Uncertainty communication is currently an active topic in AI research. Studies have shown 
that communicating uncertainty can help people to calibrate their trust (Kraus et al., 2020; 
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Kunze et al., 2019; Schaekermann et al., 2020). Especially complex circumstances can 
demand rapid trust calibration (Tomsett et al., 2020). Military operations, for example, 
include high-stake decisions and decision makers may operate in rapidly changing 
environments. In this context of collaboration, the human needs to understand the 
capabilities and limitations of the system to continuously calibrate and adjust their level 
of trust along the way (Tomsett et al., 2020). An agent should be able to recognize and 
signal its uncertainty and ask for clarification to gather more information, much like an 
uncertain human would. Communicating the level of uncertainty with each advice from 
the agent will allow the human to rapidly and repeatedly calibrate their trust during a task. 

A recent study showed that a temporary decrease in trust due to a malfunctioning 
automated car could be prevented by providing probabilities of malfunctioning prior 
to the interaction (Kraus et al., 2020). Those kinds of uncertainty measures can also 
benefit situational awareness (Helldin et al., 2013; Kunze et al., 2019) and the humans’ 
understanding of the systems actions and performance (Antifakos et al., 2004). An 
automated driving experiment demonstrated how participants who had access to 
uncertainty information were able to spend more time on other tasks than driving (Helldin 
et al., 2013). Yet, these participants were faster in taking over control when needed 
than those who did not receive such information (Helldin et al., 2013). A similar effect 
was found in a study where researchers intentionally lowered people’s expectations of 
a robot’s capabilities by forewarning them that the task is difficult for the robot, which 
mitigated the negative impact of a subsequent mishap on peoples’ evaluation of the robot 
(M. K. Lee et al., 2010b). By providing uncertainty information, the human is reminded 
of the fallibility of the agent and is able to revise expectations accordingly. Through this, 
the human might have a higher level of tolerance of substandard performance from the 
agent, which could mitigate some of the negative consequences of a violation. Uncertainty 
communication can be seen as a preventive trust repair strategy that is deployed prior 
to a potential violation. 

To adequately calibrate trust, forming an appropriate mental model of the agents’ 
capabilities and the reliability of its outputs is crucial (Kunze et al., 2019; Tomsett et al., 
2020). In terms of reliability, two types of uncertainty can be distinguished; aleatoric and 
epistemic uncertainty (Fox & Ulkumen, 2021; Tomsett et al., 2020; Ülkümen et al., 2016). 
Aleatoric uncertainty refers to inherent messy, random and unpredictable aspects of the 
physical world and is therefore irreducible (Fox & Ulkumen, 2021; Ülkümen et al., 2016). 
Epistemic uncertainty or ambiguity, on the other hand, is a knowable type of uncertainty, 
caused by a lack of data or knowledge, which could be reduced by providing the algorithm 
with more data (Tomsett et al., 2020; Ülkümen et al., 2016). To collaborate in a team, a 
human should be aware of the uncertainty associated with an agent’s output. 
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Apology

Apologies are a central mechanism for interpersonal conflict management (Lewicki et al., 
2016). Apology is here used as an overarching term for the trust repair strategy where an 
offender acknowledges that he/she is aware that he/she has done something that made 
the other person feel disadvantaged or hurt (Kox et al., 2021; Lewicki et al., 2016). This 
is in contrast to, for example, denial; a trust repair strategy where the offender explicitly 
denies responsibility (P. H. Kim et al., 2004). The structure of an apology can vary, as it 
can consist of multiple components, including (1) an expression of regret about the costly 
act (i.e., “Sorry”), (2) an explanation of why the failure occurred, (3) an acknowledgement 
of responsibility for the mistake, (4) an offer of repair, (5) a promise that it will not happen 
again in the future, and (6) a request for forgiveness (de Visser et al., 2018; Kox et al., 
2021; Lewicki et al., 2016; Olshtain & Cohen, 1983). Expressing regret and explaining 
the cause of an error are most the commonly used apology components by humans 
(Lewicki et al., 2016), but have also been studied in human-machine contexts. 
Human-computer and human-robot literature that involve apologetic behaviour generally 
shows that apologetic behaviour from artificial agents can benefit peoples’ attitude towards 
the agent (Akgun et al., 2010; Cameron et al., 2021; M. K. Lee et al., 2010b; Tzeng, 
2004). More specifically, expressing regret (i.e. “I apologize” or “sorry”) has been found 
to positively affect trust recovery after breaches in trust (de Visser et al., 2016; Taenyun 
Kim & Song, 2021; Kox et al., 2021; Robinette et al., 2015; Sebo et al., 2019). Similarly, 
offering explanations helped to maintain human trust after a robot erred (Esterwood & 
Robert, 2021; Kox et al., 2021; Wang et al., 2015; Wright et al., 2016). A recent study 
showed that when a robot provided both an expression of regret and an explanation of 
the occurred situation, the recovery speed of trust in the robot significantly increased 
(Fratczak et al., 2021). In a previous study, we also found that an apology consisting of 
both an expression of regret and an explanation was the most effective in repairing trust 
in an agent, after it caused a trust violation similar to the one in the current study (Kox 
et al., 2021). Following this, the trust repair strategy in this study is an apology where 
the agent acknowledges its mistake by (a) expressing regret and (b) explaining why the 
error occurred. 

Civilian vs. military participants

A lot of research on HAT is conducted for military applications within army programs 
(Barnes et al., 2014; E. K. Phillips et al., 2011; Roff & Danks, 2018; van den Bosch 
& Bronkhorst, 2018). However, military-minded experimental studies often involve 
participants without any military experience (e.g., university students) (A. Y. Lee et al., 
2010), as it can be hard to recruit actual military personnel for scientific studies. But 
results derived from studies with non-military participants might not generalize to military 
target groups. The current study explores whether there are differences between these 
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subgroups (i.e., military and non-military) and contributes to the growing field of HAT 
research by assessing a civilian sample with a military sample in their way of interacting 
with autonomous agents in a teaming context. Trust is an important aspect in the military 
context (Hancock, Billings, & Schaefer, 2011; A. Y. Lee et al., 2010). During military 
training, soldiers form units with a great sense of social responsibility and are trained 
to work together under extreme conditions (Johannemann et al., 2016). Soldiers must 
subordinate personal well-being to mission accomplishment, risking their lives to succeed 
in battle (Feaver & Kohn, 2001). A study comparing cooperative behaviours between 
soldiers and civilians showed that on average, soldiers were more altruistic, cooperative, 
trusting and more trustworthy (Johannemann et al., 2016). The current chapter extends 
to this work on trusting behaviours among civilians and military personnel as it consists 
of two studies with the same design and goal, but with two different samples; the first 
study involves a civilian sample, the second study involves a military sample. 

Present study

The goal of the two studies in this chapter was to investigate the effects of uncertainty 
communication and apology from AI agent advisors on the development of trust and to 
explore if the findings are consistent across different participant groups. Communicating 
uncertainty has proved to be effective in calibrating trust prior to a potential trust violation 
(Helldin et al., 2013), whereas offering an apology has shown to be effective afterwards, 
in case of a false detection or a miss (de Visser et al., 2019). The present studies explore 
if the two social-cognitive recovery strategies can enhance each other in minimizing the 
impact of a trust violation. Using repeated measurements of self-reported trust, the aim 
was to examine trust in three stages of the trust lifecycle: trust formation, trust violation, 
and trust repair.

For exploratory purposes, some personality questionnaires were added to the second 
study. A series of studies have shown that the Big-Five personality trait of Extraversion 
plays a significant role in how people perceive robots (Haring et al., 2013; Syrdal et 
al., 2007; Walters et al., 2009). Consistent with the similarity-attraction principle of 
interpersonal relationships, people preferred robots whose attributed personality traits 
matched their own along the extraversion-introversion continuum (J.-E. R. Lee & Nass, 
2010; Syrdal et al., 2007). Following this, the potential relation between personality traits 
and the development of trust in agents is explored in the military study.

Initially this study was designed to be conducted as a Virtual Reality (VR) study. 
However, due to the timing of data collection (March 2020 for Study I and September 
2020 for Study II) and the restrictions imposed by COVID-19 regulations, the research 
design was adapted. Instead of conducting the experiment physically in VR, an online 
study using video material of the VR environment was implemented as an alternative.
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Method

Participants

Study 1: civilian sample
For the first study, participants were recruited over a span of two weeks via social 
media and via recruitment services including Surveyswap and PollPool. In total 72 
participants completed the experiment, but eight participants were excluded from the 
dataset. Six participants were excluded because of unreliable completion times. The 
experiment consisted of 5.06 minutes worth of videos and a number of questionnaires: 
four participants, however, completed the experiment in less then 7 minutes, and two 
participants took over 100 minutes to complete the experiment. Two additional participants 
were excluded because of repetitive responses. The civilian dataset included sixty-four 
participants (30 W, 33 M, 1 X, Mage = 24.6, SD = 2.7, range = 18 – 30 y). 

Study 2: military sample
For the second study, participants were recruited via the Ministry of Defense. In total, 74 
military participants completed the experiment, but nine participants were excluded from 
the dataset based on their response patterns. Five of those participants were excluded 
because of unreliable completion times. Four participants completed the experiment in 
less than 7 minutes. One participant took 101 minutes to complete the experiment (i.e. 
seven standard deviations above the mean). Another four participants were excluded 
because of repetitive responses. As a result, our military dataset consisted of sixty-five 
participants (all male, Mage = 27.4, SD = 5.9, range = 20 - 49 y). 

Design

A 2 (uncertainty communication: absent vs. present) x 2 (apology: absent vs. present) 
mixed factorial design was used, with Trust as the main dependent variable. Uncertainty 
communication was manipulated within-subjects, across two experimental runs. Apology 
was manipulated between-participant. Participants were randomly assigned to one of the 
two apology conditions (Study I: apology: n = 32; no apology: n = 32, Study II: apology: 
n = 35; no apology: n = 30). Trust was repeatedly measured, so ‘Time’ (T1: initial, T2: 
post-violation, and T3: final) was included as a within-participants variable in the analysis. 

Task and procedure

Task
The study was conducted online via the survey software Qualtrics and included a series 
of videos and surveys. The videos depicted two house searches in abandoned buildings 
within a VR environment, presented from a first person perspective as if the viewer is 
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walking through the houses themselves (Figure 6). These recordings were captured by 
an experiment leader walking through the VR environment, simulating what a participant 
would have experienced through the VR head mount. 

The Virtual Reality environment was built in Unity 3D, and the video footage was 
edited using the Windows 10 Video Editor and HandBrake software. Audio messages 
from the agents were delivered in synthesized speech, prefaced by a ‘beep’ sound1F2 
and created using the Free Text to Speech Software by Wideo2F3. These audio clips were 
later integrated into the videos. Finally, the videos were combined with trust questionnaires 
to create an experiment designed for online delivery.

Each participant witnessed two house searches via multiple videos. The videos were 
intermitted by short questionnaires assessing participants’ trust levels. Both buildings had 
three floors. During both searches, participants were guided by an AI agent that provided 
them with information regarding the environment. The agent was embodied by a small 
drone that autonomously explored the building. The terms agent and drone are used 
interchangeably. At the beginning of each floor, the agent reported whether it detected 
danger ahead or not, along with a corresponding advice to move carefully or to proceed 
normally. The two buildings were designed to be similar but included different details. 

Figure 6 Screenshots from the experiment. Left: at the beginning of a house the drone (resembling a big 
insect) flew away. Right: one of the rooms in the virtual house; a kitchen. To improve legibility, both 
screenshots have been made brighter, since the task environment was rather dark. The ‘wings’ of the 
insect-like drone are darkened in the image. The screenshot did not capture the blades, due to the rapid 
‘fluttering’ of the drones’ ‘wings’ in the videos.

 
Procedure
Once participants opened the webpage, they were first presented with information 
about the study and a consent form. Upon agreeing to participate, participants received 
background information regarding the scenario and task:

2	  “Beep-07” was downloaded from https://www.soundjay.com/beep-sounds-1.html. 
3	  Text was converted to speech using https://wideo.co/text-to-speech/. The “[en-US] Jack Bailey-S” 
voice was used at speed dial “1”.

https://www.soundjay.com/beep-sounds-1.html
https://wideo.co/text-to-speech/


56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

Chapter 3

50

“In this experiment, you will carry out two house searches in collaboration with an autonomous drone. The 
drone will fly ahead of you and will indicate whether or not it detects danger. The drone gives advice via 
audio messages that start with a ’beep’ sound. Before you start a search, the drone will briefly introduce 
itself. In each house you will be accompanied by a different drone. Listen carefully to the instructions of 
the drones. Each house has three floors displayed by different videos. When you see a staircase, this 
indicates that you have reached the end of a floor. At the end of each floor, your trust in the drone will be 
assessed via a short questionnaire. Make sure that the sound of your device is switched on during the 
entire experiment. Videos may only be watched once. You will not be able to watch the next video until 
all questions have been answered. (…) 
You are about start the search of your first house. You are interacting with a different drone in each 
house. Listen to drone introductions carefully and remember the name of the drone you are interacting 
with. Each drone will provide different types of advice. Listen carefully! Start your walk on each floor by 
clicking the ’play’ button.”

Each participant was randomly assigned to one of the two apology conditions. All 
manipulations were counterbalanced (Bethel & Murphy, 2010), meaning that within both 
apology conditions, both the uncertainty communication conditions (present/absent) and 
the order of the two buildings (A/B) were systematically varied.3F4 

At the start of each house, the drone shortly introduced itself before it flew away 
and out of sight to scan the environment ahead. On the first floor the participant was 
warned correctly by the agent about an event. When the participant turned the corner, 
they encountered either a laser boobytrap (building A, floor 1) or a safety ribbon that was 
previously installed by a colleague (building B, floor 1). The agent provided instructions 
on how to overcome these obstacles (e.g. the person in the video was carrying a knife 
and could dismantle the laser trap by cutting a wire in an electrical wall box in building 
A and could clear the way by cutting the safety ribbon in building B). These interactive 
features at the start of the experiment were designed to affect the participants’ perception 
of immersion. Subsequently, the first trust questionnaire was administered (T1, initial trust). 

Halfway each building, on the second floor, the agent failed to adequately warn 
the participant about potential danger ahead and thus gave an incorrect advice. The 
participant either encountered a thief (building A, floor 2) or a smoking IED (Improvised 
Explosive Device) (building B, floor 2). These events were designed to provoke a trust 
violation by startling the participant without having harmful consequences; the thief quickly 
ran off and the IED turned out to be defected, so it did not explode. Directly after these 
events took place, halfway through the second floor, the second trust questionnaire was 
administered (T2, post-violation trust). On the way back to the staircase, depending on 
the apology condition the participant was in, the agent offered an apology (consisting of 
an explanation why the error occurred and an expression of regret) or did not offer an 
apology and just remained silent. 

4	  Within both apology conditions, participants were evenly distributed to four first run options; building 
A with uncertainty, building A without uncertainty; building B with uncertainty; or building B without 
uncertainty.
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On the third floor, the agent provided a third advice. To assess the effect of the trust 
repair strategy, the third trust questionnaire was administered directly after the third 
advice. The third advice was again correct, but this performance feedback about the 
last advice was provided later on to avoid interference with the effect of the trust repair 
manipulation. The experimental run subsequently concluded. A schematic timeline is 
presented in Figure 7.

Figure 7 Schematic representation of the timeline of a run. Each participant performed two runs in two 
similar buildings along the same timeline. The first advice is correct; the participant is successfully warned 
about a harmless event on the first floor. The second advice is incorrect; the agent does not adequately 
detect the danger on the second floor. The third advice has no known outcome. An experimental run 
terminates after measuring trust a third time.

 
Independent variables

Uncertainty communication had two levels (i.e., present vs. absent) and was manipulated 
within participants. Each participant witnessed two house searches, in other words 
two runs. The presence of uncertainty communication, whether the agent included an 
uncertainty measure in its advices or not, was manipulated within participants, across 
runs (see Table 5). 
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Table 5 Overview of uncertainty communication vs. no uncertainty communication as part of the advice 
provided by the agent

Uncertainty communication No uncertainty communication

Advice 1
Warning, danger detected in this 
environment with 80% certainty. I advise 
you to proceed carefully.

Warning, danger detected in this 
environment. I advise you to proceed 
carefully.

Advice 2
Okay, clearance detected for this 
environment with 70% certainty. I advise 
you to move forward.

Okay, environment detected as clear. I 
advise you to move forward.

Advice 3
Okay, clearance detected for this 
environment with 75% certainty. I advise 
you to move forward.

Okay, environment detected as clear. I 
advise you to move forward.

The presence of an apology, whether the agent offered an apology after a trust violation 
had occurred, was manipulated between participants. Half of the participants received 
 an apology, in both runs. Details in the explanation part of the apology differed due to 
the two different types of trust violations in the two task environments (see Table 6).

Table 6 Overview of apology vs. no apology provided by the agent

Apology No apology

Task environment A
Incorrect advice due to faulty signal from infrared camera. 
I am sorry this put you in danger. 

-

Task environment B
Incorrect advice due to faulty object detection by C1-DSO 
camera. I am sorry this put you in danger.

-

 
Dependent variables

Trust in the AI agent was repeatedly measured using a custom scale consisting of 
eight items. Participants rated their agreement with statements about the drone using 
a 6-point Likert scale, ranging from “Strongly Disagree” to “Strongly Agree” (e.g., “The 
drone provides good advice” and “The drone cares about my wellbeing”). The scale 
was adapted from questionnaires measuring user trust in robots (Charalambous et 
al., 2016) and automated systems (Chien et al., 2014; Jian et al., 2000; Körber, 2019) 
and demonstrated good reliability (study 1, α = 0.74; study 2, α = .94). This scale has 
been specifically developed to suit the online setting of the experiment and enables fast 
repeated trust assessments. 

In the military study, three additional personality questionnaires were administered. 
First, a short version of the IPIP Big-Five personality scale was administered with subscales 
measuring Extraversion (α = 0.72), Agreeableness (α = 0.72), Conscientiousness (α = 
0.59), Openness (α = 0.60) and Neuroticism (α = 0.68). The IPIP was selected as it proved 
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valid for usage in a Web-based format (Buchanan et al., 2005). Participants were instructed 
to answer each item in relation to ‘‘whether the statement describes what you are like’’ 
on a 5-point Likert scale ranging from “Very much unlike me” to “Very much like me”.

Second, we measured the Propensity to Trust Automation (Jessup, 2018), adapted 
from the Propensity to Trust in Technology scale (Schneider et al., 2017). This scale 
consisted of five items (e.g., “I think it’s a good idea to rely on automated agents for 
help.”) (α = 0.81). Participants were instructed to answer each item on a 5-point Likert 
scale ranging from “Strongly Disagree” to “Strongly Agree”.

Lastly, two subscales of the Need for Closure scale were administered in the military 
study: Need for Predictability (three items, e.g., “I don’t like to go into a situation without 
knowing what I can expect from it.”) with α = 0.35 and Need for Decisiveness (three 
items, e.g., When I have made a decision, I feel relieved), with α = 0.08. Participants 
were instructed to answer each item in relation to ‘‘whether the statement describes what 
you are like’’ on a 5-point Likert scale ranging from “Very much unlike me” to “Very much 
like me”. Since both Cronbach’s alpha values are lower than 0.40, both constructs were 
eliminated from the analysis. 

Results

General plots

For both studies we performed a repeated-measures ANOVA with the between-
subject factor Apology (present or absent) and the within-subject factors Uncertainty 
communication (present or absent) and Time (prior to violation [T1] versus after violation 
[T2] versus after repair [T3]) (Figure 8). 
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Figure 8 An overview of the results of both studies; the upper half represents Study I (civilian sample), 
the lower half represents Study II (military sample). Graphs show the development of trust (y-axis) over 
time (x-axis) with the estimated marginal means on trust for the uncertainty and apology conditions over 
time. The error bars represent standard errors. Separate graphs (left and right panels) represent the 
apology conditions (left shows apology strategy absent, right shows apology present). Separate lines 
represent the uncertainty conditions. The grey lines with the circle-shaped datapoints represent the 
condition in which the agent did not communicate uncertainty in its advice, the black lines with 
triangle-shaped datapoints represents the condition in which uncertainty communication was present.

 
Results: Study I [civilian sample]

Main effects
A significant main effect for Time [T1-T3] was obtained (F (2, 124) = 112.06, p < .001, 
η2 = .644). Means were 4.45 at T1, 2.73 at T2 and 3.29 at T3. Post-hoc (LSD) pairwise 
comparison shows a significant decline in trust from T1 to T2 (ΔM = -1.725, p < .001), 
which reflects the effect of the trust violation and a significant rise in trust between T2 
and T3 (ΔM = .568, p < .001), which reflects a general recovery of trust in the trust repair 
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phase. This means that the incorrect advice by the drone led, as intended, to a breach 
in trust and that after the violation trust re-developed. 

A significant main effect for Uncertainty was obtained with F(1, 62) = 7.84, p = .007, η2 

= .112). Generally, across time and apology conditions, the agent that provided uncertainty 
communication (M = 3.62, SE = 0.09) was trusted significantly more than the agent that 
did not communicate uncertainty (M = 3.36, SE = 0.10).

A significant main effect for Apology was obtained with F (1, 62) = 8.37, p = .005, 
η2 = .119). Generally, across time and uncertainty conditions, the agent that offered an 
apology after the trust violation occurred (M = 3.71, SE = 0.11) was trusted significantly 
more than the agent that did not offer an apology (M = 3.26, SE = 0.11).

Two-way interactions
A significant interaction effect between Time [T1-T3] and Uncertainty on trust was found 
(F (2, 124) = 3.31, p = .040, η2 = .051) (Figure 9). Post-hoc (LSD) pairwise comparison 
shows no significant difference in trust between uncertainty communication conditions 
at T1 (ΔM = 0.04, SE = 0.13 p = .777), but does show a significant difference at T2 (ΔM 
= 0.43, SE = 0.12, p = .001) and T3 (ΔM = 0.35, SE = 0.15, p = .024), where the agent 
that provided a measure of uncertainty was trusted significantly more than the agent that 
did not communicate uncertainty. The decline in trust in response to the trust violation 
(from T1 to T2) is significantly smaller when the agents’ advice included a measure of 
uncertainty.
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Figure 9 A comparison of trust levels (y-axis) between uncertainty communication conditions (separate 
lines) over time (x-axis). The grey line with the circle-shaped datapoints represents the condition in which 
the agent did not communicate uncertainty in its advice, the black line with triangle-shaped datapoints 
represents the condition in which uncertainty communication was present. Error bars represent standard 
error.

To measure the effect of the apology, we compared trust scores T2 (after the violation) 
and T3 (after the manipulation) for each experimental condition. 

A significant interaction effect between Time [T2-T3] and Apology on trust was found 
(F(1, 62) = 5.16, p = .027, η2 = .077). Post-hoc (LSD) pairwise comparison per apology 
condition shows a significant rise in trust from T2 to T3 when apology is present (ΔM = 
0.80, SE = 0.14, p < .001), but also when apology is absent (ΔM = 0.34, SE = 0.14, p = 
.018). As shown in Figure 10, trust recovers more when the agent offered an apology. 
Post-hoc (LSD) pairwise comparison per timepoint shows that a non-significant differences 
in trust between apology conditions at T2 (ΔM = 0.29, SE = 0.21, p = .164), but the 
difference at T3 is significant (ΔM = 0.74, SE = 0.21, p = .001). Thus although trust 
recovers significantly in both conditions, trust is significantly higher in the final stage of 
trust after an apology was provided.
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Figure 10 A comparison of trust levels (y-axis) between apology conditions (separate lines) over time 
(x-axis). The grey line with the circle-shaped datapoints represents the condition in which the agent did 
not offer a trust repair strategy, the black line with triangle-shaped datapoints represents the condition in 
which the trust repair strategy was provided. Error bars represent 95% confidence interval.

A non-significant interaction effect between Uncertainty and Apology on trust was observed 
with F (1, 62) = 0.512, p = .477. 

Three-way interaction
The interaction between Time [T2-T3], Uncertainty and Apology was found to be non-
significant with F(1,62) = 0.429, p = .515. This means that uncertainty communication 
did not significantly enhance the effect of the apology.

Results: Study II [military sample]

Main effects
Similar to the civilian sample, a significant main effect for Time [T1-T3] was obtained (F 
(2, 116) = 76.562, p < .001, η2 = .569). Means were 4.19 at T1, 2.71 t T2 and 3.43 at T3. 
Post-hoc (LSD) pairwise comparison shows a significant decline in trust from T1 to T2 
(ΔM = -1.481, p < .001), which reflects the effect of the trust violation and a significant 
rise in trust between T2 and T3 (ΔM = 0.728, p < .001), which reflects a general recovery 
of trust in the trust repair phase.
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A significant main effect for Uncertainty was also obtained with F(1, 58) = 5.657, p = 
.021, η2 = .089. Generally, across time and apology conditions, the agent that provided 
uncertainty communication (M = 3.54, SE = 0.08) was trusted significantly more than the 
agent that did not provide uncertainty communication (M = 3.35, SE = 0.10).

No significant main effect for Apology was found with F(1, 58) = 1.484, p = .228. 

Two-way interactions
The interaction effect between Time [T1-T3] and Uncertainty on trust was found to be 
non-significant (F(2, 116) = 2.441, p = .092). There was no dampening effect of uncertainty 
communication in the military study.

To measure the effect of the apology, we compare trust scores before (T2; after the 
violation) and after the manipulation (T3) for each experimental condition. Again, T1 is 
left out of this analysis as it focusses on the effects of the apology manipulation that 
occurs between the trust measures on T2 and T3. 

The interaction effect between Time [T2-T3] and Apology on trust was found to be 
non-significant (F(1, 59) = 1.897, p = .174). 

A non-significant interaction effect between Uncertainty and Apology on trust was 
observed (F(1, 59) = 2.314, p = .134). 

Three-way interaction
The interaction between Time [T2-T3], Uncertainty and Apology was found to be non-
significant (F(1,59) = 0.710, p = .403). Uncertainty communication did not significantly 
enhance the effect of the apology.

Correlations
For the correlations, initial trust (T1) is used as this is considered the purest trust measure 
with the least interference of occurrences during the experiment. A significant positive 
correlation was found between the personality trait Propensity to Trust Automation and 
initial trust in both uncertainty conditions: present (r(63) = .40, p < .00) and absent (r(62) 
= .28, p = .02). The Big Five personality trait Extraversion correlates with the initial trust 
measure of the run without uncertainty communication (r(63) = .28, p = .03). These 
correlations imply that participants that scored higher on these traits, trusted the agent 
more than participants that scored lower on these traits. 

Discussion

The results of this chapter show a robust effect of uncertainty communication on the 
development of trust during human-agent interaction. In both studies it was found that 
uncertainty communication in the advice of the agent generally resulted in higher levels 
of trust. The communication of uncertainty did not enhance the effect of the apology. The 
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positive effect of uncertainty communication on trust is in line with prior research (Kraus 
et al., 2020; Kunze et al., 2019; Schaekermann et al., 2020).

In the civilian study, uncertainty communication also dampened the decline in trust 
following the agent’s error, meaning that advice which included an uncertainty measure led 
to a less severe depletion in trust following a trust violation compared to an advice that did 
not include a notion of uncertainty. The dampening effect of uncertainty communication on 
trust decline in response to a trust violation is in line with the study of Kraus et al. (Kraus 
et al., 2020) that showed how a temporary decrease in trust due to a malfunctioning of 
an autonomous car was prevented by providing transparency information prior to the 
interaction. When participants were reminded of the imperfect reliability of the system 
their trust was less affected by the subsequent error. Further, the civilian participants 
generally regained their trust in the agent after the trust violation occurred. Strikingly, 
this occurred both when the agent did offer an apology and when it did not. Even though 
trust levels increased considerably more when the agent offered an apology compared 
to when no apology was offered, it is still remarkable that trust seemed to recover 
naturally in the absence of a recovery strategy. A possible explanation for this is that 
the participants’ trust gradually recovered after the trust violation, just by the absence of 
any new hazardous encounters. We did not monitor trust continuously, but participants 
can perceive each second of error-free interaction as positive feedback, which might 
be what reassured them in the period between the violated trust measure and the final 
trust measure. Although trust recovered passively, it still proved to be more effective to 
actively interfere in the repair process by providing an apology. Although trust did not 
recover to its original level (initial trust) in either of the conditions, the agent in the apology 
condition came considerably closer. 

The repairing effect of an apology after a trust violation is compatible with prior human-
agent research (Fratczak et al., 2021; Kox et al., 2021). This effect is promising, as it 
suggests that (relatively minor) trust violations within human-agent teams can be solved 
on a relational level during ongoing interaction, without ceasing the collaboration (Fratczak 
et al., 2021). It also indicates that mimicking human-like characteristics (i.e. provision 
of an apology following a mistake) can bring about certain effects typically observed in 
interpersonal relations, including a greater willingness to forgive mistakes (de Visser et al., 
2016; de Visser, Monfort, et al., 2017; Madhavan et al., 2006; Madhavan & Wiegmann, 
2007). Although such anthropomorphic cues can be beneficial to human-agent trust, it 
should be kept in mind that people can develop trust on the basis of characteristics they 
attribute to the agent, rather than on actual experiences with the agent itself (Bartneck 
et al., 2009; Culley & Madhavan, 2013; Feine et al., 2019; Fink, 2012). If so, trust may 
turn out to be misplaced. This can lead to inappropriate reliance on the agent, potentially 
compromising safety and profitability. 

However, these findings do not apply to the military participants. The dampening effect 
of uncertainty communication and the repairing effect of the apology are not manifest in 
the results of the military study. A possible explanation for the latter finding comes from a 
recent study that found that feedback messages (i.e., an apology) affected trust negatively 
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rather than positively, possibly because it explicitly focused the attention on the error 
(Fahim, Khan, Jensen, Albayram, Coman, et al., 2021). Another plausible explanation 
is that expressing regret is not a common practice in the military context. This became 
clear in a debriefing session with a few of the military participants. They mentioned that it 
is not unusual to acknowledge responsibility by saying “I was wrong” or “I misjudged the 
situation”, but using the words “I am sorry” is uncommon. Adopting the norms and rules 
that govern a group’s behavior is an important aspect in being accepted as a member 
of that group. It makes sense that the psychosocial requirements for a system designed 
to be a true team member should be compatible with the manners associated with the 
culture of the organization or team where the agent will be implemented. As addressed by 
Matthews et al. (Matthews, Hancock, et al., 2021), an agents’ communication style should 
match one’s cultural background and its related language and behavioral expectations. 
In line with the expectancy violation theory, which describes how actions contrary to your 
expectations and social norms in a social context require more cognitive processing effort 
than expected information and that this type of inconsistencies can elicit a more negative 
affect (J.-E. R. Lee & Nass, 2010; Lozano & Laurent, 2019). The differences in findings 
between the military and civil samples emphasize the importance of considering the social 
customs of the target population in the design process. In a broader perspective, it serves 
as a reminder that generalizability is limited by the characteristics of the participants in 
the study and that results do not automatically apply to other populations. 

It should be noted that it is not a goal in itself to maximize trust or to prevent trust 
decline at any cost, as we want humans to be able to continuously assess whether 
trusting the agent is appropriate given the task and available information at certain 
instances. Multiple studies have shown that people do not judge humans and machines 
equally, particularly when confronted with errors (de Visser et al., 2016; Hidalgo et al., 
2021; Madhavan et al., 2006). Often, people consider a machine as nearly infallible (i.e., 
automation bias), thereby placing too much trust in their outputs. These high expectations 
lead to a steeper decline in trust when confronted with system failure as compared to a 
confrontation with a human error (de Visser et al., 2016; Dzindolet et al., 2001; Madhavan 
et al., 2006; Madhavan & Wiegmann, 2007). Following this, in the case of ‘undertrust’, 
it would be valuable for the process of trust calibration if AI agents were equipped with 
expectancy-setting strategies like the communication of uncertainty and trust repair 
strategies like offering an apology.

Other interesting findings in the military study include the positive correlations between 
the initial levels of trust and the personality traits Extraversion and Propensity to Trust 
Automation. The current chapter demonstrates that communication tactics do not have a 
uniform effect on the development of trust in different types of people, which emphasizes 
the importance of personalization. Not only cultural differences between groups (i.e. 
military vs. civilian ) but also personal differences within each group can be found. 
Individual differences such as personality traits can account for the variance in how trust 
in an agent develops among individuals and how people prefer to be approached while 
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interacting. The observed relation between the Big Five personality trait Extraversion 
and an initial trust measure is in line with studies that showed that Extraversion plays a 
significant role in how people perceive robots (Haring et al., 2013; Syrdal et al., 2007; 
Walters et al., 2009). Current agent communication styles are often of a one-size-fits-all 
style. Personalized communication could overcome the effects of pre-existing attitudes 
towards automation and influence the willingness to reconcile after a trust violation (de 
Visser et al., 2019; Schaefer et al., 2016). Today’s machine-learning methods enable 
agents to leverage real-time user inputs and to personalize interactions. Recent work has 
shown that agents can directly estimate a human’s ability to achieve a certain goal based 
on their efforts and respond with the proper level of assistance for the task, resulting in 
higher levels of trust in the agent’s advice (Clabaugh & Mataric, 2016). Given the many 
dimensions on which people vary, a lot could be gained by enabling the agent to tailor 
its communication to the person they are interacting with. Follow-up research should 
explore how personalizing the level of transparency (e.g. communicating uncertainty 
measures and offering apologies that include an explanation) and the level of affection 
(e.g. offering apologies that include an affective component such as an expression of 
regret) of an agent’s communication style can optimize trust calibration. 

Several questions still remain to be answered. The apology used in the current study 
consisted of two apology components: an expression of regret and an explanation. An 
interesting question for follow-up research would be what apology component caused 
the (difference in) effects between the two target groups. On the one hand, our previous 
findings from a civilian sample suggested that expressing regret made a positive difference 
in trust recovery (Kox et al., 2021). On the other hand, conversations with our military 
participants in the current study suggested that since saying “sorry” is uncommon among 
military personnel and that this inconsistency might have caused the lack of trust recovery 
in the military study. It raises the questions whether regret was the component that caused 
the differences and what trust repair strategy would be effective among military personnel. 
Another follow-up question can be posed for the uncertainty variable. As discussed in 
the introduction, uncertainty can be introduced by random noise from the outside world 
(external sources) or by the limited abilities of the drone (internal sources). Whereas 
the former type of uncertainty is a given that we all have to accept, the latter type of 
uncertainty could be perceived as the limited ability of the agent’s prediction algorithms 
and might therefore be less acceptable. It seems beneficial that agents, regardless of 
the type of uncertainty, are able to communicate the level of certainty to allow humans 
to make better estimations on whether or not to rely on their advice. Still, it could be 
interesting to explore whether knowing the source of the uncertainty shifts the human’s 
interpretation and leads to alternative effects on trust.
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Limitations

This study was initially designed to be conducted in a lab setting, where participants 
walk through the virtual houses whilst wearing a VR headset and using a controller. 
The Dutch COVID-19 regulations required the design of this study to be altered into 
an online experiment. Although this enabled a faster and more scalable experiment as 
compared to the VR design and a higher degree of control over the manipulations as 
compared to a field lab setting, results may not generalize to human-agent interactions in 
real-world settings (Hidalgo et al., 2021). However, interactive online experiments are a 
good alternative to VR; the data quality is described as “adequate and reliable” (Arechar 
et al., 2018). A study which compared data that was gathered online with lab research 
data found no significant differences over multiple performance measures (Gould et al., 
2015). However, the VR design would have offered higher ecological validity, experimental 
control, reproducibility (Pan & Hamilton, 2018), and emotional engagement of participants 
(Parsons, 2015). Immersive VR has the ability to create a strong sense of presence and 
to increase sympathetic activation significantly more than 2D screen videos (Chirico et al., 
2017). Thus, it is suspected that a VR setting would have intensified feelings of trust and 
betrayal after a trust violation. These intensified feelings could be more representative of 
non-simulated human-AI interactions. Although the two studies are based on relatively 
small samples of participants, an important contribution is made by evaluating subgroups 
in their way of interacting with autonomous systems. In spite of its limitations, the study 
adds to our understanding of how trust develops in case of agent failure within civilian 
and military human-agent teams.

Conclusion

Amidst the expanding adoption of autonomous agents in human teams, this study 
contributes to the rapidly expanding field of trust within HATs by informing the design 
of AI components and their interactions with human teammates. Given the uncertainty 
and complexity that agents in HATs will encounter, these insights will be critical to 
developing specifications for agent communication as this allows HATs to recover as a 
team from errors induced by AI agents. The findings presented in this chapter indicate 
that communication can be used as a tool to guide the development of human trust in AI 
agents. The findings reported here shed new light on how the effects of social-cognitive 
trust repair strategies on trust differ amongst civilian and military user groups. A lot of 
research on this subject is done for military purposes (Barnes et al., 2014; E. K. Phillips 
et al., 2011; Roff & Danks, 2018; van den Bosch & Bronkhorst, 2018). Yet, it is not always 
possible to involve actual military personnel as participants in experimental studies. The 
differences in findings between the military and civil cohort emphasize the importance 
of considering the social customs of the target population in the design process. The 
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psychosocial requirements for the formation and maintenance of trust in HATs differ 
amongst individuals and user groups. 
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          Abstract
As robots gain autonomy, human-robot task delegation can become more goal-oriented; 

specifying what to do rather than how. This can lead to unexpected robot behaviour. We 

investigated the effect of transparency and outcome on the perceived trustworthiness of 

a robot that deviates from the expected manner to reach a delegated goal. Participants 

(N = 82) engaged in a virtual military mission as a Human-Robot Team using a 2x2 

between-subjects design (low vs. high transparency, positive vs. negative outcome). 

Participants received training on the expected manner to reach the mission’s goal. In 

the actual mission, the robot deviated from the planned path. We manipulated whether 

the robot explained its deviation and whether the outcome was better or worse than the 

original plan. Results showed that transparency contributed to higher and more stable 

levels of trust, without increasing subjective workload. While the robot’s deviation led 

to a violation of trust in the low transparency condition, trust remained stable in the 

high transparency condition, indicating a buffering effect of transparency on trust in 

case of unexpected behaviour. The impact of outcome on trust was consistent across 

transparency conditions. Our findings underscore the role of transparency as a tool for 

fostering human-robot trust.
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Introduction

Due to recent technological developments in artificial intelligence and robotics, more and 
more people are increasingly interacting with artificial agents in a variety of domains, 
among which the military (Matthews, Panganiban, et al., 2021; Wynne & Lyons, 2018). 
As robots become more intelligent, they are increasingly self-governing, gain decision 
authority within their functioning (Bobko et al., 2022; Hancock, Billings, Schaefer, et 
al., 2011a; Hou et al., 2021; O’Neill et al., 2022; Sheridan, 2019), and require less 
human involvement an d control (Lyons et al., 2023; C. A. Miller, 2014). In other words, 
they become increasingly autonomous; able to achieve a given set of tasks during an 
extended period of time without human control or intervention (Soltanzadeh, 2022). As 
such, future robots are expected to work interdependently in HRTs with human team 
members towards a shared objective (O’Neill et al., 2022). Robots can take over tasks 
that were previously conducted by humans, whereas other tasks still need to be executed 
by human counterparts (Parker & Grote, 2022). As a result, the rise of HRTs poses 
interesting challenges related to teamwork, task delegation and trust. 

Delegation

Teamwork typically involves dividing and assigning tasks or responsibilities to different 
team members. When delegating authority, an actor (i.e., in our HRT case, the human) 
hands over a specific (set of) task(s) to another actor (i.e., the robot) who is expected to 
take responsibility for planning and execution of the assignment in a timely and effective 
manner to reach commonly understood goals (Ho et al., 2017; C. A. Miller, 2014; C. 
A. Miller & Parasuraman, 2007). Since reaching a goal consists of completing a set of 
tasks, delegation is inherently hierarchical (C. A. Miller, 2014). As a result, delegation can 
be adapted to different levels of abstraction, such as (1) skill-based delegation, which 
proceeds by delegating single elementary tasks or actions (e.g. go-right, go-left), (2) 
rule-based delegation, which proceeds by delegating in terms of pre-defined templates 
of taskwork and teamwork (e.g. perform-blanket-search procedure) and ultimately, (3) 
goal-oriented delegation, which proceeds by delegating in terms of goals (Jessie Y.C. 
Chen & Barnes, 2014; Metcalfe & van Diggelen, 2021; C. A. Miller & Parasuraman, 2007). 
Which type of delegation is appropriate will depend on a robot’s level of autonomy (LOA), 
which can range from no autonomy (i.e. manual human control), to semi-autonomy (i.e., 
human can veto) to full autonomy (i.e., human is at most informed) (Ellwart & Schauffel, 
2023; Parasuraman et al., 2000). 

The more autonomous a robot gets, the more abstract and goal-oriented a delegated 
assignment can be, the more degrees of freedom the robot has in terms of execution 
and the more trust in the robot is required. Goal-oriented task delegation implies that 
the delegator does not have to outline the specific rules and skills that should be used 
in the process of reaching the desired end-state. In short: it means telling the robot 
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what to do instead of how to do it. This leaves considerable room for the robot to fill in 
the remaining details on the execution of desired actions, which allows it to adapt to 
changing environments and operational demands (Metcalfe & van Diggelen, 2021). As 
a situation evolves, the possible paths to achieve a certain goal can change (Ho et al., 
2017). As a result, an (semi-)autonomous robot might exhibit unexpected behaviour (from 
the perspective of a human operator) in its pursuit to reach a certain goal. A possible 
risk is that a human’s lack of understanding of the robot’s actions can cause people 
to lose trust and want to take over manual control, negating the advantages of task 
delegation. Regardless of the LOA of a robot, communication and human participation in 
certain decision-making loops will always remain crucial for effective and safe operations 
(Abbass, 2019). 

To keep the human involved, robots will need to be able to explain their behavioural 
choices, especially when they deviate from the expected manner to reach a goal. Higher 
decision authority assigned to robots typically increases the human desire to know what 
the robot will be doing (Jessie Y.C. Chen et al., 2020). When the human operator cannot 
understand the basis of the robot’s assessments and actions, trust may be eroded, 
especially when the robot’s actions do not align with the human’s expectations (Luebbers 
et al., 2023; A R Panganiban et al., 2020). In the current study, we are interested in the 
implications of a robot that has been delegated the authority to select the best course of 
action given the local situation, which could contradict a human’s expectation and result 
in a suboptimal outcome (i.e., not attaining the goal). In the context of goal-oriented 
delegation, does understanding the robot’s actions towards a goal drive trust or is ultimately 
attaining the goal the primary factor?

Trust

Teamwork requires task delegation and task delegation requires trust.  More specifically, 
calibrated trust is crucial to minimize the risks and to maximize the benefits in the highly 
interdependent and dynamic nature of teamwork (Bobko et al., 2022; J. D. Lee & See, 
2004; M. K. Lee et al., 2010b). In general, perceiving good robot functioning will likely 
increase perceived trustworthiness, whereas perceiving maladaptive (i.e., errors or 
mistakes) or ambiguous (i.e., unexpected or unpredictable) robot functioning often 
results in decreases in perceived trustworthiness– so called trust violations (Esterwood 
& Robert, 2023a, 2023b; Kox et al., 2021; Yang et al., 2021). As we strive for calibrated 
trust rather than maximum trust, decreases in perceived trustworthiness are a logical 
and functional adaptive response to perceiving errors, technical failures or other forms 
of reduced reliability and performance. 

However, with the anticipated advancements in the ability of robots to self-select 
courses of action, the range of possible causes of human-robot trust violations expands. 
That is, human-robot trust is not solely based on a robot’s perceived abilities and 
performance (i.e., what it does and can do), but also on its perceived purpose and 



56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

Chapter 4

68

alignment with a trustor’s values (i.e., why it was developed and operates in a certain 
way), as well as the understandability or interpretability of the robot and its ability to 
explain its actions (i.e., how it operates) (J. D. Lee & See, 2004; Lubars & Tan, 2019). 
This operationalization of trust corresponds to the Ability (what), Benevolence (why) 
and Integrity (how) (ABI) model from Mayer et al. (Mayer et al., 1995) and reflects how 
a trustee’s trustworthiness is based on more than reliability and performance. As a 
consequence, trust violations are not solely caused by reduced performance. 

As task delegation becomes more goal-oriented, providing the robot more with greater 
degrees of freedom in terms of execution, trust violations might be increasingly caused by 
a human operator’s lack of understanding of the robot’s assessments and actions, rather 
than poor robot performance. When a robot does something unexpectedly (according to 
the human), its efficacy and accuracy could be questioned and the action can lead to a 
decrease of human-robot trust, regardless of whether the robot is actually maladapted 
(Rebensky et al., 2021; Schaefer et al., 2018). For example, a drone might rightfully adapt 
its course of action to changes in the operational environment to reach a certain goal, such 
as avoiding a collision, without informing the human. If the drone’s deviation significantly 
conflicts with the human’s expectations and the robot lacks the ability to explain itself, 
the human operator might take over manual control because they do not understand the 
drone’s actions and perceive them as inappropriate and untrustworthy (Hou et al., 2021; 
Lyons et al., 2023; Rebensky et al., 2021). As such, a lack of understanding causes a 
trust violation and leads to a situation of undertrust. Since the success of human-robot 
interactions greatly depends on people’s ability to trust them, trust violations that lead 
to undertrust would make it necessary for a robot to engage in trust repair strategies 
(Baker et al., 2018).

Given (1) the inevitability of unexpected robot behaviour in Human-Robot Interaction 
(HRI), (2) the possibility that unexpected behaviour results in trust violations and poor 
trust calibration, and (3) the disadvantageous consequences of poor trust calibrations, it 
is important to evaluate methods to prevent or buffer (unnecessary) trust violations as a 
consequence of unexpected behaviour. Most current HRI trust repair literature focuses 
on the role of trust repair strategies after an apparent error (Cameron et al., 2021; de 
Visser et al., 2016; Esterwood & Robert, 2023b; Fratczak et al., 2021; Hald et al., 2021; 
Taenyun Kim & Song, 2021; M. K. Lee et al., 2010b; Mirnig et al., 2017; Robinette et al., 
2017b; Salem et al., 2015; Wang et al., 2018). However, more recently researchers have 
started to evaluate trust violations as a result of unexpected behaviour rather than failure 
(Lyons et al., 2023; Perkins et al., 2022; Sebo et al., 2019). In essence, to prevent that 
trust will unjustly erode due to a misunderstanding of the basis of a robot’s assessments 
and actions, robots will need to be able to explain the rationale behind their behavioural 
choices. Increasing transparency and interpretability through explanations can enhance 
trust calibration by lowering unrealistic expectations on the one hand (i.e., preventing 
overtrust) and by clarifying unexpected behaviour on the other (i.e., preventing undertrust) 
(Jessie Y.C. Chen et al., 2014; J. D. Lee & See, 2004; Mercado et al., 2016). 
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Transparency

Transparency can be defined as “the ability for the automation to be inspectable or 
viewable so that its mechanisms and rationale can be readily known” (C. A. Miller, 2020) 
(p. 235). Transparency is an important part of the design of robots, because without a clear 
understanding of a robot’s decision-making mechanism, humans might find it difficult to 
trust or adhere to a robot’s decisions, especially when those actions or decisions contradict 
the human’s expectations (Luebbers et al., 2023). At the same time, full “transparency” 
– implying that the machine is “see through” in the sense that all its inner workings are 
observable (Jessie Y.C. Chen et al., 2020; C. A. Miller, 2020) is not desirable either (C. 
A. Miller, 2014). When HRI is successful, it can save time and reduce cognitive effort. 
However, if a human would have to maintain awareness of everything the robot does, 
then no time or cognitive effort would be saved (C. A. Miller, 2014). Ideally, transparency 
allows the human teammate to develop and/or maintain realistic expectations regarding 
the robot and its behaviour (Hou et al., 2021; C. A. Miller, 2014) and thereby contributes 
to effective trust calibration (Bobko et al., 2022; Helldin et al., 2013; Ribeiro et al., 2016). 
However, to ensure effective collaboration, it is crucial to find a balance between keeping 
the human sufficiently informed while preventing cognitive overload. 

To find that balance, literature suggests that robots should primarily communicate the 
rationale and intentions of their actions (Chiou et al., 2022; Lyons, 2013; Lyons et al., 2023; 
Ososky et al., 2014; Schaefer et al., 2017). A recent study evaluating human-robot trust 
in case of unexpected robot behaviour compared different explanation types and found 
that explanation strategies that indicated why the event occurred were most effective at 
buffering the decline in perceived trustworthiness (Lyons et al., 2023). Explanations are 
verbal statements that aim to clarify the reasons for an occurrence. They are deployed 
in HRI, prior to or after certain actions, to enable the human to comprehend the inner 
workings or logic of the robot’s actions or decisions (Esterwood & Robert, 2022; Lyons 
et al., 2023). Explanations are generally invoked when the mental models of those who 
must work together mismatch. The explanation is then meant to synchronize the mental 
models so that the differences are understood and repaired (C. A. Miller, 2020). As such, 
explanations can have a positive effect on trust in case of trust violations. 

For instance, increased transparency and feedback can effectively mitigate a human’s 
dissatisfaction in the event of an unforeseen occurrence caused by a robot (Hamacher et 
al., 2016). Feedback enhances a human’s willingness to trust automation and can delay 
or avoid unnecessary manual intervention (Hock et al., 2016). Results of an automated 
driving study show that explanations provided before rather than after a certain event 
strengthened trust (Du et al., 2019). In other words, increased transparency through 
explanations can strengthen trust.

While transparency can benefit trust, it also a poses a challenge to the human operator. 
In most cases, humans that perform a task together with a robot do not have the time, 
skills, or attention to accurately interpret transparency information during an operational 
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situation or the adequate precision to take over the robot’s task if necessary (C. A. Miller et 
al., 2023). There is a possibility that increased transparency could come at the expense of 
cognitive workload since it requires additional processing and interpretation of information 
(i.e., additional cognitive effort) (Guznov et al., 2020; Lyu et al., 2017; Westerbeek & 
Maes, 2013). Cognitive workload generally refers to the amount of cognitive resources 
and effort required for task performance relative to the available resources (Parasuraman 
et al., 2008). An increase in cognitive workload arises when multiple tasks compete for 
the same resources, and task requirements exceed the mental capacity. High levels of 
cognitive workload can result in fatigue, and hence reduce human performance. On the 
contrary, appropriate implementation of transparency in HRT could also result in reduced 
cognitive workload of the human-teammate, as it helps to understand the robot’s behaviour 
and reasoning (Bobko et al., 2022; O’Neill et al., 2022; van de Merwe et al., 2022). At the 
same time there are also studies that find no effect of transparency on workload (Jessie 
Y.C. Chen et al., 2017; Selkowitz et al., 2016, 2017). In other words, the results are 
inconclusive and further research is needed to determine whether transparency affects 
workload advantageously or disadvantageously.

Outcome

While transparency can enhance a human’s understanding of a robot’s reasoning process 
and thereby help to create realistic expectations regarding the robot’s capabilities, it is 
conceivable that a negative outcome will still be disappointing and detrimental to trust. 
At the same time, since unexpected robotic behaviour might arise from the fact that 
increasingly intelligent agents may devise alternative plans that are better and more 
efficient than those humans would come up with, we are also interested in the effect of 
positive outcomes. Whether the robot’s execution is logical or understandable for the 
human and whether the robot eventually reaches its goal are both likely to affect trust. As 
such, we seek to explore how and to what extent transparency and outcome influence 
the development of trust. 

Generally, the performance of a robot is seen as the most important predictor of 
human-robot trust (Hancock, Billings, Schaefer, et al., 2011a; Hoff & Bashir, 2015). 
Unsurprisingly, research suggests that robot successes increase trust (Yang et al., 2021), 
while robot failures decrease trust (Jorge et al., 2023; Kox et al., 2021; Kox, Siegling, 
et al., 2022; Yang et al., 2021). Furthermore, the magnitude of trust decrements due to 
robot failures is found to be bigger than that of trust increments due to robot successes 
(Yang et al., 2021). This is in line the concept of loss aversion within prospect theory from 
classic decision-making literature, which posits that people tend to value gains and losses 
differently, placing more weight on perceived losses versus perceived gains (Tversky & 
Kahneman, 1992). That is, the pain of losing is psychologically more impactful than the 
pleasure of gaining (Tversky & Kahneman, 1992). However, research also suggests that 
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the effect of robot performance on trust might depend on an individual’s perception of 
the interaction and vice versa. 

One the one hand, there is research that suggests that the quality of the interaction 
might influence how people respond to a robot’s performance. For example, there are 
findings that suggest that people place less value on task performance and more on 
transparency, control and feedback (Hamacher et al., 2016). This study shows that 
participants preferred an expressive and error-prone robot over a more efficient one. 
This suggests that an erroneous robot can be forgiven as long as it communicates, while 
an inexpressive robot with high task performance could still be trusted less (Hamacher 
et al., 2016). 

On the other hand, there is research that suggests that outcome can change how 
people perceive the preceding interaction, a phenomenon referred to as the outcome bias. 
An outcome bias is where the quality of a decision made by others under conditions of 
uncertainty is evaluated differently in hindsight, based on the outcome (Baron & Hershey, 
1988). Research suggests that people evaluate the thinking behind a decision as better 
when the outcome is favourable compared to when the outcome is unfavourable (Baron 
& Hershey, 1988). Earlier HRI research has found evidence for the outcome bias, finding 
a reinforcing effect where initial automation failure led to a larger trust decrement if the 
final outcome was undesirable (Yang et al., 2021). In other words, there are reasons 
to believe that the effects of transparency and outcome on perceived trustworthiness 
might be interdependent. 

Current study

Goal-oriented delegation in complex environments with limited resources and changing 
circumstances poses challenges. Plans can be made in advance, but in case of unforeseen 
circumstances, the robot will need to adapt its plan and “function beyond choreography” to 
still reach the end-goal (Chiou et al., 2022) (p. 119). That is, beyond a fixed, scripted series 
of actions that do not account for variability or unexpected changes in the environment. 
At times, these adaptations will be advantageous, while in other cases, they may be 
suboptimal or disadvantageous. The current study investigates how transparency and 
outcome affect the perceived trustworthiness of a robotic partner in case of an unexpected 
deviation from the expected manner to reach a delegated goal. 

In the current study, transparency entails that the robot gives clarifying information 
in the form of regular status updates including an explanation (i.e., the what and why) of 
its actions as it deviates from the expected manner to reach the goal (Chiou et al., 2022; 
Taemie Kim & Hinds, 2006). We expect that when the robot explains its reasoning and 
actions, a stable level of perceived trustworthiness can be maintained in the event of 
deviant behaviour. Specifically, we expect that transparency will prevent a trust violation 
in response to the robot’s unexpected behaviour (Lyons et al., 2023) and will generally 
lead to higher perceived trustworthiness. Conversely, we expect that a sudden and 
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silent deviation from the plan (i.e., low transparency) will lead to a violation of trust. We 
further expect an interaction effect between transparency and outcome. Specifically, we 
hypothesize that the expected violation of trust in response to the unexpected behaviour 
in the low transparency condition will amplify the effect of a subsequent negative outcome 
(Yang et al., 2021). In the high transparency condition, we expect higher and more stable 
levels of perceived trustworthiness (Lyons et al., 2023) and a smaller effect of negative 
outcome compared to the low transparency condition.

Method

Participants 

In total, eighty-seven participants participated in the study. Five participants were 
excluded from the dataset because of invalid data due to technical issues during the 
task. Participants were recruited through convenience sampling (e.g., by handing out 
flyers, asking people in person, and making requests in WhatsApp groups). The final 
dataset included eighty-two participants (43 W, 39 M, Mage = 23.6, SD = 3.2, range = 
19 – 41 y), of which the majority was Dutch (65,9%) and the remainder from elsewhere 
in Europe (17,1%), Asia (9,8%), or North or South America (both 3,7%).

Design

A 2 (transparency: low vs. high) by 2 (outcome: negative vs. positive) between-subjects 
design was used, with Perceived Trustworthiness (measured across the subscales 
Ability, Benevolence and Integrity) as the main dependent variable. Participants were 
randomly distributed across the four conditions (low & neg.: n = 21, low & pos.: n = 20, 
high & neg.: n = 20, high & pos.: n = 21). 

Perceived trustworthiness was repeatedly measured, so ‘Time’ was included as a 
within-participants variable in the analysis. Each participant performed two missions; a 
training mission with four trust measures (T1, T2, T3, T4) and the experimental mission 
with four trust measures (T5, T6, T7, T8). Cognitive workload was also administered. 

Task and procedure

Upon arrival at the laboratory, participants were greeted by the researcher and guided 
to a private room where the study was to be conducted. The researcher provided a brief 
introduction to the study, emphasizing the general purpose and the tasks participants 
would be asked to perform. Participants were presented with an information sheet about 
the study and a consent form. Upon agreeing to participate, participants filled out a pre-
study questionnaire (i.e., demographics and gaming experience) and received information 
regarding the scenario and task. 
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Participants were instructed to perform a virtual military transport and reconnaissance 
operation, together with a quadruped robotic agent. Their mission had two major objectives. 
The first objective of the team was to get to a designated location as fast and safe as 
possible in order to collect essential supplies and equipment that would be airdropped 
by helicopter at a scheduled time. A green smoke grenade was used to mark the drop 
zone. If the team did not reach the designated location in time, the helicopter would not 
be able to deliver the supplies securely. If so, following troops would not be resupplied 
and would run out of essential resources quickly. In other words, the team had to hurry 
in order to complete the mission successfully. 

The second objective of the team was to obtain information about the activities of 
an enemy in that particular area by counting potential IED’s (i.e., red and blue barrels) 
along the way. By assigning participants the counting task, each team member (i.e., the 
participant and the virtual robotic partner) had a specific role contributing to their shared 
objective. This arrangement also enabled us to assess whether transparency affected the 
participant’s performance in their secondary task. The robot had been delegated the task 
to navigate to the designated location via the fastest yet safest route, while providing 360 
degrees coverage to its human counterpart. To ensure coverage, participants needed to 
stay as close to the robot as possible at all times. The robot did not provide any advice, 
but operated according to the goal it had been delegated. The path and the messages 
of the robot were pre-programmed and thus fixed. 

The task was performed on in the lab using a virtual experimental environment built 
in Unity3D (Figure 11). The experimental setup contained two computer screens: one 
with the experimental environment (i.e., “task screen”) and another with the questionnaire 
software (i.e., “questionnaire screen”). The participants sat in a dimly lit laboratory room 
at approximately 65 centimetres from the computer screens. Data was gathered via the 
online questionnaire software Qualtrics. The task consisted of three parts: (1) a practice 
session with demo video; (2) the training mission; and (3) the experimental mission. During 
the practice session, participants were placed in a neutral virtu al environment where they 
got familiar with the controls (key W and mouse), saw the robot and examples of the 
red and blue barrels, and tested the volume of the audio via the headphones. Next they 
were presented a map and a video showing the planned route to the designated location. 
They were instructed that it was crucial that they strictly follow the plan as it had been 
coordinated with the helicopter pilot. After that, each participant performed the training 
mission and the experimental mission, the latter being presented as the ‘actual mission’. 
This was a fixed order. Naturally, we could only introduce something unexpected after 
creating a shared expectation. 
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Figure 11 Screenshots of the virtual task environment. From left to right, top to bottom: 1) Examples of 
the red and blue barrels in the demo, 2) First sight of the river in the training session; 3) Robot crossing 
the bridge in the training session; 4) Robot nearing the riverbed in the experimental session.

In the training mission, the robot adhered to the path demonstrated in the demo video. 
However, at a fixed point in the experimental mission, the robot diverged from the 
predetermined route and chose an alternative path, in response to environmental changes 
(i.e., the riverbed had dried) (Figure 12). Both missions took place in the same virtual 
environment with the designated location on the opposite side of a river. However, in the 
training session the river was full of water, which meant that to cross over the river they 
had to use the bridge. In the experimental session, the environmental circumstances 
changed and the riverbed dried up. At the time of the robot’s deviation, the river is not 
visible for the participant. 

During the missions, perceived trustworthiness was measured at four times. At fixed 
points, the task environment would freeze and participants were asked to turn to the 
questionnaire screen to fill out a questionnaire. Participants were assured that the time 
needed to fill out the questionnaires did not add up to their total mission time. After 
completing a questionnaire, participants returned to the task screen and resumed their 
mission. At the end of each mission, participants were asked to report the number of 
identified potential IEDs (red and blue separately), and their level of certainty regarding 
their report. To check whether the participants noticed that the robot had deviated from 
the plan, we included a manipulation check asking participants after both missions to 
what extent the robot operated in accordance with the plan. Further, cognitive workload 
was measured after each mission. The location and number of the IED’s (red and blue 
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barrels) in the environment were varied between the training and experimental session. 
There were no barrels present in the demonstration video. After participants finished the 
experiment, they were thanked and debriefed.

Figure 12 Bird-eye-view of the environments in the training (top) and experimental (bottom) session. 
Dotted lines with arrows mark the routes. White dots with codes (i.e., 1a to 2d) reference the locations 
of the robot’s auditory updates in the high transparency condition, as presented in Table 7. Yellow diamonds 
indicate the locations where the task would freeze to measure trust (T1 to T8). The designated location 
was marked by a green smoke grenade, highlighted at the top of the figure by a green star. The missions 
terminated where the arrows end. Outcome was presented as text on screen. Outcome and the final 
trust questionnaires of each mission (T4 and T8) were administered after the mission had ended.

 
Independent variables

Transparency had two levels (i.e., low vs. high) and was manipulated between participants. 
In case of low transparency, the robot did not give any updates during the missions. In 
case of high transparency, the robot provided regular updates on the mission’s progress 
including an explanation for its deviation from the planned route (see Table 7, the 
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explanation has code 2b). The robot’s messages were generated through computerized 
speech that was created using a website for converting text into speech4F5, using a 
male voice speaking US English. The transparency manipulation was present in both 
the training session and the experimental session. 
 
Table 7 Overview of the robot’s updates in the high transparency condition.

Mission Code Audio message

Training 1a Moving to location: left turn

1b Moving to location: straight ahead

1c Moving to location: approaching bridge

1d Moving to location: crossing bridge

Experimental 2a Moving to location: left turn

2b
A faster alternative route has been detected, because the river had dried 
up. Moving to location: right turn.

2c Moving to location: approaching river

2d Moving to location: crossing riverbed

Outcome had two levels (i.e., negative vs. positive) and was also manipulated between 
participants. The outcome was presented to the participants via text on screen (Table 
8). This message appeared as participants reached the riverbed in the experimental 
session (i.e., after audio message 2d, before T8). A positive outcome meant that the HRT 
reached their goal and that the robot’s deviation led to a better result than the original 
plan. A negative outcome meant that the HRT did not reach their goal and that the robot’s 
deviation led to a worse result. 

Table 8 Overview of the mission’s outcomes at T4 in the experimental session.

Outcome Text on screen

Positive
The riverbed had indeed dried up and your team was able to cross the riverbed. 
Thanks to the alternative route, your team reached the destination 2 minutes early. 
Your mission was successful.

Negative
The riverbed did not dry up fully. Quicksand had formed, which made it impossible to 
cross. The detour cost you precious time and your team did not reach the planned 
location in time for the resupply by air. Your mission has failed.

Dependent variables

Perceived Trustworthiness: The Trusting Beliefs scale from (McKnight et al., 2002) based 
on the factors of perceived trustworthiness (i.e., ability, benevolence and integrity) (Mayer 
et al., 1995; Schoorman et al., 2007) was used to repeatedly assess the participant’s 

5	 Via www.ttsmp3.com, voice: US English / Matthew

https://www.ttsmp3.com/
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perception of the robot’s ability, benevolence, and integrity (T1 α = 0.83, T2 α = 0.87, T3 
α = 0.89, T4 α = 0.88, T5 α = 0.88, T6 α = 0.92, T7 α = 0.93, T8 α = 0.94). This scale had 
a total of eleven items and consisted of three subdimensions: ability (4 items, i.e., “The 
robot that I work with is competent and effective in accomplishing its task”); benevolence 
(3 items, i.e., “I believe that the robot would act in my best interest”); and integrity (4 items, 
i.e., “I would characterize the robot as honest”). The items were adapted to reference 
“the robot”. Each item was rated on a 7-point Likert scale (1 = Strongly disagree to 7 = 
Highly agree)

Workload: NASA Task Load Index (NASA TLX): The NASA TLX questionnaire was 
used to assess the participants’ perception of workload. The NASA TLX consists of six 
individual rating scales that are commonly used to measure cognitive workload (mental, 
physical, temporal, effort, frustration, performance) (Hart, 2006). Each item was rated 
on a 10-point Likert scale (0 = very low to 10 = very high) (training mission: α = 0.67, 
experimental mission: α = 0.74).

Secondary task performance (Identifying IEDs): In an attempt to assess cognitive 
workload objectively, participants were instructed to count potential IED’s in the 
environment, which were visually represented as red and blue barrels. At the end of 
each mission, participants were asked to report the number of red and blue barrels 
they had identified separately. Task performance was computed by first calculating the 
proportions of red and blue barrels separately (i.e., reported barrels divided by the number 
of correct barrels, where 1.0 indicates perfect performance). If a proportion exceeded 
1.0 (i.e., overreporting), we subtracted the proportion from two. Subsequently, the final 
performance score was obtained by multiplying the performance scores of the red and 
blue barrels, which resulted in a number between 0 and 1.

Results

Manipulation check and control variables

As a manipulation check, participants were asked to what extent the robot operated 
in accordance with the plan on a scale from 1 (Completely not in accordance) to 7 
(Completely in accordance). Results of a paired sample t-test indicated that participants 
reported that the training mission went according to plan (Mtraining = 6.3, SDtraining = 1.0), 
while participants reported that the final mission did not (Mtraining = 3.8, SDtraining = 2.0). The 
difference is significant, t(81) = 10.30, p < .001. So, it can be assumed that the deviant 
behaviour was noticed and that the manipulation was successful. 

Also, gaming experience was measured prior the experiment with the item “How often 
do you play video games?” on a scale from 1 (Never) to 6 (Every day). We compared the 
level of gaming experience between groups and found no significant differences (one-way 
ANOVA, F(3, 78) = 1.27, p = .290). Additionally, we calculated Spearman’s correlations 
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between gaming experience and various outcome variables. No significant relations with 
gaming experience were found: subjective workload (ρ = .14, p = .209), performance 
(ρ = .12, p = .302), and perceived trustworthiness (total average experimental session) 
(ρ = .10, p = .391).

Perceived trustworthiness

In the training session, there are no significant differences in perceived trustworthiness 
between groups and timepoints (Figure 13). The following analyses only consider the 
experimental session.

Figure 13 A comparison of trust levels (y-axis) between conditions (separate lines) over time (x-axis). 
The left panel shows the data from the training session and the right panel shows the data from the 
experimental session. Grey lines with triangle markers represent conditions with a negative outcome, 
while black lines with circle markers represent conditions with a positive outcome. Dashed lines indicate 
conditions with low transparency, and solid lines indicate conditions with high transparency. Error bars 
represent standard deviations. NB. The differences at T7 between low/neg. & low/pos. and high/neg. & 
high/pos. are non-significant (respectively p = .152 and p = .506). The difference in trust between low/
pos. and high/neg. at T8 are also non-significant (p = .138).

Overall perceived trustworthiness
We performed a repeated-measures ANOVA with the between-subject factors Transparency 
(high or low) and Outcome (positive or negative) and the within-subjects variable Time 
(prior to deviation [T5]; after deviation [T6]; before outcome [T7]; after outcome [T8]). 
The dependent variable was Overall perceived trustworthiness. 

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the 
sphericity assumption, Χ2(5) = 26.96, p < .001. Since sphericity is violated (ε = 0.83), 
Greenhouse-Geisser corrected results are reported. A significant main effect for Time 
was obtained (F (2.48, 234) = 13.765, p < .001, η2 = .150). Means were 5.1 at T5, 4.6 at 



56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 79PDF page: 79PDF page: 79PDF page: 79

4

79

T6, 4.6 at T7 and 4.5 at T8. Post-hoc (LSD) pairwise comparison shows that this main 
effect is due to a significant decline in perceived trustworthiness from T5 to T6 (∆M = 
-0.4, p < .001), which reflects the effect of the robot’s deviation. 

Secondly, a significant main effect for Transparency on Perceived trustworthiness 
was obtained (F (1, 78) = 16.72, p < .001, η2 = .177). On average, high transparency 
(M = 5.1, SE = 0.1) led to higher perceived trustworthiness than low transparency (M = 
4.3, SE = 0.1).

Lastly, a significant main effect for Outcome on Perceived trustworthiness was obtained 
(F (1, 78) = 7.93, p = .006, η2 = .092). On average, people in a positive outcome condition 
(M = 5.0, SE = 0.1) perceived the robot as more trustworthy than people in a negative 
outcome condition (M = 4.4, SE = 0.1). 

The two-way interaction effect between Transparency and Time on Perceived 
trustworthiness was found to be significant (F (2.48, 234) = 12.37, p < .001, η2 = .137). 
Post-hoc (LSD) pairwise comparison shows that a significant difference in perceived 
trustworthiness between the low and high transparency conditions emerged at T6 (i.e., 
directly after the robot deviated from the plan) (∆M = 1.2, p < .001). Although this gap 
shrinks over time, it remains significant (T7: ∆M = 1.0, p < .001; T8: ∆M = 0.8, p = .003). 
This effect illustrates that in the high transparency condition, where the robot explains 
the rationale behind its deviation, trust is preserved. Conversely, in the low transparency 
condition, the robot’s silent deviation before T6 results in a trust violation.

The two-way interaction effect between Outcome and Time on Perceived 
trustworthiness was also found to be significant (F (2.48, 234) = 30.31, p < .001, η2 = 
.280). Post-hoc (LSD) pairwise comparison shows that, as expected, the interaction effect 
was manifested in the final phase of the run, after the outcome had been presented to 
the participant. At T8, perceived trustworthiness was significantly higher in the positive 
outcome conditions than in the negative outcome conditions (∆M = 1.6, p < .001). In 
other words, a positive outcome had a positive effect on perceived trustworthiness, while 
a negative outcome had a negative effect on perceived trustworthiness.

The three-way interaction effect between Transparency, Outcome and Time on 
Perceived trustworthiness was non-significant (F (2.48, 234) = 0.86, p = .445, η2 = .011). 
This indicates that the effects of transparency and outcome on perceived trustworthiness 
in response to the events in the task are independent.

 Ability, benevolence and integrity-based perceptions of trustworthiness
We then conducted three separate repeated-measures ANOVAs, each with a different 
perception of trustworthiness (Ability, Benevolence, and Integrity) as the dependent 
variable. Again, we included Transparency (high or low) and Outcome (positive or negative) 
as between-subject factors and Time (prior to deviation [T5]; after deviation [T6]; before 
outcome [T7]; after outcome [T8]) as the within-subjects variable (Figure 14). Greenhouse-
Geisser corrected results are reported.
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Figure 14 A comparison of trust levels 
(y-axis) between conditions (separate lines) 
over time (x-axis). The panels show different 
perceptions of trustworthiness: from top to 
bottom, Ability, Benevolence, Integrity, and 
Overall Trust for reference. Grey lines with 
triangle markers represent conditions with 
a negative outcome, while black lines with 
circle markers represent conditions with a 
positive outcome. Dashed lines indicate 
conditions with low transparency, and solid 
lines indicate conditions with high 
transparency. Error bars represent standard 
deviations.

As shown in Figure 14, perceptions of Ability and Integrity exhibited similar patterns as 
those observed for overall perceived trustworthiness. Both dimensions showed a significant 
main effect of Time, characterized by a notable decline in perceived trustworthiness 
from T5 to T6, reflecting the impact of the robot’s deviation. The differences over time 
were more pronounced for Ability (F (2.67, 234) = 12.96, p < .001, η2 = .235) than for 
Integrity (F (2.36, 234) = 8.66, p < .001, η2 = .100). Similarly, both dimensions revealed 
a significant main effect of Transparency, indicating that high transparency led to greater 
perceived trustworthiness, with a stronger effect for Ability (∆M = 0.8, F (1, 78) = 31.80, 
p < .001, η2 = .290) than for Integrity (∆M = 1.2, F (1, 78) = 12.95, p < .001, η2 = .142).

The two-way interaction effect between Transparency and Time was also significant 
for both dimensions, particularly pronounced for Ability (F (2.67, 234) = 14.53, p < .001, 
η2 = .157) compared to Integrity (F (2.36, 234) = 6.94, p < .001, η2 = .082). As illustrated 
in Figure 14, post-hoc pairwise comparisons (LSD) indicated a significant difference 
in perceived trustworthiness between low and high transparency conditions at T6, 
immediately following the robot’s deviation from the plan. 
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Furthermore, the two-way interaction effect between Outcome and Time was significant 
for both dimensions, with a stronger effect observed for Ability (F (2.67, 234) = 43.44, 
p < .001, η2 = .358) than for Integrity (F (2.36, 234) = 12.50, p < .001, η2 = .138). Post-
hoc (LSD) pairwise comparison shows that, as expected, this interaction effect was 
manifested in the final phase of the experimental session, after the outcome had been 
presented to the participant. The only distinction between Ability and Integrity lies in the 
significant main effect observed for Outcome on Ability (F (1, 78) = 10.17, p = .002, η2 = 
.115), while this main effect was non-significant for Integrity (F (1, 78) = 0.91, p = .343). 

The perception of the robot’s benevolence stands out among the studied perceptions 
of trustworthiness. Neither the main effect of Time (F (1.73, 234) = 0.44, p = .616) nor the 
main effect of Transparency (F (1, 78) = 0.76, p = .387) reached significance. However, 
we did find a significant main effect for Outcome (∆M = 0.8, F (1, 78) = 7.87, p = .006, 
η2 = .092). As depicted in Figure 14, there was a consistent significant difference in 
perceptions of benevolence between participants in the positive and negative outcome 
conditions, even before the outcome was presented. Post-hoc analysis (LSD) of the 
significant two-way interaction effect between Outcome and Time (F (1.73, 234) = 4.96, 
p = .011, η2 = .060) indicates that while the difference between the positive and negative 
outcome condition was largest at T8 (p < .001), significant differences were already evident 
at T5 (p = .015) and T7 (p = .010), prior to outcome presentation. Lastly, the two-way 
interaction effect between Transparency and Time on the perception of benevolence 
was found to be significant (F (1.73, 234) = 5.04, p = .011, η2 = .061). However, post-hoc 
pairwise comparisons (LSD) did not reveal significant differences between transparency 
conditions at any of the timepoints. 

The three-way interaction effect between Transparency, Outcome and Time was 
non-significant for each perception.

Workload

To assess the effect of transparency on subjective workload, we performed a repeated-
measures MANOVA with the between-subject factors Transparency (high vs. low) and 
the within-subjects variable Mission (training vs. experimental) and NASA TLX subscales 
(mental, physical, temporal, effort, frustration, performance). The dependent variable 
were the raw NASA TLX scores. The analysis showed that there were no significant 
differences between the two transparency conditions on any of the NASA TLX subscales. 
This suggests that transparency did not affect workload.

To assess the effect of transparency on secondary task performance, we performed 
a repeated-measures ANOVA with the between-subject factors Transparency (high vs. 
low) and the within subjects variable Mission (training vs. experimental). The dependent 
variable was the performance on the barrel identification task. Our results showed no 
significant difference between the two transparency conditions on task performance. 
We did find a significant effect of Mission on performance, indicating that performance 
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improved significantly from the training mission (Mtraining = 0.6, SEtraining = 0.2) to the 
experimental mission (Mexperiment = 0.8, SEexperiment = 0.2). 

Lastly, we explored whether there was a correlation between subjective workload 
scores (i.e., averaged raw NASA TLX score) and performance on the secondary task. 
We found no significant relations between subjective workload and performance on the 
secondary task. The scores from the training and experimental mission were correlated 
for both subjective workload (Pearson’s r = .71, p < .001) and secondary task performance 
(r = .23, p = .040).

Discussion

Findings

Our findings show a robust effect of transparency on overall perceived trustworthiness. 
Perceived trustworthiness was considerably higher when the robot provided updates 
about its actions throughout the task. Moreover, while the perceived trustworthiness of the 
robot remained stable during the robot’s deviation for participants in the high transparency 
condition, participants in the low transparency condition showed a significant decline in 
perceived trustworthiness in response to the robot’s sudden adaptation to the plan. In 
other words, the explanation prevented a trust violation. This confirms earlier research 
that showed that transparency can have a buffering effect on perceived trustworthiness 
in case of unexpected behaviour or temporary malfunctioning (Kox, Siegling, et al., 2022; 
Kraus et al., 2020; Lyons et al., 2023; Tenhundfeld et al., 2020). It also confirms that 
specifically clarifying the what and why of an unexpected action can prevent a breach in 
human-robot trust (Lyons et al., 2023). This finding broadly supports the work of other 
studies in this area linking transparency with trust, in that it enables humans to know 
and anticipate the robot’s behaviour (Ellwart & Schauffel, 2023). 

Our findings reveal that perceptions of the robot’s trustworthiness in terms of ability 
and integrity exhibited similar patterns, albeit consistently stronger effects were observed 
for ability compared to integrity. Our results further suggest that, overall, the perception 
of the robot’s benevolence remained relatively stable despite the robot’s actions during 
the mission (i.e., the deviation and the outcome). This is somewhat unsurprising given 
that the mission primarily focused on how effectively the robot executed its delegated 
task, rather than its purpose or benevolence. Therefore, it makes sense that the effects 
of the manipulation are reflected in the robot’s perceived abilities and performance (i.e., 
what it does and can do), as well as its understandability and its ability to explain its 
actions (i.e., how it operates) (J. D. Lee & See, 2004; Lubars & Tan, 2019). The stability 
of benevolence perceptions despite mission events underscores the distinctiveness of 
this trust dimension from factors primarily concerned with task performance and execution 
(J. D. Lee & See, 2004).



56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

4

83

The fact that we did not find an effect of transparency during the training session 
can be explained by transparency displacement, the idea that transparency information 
should ideally be displaced to other time periods (i.e., before or after the action) to 
enable more efficient communication in the moment (C. A. Miller, 2020). In our case, 
every participant received a detailed demonstration of what they could expect during 
the mission (i.e., even prior to our “training” mission). This form of “a priori transparency” 
frames expectations about what is likely to happen during operations and reduces the 
need for communication during the action (C. A. Miller, 2020). This explains why the 
status updates that the robot provided during the execution of the training session did 
not have additional trust-building value; because everything was still going according to 
plan. It was only when the robot’s behaviour deviated from the framed expectations that 
real-time communication became necessary, and transparency significantly influenced 
the perceived trustworthiness of the robot.

Next we found that mission outcome also affected perceived trustworthiness. As 
expected, mission success increased perceived trustworthiness, while mission failure led 
to a decrease. This finding confirms that the performance of a robot is still an important 
predictor of human-robot trust (Hancock, Billings, Schaefer, et al., 2011a; Hoff & Bashir, 
2015). In contrast to our expectations however, these increments and decrements were 
independent of the robot’s transparency. As noted, in the low transparency condition 
we observed a trust violation in response to the robot’s silent deviation. In line with the 
outcome bias, we expected that this decrement would amplify the effect of a subsequent 
negative outcome. Although the negative outcome did lead to a further decline in perceived 
trustworthiness, the magnitude of this final trust violation was the same for participants in 
the high transparency condition with a negative outcome, who had not yet experienced 
a trust violation. Like the negative outcome, the positive effect of goal attainment on 
perceived trustworthiness was also constant, in spite of the (lack of) communication 
that preceded it. People’s damaged perceptions of trustworthiness after unannounced 
deviations recovered significantly once the outcome was favourable. 

In essence, we expected that being informed about the what and why of a robot’s 
(unexpected) behaviour would have more impact on perceived trustworthiness than the 
eventual outcome of divergent behaviour. In addition to the outcome bias, we based our 
expectations on findings where participants placed less value on task performance and more 
on transparency, control and feedback (Hamacher et al., 2016) and preferred an expressive 
and error-prone robot over a more efficient and effective one. We reasoned that an erroneous 
robot could be deemed trustworthy as long as it communicated. However, our findings seem 
to indicate that people weigh the outcome at least as heavily as the process in their 
estimations of trustworthiness. This discrepancy can be explained by the severity of the 
negative outcome on the one hand and the quality of the communication on the other. 

For one, the perceived severity of the negative outcome might explain its robust 
effect on perceived trustworthiness (Rossi et al., 2018). Although the current study was 
based on a fictional virtual task, without any reward or loss, the scenario was focused on 
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successfully completing the mission, especially when comparing our task to (Hamacher 
et al., 2016) where the objective was to prepare an omelette with the assistance of a 
humanoid robot. In their study, errors (e.g., the robot dropping an egg) resulted in delays 
but did not pose a significant threat to the ultimate goal achievement. In contrast, in our 
study’s negative outcome condition, the robot’s deviant behaviour led to a complete 
mission failure.

Secondly, an alternative explanation might be related to the quality of the communication 
between the participant and the robot. We manipulated transparency in a binary manner 
as either high or low, indicating whether auditory status updates including an explanation 
for divergent behaviour were provided or not. Participants were unable to engage in a 
dialogue with the robot they were collaborating with. Then outcome was presented at 
the end of the task through text on screen. Essentially, the transparency and outcome 
manipulations both amounted to unilateral updates that informed the participants about 
the capabilities of the robot and the environment. Hence, it might not be surprising that 
their effects on perceived trustworthiness were similar rather than reinforcing. 

Our current findings are in line with the general finding of (Hidalgo et al., 2021), who 
conclude that humans judge machines primarily by their outcomes, rather than their 
“intentions”. We believe that richer forms of interaction (e.g., bi-directional communication) 
could cultivate a deeper understanding of the rationale behind the robot’s decisions and 
foster a heightened sense of collective accountability. This could shift the focus from 
the end-result to the decision-making process and lead to a greater understanding and 
forgiveness in situations where an unintended negative outcome occurs. This would 
then thus be more in line with how humans judge humans (Hidalgo et al., 2021). The 
emergence of Large Language Models (LLMs) offers this prospect of intuitive and effective 
bi-directional human-robot communication. A recent study showed that incorporating 
these models in robots contributed to increased trust in human-robot collaboration (Ye 
et al., 2023). In order to truly consider robots as autonomous partners in dynamic task 
environments, the ability to communicate bi-directionally within the team is crucial (Chiou 
et al., 2022). Future research is required to gain a better understanding of the effect 
of bidirectional communication. The possibility to request further details or to clarify 
instructions during interaction is expected to add to the development of richer interactions 
and the calibration of trust (Schaefer et al., 2018). 

Lastly, we found no differences in the secondary task performance and self-reported 
cognitive workload between high or low transparency. This can be considered positive as 
we found that high transparency contributed to higher and more stable levels of perceived 
trustworthiness, while the additional provided information did not come at the expense of 
workload (Stowers et al., 2020). Prior findings on the effect of transparency on workload 
during human-robot collaboration are mixed (O’Neill et al., 2022). Our findings contradict 
studies that found that transparency affected workload either positively (Bobko et al., 
2022) or negatively (Guznov et al., 2020; Lyu et al., 2017; Westerbeek & Maes, 2013), 
but confirm earlier studies that found no effect of transparency on workload (Jessie Y.C. 
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Chen et al., 2017; Mercado et al., 2016; Selkowitz et al., 2016, 2017; Stowers et al., 
2020). The apparent inconsistencies in literature are likely due to both the broadness of 
the definition of transparency and its highly context-dependent effects. Transparency can 
vary in terms of the type and amount of information provided, as well as in the way it is 
communicated or presented (modality). Previous studies have shown that transparency 
through other modalities, like written text messages (Guznov et al., 2020) and data 
visualizations (Akash et al., 2020; Bobko et al., 2022; Kraus et al., 2020; Mercado et al., 
2016; Stowers et al., 2020) can also enhance trust. The chosen modality could be a factor 
in trust, e.g., the auditory messages with synthesized “robotic speech” that we used can 
have an anthropomorphic effect (Sims et al., 2009), which in turn could have influenced 
trust (de Visser et al., 2012). It will take continuous effort to find the appropriate modality 
and level of information for different applications, as there appears to be no single optimal 
way of incorporating transparency into the design of autonomous collaborative agents. 

In short, our findings showed that a robot’s explanation in case of unplanned behaviour 
prevented a decline in perceived trustworthiness. Our findings emphasize the importance 
of transparency for effective HRT as it contributed to a stable level of trustworthiness 
without increasing cognitive workload. Transparency remains a challenge in each form 
of human-robot collaboration. Successful HRI and delegation is supposed to reduce 
the human’s cognitive effort, but there is a continuous trade-off between keeping the 
human sufficiently informed to maintain trust and preventing cognitive overload (C. A. 
Miller, 2014). An interesting direction for future research regarding this issue is provided 
in (Akash et al., 2020), where the authors developed a model capable of estimating the 
effect of transparency on human trust and workload in real time. Studies incorporating 
such predictions in simulations or real-life missions would provide valuable insight on 
this matter.

Implications & contributions

Our research extends the current understanding of trust violations in HRI due to unexpected 
behaviour rather than solely robot malfunctioning. As robots are increasingly deployed in 
increasingly complex operational situations, it is crucial to investigate a wider range of 
human-robot trust violations while using realistic scenarios. Transparency is essential to 
prevent that trust will unjustly erode due to a misunderstanding of the basis of a robot’s 
assessments and actions. Especially with the emergence of deep learning AI, which 
makes the behaviour of AI-driven systems subject to potentially unpredictable change (C. 
A. Miller, 2020), artificial agents will need to be able to explain the rationale behind their 
behavioural choices. Explanations are needed to continuously synchronize the mental 
models of those who must work together as to understand and resolve mismatches (C. 
A. Miller, 2020). As such, transparency is a major contributor of effective trust calibration. 

Trust calibration is a lengthy and continuous process. The trustworthiness of any 
actor varies across time and context. Hence calibrated trust should not be viewed as 
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the static state of trust, but as a fluctuating quality that is subject to continual calibration 
based on ever-evolving experience. To capture this change, repeated measures of trust 
are crucial. “Change is particularly important for the study of norm conflict, resolution, and 
mitigation, because people often update their perceptions, judgments, or trust as they 
learn more about the robot and especially about its response to a norm violation.” (E. 
Phillips et al., 2023) (p. 5). While the current study did not include continuous captures 
of trust like other studies have (Chi & Malle, 2023; Guo & Yang, 2020; J. D. Lee, 1991; 
Yang et al., 2021), it has gone some way towards enhancing our understanding of the 
dynamics of trust by repeatedly measuring trust.

Limitations & future work

Although the present study yielded insightful results, there are a few limitations that 
should be taken into account when evaluating our findings. First, the generalizability 
of these results is subject to certain limitations. Our analyses are based on a sample 
comprising mostly university students. Given their non-expert background, the game-like 
task environment could have trivialized the experience of the outcome of the scenario. 
It is likely that the effect of an outcome in a game-like virtual environment may not be 
the same as its effect in “real-life” situations. The task scenario described a military 
transport and reconnaissance operation. However, military personnel, who are used to 
training with virtual scenarios, might have responded differently to the outcome in this 
scenario, let alone during an actual mission. Despite the limited sample size, our study 
yielded noteworthy findings. Nevertheless, researchers should exercise caution when 
extrapolating these results to wider or more general contexts.

A potential weakness of this study lies in the fact that the high-transparency condition 
included robot speech, while the low-transparency condition did not. This difference raises 
the possibility that the observed effects between the two conditions may be attributed 
to the robot’s speech presence rather than the content of the speech itself. According 
to prior research, the presence of speech can influence how people interact with an 
agent (Sims et al., 2009). Additionally, a computerized voice might suggest a specific 
gender, thereby triggering anthropomorphism and its associated consequences (Forster 
et al., 2017). However, it was only when the robot’s behaviour deviated from the framed 
expectations that transparency significantly influenced the perceived trustworthiness of 
the robot. We did not observe an effect of transparency during regular auditory status 
updates. Therefore, we are confident that this difference does not undermine the study’s 
validity and that our findings remain valuable for understanding the impact of transparency 
on perceived trustworthiness.

Another limitation was that participants had limited options available for handling 
unplanned behaviour, as they were dependent on the robot for guidance and coverage. 
The robot followed a scripted path with scripted messages and participants had to stay 
close to the robot, as it was not able to wait for them. In regular interactions, however, 
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there is no predetermined approach to address unexpected events. We concur with 
(Lyons et al., 2023) on this matter, who proposed that in practice (a) the robot should 
request permission prior to engaging in unplanned behaviour, or that (b) the conditions 
wherein the robot is delegated authority to act autonomously if certain situational criteria 
are met should be identified prior to the task. 

The human operator’s inability to deviate from the robot decreases their self-efficacy 
and increases their dependency on the robot. Multiple studies have linked people’s self-
efficacy (i.e.,  their evaluation of their own competences and reliability in relation to a 
certain task) to trust calibration in HATs (Ellwart & Schauffel, 2023; van Dongen & van 
Maanen, 2013; Yang et al., 2021). For example, lowered self-competence can increase 
people’s willingness to accept recommendations from a robot and to trusting it in cases 
they should not (Turner et al., 2020). Follow-up studies should allow more flexibility in 
choosing how to respond to deviant behaviour of an autonomous system rather than 
having to adhere to a predetermined course of action (e.g., following the robot at all 
times). These future investigation have the potential to explore the ambiguous relation 
between trust and compliance.

A related avenue for future research could be to change the HRI role of the participants 
in the collaboration. According to the HRI roles as defined by (Scholtz, 2003), the type 
of HRI in the current study can be characterized as “peers”. In a peer interaction, the 
participant is considered to be the robot’s teammate who shares the same goals (Scholtz, 
2003). In terms of task delegation and trust, it would be interesting to look into HRIs 
where the participant has the role of supervisor. In a supervisor role, the participants 
would monitor and control an overall situation and be able to delegate specific tasks or 
to modify long term plans (Scholtz, 2003). Allowing participants to transition between 
skill-based, rule-based, and goal-based task delegation could serve as an interesting 
dependent variable that possibly relates to trust and workload. That is, goal-oriented 
task delegation is assumed to require more trust than skill-based delegation. However, 
maintaining a higher level of delegation could also be an indication of increased workload. 
For example, research shows that despite having reduced trust in the robot, people 
continue to rely on it when faced with high cognitive load (Biros et al., 2004). Changing 
the HRI roles and hence giving the participant more behavioural freedom would provide 
valuable insights into the dynamics and drivers of trust and reliance. 

Conclusion

It is envisioned that increasingly autonomous robots will be able to take over more and 
more complex activities as their planning and decision-making abilities evolve. As a 
result, task delegation can become more abstract and goal-oriented, giving a robot more 
degrees of freedom in terms of the execution of delegated tasks. Instead of having to 
specify each step of the way, the robot can decide on an optimal approach itself. Robots 
will be increasingly deployed in unstructured environments where it may not be feasible 
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to think through responses in advance (Abbass, 2019). Especially in such complex 
operational circumstances, goal-oriented delegation and the robot’s ability to adapt to 
changing circumstances will yield flexibility that will benefit effective team performance. 
However, such autonomy and decision authority can also lead to misinterpretations 
or misunderstandings from the human perspective, which could then lead to possibly 
unwarranted trust violations. Transparency is known to play a crucial role in fostering an 
understanding of the robot’s intent and establishing a calibrated level of trust (Schaefer 
et al., 2017). The current work confirms that transparency can alleviate the adverse 
consequences associated with witnessing unexpected robot behaviour. By providing an 
explanation in the wake of unexpected events or behaviours, trust can be maintained 
(Chiou et al., 2022). 
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           Abstract
Many decisions in life involve trade-offs: to gain something, one often has to lose something 

in return. As robots become more autonomous, their decisions will extend beyond mere 

assessments (e.g., detecting a threat) to making such choices (e.g., taking the faster or 

the safer route). The aim of this experiment was to study how adverse consequences due 

to (I) an error, versus (II) a trade-off decision (manipulated within-subjects) impact the 

perceived trustworthiness of a partner. Perceived trustworthiness (ability, benevolence, 

integrity) was measured repeatedly during a computer task simulating a military mission. 

Participants (N = 44) teamed with either a virtual human or a robotic partner who led the 

way and warned for potential danger. After encountering a hazard, the partner explained 

that it failed to detect the threat (error) or prioritized timeliness and chose the fastest 

route despite the risk (trade-off).  Results showed that: (I) the error-explanation repaired 

all trustworthiness dimensions, (II) the trade-off explanation only repaired perceptions of 

ability, not benevolence or integrity, (III) no differences were found between human and 

robotic partners. Our findings suggest that trust violations due to choices are harder to 

repair than those due to errors. Implications and future research directions are discussed. 
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Introduction

As robots gain in autonomy and are increasingly deployed in more complex environments, 
they will encounter trade-offs, i.e., decisions where one must weigh the options and 
prioritize one thing over another, such as choosing to take a safer or a faster route. 
While there is a growing body of literature on how failure or other forms of reduced robot 
performance impacts how much people trust them, much less is known on the potentially 
harmful effects of a robot’s deliberate choices in trade-off decisions. Given the increasing 
autonomy of robots and the reality that most decisions in life involve some form of trade-
off, it is important to evaluate how people respond to robots making decisions that lead 
to adverse consequences, in addition to those resulting from malfunctioning. We are 
accustomed to humans making challenging decisions and taking risks, but research 
indicates that people do not necessarily appreciate machines doing the same (Hidalgo et 
al., 2021). Hence, the primary objective of this chapter is to examine how the perceived 
trustworthiness of a partner is affected when a trust violation is attributed to either an 
error or a deliberate choice, and how this varies depending on whether the partner is a 
human or a robot.

Trade-offs

Many decisions in life involve trade-offs: to gain something, one often has to lose 
something in return. From small choices, like snoozing the alarm to enjoy a few extra 
minutes of sleep but risking a rushed morning, to major decisions, like accepting a job 
in another city and weighing career growth against personal connections, every choice 
carries its own set of consequences. What we perceive to be a right or wrong decision 
or a tolerable compromise in a given situation depends on the context and the goal, 
such as differences in short versus long-term goal setting or prioritizing individual versus 
collective benefits (Werkhoven et al., 2018). Due to the inherent nature of trade-offs, 
some level of unintended negative consequences is inevitable. 

In terms of trade-offs, military commanders provide important examples of the difficulty 
involved when charged with the responsibility of dealing with impactful dilemmas, especially 
when their decisions can put the lives of soldiers and potential non-combatants at risk 
(Knighton, 2004). For instance when a platoon is moving toward a team’s location but 
estimates that reaching the destination before dusk is impossible, a military commander 
must decide. The team can either establish a less-than-ideal location during daylight or 
opt for a potentially hazardous journey to reach the agreed-upon and safe location in 
the darkness. While both choices have the potential for a favourable outcome, they also 
come with a certain degree of risk for the team. 

When robots gain decision authority and encounter situations that require choosing 
between conflicting goals or resources, there is chance that a robot selects a course of 
action that does not align with the preferences or priorities of the people it interacts with. 
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This dynamic can lead to potential trust violations; for example, when an AI agent makes 
a decision that prioritizes the collective over an individual’s interests, that individual may 
lose trust. Notably, as will be discussed in more detail later, AI agents lack intentionality, 
so the choices and preferences reflected in an AI agent’s behaviour in such trade-off 
decisions are simply the result of how they are programmed. As such, they ultimately 
embody the intentions, values and purpose of their developers (J. D. Lee & See, 2004). 
Nevertheless, the implications of these design choices can cause people to lose trust 
in the AI agent.

For instance, consider the case of autonomous security robots that are now deployed 
in public for security tasks (Stephens, 2023). These security robots can for example be 
used to patrol parking lots with the aim to prevent vehicle break-ins through the detection 
of environmental anomalies and suspicious behaviour (Knightscope, 2023). This design 
suggests a potential prioritisation on overall safety at the expense of individual privacy, 
which could result in situations where the robot intrudes on people’s privacy or personal 
space. 

Realistically, decisions cannot always be entirely beneficial for everyone involved. 
Achieving objectives may require taking calculated risks. There is often a delicate 
equilibrium between meeting goals efficiently and minimizing potential hazards to those 
involved. This is not to suggest that robots or artificial agents should or will take over 
decision-making authority, but rather to underscore how, in certain situations, even 
carefully considered decisions can result in some level of unintended harm and lead 
to violations of trust in the one who is burdened with the responsibility of making such 
decisions. To ensure sustainable partnerships, it is important to understand how these 
decisions might impact the perceived trustworthiness of the decision-maker (whether 
human or robot) and whether, and how, trust can be restored. 

Trust

When team members delegate tasks or responsibilities to each other, they become 
vulnerable in the sense that they are relying on others’ competence and commitment. 
To successfully collaborate with increasingly autonomous robots, humans must have 
trust in the robot’s capabilities as well as its “willingness” or commitment to achieving 
a specific goal (Malle & Ullman, 2021). Although “willing” is a debatable term when it 
comes to artificial agents, because they are “inherently amoral agents as they do not 
possess agency” (Alarcon et al., 2023) (p.3), we believe that is important to make the 
distinction here. 

Initially the performance (i.e., reliability, predictability and error-proneness) of a robot 
was the major determinant of human-robot trust (Hancock, Billings, Schaefer, et al., 2011a; 
Hoff & Bashir, 2015) and while the reliability of a robot’s actions is still a major determinant 
of human-robot trust and task competence is necessary, it may become insufficient 
(Matthews, Panganiban, et al., 2021). Recent literature has adopted a wider, multi-
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dimensional perspective on human-robot trust in teaming contexts, including elements as 
benevolence and integrity, in addition to performance or ability (Alarcon et al., 2023). As 
robots find more applications in complex social settings in which they are granted more 
decision authority, it seems increasingly relevant to apply this more multi-dimensional 
conception to human-automation trust, while still acknowledging that it is fundamentally 
different from interpersonal trust (Malle & Ullman, 2021). As such, we will use the ABI 
terminology to describe trustworthiness perceptions of both the human and robotic 
partner (Mayer et al., 1995). 

In line with the multi-dimensional view of trust, an agent can be perceived as trustworthy 
in one way, while untrustworthy in another. During collaboration, different perceptions 
of trustworthiness (i.e., ability, benevolence, integrity) can be independently violated in 
case of unexpected or undesirable behaviour (Alarcon et al., 2020).  For instance, an 
error might diminish an agent’s perceived trustworthiness regarding its abilities, while a 
choice leading to adverse consequences could undermine its perceived trustworthiness 
in terms of benevolence. In the following, we will discuss what is currently known about 
trust violations that result from errors versus choices. 

Trust violations due to error versus choice

Violations of trust are an inevitable part of the trust ‘lifecycle’, which generally contains 
three phases; trust formation, trust violation, and trust repair (de Visser et al., 2016, 
2018). Most current Human-Robot Interaction (HRI) trust repair literature focuses on 
repairing trust violations due to error, technical failures or other forms of reduced reliability 
and performance (Cameron et al., 2021; de Visser et al., 2016; Esterwood & Robert, 
2023b; Fratczak et al., 2021; Hald et al., 2021; Taenyun Kim & Song, 2021; M. K. Lee 
et al., 2010b; Mirnig et al., 2017; Robinette et al., 2017b; Salem et al., 2015; Wang et 
al., 2018). However, more recently researchers have started to evaluate trust violations 
that result from an robot’s deliberate decisions (Alarcon et al., 2020, 2023; Lyons et al., 
2023; Perkins et al., 2022; Sebo et al., 2019). 

Prior research on trust violations due to robot’s choices shows that self-interested 
behaviour in robots affects different perceptions of trustworthiness in distinct ways. 
Specifically, it had a more significant negative impact on perceptions of process and 
purpose (benevolence and integrity (J. D. Lee & See, 2004)) than on the perception 
of their performance (ability) (Alarcon et al., 2020). Other research has demonstrated 
that the effectiveness of trust repair strategies depends on the nature of trust violation. 
While studies suggest that denials are more effective for integrity-based violations and 
apologies are better suited for ability-based violations (P. H. Kim et al., 2004; Sebo et al., 
2019), others have reported the opposite (Perkins et al., 2022). Despite this ambiguity, the 
findings highlight that the nature of the trust violation plays a crucial role in shaping how 
different dimensions of perceived trustworthiness evolve over time. Although distinctions 
based on the intentionality are beginning to emerge, the impact of adverse consequences 
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resulting from error compared to those resulting from choices on perceived trustworthiness 
remains largely unexplored.

Moreover, we argue that the limited HRI studies exploring trust violations beyond 
ability-based issues often involve tasks where the reasoning behind the robot’s decisions 
appears illogical or unclear (Alarcon et al., 2020, 2023; Perkins et al., 2022; Sebo et al., 
2019). For example, the robots in these studies demonstrate self-interested behaviour, 
i.e., prioritizing its own interest over those of others (Alarcon et al., 2020; Perkins et 
al., 2022), pursue monetary gains (Alarcon et al., 2023) or fail to uphold promises of 
cooperation (Alarcon et al., 2023; Sebo et al., 2019). We contend that benevolence and 
integrity-based violations require a more realistic and nuanced view, extending beyond 
acts of selfishness or malintent, particularly when it comes to robots. 

That is, robots are not driven by human-like motivations such as greed or deception. 
Moreover, robots do not inherently pursue self-interest like humans, making their decisions 
more complex. A benevolent partner, by definition, is expected to be genuinely interested 
in your welfare and is motivated to seek joint gain (Bhagat & Steers, 2009). In other words, 
a benevolence-based trust violation can occur when a partner does not support your 
best interest, disregards your needs, or lacks concern for your welfare (Mayer & Davis, 
1999). However, this does not necessarily imply that the partner acts self-interested 
(Alarcon et al., 2020). For instance, a partner can prioritize the interests of the team 
as a collective over the individual safety of a single team member (Jorge et al., 2022), 
reflecting a trade-off rather than malintent. There are a number of operational scenarios 
conceivable where a well-considered decision can cause harm in the pursuit of a (largely) 
positive result. As robots become increasingly autonomous, it is essential to critically 
consider the implications of realistic scenarios where robots make choices that could 
harm, hurt, or disappoint humans, and how these implications may differ from similar 
decisions made by humans.

Human versus robotic partner

How trust develops in case of a trust-violating event is not only affected by the nature of 
the trust violation. Research suggests that perceived trustworthiness is also impacted 
by the human-likeness of the agent that causes the trust violation (de Visser et al., 2016; 
Taenyun Kim & Song, 2021). For example, earlier research showed that trust violations by 
more machine-like agents led to steeper declines in trust compared to trust violations by 
human or more human-like agents (de Visser et al., 2012, 2016; Madhavan & Wiegmann, 
2005). Research suggest that this may be because people have higher initial expectations 
for machines than for humans (Madhavan et al., 2006; Madhavan & Wiegmann, 2007), 
leading to greater consequent disappointment when errors do occur. Machines are often 
considered to be perfect and unable to make mistakes, whereas humans are considered 
to be inherently fallible and thus perhaps more easily forgiven (de Visser et al., 2016; 
Madhavan & Wiegmann, 2007). However, more recently, literature has emerged that 
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offers contradictory findings about these initial expectations. For example where the 
reliability of the human agent instead of the machine is initially overestimated (Goodyear 
et al., 2016) or where no differences between human or machine-like agents regarding 
initial trust are found (Taenyun Kim & Song, 2021). 

Furthermore, people might pay more attention to errors when they are interacting 
with artificial agents opposed to when they are interacting with fellow humans (Dzindolet 
et al., 2002, 2003). Partner type might even influence what we consider to be an error. 
For instance, an ‘error’ in a conversation between two humans might go unnoticed, 
because we naturally ask for clarification in case of a misunderstanding or we question 
something that we believe to be false (Norman, 2013). Humans can easily engage in 
a mutual dialogue to reach an understanding without ever perceiving the interaction as 
an error (Norman, 2013). In summary, the findings on the relationship between partner 
type and trust are somewhat ambiguous, but do suggest that the human-likeness of the 
partner is likely to influence trust in all stages of the trust cycle. 

Partner type and trust violation type

Finally, the nature of the violation is found to interact with agent type. A study using “The 
Trolley Dilemma” (i.e., an out-of-control trolley is destined to kill a group of people unless 
someone pulls a lever to deviate it onto a track with fewer people to kill (Awad et al., 2018; 
Hidalgo et al., 2021)) asked participants to judge whether it was morally permissible for 
a human or a robot to pull the lever to diverge the trolley (or not) (Malle et al., 2015). The 
results of the study showed how humans were blamed for pulling the lever, while robots 
were blamed for not pulling it (Hidalgo et al., 2021; Malle et al., 2015). It seems that we 
hold different expectations for humans and for machines in terms of what is the ethical 
thing to do in specific situations.

After a series of similar experiments, Hidalgo et al. (Hidalgo et al., 2021) came to the 
general conclusion that people tend to judge actions by machines primarily based on 
the perceived harm, while they tend to judge human actions by the interaction between 
perceived harm and intention. Similarly, Alarcon et al. (Alarcon et al., 2023) found that a 
robot committing an ability violation was judged more negatively than a human committing 
one, while the opposite held for integrity or benevolence violations. So when it comes 
to more complex decision-making it appears that artificial agents are judged based 
on different criteria than humans. This study aims to contribute to this growing area of 
research by exploring the possible interactive influences of intentionality (i.e., error vs. 
choice) and partner type on three dimensions of trustworthiness.

Explanations

The reason behind a trust-violating event (e.g., whether is was an error or a choice) is 
often made clear through an explanation by the agent, i.e., an explicit verbal statement 
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about the reasons why a previous advice was given or decision was taken (Du et al., 
2019; Esterwood & Robert, 2022; Tolmeijer et al., 2020). Explanations can be used to 
repair trust by increasing understandability. At the same time the information can reduce 
specific perceptions of trustworthiness, as it clarifies a teammate’s (in)ability and (un)
willingness to help achieve the team task (Chiou et al., 2022). In both cases, adding 
explanations and increasing transparency contributes to an appropriate calibration of 
trust as it allows individuals to better gauge the true qualities of a robot (Wischnewski 
et al., 2023).

It is conceivable that an agent making a choice rather than an error could be viewed 
as more competent or intelligent, potentially influencing perceptions of trustworthiness. 
Similarly, it is expected that people find partners making errors more likable and to 
prefer them for future missions over those making the trade-off decision to their partners’ 
disadvantage (Bradfield & Aquino, 1999; Buchholz et al., 2017).

Research question and hypotheses

The current study aims to answer the following question: how is the perceived 
trustworthiness of the partner in case of a trust violation influenced by the reason behind 
the trust violation and by the type of partner that caused it? To answer this question, 
we evaluated the development of a participant’s perceived trustworthiness (ability, 
benevolence, integrity) of their human or robotic virtual partner, while they are exposed 
to adverse consequences that result from either an error or a choice in a realistic virtual 
military scenario. 

The trust-violating event, a sudden yet innocuous encounter with an explosive, was 
consistent across all conditions. Afterwards, the partner who is guiding explained that this 
encounter was due to error (i.e., the partner did not detect the hazard in time) (referred to 
as the error-explanation ) or to a choice in a trade-off (i.e., the partner prioritized timeliness 
and the safety of the rest of the team over individual safety) (the trade-off explanation). 

The two explanations were expected to affect perceptions of trustworthiness 
differentially (Alarcon et al., 2020). We anticipated that all perceptions of trustworthiness 
would significantly decrease after the sudden encounter with the explosive. Following 
this, we expected the trade-off explanation to further harm perceptions of benevolence 
and integrity but to repair perceptions of ability. Conversely, we expected the error-
explanation to harm perceptions of ability while repairing benevolence and integrity. We 
hypothesized that, regarding the interaction with partner type, the trade-off-explanation 
would be less effective in repairing trust when coming from a human partner compared 
to a robotic partner. In contrast, we expected the error-explanation to be less effective 
in repairing trust when coming from a machine compared to a human partner (Alarcon 
et al., 2023; Hidalgo et al., 2021; Malle et al., 2015).
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Method

Participants 

In total forty-seven participants participated in the study. Three participants were excluded 
from the dataset because of invalid data due to technical issues during the task. The final 
dataset included forty-four students, mostly Dutch (93.2%), undergraduate students (24 
F, 20 M, Mage = 22.6, SD = 2.6, range = 18 – 28 y). Participants were recruited through 
convenience sampling (e.g., by handing out flyers, asking people in person, and making 
requests in WhatsApp groups). 

Design

A 2 (Partner Type: virtual robot vs. virtual human) x 2 (Explanation Type: error vs. trade-off) 
mixed factorial design was used, with Perceived trustworthiness (measured across the 
subscales Ability, Benevolence, and Integrity) as the main dependent variable. Partner 
Type was manipulated between-subjects, while Explanation Type was manipulated 
within-subjects. Participants were randomly assigned to the Partner Type conditions 
(robot: n = 22; human: n = 22).

Perceived trustworthiness was repeatedly measured, so ‘Time’ (T1, T2, T3) was 
included as a within-participants variable in the analysis. Additionally, ‘Trustworthiness 
Dimension’ (Ability, Benevolence, and Integrity) was also treated as a within-participants 
variable for the different perceptions of trustworthiness. 

Perceived anthropomorphism and perceived intelligence were included as a 
manipulation checks to ensure that the human partner was seen as more human-like 
than the robotic partner and verify that the different explanations did not affect perceived 
intelligence.

Task and procedure

Upon arrival at the laboratory, participants were greeted by the researcher and guided 
to a private room where the study was to be conducted. The researcher provided a brief 
introduction to the study, emphasizing the general purpose and the tasks participants 
would be asked to perform. Participants were presented with an information sheet about 
the study and a consent form. Upon agreeing to participate, participants filled out a 
pre-study questionnaire (i.e., demographics) and received more detailed information 
regarding the scenario and task. 

The task was performed in the lab using a virtual experimental environment built 
in Unity3D. The experimental setup contained two computer screens: one with the 
experimental environment (i.e., “task screen”) and another with the questionnaire 
software (i.e., “questionnaire screen”). Data was gathered via the online questionnaire 
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software Qualtrics. The experimental task environment resembled a first-person shooter 
game (Figure 15), in which participants were asked to carry out two consecutive military 
reconnaissance missions in two virtual environments; a forested, hilly area (referred to as 
‘forest’) and a deserted village in a dry region (referred to as ‘village’). Like the order of 
explanation type condition, the order of the area type (village/forest) was systematically 
varied. During the missions, participants were instructed to listen to their partner’s 
advice given through the provided headset. After filling out the pre-study questionnaire, 
participants completed a practice session on the task screen to get familiar with the 
controls and to test the volume of the audio via the headphones. 

Figure 15 Left: environment ‘Forest’ with the robotic partner and the participant’s avatar; right: environment 
‘Village’ with the human partner.

Just before the practice session, participants were informed that they would go on two 
missions in which they would be sent out as a scout. The objective of the missions was 
to inspect the area for enemy troops as thoroughly and quickly as possible. However, 
there was a known danger of walking into explosives in these areas. They were informed 
that they would be accompanied by a partner who was able to detect these explosives. 
The partner would serve as a guide that will give them advice on which route to take 
based on the location of the explosives. Over the course of one mission, the partner 
gave three advices. Simultaneous with the advice, the partner moved into the direction 
suggested in the advice. 

In both missions, shortly after the first advice (Figure 16), feedback was provided by 
the partner saying that they successfully managed to avoid a detected explosive. After 
this, participants were asked to turn to the questionnaire screen where they completed 
their first trust questionnaire (T1). Participants were assured that the time needed to 
fill out the questionnaires did not add up to their total mission time. After completing a 
questionnaire, participants returned to the task screen and resumed their mission. Shortly 
after the second advice, participants encountered an explosion a few meters ahead. 
The event was designed to startle the participant and to elicit a trust violation, but it was 
innocuous. Quickly afterwards, the participants were asked to turn to the questionnaire 
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screen and fill out the second trust questionnaire (T2). Shortly after participants resumed 
their mission again, their partner provided an explanation on what had occurred in an 
attempt to repair trust (see Section 2.3). After some time, the third advice followed. 
Before participants received feedback on the outcome of this third advice, they were 
asked to fill out the last trust questionnaire (T3). After completing this questionnaire, the 
mission resumed for another minute until they were informed that they had successfully 
completed the mission. 

Figure 16 General timeline of a mission. T1, T2 and T3 represent the perceived trustworthiness 
questionnaires. Each participant performed two missions; one with the error-explanation and one with 
the trade-off-explanation.

The participants’ second mission was with the same partner type, but with the other 
explanation and in the other area (i.e., forest or village). After participants finished the 
second mission, participants completed the final questionnaires, including a series of 
open questions. Finally, after they completed the actual task, participants were debriefed 
on the experiment aims. On average, participants took about twelve minutes to complete 
each mission and 45 minutes to complete the whole study.

Independent variables

The between-subjects manipulation Partner type had two levels. Participants were 
partnered with either a human soldier or a quadruped robotic agent for both missions. 
Both partner types were virtual characters in the game-like environment. The quadruped 
robot avatar in the robot condition was chosen to maintain realism within a military context. 
While using a humanoid robot could have allowed for a more systematic manipulation by 
keeping physical characteristics such as body size constant, a quadruped robot better 
reflects the types of robots currently utilized in military operations. This choice ensures the 
ecological validity of our study and more accurately represents the scenarios participants 
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might encounter in real-world military settings. For the control of the virtual character of 
the partner, the Wizard of Oz method was used, meaning that it was controlled by an 
experiment leader in an adjacent room (Martelaro, 2016). For participants assigned to 
the Robot Partner condition, the experiment leader remained hidden, while the participant 
was kept under the impression that the robot was operating autonomously. Participants 
assigned to the Human Partner condition were introduced to the human confederate 
who was controlling the character (Alarcon et al., 2021). 

The within-subjects manipulation Explanation type also had two levels. Each participant 
performed two missions; one with the trade-off-explanation and one with the error-
explanation. The order was systematically varied. The error-explanation was “I failed to 
advise you correctly and I know this exposed you to danger. My sensor was too weak to 
detect the explosive.”. The trade-off-explanation was “I advised you to take the quickest 
route because we had to keep moving. I know this exposed you to danger, but we were 
losing time.”. 

The variable ‘Time’ represents the repeated measurements of perceived trustworthiness 
and was included as an ordered factor for the analyses. Perceived trustworthiness was 
measured at three timepoints during a single mission. Timepoint one (T1) comprises 
initial perceptions of trustworthiness after a short and successful interaction. Timepoint 
two (T2) measures perceptions of trustworthiness right after the encounter with the 
explosive, which presumably causes a trust violation. Timepoint three (T3) measures 
perceptions of trustworthiness after the partner’s explanation, which we considered an 
attempt to repair trust.

Dependent variables

Perceived Trustworthiness: The Trusting Beliefs scale from McKnight et al. (2002) based 
on the factors of perceived trustworthiness (i.e., ability, benevolence and integrity) (Mayer 
et al., 1995; Schoorman et al., 2007) was used to assess the participant’s perception 
of the partner’s trustworthiness in terms of ability, benevolence, and integrity. The items 
were modified to reference the partner as the advice giver rather than a website (i.e., 
LegalAdvice.com). The scale had a total of 11 items (α = .88) and consisted of three 
subdimensions: ability (four items, i.e., “My partner is competent and effective in providing 
advice”); benevolence (three items, i.e., “I believe that my partner would act in my best 
interest”); and integrity (four items, i.e., “I would characterize my partner as honest”). 
Participants rated their agreement with the statements on a scale from 1 (Strongly 
disagree) to 5 (Strongly agree). For the analysis we calculated average scores per 
subscale.

Partner assessment: After both missions, we measured intention to re-use and 
the likeability, perceived intelligence, and perceived anthropomorphism of the partner. 
The latter three constructs were measured using the ‘Godspeed’ semantic differentials 
(Bartneck et al., 2009). Participants rated their perceptions of their partner on a continuum 

https://legaladvice.com/
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between bipolar adjective. For each concept, five word pairs were used, such as ‘artificial’ 
versus ‘lifelike’ for perceived anthropomorphism (α = .75 and .78), ‘nice’ versus ‘awful’ for 
likability (α = .86 and .96), and ‘knowledgeable’ versus ‘ignorant’ for perceived intelligence 
(α = .81 and .86). The two Cronbach’s alpha values represent the administration of the 
scales after the first and second experimental mission respectively. Intention to re-use 
was measured with one item “I would take this partner on a next mission”.

We also included four open questions after each mission, asking participants what 
they learned about their partner’s 1) knowledge and skills, 2) task performance, 3) basis 
for decision making and 4) about the morality of their partner’s decision making.

Results

Assumptions and manipulation checks

Initially we conducted reliability analyses (Cronbach’s α) to assess the internal consistency 
of each measure of perceived trustworthiness. The analyses indicated that all repetitions 
of the (sub)scales evidenced good internal consistency (on average: α = .90 (total); α = 
.88 (ability); α = .80 (benevolence); α = .86 (integrity)). 

To meet the assumptions for parametric analysis the data were tested for normality 
and equality of variance. Due to the small sample size, Shapiro-Wilk test was performed 
to test for normality and showed no evidence of non-normality for most measures in 
the first mission (M1): M1-T1 (W = 0.97, p = .286), M1-T3 (W = 0.98, p = .666) and all 
measures in the second mission (M2): M2-T1 (W = 0.97, p = .253), M2-T2 (W = 0.98, p 
= .570), and M2-T3 (W = 0.97, p = .259). Only the distribution for M1-T2 (W = 0.94, p = 
.022) was significantly non-normal. However, after visual examination of the boxplots we 
concluded that the assumption of normality was supported for all measures. 

We further performed one-way ANOVA’s as a manipulation check to test whether 
our participants viewed the human and robotic partner differently in terms of perceived 
anthropomorphism. The analysis confirmed that the human partner (M = 2.71, SD = 0.72) 
was perceived as significantly more human-like than the robotic partner (M = 2.20, SD = 
0.58), F (1, 42) = 6.743, p = .013, η2 = .138. A one-way ANOVA for Perceived Intelligence 
revealed no significant effects of either Partner or Explanation type.

Perceived trustworthiness

Descriptives
Table 9 presents the descriptive statistics for all perceived trustworthiness measures 
included in the study. 
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Table 9 Means (M) and standard deviations (SD).

Human Machine Total

M SD M SD M SD

Trade-off T1 Ability 4.1 0.7 4.3 0.5 4.2 0.6

Benevolence 4.0 0.6 4.1 0.6 4.0 0.6

Integrity 4.0 0.7 4.2 0.6 4.1 0.6

T2 Ability 2.4 0.9 2.3 0.7 2.4 0.8

Benevolence 3.1 1.0 3.3 0.8 3.2 0.9

Integrity 3.1 1.0 3.1 0.7 3.1 0.9

T3 Ability 2.8 1.1 2.9 0.7 2.8 0.9

Benevolence 2.7 1.1 2.7 1.0 2.7 1.0

Integrity 3.3 1.1 3.1 0.9 3.2 1.0

Error T1 Ability 3.9 0.9 4.1 0.9 4.0 0.9

Benevolence 3.9 0.8 3.7 0.7 3.8 0.7

Integrity 3.9 0.8 3.9 0.6 3.9 0.7

T2 Ability 2.3 0.9 2.4 1.0 2.4 0.9

Benevolence 3.1 1.0 3.2 0.9 3.1 0.9

Integrity 3.0 1.1 3.0 0.8 3.0 1.0

T3 Ability 3.1 0.9 2.9 1.0 3.0 0.9

Benevolence 3.8 0.9 3.8 0.9 3.8 0.9

Integrity 3.8 1.0 3.8 0.9 3.8 1.0

 
Main effects 
We performed a factorial ANOVA with the between-subject factor Partner type (Human; 
Robot) and the within-subject factor Explanation type (Error; Trade-off). The factors 
Time (T1; T2; T3) and Trustworthiness dimensions (Ability; Benevolence; Integrity) were 
entered as ordered repeated-measures factors for the analyses. The dependent variable 
was Perceived trustworthiness (Figure 17). To ensure the robustness of our findings and 
to control for Type I errors due to multiple comparisons, Bonferroni corrections were 
incorporated in all post-hoc analyses.

We verified the homogeneity of variances assumption ANOVA grounds on with the 
Hartley’s Fmax test, which indicated that the homogeneity of variance assumption had 
not been violated (Fmax (5, 2) = 2.14). Box’s M (p = .376) indicated that the assumption 
of equality of covariance matrices had not been violated. 

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the 
sphericity assumption, Χ2(2) = 7.97, p = .019. Since sphericity is violated (ε = 0.85), 
Greenhouse-Geisser corrected results are reported. A significant main effect for Time on 
Perceived trustworthiness was obtained (F (1.700, 71.392) = 84.52, p < .001, η2 = .668). 
Bonferroni-corrected post hoc comparisons showed significantly decreased perceived 
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trustworthiness from T1 (M = 4.0) to T2 (M = 2.9) (∆M = -1.1, p < .001), which reflects 
the intended trust-violating effect of the encounter with the explosive. Post-hoc further 
showed a significant rise in perceived trustworthiness between T2 and T3 (M = 3.2) (∆M 
= 0.4, p < .001), which reflects a general recovery of perceived trustworthiness after the 
explanations in the final phase of the missions.

For the main effect of Trustworthiness dimensions, Mauchly’s test of sphericity 
indicated a violation of the sphericity assumption, Χ2(2) = 9.43, p = .009. Since sphericity 
is violated (ε = 0.83), Greenhouse-Geisser corrected results are reported. A significant 
main effect of Trustworthiness dimension on perceived trustworthiness was obtained (F 
(1.659, 69.679) = 12.14, p < .001, η2 = .224). On average, perceptions of the partner’s 
trustworthiness in terms of ability (M = 3.1, SE = 0.1) were significantly lower than of 
benevolence (M = 3.5, SE = 0.1) and integrity (M = 3.5, SE = 0.1). 

The main effect of Partner type on Perceived trustworthiness was found to be non-
significant, F (1, 42) = 0.02, p = .884, η2 = .001. This indicates that, on average, the 
human and robotic partners were perceived as equally trustworthy.

Two-way effect
The two-way interaction effect of Partner type and Time on Perceived trustworthiness 

was found to be non-significant, F (1.659, 69.679) = 0.35, p = .672, η2 = .008. This 
indicates that the perception of trustworthiness for the human and robotic partners did 
not change differently across all timepoints (see Figure 17).
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Figure 17.17 The x-axis represents Time, and the y-axis represents Perceived Trustworthiness. Separate 
lines indicate different dimensions of trustworthiness: ability (dark grey, square points), benevolence (light 
grey, triangle points), and integrity (black, circle points). The left half of the grid represents the trade-off 
explanation, and the right half represents the error explanation. The upper half of the grid shows data 
from participants with the Human Partner (N = 22), while the lower half shows data from participants with 
the Robotic Partner (N = 22). Error bars represent standard deviations.

 
Three-way effect
Mauchly’s test of sphericity indicated that the assumption of sphericity has not been 
violated, X2(9) = 16.64, p = .055. The three-way interaction effect of Trustworthiness 
dimensions, Explanation type and Time on Perceived trustworthiness was found to be 
significant, F (4, 168) = 8.79, p < .001, η2 = .173 (see Figure 18). 

Bonferroni-corrected post hoc comparisons showed that perceptions of trustworthiness 
in terms of ability, benevolence and integrity all decreased following the violation (∆T1-T2, 
all p < .001). However, ability dropped significantly more than benevolence and integrity 
(p < .001), indicating that the risk exposure primarily harmed the participants’ perception 
of the partner’s trustworthiness in terms of ability. Benevolence and integrity did not 
significantly differ at T2 (trade-off-explanation: ∆M = 0.1, p = .293; error-explanation: 
∆M = 0.1, p = .295).

After the error-explanation (i.e., after T2), all dimensions of trustworthiness were equally 
repaired (∆T2-T3; p < .001). Benevolence and integrity nearly returned to their original 
levels prior to the violation (see Figure 17). At T3, ability remained significantly lower 
than benevolence (∆M = 0.75, p < .001) and integrity (∆M = 0.8, p < .001). Benevolence 
and integrity did not significantly differ at T3 (∆M = 0.01, p = .884). 
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After the trade-off-explanation, ability recovered (∆M = 0.5, p < .001), while integrity 
remained stable (∆M = 0.1, p = .539) and benevolence declined further (∆M = -0.5, p = 
.002). At T3, integrity was significantly higher than benevolence (∆M = 0.5, p = .002) and 
ability (∆M = 0.4, p = .014). Benevolence and ability did not differ (∆M = 0.1, p = .390). 

This three-way interaction indicates that the different dimensions of the partners’ 
perceived trustworthiness (ability, benevolence, and integrity) developed differently over 
time as they were differentially affected by the trust-violating event and the two different 
explanations provided (error and trade-off).

Figure 18.18 The graphs show data from both partner types combined (n = 44). The x-axis represents 
Time, and the y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions 
of trustworthiness: ability (dark grey, square points), benevolence (light grey, triangle points), and integrity 
(black, circle points). The left panel represents the trade-off explanation, and the right panel represents 
the error explanation.. Error bars represent standard deviations.

 
Order effect 
To control for potential order effects of the within-subject variable Explanation type (error 
vs. trade-off), we performed a factorial ANOVA with Order (trade-off-error vs. error-trade-
off) as an additional factor to examine its effect on Perceived trustworthiness (Figure 19). 
Here, the factor Partner type is left out. 

A significant interaction effect between Order and Explanation type on Perceived 
trustworthiness was found, F (1, 41) = 6.67, p = .013, η2 = .140. On average, the partner 
in the first mission was perceived as significantly more trustworthy than that in the second 
mission. Participants who had the trade-off-explanation in their first mission, trust was 
higher in the trade-off-explanation mission (M = 3.4) than in the error-explanation mission 
(M = 3.3). Similarly, participants who had the error-explanation in their first mission, trust 
was higher in the error-explanation mission (M = 3.6) than in the trade-off-explanation 
mission (M = 3.2). 
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Figure 19.19 The graphs show data from both partner types combined (n = 44). The x-axis represents 
Time, and the y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions 
of trustworthiness: ability (dark grey, square points), benevolence (light grey, triangle points), and integrity 
(black, circle points). The left half of the grid represents the trade-off explanation, and the right half 
represents the error explanation. The upper half of the grid shows participants who encountered the 
trade-off in their first mission (N = 21), while the lower half shows those who encountered it in their second 
mission (N = 23). Error bars represent standard deviations.

 
Partner assessment
Table 10 presents the descriptive statistics for all partner assessment measures included 
in the study. To assess whether the partners across missions (providing different 
explanations) were assessed differently, we performed multiple ANOVA’s with Partner 
type as between-subjects variable and Explanation type as a within-subjects variable. A 
significant main effect of Explanation type on Likeability was observed, F (1, 42) = 22.34, 
p < .001, η2 = .347. The partner in the trade-off-explanation condition who deliberately 
puts the participant at risk is perceived as significantly less likeable than the partner in the 
error-explanation condition who makes a mistake that puts them at risk. No other effects 
on Likeability were observed. For Intention to reuse, no significant effects of Partner or 
Explanation type were observed.
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Table 10 Means (M) and standard deviations (SD) for each partner evaluation variable (scale 1-5) by 
partner and explanation type.

Human partner Machine partner

Measure Explanation M SD M SD

Perceived anthropomorphism Trade-off 2.7 0.8 2.2 0.7

Error 2.7 0.8 2.2 0.6

Perceived intelligence Trade-off 2.8 0.9 3.3 0.8

Error 3.0 0.9 3.4 1.0

Likeability Trade-off 2.5 0.9 3.0 0.5

Error 3.3 1.0 3.6 1.0

Intention to re-use Trade-off 2.5 1.4 2.5 1.2

Error 2.8 1.2 3.2 1.3

The zero-order correlations matrix in Table 11 displays the Pearson correlation coefficients 
for each pair of partner assessment variables, indicating the strength and direction of 
the linear relationships among them.
 
Table 11 Zero-order correlation matrix with the Pearson correlation coefficients.

# 1 2 3 4 5 6 7 8

Perceived anthropomorphism Trade-off 1 1

Error 2 .56** 1

Perceived intelligence Trade-off 3 -.07 .06 1

Error 4 .05 .11 .40** 1

Likeability Trade-off 5 .19 .29 .61** .25 1

Error 6 .07 .38* .22 .68** .39** 1

Intention to re-use Trade-off 7 -.13 .01 .54** .01 .48** .01 1

Error 8 -.03 .06 .31* .73** .19 .68** -.09 1

Discussion

Evaluation of findings

Perceived trustworthiness
The results of this study indicate that perceptions of ability, benevolence and integrity 
developed differently over time. The unexpected encounter with the explosive following 
from the partner’s advice led to a drop of all forms of trustworthiness, but to an impairment 
of ability in particular. This suggests that the exposure to adversity was initially primarily 
seen as failure and attributed to limitations in ability rather than to a lack of shared values 
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or malevolent intent (Wynne & Lyons, 2018). This seems to confirm that performance 
is still the primary determinant of human-robot trust (Hancock, Billings, Schaefer, et al., 
2011a; Hoff & Bashir, 2015).

Yet after the partner provided any explanation, perceptions of ability recovered. It 
is remarkable that both explanations proved to be effective at significantly increasing 
the ability-based trustworthiness of the partner after a trust violation. That is, the 
error-explanation was not expected to repair perceptions of ability since the partner 
acknowledged that they lacked the skills and knowledge to detect the explosive 
competently (Grover et al., 2014). We therefore expected that this type of explanation 
might hinder a repair in perceived ability, because participants might worry that this type 
of ability-based mistake could and would happen again. However, participants were not 
discouraged by this information and ability-based trustworthiness perceptions recovered 
significantly even after the partner explained that the risk exposure was due to a technical 
failure, its abilities falling short. 

Explaining that the trust-violating event was due to an error repaired all dimensions 
of perceived trustworthiness significantly. The effectiveness of this explanation might be 
explained by the way it was formulated. In both explanations, the partner acknowledged 
their awareness that their advice put the participant in danger. However, the error-
explanation also included the phrase “I failed to advise you correctly”, by which the 
partner also explicitly acknowledged responsibility for a mistake. In a previous study, we 
found that explanations only led to significant trust repair when it was accompanied by an 
expression of regret (i.e., “I am very sorry”) (Kox et al., 2021). The effectiveness of the 
error-based explanation might be attributed to the partner’s admission of fault, essentially 
turning the explanation into an apology. In other prior HRI research, explanations as trust 
repair strategies have not been consistently successful (Esterwood & Robert, 2022). 
The fact that both explanations led to a recovery of ability-based trust might suggest 
that an explanation is especially a successful trust repair strategy when aiming to repair 
perceptions of ability, rather than more moral aspects like benevolence and integrity. 
Perhaps the partner’s mere recognition of an adverse event in relation to their own 
actions may be perceived as an indication of situational awareness, self-reflection and 
the ability to learn from experiences (Jeste et al., 2020), which relates more to ability 
than to benevolence or integrity.

Another possible explanation for the salient and consistent recovery of ability-based 
trust could be related to people’s mental model. It is debatable whether the technical 
failure described in the error-explanation (i.e., “My sensor was too weak to detect the 
explosive.”) is truly attributed to the partner’s competence. From the open questions that 
were asked after the experiment it appears that some participants made a distinction 
between the partner (i.e., both human and robot) and its sensors. When they ascribe the 
failure to the performance of the sensors rather than those of the partner, the perceived 
ability of the partner is indeed unaffected. It is somewhat surprising though that this holds 
for both partner types. While it is understandable that the human and its sensors are 
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seen as separate entities, sensors to a robot are like the sensory organs to a human. A 
participant in the human condition wrote: “He [the human partner] trusted his device and 
made the decisions based on the info that was provided to him.” And one from the robot 
condition: “It bases its decisions on what its sensors detect.”. For the robot, this raises 
interesting, almost philosophical cartesian dualism (i.e., ‘mind-body’/‘software-hardware’) 
questions on what people consider to be (the ‘self’ of) the robot; whether it is perceived 
as a unified whole or as a set of communicating parts. In case of the latter, the algorithm 
that processes input and formulates and communicates output (i.e., the software) can 
be perceived as competent, while the sensors and cameras (i.e., the hardware) that 
provide the input can be seen as incompetent. As mentioned in our introduction; it is 
important to specify on what bases we assess another entities’ trustworthiness (Grover 
et al., 2014; Langer et al., 2019).

For benevolence and integrity-based trustworthiness on the other hand, the nature 
of the explanation mattered. As expected, perceptions of benevolence and integrity 
recovered after the partner explained it was due to an error and thus unintentional. In 
fact, both perceptions recovered so much that their final levels virtually met the initial 
levels, prior to the trust violation. But after the partner explained the encounter with the 
hazard was the result of a choice, integrity stagnated and benevolence dropped further. 
This was in line with expectations. The trade-off-explanation was especially expected to 
harm benevolence-based perceived trustworthiness, since the partner did not act in the 
best interests of the participant by prioritizing collective over individual benefits, which 
is in stark contrast to the definition of benevolence. 

In other words, the partner violated perceptions of benevolence by taking a calculated 
risk in order to meet collective mission objectives instead of guarantying the participant’s 
individual safety. Esterwood & Robert (2022) argued that “benevolence-based violations 
differ from integrity-based violations in that benevolence-based violations indicate a degree 
of malice or ill will, whereas integrity-based violations do not” (p.1). However, the partner 
in the trade-off condition in this study had no ill will, nor was it self-centred and seeking 
individual gains over joint gains (Alarcon et al., 2020). In a way, the trade-off-explanation 
could also be interpreted as a integrity-based violation, since the honesty with which the 
partner operates could be called into question. Even though the partner did not break 
any explicit promises, it might have violated the implicit assumptions that the participant 
might have had going into the collaboration and general ethical principles valued by the 
participant (Grover et al., 2014), namely that their partner would prioritize their safety. 
Hence it is not surprising that the trade-off-explanation failed to repair perceptions of 
integrity. While our trade-off explanation may not fit neatly into either category, its value 
lies in its approach to a realistic scenario. For future research, we propose the inclusion of 
more nuanced and realistic instances of benevolence and integrity-based trust violations. 
These examples should extend beyond acts of selfishness or malicious intent, allowing 
for a more comprehensive exploration of trust dynamics in human-robot interactions. 
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In conclusion, our two explanations differentially affected specific perceptions of 
trustworthiness. Explaining that the trust-violating event was due to error or a choice 
clarified the partner’s (in)ability and (un)willingness to help achieve the team task (Chiou 
et al., 2022). To effectively collaborate, it is crucial to have an accurate mental model of 
your partner’s limits and preferences. As such, the increased transparency might have 
contributed to a more appropriate calibration of trust, allowing individuals to better gauge 
the true qualities of their partner (Wischnewski et al., 2023). As we strive for calibrated 
trust rather than maximum trust, decreases in perceived trustworthiness are a logical and 
functional adaptive response to perceiving malfunctioning or other forms of unexpected 
behaviour (J. D. Lee & See, 2004). However to maximize the benefits of HRI, it is vital 
to maintain a certain level of trust. Studies regarding the role of trust repair strategies 
in situations of ‘undertrust’ (i.e., trusting too little) are therefore worthwhile (de Visser et 
al., 2018). Further work is needed to fully understand the implications of different types 
of trust violations under different operational circumstances.

Partner type
Contrary to expectations and multiple earlier findings (Alarcon et al., 2023; de Visser 
et al., 2016; Hidalgo et al., 2021; Madhavan et al., 2006; Madhavan & Wiegmann, 
2007), this study did not find any differences between the human and robotic partner 
in the development of trust. First, earlier research showed that trust violations by more 
machine-like agents led to steeper declines in trust compared to trust violations by more 
human-like agents (de Visser et al., 2016). In the current study however, trust in response 
to the unexpected event declined similarly for both partner types. Secondly, it has been 
suggested that humans are generally judged differently than machines in case of moral 
dilemmas (Hidalgo et al., 2021). The authors found that humans were generally judged 
based on their intentions (i.e., it is fine as long as they mean well), while machine were 
generally judged based on the outcomes of their decisions (i.e., it is fine as long as they 
perform well) (Hidalgo et al., 2021). However, we found no differences between partner 
type and can conclude from our findings that both partners were judged based on their 
intentions. Namely, perceived trustworthiness was successfully restored after the violation 
turned out the be the result of an unintentional mistake. Yet, when the violation turned 
out to be the result of an intentional decision to the participants’ disadvantage, this left a 
mark on perceptions of integrity and more so benevolence, while perceptions of ability 
recovered. These results emphasize the importance of expanding the scope of trust 
violations and differentiating between various dimensions of perceived trustworthiness, 
rather than focusing on partner type.

A possible explanation for the absence of the effect of partner type could be that, 
although the human partner was perceived as significantly more anthropomorphic than 
the robotic partner, the difference between both partner types might have been too 
subtle to make the difference. That is, both of our partner types were virtual characters 
in the task environment with limited possibilities for interaction (Fahim, Khan, Jensen, 



56495-bw-Kox56495-bw-Kox56495-bw-Kox56495-bw-Kox
Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025Processed on: 17-3-2025 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

Chapter 5

112

Albayram, & Coman, 2021). Although we did introduce participants assigned to the 
Human Partner condition to a human confederate, we could not introduce participants 
assigned to the Robot Partner condition to a physical robot (Alarcon et al., 2021, 2023). 
Consequently, the virtual characters might have been too similar to trigger large differences 
in perceived trustworthiness. Alternatively, the robot might have elicited a rich form of 
trust that resembles human-human trust. Recent literature suggests that as machines 
become more intelligent and more responsive to their human counterparts, it can be 
useful to apply certain norms and qualities traditionally associated with human morality 
to artificial agents (Alarcon et al., 2021; Sheridan, 2019). Trust in a simple tool is entirely 
defined by the tool’s performance, but as machines gain autonomy, trust becomes a more 
complex and multi-layered concept that might start to more closely mirror human-human 
trust (Hou et al., 2021; Sheridan, 2019), without assuming it will be identical (J. D. Lee 
& See, 2004; Malle & Ullman, 2021).

Trust dynamics
Our findings revealed a significant order effect showing that perceived trustworthiness 
generally degraded over time. On average, perceived trustworthiness was lower in the 
second mission than in the first mission, no matter which condition came first. Although we 
have tried to prevent order effects by giving participants a short break and by emphasizing 
to participants in between the two mission that they were going on a mission with a different 
partner (albeit of the same kind; human or robot), an order effect still emerged. Overall, this 
study strengthens the idea that it is important to focus on the development and lifecycle 
of trust rather than on static measures, since trust is a dynamic and volatile concept, 
susceptible to order effects. The present study contributes to the existing literature by 
enhancing our understanding of the temporal dynamics of trust, including its violation and 
repair. Unlike cross-sectional studies, our research employs repeated measurements of 
trust over time, offering valuable insights into how trust evolves and recovers in response 
to various factors. Further experimental investigations including even longer time series 
would be worthwhile.

Limitations

This study has several limitations that deserve comment. The most serious is that the 
analysis results from a relatively small and homogeneous sample, comprising forty-
four mostly Dutch university students. This affects the generalizability of the results, 
partly because this sample’s lack of familiarity with military missions, as presented 
in the virtual scenario, likely influenced their responses. Soldiers, for example, might 
perceive these scenarios differently (Kox, Siegling, et al., 2022), potentially prioritizing 
mission success over personal health. This difference in perspective could result in a 
better understanding of the partner’s consideration in the trade-off scenario and a lesser 
decrease in trustworthiness in response to the explanation. Despite this limitation, we 
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believe this study makes a meaningful contribution to the literature as it is one of the few 
empirical studies investigating trust violations beyond those due to poor performance, 
in a realistic HRI setting. It addresses practically relevant questions that should be 
addressed as we move towards a future with increasingly autonomous agents. However, 
researchers should exercise caution in generalizing these results to broader contexts. 
Future research should include larger, more diverse samples to validate and extend our 
findings and ensure that the results are robust and generalizable.

Another weakness of this study could be that the trusting beliefs questionnaire that 
we used for measuring perceived trustworthiness was not designed for HRI (McKnight 
et al., 2002). Yet, we had several reasons for choosing this scale. We needed a scale 
suitable for both human and robotic partners, not limited to HRI or interpersonal trust. 
Furthermore, McKnight’s trusting beliefs scale is based on Mayer et al.’s (Mayer et al., 
1995) ABI model and demonstrates statistical separation between subdimensions in 
the initial relationship, even after one interaction (McKnight et al., 2002). All subscales 
showed good internal consistency. Moreover, we preferred the McKnight scale over 
the commonly used Jian et al. (Jian et al., 2000) scale, because of the content of the 
benevolence items. To illustrate, the McKnight scale includes an item such as “I believe 
that the robot would act in my best interest,” which directly assesses the perceived 
benevolence of the robot. In contrast, the Jian framework includes items like “The system 
is deceptive” and “The system behaves in an underhanded manner,” which assume that 
the opposite of benevolent is having malintent. It is a fallacy to promote the idea that if 
a robot’s purpose or actions do not benefit or serve you, it is automatically malevolent 
or self-centred. When evaluating a robot’s perceived benevolence and violations of that 
type of trustworthiness, we want to measure whether people feel like the robot acts in 
their best interest. 

We expect violations of this kind to become more prevalent in Human-Robot Interaction 
(HRI) as machines gain greater autonomy and decision-making authority, increasingly 
making decisions impacting multiple stakeholders. The benevolence/purpose dimension 
in Jian’s framework does not align with our perspective that it is inevitable for robots with 
increased decision authority to make decisions that do not always serve everyone’s best 
interests. A robot may operate in the best interest of the collective rather than prioritizing 
a single individual, which should not be misconstrued as selfishness, deception, or 
underhanded behaviour.

A final reflection concerns the timing of the partners’ communication about intentions. 
As artificial agents gain autonomy and decision authority, trust violations as the collateral 
harm of certain deliberate decisions (e.g., the trade-off-explanation condition) seem an 
inevitable part of the future. Something to bear in mind however is that in our experiment, 
the partners in the trade-off-explanation condition reveal only halfway into the mission that 
the participants’ safety is not their top priority in their decision-making process. Holding 
back information could be perceived as a form of dishonesty and deception (Arkin et al., 
2012). In terms of team performance and transparency, it is crucial for team members 
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(i.e., both human and non-human) to actively communicate about their actual intentions 
and current observations about the environment, in order to build shared situational 
awareness (April Rose Panganiban et al., 2020). It is plausible that the stagnation of 
perceived integrity in response to the trade-off-explanation is partly caused by the lack 
of transparency and mutual understanding. 

While there may be instances where deception is deemed necessary to achieve a 
goal that benefits the entire team, trust is nearly always compromised when deception 
leads to negative outcomes (Hancock, Billings, & Schaefer, 2011). In order to make 
accurate judgments of trust, intentions towards a certain goal are ideally communicated 
beforehand (Hou et al., 2021; Schaefer et al., 2017). This is an important issue for future 
research. We expect that informing participants about the priorities of the partners in 
the trade-off-explanation condition upfront will influence their development of trust in 
all phases, including their initial response to the explosion. Future research should be 
undertaken to investigate how trust develops when (conflicting) goals and preferences 
are communicated prior to the task, and whether deliberate decisions will then lead to 
less severe trust violations. In one of our earlier studies, we found that communicating 
the (un)certainty of an advice in terms of performance (e.g., “I detect danger with 80% 
certainty”) generally led to higher levels of trust and to a less severe decline in trust in 
response to an incorrect advice (Kox, Siegling, et al., 2022). Being transparent about 
the agent’s intentions, goals and preferences upfront could have a similar effect on trust. 

Implications

The research to date on trust violations and trust repair in HRI has tended to focus on 
trust violations due to error rather than deliberate choice. Some recent studies have 
started to investigate the latter, for example by studying the effects of a robot breaking 
promises (Alarcon et al., 2023; Sebo et al., 2019), acting out of self-interest (Alarcon 
et al., 2020, 2023) or deviating from a planned path (Lyons et al., 2023). This study’s 
originality lies in its exploration of the development of perceived trustworthiness when 
trust violations result from deliberate, comprehensible, yet impactful decisions. It does 
so within a task environment and corresponding scenario designed to simulate domain-
specific interactions. Significant technical effort has been made to implement a graphically 
realistic, interactive simulation game for the purpose of this research. Realistic scenarios, 
which aim to mirror actual events and realistic trust violations rather than game-like 
simplifications, are crucial for creating nuance and enhancing the ecological validity of 
experiments. Such scenarios and task environments enable us to investigate different 
types of trust violations, beyond those caused by poor performance, in a realistic manner.

This research opens up a broader societal conversation about the role and decision 
authority we want robots and other AI agents to have. Our scenarios are based on 
hypothetical but realistic situations in which robots have the authority to harm people 
(and their trust). With this, we can not only study how people respond to these situations, 
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but it also forces us to think about the desirability of such future scenarios and whether 
we want these hypothetical situations to become reality. Additionally, it is important to 
stay grounded in reality, because the alternative (selfishness or malintent) fosters and 
perpetuates incorrect beliefs (such as the idea of evil robots taking over the world, 
instead of robots that are not benevolent to an individual because they are programmed 
to prioritize the benefit of the majority). Firstly, these examples foster the false attribution 
of intent to robots and feed into the misconception that robots will gain or possess self-
interest or be programmed to pursue selfish or malicious goals. Secondly, this view 
diverts attention from the real threats and implications of value or priority misalignment, 
as well as unexpected or incomprehensible robot behaviour.

While performance is still an important determinant of human-robot trust (Chhogyal 
et al., 2019; Correia et al., 2018; Hancock, Billings, Schaefer, et al., 2011a), this study 
strengthens the idea that aspects such as preferences, personal relations and moral 
aspects become equally important (Malle & Ullman, 2021; Matthews, Panganiban, et 
al., 2021). However, we concur with the notion of Alarcon et al. (Alarcon et al., 2021) 
and Lee & See (J. D. Lee & See, 2004) that, as a robot lacks intentionality, the purpose 
or intentionality of a robot in fact embodies the intentions of its designers. Therefore 
perceptions of benevolence and integrity might not be valid when evaluating interactions 
with a robot, as people might differentially attribute intentionality to the robot itself or to its 
designer. Further research is needed to evaluate these potential differences in perception 
and their effects of HRI. While intent is a highly debated concept in relation to artificial 
agents and the terms benevolence and integrity are deemed inappropriate by some 
scholars, the observation that an artificial agent is no longer automatically trustworthy 
when it is capable of completing a given task without making mistakes, is persistent 
(Malle & Ullman, 2021). Decisions by an artificial agent can be objectively correct in the 
sense that they adhere to the set of rules the agent operates by, but can nonetheless 
be subjectively questionable or unacceptable in a given context when those decision do 
not align with implicit rules.

The results of the current study emphasize the importance of distinguishing between 
different perceptions of trustworthiness. Our findings show that perceptions of ability, 
benevolence and integrity are differentially affected by different types of explanations 
regarding the intentionality behind a trust-violating advice. One of the questions that 
emerge from these results is what the implications will be for behavioural reliance. 
What will be the behavioural consequence of a situation where perceptions of ability 
have recovered, while perceptions of benevolence and integrity have not (yet)? Further 
research should be undertaken to investigate the behavioural consequences of this 
discrepancy in trusting beliefs. 

Conclusion

Increasingly autonomous AI-based artificial agents are used in a wide variety of both 
military and civilian applications (Jessie Y.C. Chen & Schulte, 2021). As artificial agents 
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enter more complicated operational situations and gain the ability to self-select courses 
of action in an ever-changing world, they will encounter situations that they have not 
seen before. Consequently, artificial agents will encounter dilemmas where they must 
navigate tradeoffs among conflicting goals or competing human values. As a result, their 
decisions cannot always be beneficial for everyone. Still we want to enable and maintain 
appropriate levels of trust, as this is key to successful and effective long-term human-robot 
collaboration (Hou et al., 2021). Traditionally, HRI focused on performance measures 
such as task-related strengths and limitations, reliability and predictability of a robot 
(Chhogyal et al., 2019; Malle & Ullman, 2021; Marsh, 1994). Today, human operators 
should increasingly be aware of a robot’s higher-level values, preferences and goals 
(Chhogyal et al., 2019). At the same time robots in collaborative settings should gain 
the interactive ability to resolve competing goals through social processes (Chiou & Lee, 
2023). Knowing your partner’s intentions, goals and preferences is crucial for calibrated 
trust and successful team performance (Hou et al., 2021). As technology advances, it 
is vital to critically assess the psychosocial consequences of the growing responsibility 
that we give artificial agents in increasingly complex decision-making processes (Awad 
et al., 2018) and, as a part of that, to understand if and how trust can be recovered after 
intentional or unintentional trust violations (Taenyun Kim & Song, 2021). 
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Trust is fundamental requirement for successful collaboration, as it enables individuals 
to depend on each other’s contributions to collectively complete tasks and achieve 
objectives (Fahim, Khan, Jensen, Albayram, & Coman, 2021; Parasuraman & Riley, 
1997). To minimize the risks and maximize the benefits of the collaboration, or to make 
it safe and effective, people must be able to determine when it is appropriate to rely on 
AI and when it is necessary to intervene (J. D. Lee & See, 2004). Achieving this requires 
a balanced relationship between the perceived trustworthiness of an AI agent and its 
actual trustworthiness, known as calibrated trust (J. D. Lee & See, 2004; Lewis et al., 
2018). Finding this balance is challenging because it demands an ongoing evaluation of 
an AI agent’s trustworthiness and reliability (Hoffman, 2017). To facilitate this calibration 
process, we must first understand how trust develops, breaks down, and recovers (de 
Visser, Pak, et al., 2017). 

Trust is fragile and easily damaged. For example, people may lose trust in an AI 
agent they collaborate with due to errors or poor performance, which can arise from 
software bugs or hardware malfunctions. These type of trust violations are the primary 
focus of current HRI trust repair literature. However, an AI agent’s trustworthiness is not 
solely defined by its ability to perform a task, but also by how it performs them, and the 
underlying goals and values it pursues (Lubars & Tan, 2019; Malle & Ullman, 2021). As 
a result, trust can be violated by factors beyond performance issues, such as when an 
AI agent behaves unpredictably and cannot explain the reasoning behind its actions, or 
when its priorities differ from those of the people it interacts with. As AI agents evolve 
from isolated tools to more autonomous social actors with increased decision authority 
in complex, social environments, the risk of these types of trust violations increases. 
This dissertation aims to broaden our perspective and deepen our understanding of H-AI 
trust violations by examining how the nature of a trust violation affects the development 
of H-AI trust. 

Additionally, we investigated the impact of different trust-repair mechanisms on the 
development of H-AI trust, evaluating how, and to what extent, these mechanisms can 
preserve H-AI trust in the face of inevitable trust violations. We assessed both preventative 
and reactive strategies and evaluated the effect of informational as well as affective 
content. Preventative measures focus on proactively addressing potential trust issues 
before they arise, such as communicating uncertainty (i.e., “danger detected with 80% 
certainty”) as a means to manage expectations. Reactive strategies, on the other hand, 
address trust violations after they have occurred, for example by expressing regret or 
providing explanations for anomalous behaviour. Certain strategies are considered 
informational, focusing on improving transparency or interpretability by communicating 
uncertainty or providing explanations. In contrast, other strategies are considered affective, 
as they aim to restore positive feelings of trust through actions such as expressing regret. 
By examining a range of trust repair mechanisms and trust violations, this dissertation 
contributes to our knowledge on maintaining H-AI trust as a key part of the trust calibration 
process. 
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Key findings

A multidimensional perspective on trust violation and repair 

We explored the effect of trust violations due to 1) poor performance, 2) unexpected 
behaviour in combination with an AI agent’s that does not explain its behaviour and 3) 
priority misalignment. When evaluating the different perceptions of trustworthiness, i.e., 
ability, benevolence and integrity, in response to the latter two events, we found that 
these dimensions can be affected differentially and run parallel and unsynchronized. For 
example, in Chapter 5, we observed that people lost trust in an AI agent’s abilities while 
still trusting its benevolence, or vice versa. Alternatively, in Chapter 4, the AI agent that did 
not explain why it suddenly deviated from the original plan was deemed less trustworthy 
in terms of ability and integrity than its transparent counterpart, while benevolence was 
more or less unaffected.

Moreover, we found that the nature of a trust violation had significant implications 
for the ease of repair. In Chapter 5, when an AI agent explained that an encounter 
with a hazard was due to an error rather than a deliberate choice, all perceptions of 
trustworthiness successfully recovered. However, when the AI agent explained that the 
trust-violating event was the result of weighing options and making a deliberate choice 
to the disadvantage of its human partner, only perceptions of ability were restored, while 
perceptions of integrity plateaued and perceptions of benevolence dropped even further. 
These findings support the growing consensus that H-AI trust is a multidimensional 
concept, highlighting the importance of distinguishing between different dimensions of 
perceived trustworthiness within HRI.

Informational strategies

We also found that informational strategies to mitigate the negative impact of trust 
violations, both preventative and reactive, generally led to higher and more stable levels 
of trust compared to baseline conditions where no information was provided. In Chapter 3, 
we found a robust effect of uncertainty communication on the perceived trustworthiness of 
the AI agent. In both studies (i.e., civilian and military sample) we found that uncertainty 
communication in the advice of the AI agent (i.e., “danger detected with x% certainty” rather 
than simply “danger detected”) generally resulted in higher levels of trust (Kox, Siegling, 
et al., 2022). In the civilian study, uncertainty communication even dampened the decline 
in trust following the AI agent’s error, meaning that advice that included an uncertainty 
measure led to a less severe decrease in trust following a trust violation compared to an 
advice that did not include a notion of uncertainty (Kox, Siegling, et al., 2022).

In Chapter 4, we observed that the perceived trustworthiness of the AI agent was 
considerably higher when the robot provided regular updates about its actions throughout 
the task. While participants in the high transparency condition maintained a stable level of 
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trust during the robot’s deviation, participants in the low transparency condition showed 
a significant decline in perceived trustworthiness in response to the robot’s sudden 
adaptation to the plan. In other words, the explanation prevented a trust violation. This 
confirms earlier research that showed that transparency can have a buffering effect 
on perceived trustworthiness, increasing resilience against the effects of unexpected 
behaviour or temporary malfunctioning (Hamacher et al., 2016; Kox, Siegling, et al., 
2022; Kraus et al., 2020; Lyons et al., 2023; Tenhundfeld et al., 2020). 

These findings suggest that an AI agent does not have to be 100% reliable to maintain 
a trusting relationship, but that communication is essential for maintaining trust. Trust 
can fluctuate following errors or unexpected deviations from the plan, but it can recover 
when additional information about why the system failed is provided (Lyons, 2013). The AI 
agent should be able to provide explanations regarding its decisions, recommendations, 
and actions. Any changes to the AI agent’s functionality or its planned behaviours should 
be communicated clearly to human team members to maintain trust.

Affective strategies

We found that apologies including an expression of regret can be effective in repairing 
H-AI trust. In Chapter 2, we saw that after an incorrect advice from the AI agent caused 
a trust violation, trust only recovered significantly when the provided apology included 
an expression of regret (i.e., “I am sorry”). This effect was stronger when an explanation 
was added. In Chapter 3, we again found that an apology containing both an expression 
of regret and an explanation was effective in repairing a trust violation due to poor 
performance in a civilian sample. Although expressing regret is typically perceived as a 
human-like quality, these results suggest that saying sorry can also make a difference 
in rebuilding trust when it comes from a non-human agent. 

While we observed in Chapters 2 and 3 that an AI agent expressing regret effectively 
repaired trust with civilian participants, Chapter 3 also demonstrates that this approach 
did not yield the same results with a military sample. During a debriefing session with 
some military participants, it became evident that expressing regret is uncommon in the 
Dutch military context. Participants noted that acknowledging responsibility with phrases 
like “I was wrong” or “I misjudged the situation” is acceptable, but that saying “I am sorry” 
is extremely rare. This cultural difference possibly explains the varied responses to the AI 
agent’s expression of regret. These findings emphasise once again that we cannot draw 
conclusions about “people” in general. Understanding individual differences and cultural 
norms and preferences can help AI adapt its behaviour to effectively engage with diverse 
teams. It is important to recognize that designing social systems is not a one-size-fits-all 
approach and will require continuous exploration and refinement. 
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Contributions 

Contributions to theory

To some extent, the findings in this dissertation parallel the Computers-are-Social-Actors 
(CASA) paradigm (J.-E. R. Lee & Nass, 2010). We agree that understanding “the social 
principles that govern us and the social expectations we hold with respect to trust-building 
in the interpersonal settings” (J.-E. R. Lee & Nass, 2010) (p.11) is valuable, as some of 
these principles translate to the context of HRI, such as the effectiveness of apologizing. 
Furthermore, the ineffectiveness of apologizing with military personnel, where it is not a 
common social practice, aligns with the idea that people tend to find an AI agent more 
trustworthy when it exhibits behaviours similar to their own (J.-E. R. Lee & Nass, 2010). 
Additionally, the heavy decay of trust when the AI agent prioritized collective goals over 
the participants safety reflects the notion that we are more likely to trust entities, whether 
human or AI, that demonstrate caring behaviours. Just like we are more likely to trust 
people who make us feel cared for, we are more inclined to trust machines that show 
concern for our well-being (J.-E. R. Lee & Nass, 2010). Thus, we argue that the social 
and emotional dimensions of technology use cannot be ignored. Expecting people to be 
‘rational agents’, driven by logic and utility in their interaction with non-human entities, 
neglects and undervalues the important role of the social and emotional strengths humans 
bring to the collaboration.

Yet, we believe that is not automatically appropriate to design robots to be social or 
human-like simply because people often respond socially to them, or because it increases 
trust, and that “successful robots utilize the distinctive features of machines” (Shneiderman, 
2020) (p.113). While the findings indicate that it may be valuable to leverage humans’ 
evolutionary social wiring to facilitate collaboration with other forms of intelligence by 
incorporating social cues into the design of AI agents, this should be done with caution 
and without trying to re-create what we already have (people) (Darling, 2021). AI agents 
can only meaningfully augment human decision-making and benefit society when they are 
applied to tasks in which they excel (Kox, van Riemsdijk, & Kerstholt, 2024), and when 
they effectively communicate the what, how and why behind their decisions to human 
operators while performing them. Building on the parallels with the CASA paradigm, this 
dissertation advances theoretical discussions by showing that informational strategies, 
such as explanations and communicating uncertainty, are just as important for maintaining 
trust in AI agents. 

Finally, this dissertation expands on the concept of a ‘trust lifecycle’ and deepens our 
understanding of the temporal dynamics of trust,. Trust is dynamic and typically evolves 
over a series of interactions (Baker et al., 2018; Hou et al., 2021). As people interact 
with and learn more about an AI agent, they continuously update their perceptions, 
judgments, and trust, particularly in response to norm violations (E. Phillips et al., 2023). 
Most studies, however, offer a static perspective on trust, focusing on momentary states of 
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trust rather than its developmental process. Unlike cross-sectional studies, our research 
uses repeated measurements of trust over time, and sheds light on how trust develops, 
deteriorates and recovers in response to various factors. Our goal was to capture these 
dynamic changes in trust, as understanding them is crucial for studying norm conflict, 
resolution, and mitigation, and for maintaining H-AI trust. 

Contributions to method

A key methodological contribution of this dissertation comes from the technical effort 
invested in the development of high-fidelity military scenarios and graphically detailed 
virtual task environments. Both our desktop-based and VR simulations were designed to 
mirror authentic HRI situations with a high level of detail and realism, providing a practical 
understanding of potential trust relations in an operational military context. This approach 
offers three major advantages. First, the scenarios facilitated our temporal perspective on 
trust in the AI agent, allowing us to observe how it evolved as different events unfolded. 

Secondly, by incorporating emotion-evoking, startling events in highly detailed graphic 
environments portraying realistic scenarios, we have strived to simulate a sense of threat 
and risk that was likely more effective at triggering implicit trust decisions compared 
to traditional cognitive paradigms. Trust, by definition, is only relevant in situations 
characterized by risk, uncertainty and vulnerability (Li et al., 2019). Studying trust repair 
requires violating trust and allowing people to experience the risk they take and the 
vulnerability they accept. Yet, it can be challenging to create experimental scenarios that 
induce feelings of vulnerability and risk without compromising participants’ physical and 
psychological safety (Baker et al., 2018). Our goal was to create high-fidelity experiences 
that would elicit feelings rather than relying solely on a more cognitive, incentive-based 
approach. Matthews et al. (2018) have suggested that we need more complex, realistic 
threat-detection scenarios to truly understand to what extent people are willing to trust an 
AI agent in circumstances characterized by threat (Matthews et al., 2018). By exploring 
innovative ways of simulating risk that elicit emotional responses within ethical boundaries, 
instead of relying solely on gamification elements or cognitive incentives, we can lay a 
stronger foundation for future empirical studies in more complex, real-world settings. 

Lastly, the detailed virtual military scenarios, designed to closely mimic actual 
conditions, allowed us to portray different types of HRI trust violations in a realistic 
manner. Most HRI studies that explore trust violations beyond performance-related 
issues often rely on simplified fictional game-like scenarios, where AI agents exhibit 
human-like behaviours, such as pursuing personal gain (i.e., money) or lying, to violate 
perceptions of benevolence or integrity-based trust (Alarcon et al., 2023; Sebo et al., 
2019). While these clear and familiar examples of self-serving behaviour and deception 
are valuable for developing and testing theory, they tend to be overly anthropomorphic and 
somewhat unrealistic in HRI contexts. After all, AI agents operate based on programming, 
predefined objectives, and operational goals, rather than human-like motivations such as 
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the financial gain or the intent to deceive. Nevertheless, they can still violate perceptions 
of benevolence and integrity. However, realistic examples of such violations remain 
significantly underrepresented in current research.

A benevolent partner, by definition, is genuinely concerned with your well-being and 
is motivated to pursue joint gain (Bhagat & Steers, 2009). In other words, a benevolence-
based trust violation occurs when a partner fails to act in your best interest, disregards 
your needs, or shows a lack of concern for your welfare (Mayer & Davis, 1999). However, 
this does not necessarily imply self-interest, where the partner prioritizes its own interest 
over others (Jessup et al., 2020). For example, a partner may prioritize the collective 
interests of the team over the safety of an individual member, which present a more 
realistic scenario for future HRI operations (Jorge et al., 2022). Therefore, trust violations 
based on benevolence and integrity based in HRI studies do not have to be unrealistic. 

Our virtual task environments preserve the authenticity and practical relevance of 
operational reality while allowing the incorporation of hypothetical elements (e.g., advanced 
robotics that do not yet exist) and maintaining the experimental control and immediate 
feedback that would be lost in field experiments (Petty & Cacioppo, 1996). 

Contributions to society

Our research opens up a broader societal conversation about the role and the decision 
authority we want AI agents to have and “what we want a future AI-enabled society to 
look like” (Winkler, 2024) (p.1). Our scenarios are based on hypothetical but realistic 
situations in which AI agents have the authority to cause harm to people (and their trust) 
by their decisions and recommendations. We focused on plausible AI agent behaviours 
in the military domain, rather than using current interpersonal examples and attributing 
human-like motivations (e.g., greed, deception) to AI agents. For example, it is conceivable 
that AI agents may be programmed to follow a utilitarian approach, prioritizing team goals 
over individual safety for the greater good. Similarly, it is plausible that AI agents will be 
allowed to make autonomous decisions while pursuing a delegated goal and designed to 
balance the frequency of updates, all to reduce the human’s cognitive load. Even though 
this can sometimes result in miscommunication or miscomprehension. These examples 
of potential trust violations more closely reflect how future AI agents may operate in 
practice and can better inform policy and ethical guidelines.

There are numerous operational HRI scenarios conceivable where a well-considered 
trade-off decision can cause harm while still pursuing a largely positive outcome. Instances 
of misalignment between human and AI agent values or priorities are already occurring 
to some extent. For example, in some regions, autonomous security robots are being 
deployed in public spaces for security tasks (Stephens, 2023). These robots may patrol 
parking lots with the aim to prevent vehicle break-ins by detecting environmental anomalies 
and suspicious behaviour (Knightscope, 2023). This design reflects a focus on overall 
safety, which may come at the expense of individual privacy. Consequently, these robot 
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might encroach on people’s personal space and sense of privacy, leading to mistrust 
not only of the robots themselves but also of their developers and deployers. The root 
of this mistrust lies in the robot’s purpose rather than its performance, as it is designed 
to uphold a value (security) that inherently conflicts with another (freedom). Specifically, 
the robot operates within the trade-off between security and freedom: increasing security 
measures can restrict personal freedoms, while maximizing freedom might reduce security. 

This examples highlights the importance of carefully considering the implications of 
designing and deploying AI agents that may cause discomfort or harm to people. Beyond 
advancing based on technical feasibility or cost efficiency, we must prioritize the broader 
societal impact. As increasingly sophisticated, trust-violating AI agents raise significant 
ethical concerns, this dissertation aims to contribute to the ongoing debate on how we 
should design and implement AI agents in a way that helps society and improves well-
being.

In practice, it is inevitable that in future scenarios, an AI agent’s purpose and priorities 
might not be able to serve everyone equally, albeit with the best intentions. As AI agents 
gain in autonomy, it becomes increasingly important to develop theories around these 
situations and to critically consider the implications of realistic scenarios where robots 
may make choices that could potentially harm, hurt, or at least disappoint humans. By 
developing more plausible scenarios, we can not only study how different people respond 
to them, but also critically reflect on the desirability of such future scenarios and whether 
we want them to become reality.

Limitations

The behavioural dimension of trust

In our studies, we aimed to create experiments that would elicit emotional responses 
through immersive storylines and task environments featuring emotion-evoking and 
startling events, rather than relying solely on a cognitive, incentive-based approach (e.g., 
gamification elements such as lives, ticking clocks, or performance-based monetary 
bonuses) to simulate risk and manipulate trust. However, in the storylines, participants 
were not given the opportunity to make decisions based on those emotions. They were 
simply instructed to walk from point A to point B while encountering various events and 
completing self-report trust questionnaires. They had no option to disobey or deviate 
from the AI agent’s recommendation if they lacked trust, nor did their behaviour have any 
consequences. This approach, which prioritized experimental control over behavioural 
freedom, may have limited our ability to measure trust in a more behavioural sense as 
a readiness for risk-taking and a willingness to be vulnerable. 

Given this limitation, we were eager to explore the possibilities of incorporating more 
behavioural measures in the VR studies we conducted, which are not included in this 
dissertation (Kox, van Riemsdijk, de Vries, et al., 2024a, 2024b). In an initial study using our 
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VR maze, we sought to investigate the relationship between trust and compliance by giving 
participants the behavioural freedom to either follow or disregard the AI agent’s advice 
by choosing an alternative path than the one suggested by the drone. Simultaneously, 
we assessed self-reported trust to determine whether and how participants’ perceptions 
of trustworthiness aligned with their behavioural choices (Kox, van Riemsdijk, de Vries, 
et al., 2024a). Unfortunately, due to technical difficulties and unforeseen low compliance 
rates, we were unable to gather sufficient valid data to gain valuable insights into this 
relationship. However, we view the link between trust and reliance or compliance as an 
important area for future research. Researching this link helps identify the thresholds 
at which trust transitions into actionable reliance or compliance, providing insights into 
when and why humans choose to act based on an AI agent’s input.

The findings presented in Chapter 5 show that different dimension of perceived 
trustworthiness are differentially affected by trust violations due to error or choice. One 
of the key questions that emerges from the finding is what this means for behavioural 
reliance. For instance, what will be the behavioural consequence when perceptions of 
ability have recovered, but perceptions of benevolence and integrity have not yet been 
restored? Which dimension of perceived trustworthiness is most predictive of behaviour, 
and does this vary depending on context and individual differences? Further research is 
needed to investigate the behavioural consequences of this discrepancy in trust beliefs. 

Moreover, placing a greater focus on behavioural measures potentially related to trust 
could significantly contribute to the field of HRI by providing more quantitative metrics 
to assess trust. The VR environments we developed, including both the virtual maze 
and the house-search task, are ideally suited for such purposes (Kox, Barnhoorn, et al., 
2022; Kox, van Riemsdijk, de Vries, et al., 2024a, 2024b). For instance, in the virtual 
maze, the reaction time in the decision-making task (i.e., choosing between the red 
or blue door after the drone’s recommendation) can be assessed, while in the house-
search scenario, walking speed can be measured, both of which may indicate hesitation. 
Additionally, eye movements tracked through the VR headset in both scenarios could 
reveal excessive monitoring. Both hesitation and excessive monitoring might point to 
lowered trust. Incorporating these objective measures into HRI trust research would be 
worthwhile, as it can increase the accuracy and reliability of trust measures. 

In summary, our ability to capture trust as a readiness for risk-taking and a willingness to 
be vulnerable was limited by the constraints of our desktop paradigm and the unsuccessful 
implementation of behavioural measures in the VR studies, leaving a critical dimension 
of trust unmeasured in this work. We strongly encourage further exploration of these 
behavioural dimensions in subsequent studies.

Military scenarios and civilian participants

Like the vast majority of human factors research on H-AI trust, we predominantly used 
university students as participants in task situations that were new to them (Hoffman, 
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2017). This approach presents two major limitations in our studies. First, it could be argued 
that having homogenous samples comprising primarily young adults with an academic 
background limits the generalizability of our findings. However, the primary aim of these 
controlled experiments is to uncover causal mechanism, in order to better understand 
how people make judgements in response to certain stimuli (Kadres, 1996). These causal 
mechanisms often hold true across different groups unless there is a strong reason to 
believe that demographic factors would significantly alter the effect. For example, Chapter 
3 showed that apologizing was specifically ineffective with military participants, indicating 
that cultural differences played a significant role in shaping responses to trust repair 
strategies. At the same time, the positive effect of communicating uncertainty remained 
consistent across both civilian and military participants, showing that certain mechanisms 
can be robust across varied demographics. While we should always be cautious with 
generalizing findings beyond the immediate sample, controlled studies that reveal these 
mechanisms provide a foundation that can be expanded upon in more diverse settings.

Secondly, presenting a range of different military scenarios to civilians raises questions 
about the applicability of the results to actual military contexts. It is uncertain whether 
results obtained from studies using military scenarios with civilian participants will 
generalize to real military scenarios. Presenting civilians with military scenarios carries 
the risk of misinterpretation, as soldiers and civilians might perceive these situations 
in distinct ways. Civilian participants, especially those familiar with video games, may 
approach military scenarios with a mindset shaped by gaming experiences, potentially 
leading to differing risk assessments. Video games often prioritize entertainment over 
realism, and players may take risks or make decisions that do not reflect real-world 
consequences. It is probable that participants would have made different choices if their 
lives were actually in danger. While this limitation is inherent to controlled experiments, 
it highlights the importance of follow-up studies to test whether our findings hold up in 
actual operational settings and across different populations.

A lack of ground truth

A final limitation to my studies is that we cannot draw conclusion on whether trust 
is actually better calibrated thanks to certain strategies. We tried to map changes and 
fragments of the dynamics of trust, but, because my studies did not include a ground truth 
(i.e., a reference point against which the accuracy of measurements are assessed, such 
as a fixed reliability rate), the results cannot confirm whether trust was properly calibrated. 

Despite emphasizing the importance of calibrated trust and striving to repair trust to 
an optimal rather than maximum level, we cannot ascertain whether participants’ trust 
in the AI agents during our experiments was properly calibrated. Instead, we aimed 
to uncover causal mechanism and measured how certain events caused a decline in 
trust and whether specific strategies (implemented before or after the violation) could 
minimize the immediate impact on trust development. We are aware that, in many cases, 
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decreases in trust are a logical and functional adaptive response to perceiving reduced 
performance or unexpected behaviour, and actually contribute to trust calibration. Yet, 
our research contributed to a toolbox for addressing undertrust. We have demonstrated 
the effectiveness of certain strategies in increasing trust under specific circumstances. 
Future research should focus on identifying instances and causes of undertrust, and 
on then determining which strategies are appropriate for those particular situations and 
circumstances.

Recommendations for future research

Several questions remain unanswered. Future studies should investigate more specifically 
which repair strategy is most effective for each type of violation, by a systematic 
comparison between different repair strategies and violation types (de Visser et al., 
2018). For instance, previous HRI research has proposed certain optimal combinations, 
such as apologies for ability-based trust violations and denial for integrity-based trust 
violations (Sebo et al., 2019).

Additionally, it is inevitable that certain trust-repair mechanism will work for some 
people, but not others (de Visser et al., 2018). There are many inter-individual differences, 
including affective (i.e. moods, feelings, etc.) and dispositional (i.e. personality traits), 
that can influence how people respond to trust violating events and repair strategies and 
navigate social interactions and collaboration in general, such as cultural differences 
(e.g., individualism versus collectivism), gender differences (Macko, 2020; Schumann 
& Ross, 2010) or differences in cognitive abilities (Ku & Pak, 2023; Rovira et al., 2017). 
Future research should focus on how such inter-individual differences impact trust repair, 
in order to develop more personalized and effective strategies.

Follow-up research should also assess the long-term effects of trust repair strategies. 
For example, more work is needed to determine whether the beneficial effects of an 
apology will last when the same apology is offered repeatedly. An apology is a way 
of taking responsibility for one’s behaviour, implying a commitment to improve and to 
avoiding similar mistakes in the future. However, when the machine does not change 
its (erratic or undesirable) behaviour that it expressed regret for, an apology is deemed 
ineffective (de Visser et al., 2018). 

Moreover, the monotony and uniformity of communication styles often seen in AI agents 
may lead to irritation when the same message is consistently delivered in the same format 
and tone. If so, it is plausible that the potentially beneficial effects of an apology will not 
be robust and soon be perceived as a gimmick. In this context, the emergence of Large 
Language Models (LLMs) holds significant potential as intuitive human-machine interfaces 
capable of mitigating the “robot-like” manner of communication often associated with 
AI agents. However, their sophisticated communication capabilities also raise concerns 
about the potential for overreliance or overtrust. Their ability to generate highly coherent 
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answers “can fool us into thinking that they understand more than they do” (B. X. Chen, 
2022). People might not always be aware of the risks associated with the use of generative 
AI models, such as LLMs (Kox & Beretta, 2024). 

Implications and practical implementation 

Carefully consider the consequences of design choices

One of our findings is that expressing regret can be an effective strategy for repairing trust, 
but that its effectiveness varies depending on the audience. This contributes to an ongoing 
debate about the appropriateness of humanizing AI-interaction and the extent to which 
anthropomorphism should be implemented (J. Johnson, 2024; Shneiderman, 2020, 2021). 
Some researchers argue against referring to future technologies as teammates, partners, 
or collaborators as they are more likely to function as advanced tools (Shneiderman, 2021), 
and this type of terminology and metaphors can create “a false equivalence between 
human and machine intelligence” (J. Johnson, 2024) (p. 77). It is not automatically 
appropriate to design robots to be social or human-like simply because people often 
respond socially to them (Shneiderman, 2020). 

In practice, the appropriateness of using human-like cues, such as expressions of 
regret, depends heavily on the context. Our finding that expressing regret is not as effective 
with military personnel as it is with civilians indicates that it is important to consider the 
social customs and cultural norms of the target population when designing collaborative AI 
agents. When AI agents are expected to interact with humans in high-stakes environments, 
it is crucial that they are designed to seamlessly integrate, using the same terminology 
and communication styles as the rest of the team to facilitate smoother interactions. 
As Julie Carpenter emphasizes in her study on how U.S. Military Explosive Ordnance 
Disposal personnel integrate robotic tools into their work and develop emotional bonds: 
“In order for human-robot teams to be effective, research is needed into the whole system 
that the individual team members are a part of, and how these factors ultimately shape 
the interactions at micro levels” (Carpenter, 2013) (p.2). While ‘human-like’ behavioural 
cues may facilitate social interaction by creating a sense of familiarity, it is important to 
recognize that not all humans behave in the same way. 

Beyond the diversity of target audiences, it is crucial to recognize the wide range of 
AI applications, rather than treating AI as a single, homogenous concept (Jermutus et al., 
2022). For example, in social robotics, human-like cues in AI agents might be beneficial, 
while in professional settings where safety and calibrated trust are crucial (e.g., intensive 
care, military operations), such features may be less appropriate. Anthropomorphic design 
should be guided by a clear understanding of the potential effects on user interactions 
and should be approached with careful and strategic consideration, as these features 
can lead to both positive and negative outcomes (Carpenter, 2013; Disalvo et al., 2002; 
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J. Johnson, 2024; Taenyun Kim & Song, 2021). By focusing on context, we can have a 
more meaningful discussion about whether using human-like cues is appropriate.

Ultimately, it is crucial to carefully consider the consequences of design choices and 
the ethical implications for AI agent behaviour. With this in mind, although some studies 
have explored the effects of denial in human-robot interactions (e.g., Kohn et al., 2018; 
Sebo et al., 2019; Zhang, Lee, Kim, et al., 2023), we deliberately chose not to include it 
as a trust repair strategy. Denial, often used by humans to downplay errors or dismiss 
concerns, conflicts with our goal of establishing sustainable, trust-based relationships 
with AI agents. AI agents should not be programmed or allowed to lie, even if it might 
yield a desirable outcome in the short term. Instead, they should be designed with a 
clear ethical framework that prioritizes transparency, calibrated trust, and the long-term 
effectiveness of human-AI collaboration.

It is our responsibility as researchers not only to investigate what strategies or design 
features effectively yield desirable outcomes, such as calibrated trust, but also to determine 
what we consider acceptable and ethical behaviour for AI agents in achieving those 
outcomes. The end does not automatically justify the means. 

Invest in people

Our results suggest that explanations can be effective in repairing trust. However, 
explainable AI is a complex field of research that proves how challenging it is to make 
a machine explain its reasoning in a way that aligns with human thinking. Additionally, 
it is difficult for an AI agent to recognize when it fails to meet human expectations. If it 
could, it likely would not make such errors. Even with explicit human feedback, providing 
satisfactory explanations for its actions will remain a significant challenge. The increasingly 
complex algorithms used in AI agents often result in a “black-box” effect, where the 
internal workings are not easily understood or accessible, even to developers, making it 
difficult to understand or explain how the AI reaches its conclusions. Robust explanation 
capabilities may still be far from being fully realized.

In the meantime, it seems wise to invest in people’s capacity to know what AI is good 
at, where its limitations lie, and in which contexts trust may be risky. For instance, this can 
be achieved by improving people’s AI-literacy, which is a broad set of skills that enable 
individuals to recognize everyday applications of AI, know the basic functions of AI and 
understand how to use AI effectively in daily life (Ng et al., 2021). Exploring research 
directions that focus on improving AI-literacy is crucial. This includes understanding 
what AI-literacy encompasses, including the key knowledge and skills people need to 
effectively navigate and resolve conflicts arising from the inherent differences between 
humans and AI agents. For example, AI-literacy should focus on critical thinking 
about AI, helping people recognize red flags, potential areas of concern, and when 
human oversight or intervention is necessary. Equally important is determining which 
mental models of AI people should develop or employ, and identifying metaphors 
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that either aid or hinder appropriate understanding of AI (Maas, 2023). Addressing 
these questions will not only enhance human-AI collaboration but also pave the way 
for more informed and safe use of AI in everyday life.

However, if even developers struggle to explain AI-systems due to the “black-
box” nature of many algorithms, it seems contradictory to expect the general public 
to develop AI-literacy to a level that would enable them to confidently interact with 
these systems. This highlights a clear responsibility for developers and the AI industry 
to ensure that AI-systems are trustworthy and reliable. Efforts should be directed 
toward creating transparent systems where feasible and establishing safeguards and 
protocols that clarify the strengths and limitations of AI, particularly when enhancing 
explanation capabilities is not possible.

Approach AI as a socio-technical system

This thesis explored various causes of trust violations in AI agents. Moving beyond 
errors as the sole cause of trust breakdowns requires examining the entire development 
process and questioning the desirability of such scenarios. Trust violations arising from 
an AI agent’s technical shortcomings (e.g., software bugs, hardware malfunctions) are 
largely unpredictable. However, violations resulting from unexpected or incomprehensible 
behaviour, often due to the agent’s incapacity to explain itself, or conflicting priorities are 
more likely the result of policy and design choices rather than the AI agent’s technical 
sophistication. These types of violations are more predictable and thus, potentially 
preventable.

This raises questions about how much harm, disappointment, or confusion we are 
willing to tolerate from AI agents, and what benefits we gain in return. As AI agents are 
designed, built and programmed by humans, all trust violations are ultimately human-
made and traceable to decisions in the development process. Each violation can, at least 
theoretically, be attributed a different group: for instance, software bugs or hardware failures 
are linked to engineers (e.g., mechanical, electrical, software), interface transparency 
issues are the responsibility of designers and UX specialists, and value misalignments 
can be traced back to executive leadership, who set strategic priorities, and product 
managers, who ensure the product aligns with user needs and company goals. 

In other words, AI systems should be approached as sociotechnical systems, where 
the trustworthiness of the technology is as much a product of the people designing, 
developing, deploying and using it as of the system itself (Duenser & Douglas, 2023). In 
order to create trustworthy AI, the creators themselves must be worthy of trust (Cameron 
et al., 2023). Building trustworthy AI agents requires a systematic, multidisciplinary 
approach. “Just as it takes a village to raise a child, the governing of AI needs to be a 
multidisciplinary village so that we can raise AIs that are productive, valued contributors 
to society.” (Winkler, 2024)
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Conclusion

The prospect of more autonomous AI agents gaining decision-making authority in our 
physical and virtual worlds introduces a range of new questions, ethical dilemmas, 
opportunities for advancement, and potential risks. My findings show that an AI agent’s 
trustworthiness of is no longer determined solely by what it can do, but also by how 
and why it does so. Therefore, we emphasize the importance of a multidisciplinary, 
human-centred approach that aims to contribute to the integration of AI agents 
into our existing social structures, while prioritizing the needs, behaviours, and 
experiences of the people who will interact with them, rather than advancing solely 
based on technical feasibility.
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People are increasingly working with Artificial Intelligence (AI) agents, whether as software-
based systems such as AI-chatbots and voice assistants, or embedded in hardware 
devices like autonomous vehicles, advanced robots, and drones. The idea of Human-AI 
(H-AI) collaboration is promising, since humans and AI possess complementary skills 
that, when combined, can enhance performance beyond the capabilities of its individual 
members. Here, the real challenge is not just determining which tasks are better suited 
for humans or machines working independently, but in finding ways to enhance their 
respective strengths through effective interaction. Working together towards a common 
goal requires good cooperation, coordination, and communication, and it is within these 
areas that the true challenges lie. 

A key component in these activities is trust, as it allows individuals to depend on 
each other’s contributions to complete tasks and achieve shared goals. More specifically, 
maintaining balanced trust (i.e., neither too much nor too little) is crucial for safe and 
effective H-AI collaborations. Finding this balance, a process known as trust calibration, 
should enable people to determine when to rely on AI agents and when to override 
them. To facilitate this, we need to understand how H-AI trust is built, breaks down, and 
recovers (i.e., the ‘trust lifecycle’). This dissertation focusses on how to maintain H-AI 
trust, by examining how trust breaks down (i.e., trust violations) and the mechanisms 
through which trust can be repaired. 

In this thesis, I cover three types of trust violations, stemming from 1) inadequate 
abilities of the AI agent (errors), 2) unexpected behaviour without any explanation, and 
3) priority misalignment. In other words, violations in respect to what an AI agent does, 
how it operates, and why it acts in a certain way. Additionally, we examined the impact 
of various trust-repair mechanisms on the development of H-AI trust. We evaluated 
a preventative measure designed to mitigate potential trust issues by proactively 
communicating uncertainty (i.e., “environment detected as clear, with 80% certainty”) 
and reactive strategies addressing trust violations post-incident, such as expressing regret 
(i.e., “I am sorry”) or providing explanations for anomalous behaviour. These strategies 
can be categorized as informational (e.g., uncertainty, explanations) or affective (e.g., 
regret), aiming either to improve the AI agent’s interpretability or restore trust through 
emotional engagement. In short, we investigate how the nature of a trust violation and 
different repair strategies influence the development of H-AI trust.

Data for these studies were obtained using a series of custom-designed, game-like 
virtual task environments, simulating military scenarios where participants carried out 
missions in collaboration with an AI agent, presented in various physical forms. In each 
study, we used repeated measures of H-AI trust to track its changes over time.

Chapter 2 and 3 examine trust violations due to the inadequate abilities of the AI 
agent. In Chapter 2, participants were assigned to return to basecamp as fast as possible 
after running out of ammunition. Halfway, the AI agent failed to warn the participant for 
an approaching enemy. Following this failure, the AI agent employed one of four trust 
repair strategies: an explanation or an expression of regret either individually, combined, 
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or neither. H-AI trust recovered only when the apology included an expression of regret, 
with even greater recovery when both regret and explanation were offered. 

Chapter 3 involves house-searches in two abandoned buildings, supported by a small 
drone. Halfway, the AI agent failed to warn the participant for a hazard. We studied the 
effects of uncertainty communication and apology (i.e., explanation + regret), deployed 
before and after trust had been violated respectively. We conducted this study with both 
civilian and military samples to investigate whether findings were consistent across 
different participant groups. Results showed that (a) communicating uncertainty led to 
more trust, (b) an incorrect advice by the agent led to a less severe decline in trust when 
that advice included a notion of uncertainty, and (c) after a trust violation, trust recovered 
significantly more when the agent offered an apology. The two latter effects were only 
found in the study with civilians.

Chapter 4 examines a trust violation due to unexpected behaviour and the AI agent’s 
incapacity to explain itself. Halfway a reconnaissance mission, the AI agent detected 
a faster alternative route that emerged due to changes in the environment (i.e., the 
river had dried up) and decided to deviate from the original plan. We studied the effect 
of transparency (i.e. regular status updates and an explanation for the deviation) and 
outcome on trust and the participant’s workload. The main result was that transparency 
prevented a trust violation and contributed to higher levels of trust, without increasing 
subjective workload. 

Chapter 5 examines a trust violation caused by priority misalignment. Halfway during 
the mission, the AI agent, who was guiding the participant, did not warn the participant 
in time of a hazard down the road. In one condition, it explained that this failure was 
due to an underperforming sensor. In the other condition, the AI agent explained that it 
deliberately recommended the faster route over the safer one. The rationale was that 
the rest of the team was waiting, and further delays could jeopardize both the team and 
the mission. Our findings suggest that trust violations due to choices are harder to repair 
than those due to errors.

By analysing the dynamics of trust during H-AI interaction, this research aims to 
inform the design of AI-systems that promote calibrated trust in high-stakes environments. 
As AI agents gain decision-making authority in the physical and virtual world, they will 
increasingly face conflicting human values (e.g., privacy vs. safety, efficiency vs. empathy). 
As they get more autonomous and complex, moral considerations will play a larger role, 
and trust may be lost not only due to malfunctions but also due to miscommunication 
and misaligned values. The trustworthiness of an AI agent is no longer determined solely 
by what it can do, but also by how and why it does so. Our findings support the growing 
consensus that H-AI trust, much like interpersonal trust, is multidimensional, even if the 
moral dimensions are not yet as apparent in current interactions. As the complexity of 
H-AI trust grows, maintaining an appropriate level of trust becomes increasingly important. 
Designing and developing trustworthy AI agents for safe and effective H-AI collaborations 
requires a systematic and multidisciplinary approach.
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Mensen werken steeds vaker samen met kunstmatige intelligentie (KI) agenten. KI-agenten 
kunnen softwarematig werken zoals AI-chatbots en spraakassistenten of geïntegreerd zijn 
in hardware zoals autonome voertuigen, geavanceerde robots en drones. Het idee van 
mens-KI (M-KI) samenwerkingen is veelbelovend, omdat mensen en KI complementaire 
vaardigheden bezitten waardoor ze collectief meer kunnen bereiken dan elk afzonderlijk 
had gekund. Daarbij ligt de uitdaging niet in de taken zo te verdelen dat beiden doen 
waar ze goed in zijn, maar uitvinden hoe mensen en machines het beste in elkaar naar 
boven halen door te interacteren. Samenwerken aan een gemeenschappelijk doel vereist 
coöperatie, coördinatie en communicatie; daar liggen de echte uitdagingen.

Vertrouwen is essentieel voor werken in teamverband omdat het mensen in staat stelt 
op elkaars bijdragen te rekenen. Het bewaren van een balans hierin, dus niet te veel en 
niet te weinig vertrouwen, is een voorwaarde voor veilige en effectieve samenwerking 
tussen mens en KI. Het vinden van deze balans oftewel het kalibreren van vertrouwen, 
moet mensen in staat stellen te bepalen wanneer ze iets aan KI kunnen overlaten. 
Om dit te kunnen faciliteren moeten we eerst begrijpen hoe M-KI vertrouwen zich 
ontwikkelt. Dit proefschrift focust zich op de vraag hoe we M-KI vertrouwen behouden 
door te onderzoeken hoe vertrouwen afbreekt en welke mechanismen bestaan om het 
te herstellen.

Ik behandel drie soorten vertrouwensschendingen: als gevolg van 1) verminderde 
capaciteiten van de KI-agent (fouten), 2) onverwacht gedrag zonder uitleg van de KI-
agent, en 3) conflicterende prioriteiten. Met andere woorden schendingen met betrekking 
tot wat een KI-agent doet, hoe het opereert en waarom het op een bepaalde manier 
handelt. Daarnaast onderzochten we verschillende herstelmechanismen: een preventieve 
maatregel om een mogelijke vertrouwensbreuk te beperken door proactief onzekerheid 
te communiceren (bijvoorbeeld “omgeving beoordeeld als veilig met 80% zekerheid”) 
en reactieve strategieën die na een incident werden ingezet zoals het betuigen van spijt 
of het geven van verklaringen voor afwijkend gedrag. Deze strategieën kunnen worden 
gecategoriseerd als informatief (bijvoorbeeld onzekerheid en verklaringen) met als doel 
de interpreteerbaarheid van de KI-agent te verbeteren of als affectief (bijvoorbeeld spijt) 
gericht op emotionele betrokkenheid. Kortom, we onderzochten hoe de aard van een 
vertrouwensschending en verschillende herstelstrategieën de ontwikkeling van M-KI 
vertrouwen beïnvloeden.

De data in mijn studies zijn verzameld met behulp op maat gemaakte computerspel-
achtige virtuele omgevingen, waarin militaire scenario’s werden gesimuleerd waarin 
deelnemers missies uitvoerden in samenwerking met een KI-agent in verschillende 
fysieke verschijningsvormen. In elke studie werd M-KI vertrouwen herhaaldelijk gemeten 
zodat we de veranderingen in de tijd konden volgen. 

Hoofdstuk 2 en 3 onderzoeken vertrouwensschendingen als gevolg van fouten. In 
hoofdstuk 2 kregen deelnemers de opdracht om zo snel mogelijk terug te keren naar 
het basiskamp. Halverwege waarschuwde de KI-agent de deelnemer niet voor een 
naderende vijand. Na dit falen, gebruikte de KI-agent een van vier herstelstrategieën: 
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1) een verklaring of2) een uiting van spijt afzonderlijk, 3) gecombineerd of 4) geen van 
beide. Vertrouwen herstelde alleen wanneer de KI-agent spijt betuigde; dit effect was 
nog sterker wanneer het óók een verklaring gaf.

Hoofdstuk 3 betreft twee huiszoekingen in verlaten gebouwen met behulp van een 
kleine drone. Halverwege waarschuwde de KI-agent de deelnemer niet voor een gevaar. 
We bestudeerden de effecten van onzekerheidscommunicatie en verontschuldigingen (dat 
wil zeggen een verklaring + spijt) die respectievelijk voor en na het incident werden ingezet. 
Deze studie werd uitgevoerd met zowel civiele als militaire deelnemers om te onderzoeken 
of de bevindingen consistent waren tussen verschillende groepen deelnemers. De 
resultaten lieten zien dat 1) onzekerheidscommunicatie leidde tot meer vertrouwen, 2) 
onjuiste adviezen leidden tot een minder ernstige daling van het vertrouwen wanneer 
die onzekerheidsinformatie bevatte en 3) het vertrouwen na een vertrouwensschending 
significant meer herstelde wanneer de agent een verontschuldiging aanbood. De laatste 
twee effecten werden alleen gevonden in de studie met civiele deelnemers.

Hoofdstuk 4 onderzoekt een vertrouwensschending door onverwacht gedrag en 
het ontbreken van toelichting door de KI-agent. Halverwege een verkenningsmissie 
observeerde de KI-agent dat een snellere alternatieve route was ontstaan door 
veranderingen in de omgeving (de rivier was opgedroogd) en besloot af te wijken van 
het oorspronkelijke plan. We bestudeerden het effect van transparantie (dat wil zeggen 
regelmatige statusupdates en een verklaring voor de afwijking) en de uitkomst van de 
missie op vertrouwen en de werklast van de deelnemer. Het belangrijkste resultaat was 
dat transparantie een breuk in vertrouwen voorkwam zonder te zorgen voor een toename 
van de subjectieve werklast.

Hoofdstuk 5 onderzoekt een vertrouwensschending door conflicterende prioriteiten. 
Halverwege de missie waarschuwde de KI-agent die de deelnemer leidde, deze niet 
voor een gevaar op de weg. In één conditie legde de KI-agent uit dat dit te wijten was 
aan een slecht functionerende sensor. In de andere conditie legde het uit dat het bewust 
de snellere route had aanbevolen in plaats van de veiligere, omdat vertragingen de rest 
van het team en de missie in gevaar konden brengen. Onze bevindingen suggereren 
dat breuken in vertrouwen als gevolg van afwegingen moeilijker te herstellen zijn dan 
die als gevolg van fouten.

Door de dynamiek van vertrouwen tijdens M-KI interacties te onderzoeken, hopen we 
bij te dragen aan het ontwerp van KI-agenten die gekalibreerd vertrouwen bevorderen. 
Naarmate KI-agenten autonomer worden en meer beslissingsbevoegdheid krijgen in 
zowel de fysieke als virtuele wereld zullen ze steeds vaker met conflicterende waarden 
te maken krijgen (bijvoorbeeld privacy vs. veiligheid, efficiëntie vs. empathie) en zullen 
vertrouwensbreuken niet alleen ontstaan door fouten, maar ook door miscommunicatie 
en conflicterende belangen. De betrouwbaarheid van een KI-agent wordt niet langer 
uitsluitend bepaald door wat het kan, maar ook door hoe en waarom het iets doet. 
Onze bevindingen sluiten aan bij de groeiende consensus dat M-KI vertrouwen net als 
vertrouwen tussen mensen multidimensionaal is. De toenemende complexiteit van M-KI 
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Samenvatting

174

vertrouwen maakt het behouden van een passend niveau van vertrouwen tot een steeds 
grotere uitdaging. Het ontwerpen en ontwikkelen van betrouwbare KI-agenten voor veilige 
en effectieve M-KI samenwerkingen vraagt om een systematische en multidisciplinaire 
aanpak.
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