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Chapter 1

The rise of Human-Al teams

Advancements in computer hardware and software technology have enabled the partial
or complete replacement of functions previously performed by people (i.e., automation)
(Parasuraman et al., 2000). The introduction of automated systems, such as machines
on assembly lines in manufacturing, has revolutionized productivity and efficiency by
executing repetitive tasks faster and with greater accuracy than humans in a wide variety
of routine, initially mostly physical tasks (Cremer & Kasparov, 2021). With the emergence
of Artificial Intelligence (Al) and deep neural networks, the possibilities of automation
further expanded as machines gained the capability to learn, to make decisions, and to
mimic human cognitive functions (Schraagen & van Diggelen, 2021). As Al technology
advances, its capabilities are expanding rapidly. From healthcare to finance, transportation
to entertainment, Al is driving innovation, enabling new possibilities, and fundamentally
altering how we interact with technology and each other.

With the term Al, we refer to “systems that display intelligent behaviour by analysing
their environment and taking actions — with some degree of autonomy — to achieve specific
goals” (AIHLEG, 2019) (p. 1). In addition to their level of autonomy, Al-based systems,
referred to as Al agents, can differ in various aspects, including their form and function.
They can be completely software-based (e.g., voice assistants, image analysis software,
search engines), or Al can be embedded in hardware devices, such as advanced robots,
autonomous cars, or drones (AIHLEG, 2019). Examples of software-based Al agents
include Al chatbots such as OpenAl’'s ChatGPT or voice assistants such as Apple’s
Siri or Amazon’s Alexa. Examples of Al agents with a physical embodiment that allows
them to interact with the physical world include the humanoid robots Nao and Pepper
(from Softbank Robotics) and Spot, a quadruped robot developed by Boston Dynamics.
Throughout this dissertation, | will use various terms such as “machine”, “robot” or “drone”
to describe Al agents, reflecting the diverse contexts in which these systems are discussed.
All these terms are intended to refer broadly to Al agents.

The initial goal of the field of Al was to create systems that could mimic or replicate
human intelligence (Lake et al., 2017). The term “artificial intelligence” itself implies an
effort to create intelligence that resembles a “natural”, biological intelligence. However,
over the years, a new perspective emerged. Researchers began to strive for Hybrid
Intelligence, a situation where machine intelligence is combined with human intelligence,
aiming to augment human intellect rather than replace it (Akata et al., 2020; M. Johnson
etal., 2011, 2012; Peeters et al., 2021). Researchers now explore how we can harness
various types of intelligences and skills to find new solutions and discover new types of
relations — instead of re-creating what we already have (Darling, 2021).

As aresult, the idea of Human-Al Teams (HATs) emerged: teams consisting of at least
one human and one Al agent (Bobko et al., 2022; de Visser et al., 2018, 2019; O’Neill et
al., 2022). As Al agents become more intelligent, they are increasingly self-governing, gain
decision authority within their functioning (Bobko et al., 2022; Hancock, Billings, Schaefer,



Introduction

et al., 2011a; Hou et al., 2021; O’Neill et al., 2022; Sheridan, 2019), and require less
human involvement and control (Lyons et al., 2023; C. A. Miller, 2014). Future Al agents
are expected to have increasingly advanced capabilities, enabling them to observe and
act upon an environment autonomously and to communicate and collaborate with other
agents, including humans, to solve problems and achieve (common) goals (Ferguson &
Allen, 2011; O’Neill et al., 2022; Wynne & Lyons, 2018). In literature alternative names
are used, including human-machine teams, human-agent teams, and human-automation
teams (Jorge et al., 2024). In this work, | will use the terms human-Al teams or human-
robot teams as appropriate, depending on the type of Al agent discussed in each chapter.

A team is defined as “a set of two or more people who interact dynamically,
interdependently, and adaptively toward a common and valued goal/objective/mission,
and who each have some specific roles or functions to perform” (Tannenbaum et al.,
1992) (p. 118). The premise of teamwork is that individuals in a team can achieve more
and solve more difficult problems collectively than any of the members could do alone,
by combining their diverse skills, perspectives, and resources (Akata et al., 2020). This
requires the strategic delegation of tasks, where specific responsibilities are aligned with
each team member’s unique set of skill and expertise. This allows members to share the
workload, monitor each other’s progress, and develop expertise on subtasks, ultimately
contributing to the achievement of their common goal (Salas et al., 2018).

Based on this understanding of teamwork, the idea of HATs is promising, since humans
and Al have complementary skills that can be pooled together, to elevate performance
beyond the capabilities of its individual members. Namely, on the one hand, Al agents
can process and recognize patterns in large amounts of data and perform fast and highly
accurate computations. This can, for example, be applied to the diagnosis of diseases
based on the classification of radiological images, where Al has, in certain narrowly defined
tasks and specific occasions, demonstrated the ability to exceed the performance of clinical
experts (Bejnordi et al., 2017). People, on the other hand, are flexible and adaptable
and can use their creativity and common sense to find solutions for open and ill-defined
tasks and to improvise in changing or unforeseen conditions (Jarrahi, 2018; Korteling et
al., 2021; Xiong et al., 2022). In other words, Al can augment people’s cognitive abilities
to tackle complex problems, while people excel in offering intuitive and comprehensive
solutions to uncertain situations (Jarrahi, 2018).

However, the real challenge is not merely determining which tasks are better suited for
humans or Al agents working independently, but in finding ways to optimise collaboration,
enhancing their respective strengths through effective interaction (Bradshaw et al.,
2012; Dekker & Woods, 2002; Hayes, 2016; M. Johnson et al., 2012). Most Al agents
are able to perform tasks for people, but often lack the skills necessary to work together
with people and other agents (Bradshaw et al., 2012, 2013). Working together towards
a common goal requires good cooperation, coordination, and communication (Ososky
etal., 2012b; Salas et al., 2018), and it is within these areas that the true challenges lie.



Chapter 1

Akey component in these activities is trust, because it allows team members to depend
on each other’s contributions and to navigate the uncertainties and risks associated with
teamwork (A. Y. Lee et al., 2010). To reap the potential collective benefits of teamwork,
individuals must be willing to put aside individual interests for the greater good of the
team and make investments (e.g., time, energy, or expertise) in the collective effort,
trusting that the rewards of collaboration will eventually outweigh the risks. This thesis
will investigate how to maintain trust in HATs to support safe and effective collaboration.

Trust

We define human-Al (H-Al) trust as a human’s willingness to make oneself vulnerable
to an Al agent’s decisions and recommendations in the pursuit of some benefit, with
the expectation that the Al agent will help achieve the overall task goal in a context
characterized by uncertainty and risk (Gambetta, 2000; Hoff & Bashir, 2015; J. D. Lee
& See, 2004; Madsen & Gregor, 2000; Raue et al., 2019; Shariff et al., 2017). In other
words, the trustor (i.e., the one bestowing trust) must actively decide whether to trust
the trustee (i.e., the one receiving trust) in a situation where there is potential gain (i.e.,
the pursued benefit) and potential loss (i.e., the risk). This decision is shaped by beliefs
and expectations regarding the trustee’s future actions and is heavily influenced by the
specific task at hand (Costa, 2003; Kessler et al., 2016; Li et al., 2019; Raue et al., 2019).

Teamwork is inherently a process that involves risk and requires trust because it
involves individuals depending on each other’s contributions to collectively complete
tasks and achieve objectives (A. Y. Lee et al., 2010). When team members delegate
tasks or responsibilities to each other, they become vulnerable in the sense that they
are relying on others’ competence and commitment. For example, in lead climbing,
climbers work in pairs where one ascends while the other secures the rope to prevents
falls (i.e., belays). The climber relies on the belayer’s skills and quick response to arrest
any potential falls, requiring significant trust. This trust allows climbers to reach heights
they could not achieve alone.

While the importance of trust is evident in the climbing example, the same principle
applies to H-Al collaboration. Imagine a military reconnaissance mission (e.g., see
Chapter 4), where a soldier relies on a robotic agent equipped with advanced sensors
and navigation capabilities for coverage and its ability to detect and warn of threats.
Their mission is to gather intelligence on enemy movements by counting objects in a
remote, hostile area. The soldier’s role is to manually count and record observations,
relying on their training and sharp eyesight, while the robot scans the terrain for threats
and obstacles. The soldier depends on the robot to alert them to any detected dangers,
allowing them to focus on their specific tasks. In this scenario, as in in the previous one,
trust is essential for the team’s success.

10
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The climber and the belayer, as well as the soldier and the robot, do not need to know
each other very well “personally” in order to establish a successful trusting relation. What
matters is that the trustor believes that the trustee has a shared understanding, known
as a shared mental model, of the procedures, equipment and tasks necessary to achieve
a certain objective (i.e., the taskwork) as well as an understanding of other teammates’
knowledge, skills, preferences and responsibilities within the team (i.e., the teamwork)
(Driskell et al., 2018; Mathieu et al., 2000). This belief in a shared mental model might
stem from knowing that the belayer is an experienced climber themselves or that the
robot was designed by a certified manufacturer for a specific purpose (Mathieu et al.,
2000). Mental models are personal, internal (cognitive) representations of external reality,
based on unique life experiences, perceptions, and understandings of the world (Jones
et al., 2011). We use these cognitive frameworks to interpret and make sense of the
world around us and to construct expectations for what is likely to occur next (Mathieu
et al., 2000; Rouse & Morris, 1985). They shape our reasoning processes and result in
predictions about the external environment, guiding our decision-making, actions and
behaviours (Jones et al., 2011). A shared mental model greatly contributes to team process
and performance, as it allows people to determine what is required to achieve a shared
goal and which teammate can be best entrusted with which task (Salas et al., 2005).

An important difference between the provided examples, however, is that the trustee
in the latter example (i.e., the soldier and the robot) being Al-based adds uncertainty to
an already risky situation. As Al agents become more complex and go beyond a simple
tool with sharply defined and easily understood behaviours, it becomes impossible,
even for experts, to have a complete understanding and accurate mental model of the
system. As a result, the importance of trust further increases as trust plays a crucial role
in people’s ability to overcome and accept the cognitive complexity and the uncertainty
that is associated with increasingly sophisticated Al systems (J. D. Lee & See, 2004).

As illustrated by the scenarios above, the role of trust in teamwork encompasses more
than just the initial decision to collaborate and allocate tasks (Hancock et al., 2020; Lubars
& Tan, 2019). During the collaboration, team members must maintain an appropriate
level of trust in that everyone is performing as required in order to accomplish a specific
goal (A.Y. Lee et al., 2010). That is, overly and unnecessarily monitoring the activity of
other team members slows down progress and adds unnecessary workload, but team
members should also avoid blind trust and maintain a healthy level of vigilance to ensure
everyone is meeting expectations. This process is referred to as trust calibration.

Trust calibration
For safe and successful collaborations, people should be able to determine when it is
appropriate to rely on Al agents and when it is best to override them (J. D. Lee & See,

2004). In situations involving consequential decisions, such as military operations or
healthcare, it is essential to know when Al is safer than human intervention and vice
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versa (Barnes et al., 2014). To minimize the risks and maximize the benefits of a H-Al
collaboration, H-Al trust should be well-calibrated (Lewis et al., 2018). Calibrated trust
refers to a balanced relation between the perceived trustworthiness of an Al agent and
its actual trustworthiness (J. D. Lee & See, 2004). Here, trustworthiness is a property of
the Al agent, while perceived trustworthiness is a judgement by the human (Duenser &
Douglas, 2023). In other words, trust is calibrated when the trust that an individual grants
the Al agent matches the trustworthiness of the Al agent, which is supposed to lead to
appropriate use (J. D. Lee & See, 2004).

Miscalibration, represented as either ‘overtrust’ or ‘undertrust’, can lead to inappropriate
reliance, which can compromise safety and profitability respectively (Baker et al., 2019;
de Visser et al., 2019; J. D. Lee & See, 2004). In case of overtrust (i.e., excessive
trust), a trustor accepts too much risk, which can lead to complacency and can cause
costly disasters (Robinette et al., 2017a). For example, human error and overtrust were
identified as the primary causes of a fatal crash involving an Uber self-driving car, where
the vehicle struck and killed a pedestrian. The backup operator, who was later charged
with negligent homicide, had been distracted by streaming a TV show at the time of
the incident (Cellan-Jones, 2020). By contrast, undertrust (i.e. insufficient trust) also
prevents effective collaboration as it leads to scepticism, causing inefficient monitoring
of the work behaviours of other team members and an uneven distribution of workload
(de Visser et al., 2019; J. D. Lee & See, 2004). At worst, people may choose not to use
or even consciously disable systems that could potentially help them (UlIrich et al., 2021).
In other words, maximizing trust is not the objective in H-Al collaboration, as effective
and efficient teamwork requires finding the right balance of trust among team members.
Calibrated trust facilitates cooperation and coordination between interdependent actors,
which creates a more productive and efficient team (J. D. Lee & See, 2004).

Yet, trust calibration will never be perfect, as humans are not mechanical measuring
instruments and an agent’s trustworthiness itself is not perfectly defined (Duenser &
Douglas, 2023; Hoffman, 2017). Knowing when and when not to trust will always remain
a challenge, due to the multi-dimensional, context-dependent and dynamic nature of
trust. That is, we may trust elected officials to draft legislature, while we may not trust
them to make medical decisions. Similarly, while we may expect a medical decision-
support system to provide accurate medical advice, we do not expect the same system
to provide accurate legal advice (Duenser & Douglas, 2023). Furthermore, an actor’s
trustworthiness on a given time may vary depending on external situational factors.
For example, the performance of a self-driving car might be significantly impacted by
poor weather conditions or missing or faded road markings, just as a human driver’s
ability to navigate safely can be impaired by fatigue or distractions. As such, the term
‘calibrated’ does not indicate that the trust was adjusted once and is now fixed (Kox et
al., 2023). Rather, trust is “a continual process of active exploration and evaluation of
trustworthiness and reliability” (Hoffman, 2017) (p.146), meaning it is continually subject
to adjustment and fine-tuning.

12
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A Lifecycle Perspective on Trust

To navigate the constant pursuit of an optimal level of trust in ever-changing circumstances,
we must understand the dynamics of trust. We want to understand how trust develops,
how it breaks down, and how it recovers (de Visser, Pak, et al., 2017). In prior work,
researchers have suggested the concept of a ‘trust lifecycle’ (de Visser et al., 2016, 2018;
Rousseau et al., 1998; Sollner & Pavlou, 2016), consisting of multiple phases.

First, trust has to be formed. We distinguish between trust formation, when trust is built
for the first time, and trust repair, when trust needs to be rebuilt after it was violated (Séllner
& Pavlou, 2016). In the trust violation phase, trust diminishes due to the occurrence of
unexpected, unfavourable, or unwanted behaviour, resulting in a negative experience
for the human trustor (Rousseau et al., 1998; Sdliner & Pavlou, 2016). Essentially, a
trust violation is any kind of behaviour from an Al agent that decreases a human’s trust
in it (Pak & Rovira, 2023). In the trust repair phase, an Al agent can employ strategies to
restore trust and facilitate reconciliation after it violated trust (Baker et al., 2018; de Visser
etal., 2018; P. H. Kim et al., 2006; Pak & Rovira, 2023). Lastly, there are phases of trust
stability, where built or rebuilt trust remains stable over time (Séliner & Pavlou, 2016).

This lifecycle of trust is a theory-based simplification of the complex and dynamic nature
of trust and, naturally, these phases can occur in any order, perhaps even simultaneously,
and can be repeated. The phases act as labels used to identify the status of a particular trust
dynamic, to understand its underlying mechanisms and potential next developments and to
recognize relevant interventions (Kox et al., 2023).

In this thesis, | will concentrate on the maintenance of H-Al trust by examining the
effects of various types of trust violations and investigating methods to reduce their impact,
both preventatively and reactively, through trust repair strategies. The emphasis will be
on the phases of trust violation and repair within the trust lifecycle, rather than on trust
formation or periods of trust stability.

Maintaining H-Al trust is a key part of the trust calibration process. Understanding
the breakdowns and recoveries of trust is particularly relevant in situations of undertrust,
where people are losing trust in an Al agent that is, in fact, trustworthy. We evaluate the
effectiveness of strategies that aim to address such declines in perceived trustworthiness
that can lead to disuse, where ignoring an Al agents advice can compromise team
performance and profitability.

In the following sections, | will elaborate on the phases of formation, violation and
repair. Although the formation of trust is not the primary focus of my thesis, | will briefly
highlight an underlying mechanism that influences H-Al trust formation and continues to
play a role later in the trust lifecycle. Regarding the trust violation phase, | will discuss three
types of trust violations: due to poor performance, unexpected behaviour and misaligned
priorities. In discussing the trust repair phase, | will differentiate between preventative
and reactive strategies, as well as between informational and affective strategies.
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Trust formation

The formation of trust in an Al agent is influenced by several factors, including prior
experience with the agent or similar agents, existing knowledge such as the Al agent’s
or its manufacturer’s reputation, and individual cognitive factors of the trustor, including
biases (de Visser et al., 2016; Hoff & Bashir, 2015). Like in the lead climbing example
described earlier, the climber’s initial trust in a belayer they do not know personally may
be based on the belayer’s reputation as an experienced climber and the subsequent
expectation that they are motivated and able to execute the necessary tasks accurately.
Similarly, someone’s initial trust in a new Al agent can be influenced by prior experiences
with similar systems from the same manufacturer. New users may begin with a certain
level of faith in the system, but as the interaction proceeds, experiences of predictability
and dependability will gradually replace this initial faith as the primary foundation of trust
(Hoff & Bashir, 2015).

Another important factor in the formation of trust that | want to highlight is the cognitive
bias of anthropomorphism, defined as “the tendency to attribute human characteristics to
inanimate objects, animals, and others with a view to helping us rationalize their actions”
(Duffy, 2003) (p.180). Incorporating human-like cues into the design of robots and other
Al agents (e.g., a face, limbs, or the ability to engage in dialogue) can trigger this bias.
Research shows that even relatively simple, subtle and superficial anthropomorphic cues
(e.g., a voice, a gender or a name) can lead to the attribution of fundamental human
qualities, including perception of mind (Gray et al., 2007; X. Xu & Sar, 2018), rational
thought (e.g., agency) (Wynne & Lyons, 2018), and the ability to experience emotions
(Waytz et al., 2008, 2014). According to the Computer as Social Actors (CASA) paradigm,
the presence of social cues can cause people to treat computers as if they were social
actors, applying the same social rules, norms, and expectations to their interactions with
computers as they would to humans (J.-E. R. Lee & Nass, 2010). This can shape how
individuals develop trust in Al agents.

This idea can be illustrated by Large Language Model-based chatbots, such as
OpenAl’s Al-chatbot ChatGPT, which produce text that appears very human-like and
can make the Al agent seem more relatable and capable (Fui-Hoon Nah et al., 2023;
Harrington, 2023; Ye et al., 2023). The interaction can feel so natural, that people feel
compelled to say “please” or “thank you” when interacting with the chatbot (Pang, 2023).
The human-like or social cues can lead people to mistakenly attribute intelligence or
emotional understanding to these chatbots, even though they lack these capabilities.
As a consequence, people tend to base their level of trust on attributed characteristics
rather than on actual experiences with the agent itself (Culley & Madhavan, 2013; Ye et
al., 2023), creating a discrepancy between the perception and its actual capabilities (Zhan
et al., 2023). As such, anthropomorphism can lead to misplaced trust and inappropriate
reliance. Therefore, scholars caution that anthropomorphic characteristics must be used
with careful consideration (Culley & Madhavan, 2013; de Visser et al., 2016; Taenyun
Kim & Song, 2021), especially in a military context (J. Johnson, 2024).

14
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Trust violation

Following trust formation, the focus shifts to trust violations. Erroneous, unexpected, or
unfavourable Al agent behaviour can lead to a negative experience for the human trustor
and result in a violation of trust. In other words, a trust violation can have different causes.
However, most current Human-Robot Interaction (HRI) and Human-Al Interaction (HAI)
trust repair literature mainly focuses on repairing trust violations that result from errors,
technical failures or other forms of reduced reliability and performance of the Al agent
(Cameron et al., 2021; de Visser et al., 2016; Esterwood & Robert, 2023b; Fratczak et
al., 2021; Hald et al., 2021; Taenyun Kim & Song, 2021; M. K. Lee et al., 2010b; Mirnig
et al., 2017; Robinette et al., 2017b; Salem et al., 2015; Wang et al., 2018). Yet, losses
of trust may arise not just from an Al agent’s failure to complete a task correctly, but also
from performing the task in unexpected ways, or from performing the task in a manner
that conflicts with a person’s goals or preferences.

These latter two issues have not received much attention in the HRI/HAI literature
yet, but they will become increasingly important as Al agents evolve and transition
from isolated tools to more social roles with greater autonomy, execution flexibility, and
decision-making authority in complex environments. | will briefly elaborate on these three
types of trust violations.

As noted above, the primary cause of trust violations is poor performance or failure,
defined as “a degraded state of ability which causes the behaviour or service being
performed by the system to deviate from the ideal, normal, or correct functionality”
(Brooks, 2017) (p.9). Regardless of the advancing capabilities of Al agents, their abilities
will inevitably remain a source of potential trust violations. Al may not always perform
optimally due to either technical issues or environmental circumstances (e.g., snow,
smoke, dust, noise, vibrations, humidity, extreme temperatures, limited bandwidth or
network congestion). All kinds of environmental factors can pose challenges for Al systems,
impacting their reliability, accuracy, and overall performance. Additionally, in complex and
unpredictable situations, such as military operations and city traffic, there will often be
uncertainty about the appropriate course of action. Al agents lack common sense and
are unable to fully comprehend context and may come to conclusions that are considered
inappropriate in a given situation. Al agents may not understand basic concepts or
principles that humans take for granted, leading to erroneous interpretations of (social)
information or situations. Concludingly, machine performance, just as the performance
of people, will rarely be perfect (Greenberg & Marble, 2023).

Second, trust violations might be increasingly caused by Al agents executing tasks
in unexpected or incomprehensible ways. As Al agents become more autonomous,
task delegation can become more goal-oriented, giving the Al agent greater degrees
of freedom in execution. In short, this implies telling the Al agent what to do instead of
how to do it. When the Al agent lacks appropriate interpretability, meaning it cannot
explain itself in a way that aligns with the cognitive capacities of a human operator at
that moment (Lubars & Tan, 2019), this can lead to miscomprehension. When a human
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operator does not understand what an Al agent is doing, it can become difficult for them
to trust the Al agent’s decisions or behaviours during collaboration (Lyons et al., 2023).
Given the anticipated advancements in Al agents’ ability to self-select courses of action,
it is increasingly likely that humans will fail to understand what the Al agent is doing at
all times, which could potentially undermine trust.

Third, trust violations may increasingly stem from misaligned values between the trustor
and the trustee. Al agents are increasingly deployed in more complex environments, where
they will encounter trade-offs, i.e., situations that require choosing between conflicting
goals or resources by weighing options and prioritizing one over the other. In solving
such conflicts, they may chose a solution or operate in a way that does not align with
the preferences or priorities of a human operator. Trade-off decisions mean that to gain
something, one has to lose something in return. This dynamic can lead to potential trust
violations; for example, when an Al agent makes a decision that prioritizes the collective
over an individual’s interests, that individual may lose trust. Notably, as will be discussed
in more detail later, Al agents lack intentionality, so the choices and preferences reflected
in an Al agent’s behaviour in such trade-off decisions are simply the result of how they
are programmed. As such, they ultimately embody the intentions, values and purpose of
their developers (J. D. Lee & See, 2004). Nevertheless, the implications of these design
choices can cause people to lose trust in the Al agent, not because it does not perform
properly, but because it does not align with the values and priorities of the people it
interacts with.

Trust repair
In some cases, decreases in perceived trustworthiness are a logical and functional
adaptive response to suboptimal performance or unexpected behaviour, and they play
a crucial role in trust calibration. However, sometimes trust violations lead to undertrust.
Since trust is essential for effective collaboration, these trust violations would make it
necessary for an Al agent to actively engage in attempts to repair trust (Baker et al., 2018).

Visser et al. (2018) emphasized that trust repair is a fundamental aspect of healthy
relationships and therefore becomes increasingly important as we transition from simple
‘interactions’ with machines towards something that resembles ‘relationships’ (de Visser
et al., 2018). Equipping Al agents with strategies to maintain and repair trust would
allow sustainable, long-lasting and trusting relations, in spite of the inevitability of trust
violations. However, the dynamic and multifaceted nature of trust makes it complicated
to determine when and how repair mechanisms are successful in restoring broken trust.
Hence, more research is needed on trust repair across different contexts.

| roughly divide trust repair strategies along two dimensions: preventative versus
reactive, and informational versus affective (Figure 1). With reactive repair strategies, an
Al agent addresses a trust violation after it occurred, such as by acknowledging or denying
responsibility, expressing regret or providing explanations. Additionally, maintaining a
certain level of trust amid uncertainty and potential errors may also necessitate preventative

16
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measures. Preventative repair strategies can proactively address potential trust issues
before they escalate by, for example, disclosing information about the uncertainty
associated with certain recommendations as a way of expectation management. The
informational versus affective dimension pertains to the degree of information content (e.g.,
explaining the cause of an event) and the degree of affective content (e.g., expressing
regret, such as ‘| am sorry’) included in the trust repair strategy (Pak & Rovira, 2023). |
will briefly discuss informational and affective trust repair strategies.

informational
communicating providing
uncertainty an explanation
preventative reactive
expressing
regret
affective

Figure 1 Overview of the three types of trust repair strategies evaluated in this dissertation, categorized
along two dimensions: preventative versus reactive, and informational versus affective.

Informational repair

Informational trust repair strategies focus on clarifying facts (Xie & Peng, 2009), reducing
uncertainty and providing the information needed to reason about the situation and (re)
assess the agent’s reliability. A key component in informational trust repair strategies
is offering transparency. System transparency refers to the degree to which the inner
workings, decision-making processes, and capabilities of an Al agent are made clear
and understandable to users (C. A. Miller, 2020). Without a clear understanding of a
robot’s decision-making mechanism, humans might find it difficult to trust or adhere to
a robot’s decisions, especially when those actions or decisions contradict the human’s
expectations (Luebbers et al., 2023). Informational repair strategies aim to help people
better comprehend and predict the Al agent’s behaviour.

Explanations are a typical informational strategy used to maintain and repair H-Al
trust, but are not always successful (e.g., Cameron et al., 2021; Hald et al., 2021;
Kohn et al., 2018; M. K. Lee et al., 2010). The field of explainable Al (XAl), concerned
with developing Al systems that can explain their decisions and actions in a way that is
understandable to humans, is large and complex, which indicates that providing a good



Chapter 1

explanation is challenging. Explanations are not just about providing information; they
occur within a social context, usually as part of a conversation or interaction between
two or more people. When giving an explanation, the explainer must consider what
they believe the explainee (i.e., to whom an explanation is directed) already knows or
believes and tailors its explanation based on those assumptions (T. Miller, 2017). For
example, an explanation that is understandable to an oncologist may not necessarily
be comprehensible or logical to an internist. An event may have many causes, but each
explainee cares about a different subset of those causes, dependent on their knowledge,
goals and the specific context (T. Miller, 2017).

Furthermore, it is not always necessary for humans to fully understand every decision
or action taken by an agent. The goal is to achieve a suitable balance between offering
enough insight and preventing information overload (Baker et al., 2019). As such,
transparency can be described more comprehensively as the information that a human
operator may need or want when dealing with Al agents under high stress, workload,
and uncertainty (Lyons, 2013). In other words, the level of desired system transparency
will vary across contexts. In addition to the impact that stress and workload might have
on the cognitive capacities and available mental space of a human operator at any given
moment, every human operator is different and may require or desire different information.
Transparency is therefore not merely a property of the Al agent but an emergent property
of H-Al collaboration (Ososky et al., 2014).

Another form of informational repair is explored in Chapter 2, where the agent includes
information about the uncertainty associated with a certain observation in its advice.
Additionally, we evaluate the effectiveness of combining informational and affective
repair strategies.

Affective repair

Affective repair strategies are trust repair strategies with affective, emotionally appealing
content (Pak & Rovira, 2023). Affective strategies aim to restore the emotional “connectivity”
between the trustor and the trustee (Lewicki & Brinsfield, 2017). An apology, “a statement
that acknowledges both responsibility and regret for a trust violation” (P. H. Kim et al.,
2004) (p.105), is a common example of an affective repair strategy (Xie & Peng, 2009).
These strategies focus on restoring positive feelings of trust by acknowledging how
certain behaviour might have negatively impacted the other party.

Unlike informational strategies, affective trust strategies are suggested to be
relatively unaffected by workload because they are less information-rich and processed
more automatically (Pak & Rovira, 2023). In complex, uncertain, or high-risk situations,
people can experience attentional overload, which triggers automatic processing based
on fast and effortless biases and heuristics, with much of causal reasoning occurring
outside conscious awareness (Kahneman, 2011). Emotions can help people focus their
limited attentional capacity by filling gaps in rational thought (Loewenstein et al., 2001).
When cognitive resources are insufficient for rational decision making, feelings may guide
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behaviour (J. D. Lee & See, 2004). Lee and See note that, in both H-Al and interpersonal
(i.e., human—human) trust literature, the influence of affect is typically undervalued, while
the impact of cognitive capacities is often exaggerated (J. D. Lee & See, 2004). Affective
aspects of trust presumably have the most direct impact on behaviour, as people not only
think about trust but foremost feel it (Fine & Holyfield, 2006). The effect of emotional
cues might be quicker as they are thought to require less deep processing, but their
effects might also be more volatile (Pak & Rovira, 2023).

While apologizing is typically considered a human behaviour, research has shown
that expressions of regret can also be effective when coming from artificial agents
(e.g., T. Kim & Song, 2021; Perkins et al., 2022; Robinette et al., 2015; Zhang,
Lee, Kim, et al., 2023; Zhang, Lee, Maeng, et al., 2023). More broadly, the use of
anthropomorphic cues has been studied as a strategy to manage trust (de Visser
et al., 2016; de Visser, Monfort, et al., 2017; Taenyun Kim & Song, 2021; Pak et al.,
2012; Quinn et al., 2017; J. Xu & Howard, 2022). However, it remains questionable
whether strategies adopted from interpersonal interaction are desirable in H-Al interaction,
due to the previously mentioned effects of anthropomorphism.

Designers of Al agents already employ such strategies inspired by interpersonal
interactions. For example, ChatGPT apologizes when an answer does not satisfy
its user. Yet, it remains inconclusive if and when such strategies can be safely and
effectively transferred to situations in which technology becomes the trustee. Researchers
have suggested that the future design of Al agent should draw from the social sciences
and the extensive literature on trust repair in human psychology (de Visser et al., 2018;
Taenyun Kim & Song, 2021). However, findings from interpersonal interactions cannot
be directly applied to H-Al interactions and must be tested and validated (de Visser et
al., 2018).

Human-Human trust vs. H-Al trust

One reason why findings from interpersonal trust literature cannot be automatically
extrapolated to human—Al interactions is that, among other things, Al agents lack moral
agency, intentionality, and reciprocity, which are fundamental elements of trust between
people (J. D. Lee & See, 2004). Consequently, there is ongoing debate in literature about
whether interpersonal trust and H-Al trust are fundamentally different or similar concepts
(Atkinson et al., 2012; Baker et al., 2018; Hannibal & Weiss, 2022).

Interpersonal trust is often said to depend on how a trustor perceives the ability,
benevolence, and integrity of a trustee, known as the ABI model (Mayer et al., 1995). In
this model, ability refers to expectations about the competence and skills of the trustee;
benevolence refers to expectations about caring and supportive motives, including
loyalty and value congruence; and integrity refers to expectations about a consistent
adherence to sound principles (Mayer et al., 1995). The critique of using the terms
“integrity” and “benevolence” for machines is that machines are not moral agents and
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should not be framed as such, as this creates incorrect expectations about their capabilities
and responsibilities (Cameron et al., 2023; J. D. Lee & See, 2004). Researchers have
proposed alternative conceptualizations of human—automation trust, linked to system
properties such as its performance (i.e., what the automation does), purpose (i.e., why it
was developed) and process (i.e., how it operates) — referred to as the PPP model (J.
D. Lee & Moray, 1992; J. D. Lee & See, 2004). In essence, both classifications relate to
the what, why, and how of the trustee’s actions, respectively.

While it makes sense to link H-Al trust to the properties of the system (e.g., PPP)
rather than its intentions (e.g., ABI), given that Al systems inherently lack intentionality,
people are nevertheless likely to attribute characteristics such as motivations, intentions,
and agency to machines. This tendency is especially common when machines behave
in a way that people might interpret as intentional, such as making decisions or offering
suggestions (de Graaf & Malle, 2017; Hannibal & Weiss, 2022). Ultimately, trust revolves
around people’s perceptions. This rationale bears resemblance to what philosopher
and cognitive scientist Dennett terms the intentional stance: a method of interpreting an
entity’s behaviour by treating it as if it were a rational agent that governs its ‘choice’ of
‘actions’ based on a ‘consideration’ of its ‘beliefs’ and ‘desires” (Dennett, 1981; Duffy,
2003). Dennett states that “on occasion, a purely physical system can be so complex,
and yet so organized, that we find it convenient, explanatory, pragmatically necessary
for prediction, to treat it as if it had beliefs and desires and was rational” (Dennett,
1981) (p.8). Hence, in this thesis, | will use the ABI terminology and operate under the
assumption that trust in machines can, to some extent, be understood through the lens
of interpersonal trust, while acknowledging the crucial differences between the two
(Hoffman, 2017; Hoffman et al., 2013).

A multi-dimensional conception of trust entails that trust can be ascribed to particular
aspects or components of an agent (Hou et al., 2021; Langer et al., 2019). As such,
trust is the outcome of considering different perceptions of trustworthiness. Trust is the
act of placing confidence in another, while perceived trustworthiness pertains to the
characteristics and behaviours of the trustee that contribute to the trustor’s decision to
trust or not.

The distinction between different perceptions of trustworthiness (i.e., ability,
benevolence and integrity) is especially interesting when it comes to trust violations
and repair. As trust is not merely based on an Al agents abilities and performance, trust
violations are not solely caused by failure. The originality of this thesis lies in its exploration
of trust violations stemming not only from poor performance but also from deliberate,
comprehensible, yet impactful decisions made by Al agents that affect a human operator.
It does so within realistic task environments and corresponding scenarios designed to
simulate domain-specific interactions.
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Current research

This thesis investigates how the nature of a trust violation and different repair strategies
(preventative and reactive, cognitive and affective) influence the maintenance of trust
in Al agents in a HAT. | will cover three types of trust violations, stemming from 1) the
inadequate abilities of the Al agent, 2) the Al agent’s incapacity to explain itself, and 3)
perceived value misalignment (Lubars & Tan, 2019). In other words, violations in respect
to what an Al agent does, how it operates, and why it acts in a certain way.

Data for these studies were obtained using a series of game-like virtual task
environments portraying military scenarios experienced from a first-person point of
view. Military scenarios were employed because the studies were conducted as part of
research projects commissioned by the Ministry of Defence, conducted by TNO (Kox
et al., 2019). For each study, we invested significant effort in designing and developing
both the military scenarios and the virtual task environments. Our objective was to
simulate authentic potential H-Al circumstances as well as realistic operational settings.
In the environments, participants carried out virtual military missions in collaboration
with an Al agent, which featured different embodiments (Figure 2). By creating these
detailed and immersive environments, we aimed to provide a more accurate and practical
understanding of potential trust violations in HAl and to make our findings relevant and
applicable to real-world military operations. In the following, | will provide a brief overview
of each chapter, outlining their key focus areas and contributions to the broader themes
of this dissertation.

Figure 2 Overview of the different types of Al agent embodiments evaluated in this dissertation, along
with a human partner, who is also evaluated in one of the studies. Numbers correspond to the relevant
chapters where they are presented.
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Chapter 2 and 3 examine the effects of trust violations due to the inadequate abilities
of the Al agent. In Chapter 2, participants are assigned to return to basecamp as fast as
possible after running out of ammunition, together with a large quadruped robot (a robot
with four legs). Halfway, the Al agent fails to warn the participant for an approaching
enemy. Following this failure, the agent employed one of four trust repair strategies: an
explanation or an expression of regret either individually, combined, or neither (Kox et
al., 2021).

In Chapter 3, participants witness a house search in an abandoned building supported
by a drone. The Al agent fails to warn the participant for a hazard. Here, we studied the
effects of uncertainty communication (i.e., “danger detected with x% certainty”) and an
apology (i.e., a combination of an ability-based explanation and an expression of regret)
on the development of trust in a robotic partner, before and after trust has been violated
respectively. Here we also investigated whether findings are consistent across different
participant groups (i.e., a civilian vs. military sample) (Kox, Siegling, et al., 2022).

Chapter 4 studies the effect of a trust violation due to unexpected Al agent behaviour
and the Al agent’s incapacity to explain itself. A quadruped robot finds a faster alternative
route that emerged due to changes in the environment (i.e., the river had dried up) and
decides to deviate from the original plan during a reconnaissance mission. We studied
the effect of transparency (i.e. regular status updates and an explanation for deviation)
and outcome (i.e., goal attainment) on the perceived trustworthiness of a robotic partner
in case of an unexpected deviation from the expected manner to reach a delegated goal
(Kox, van den Boogaard, et al., 2024)

Chapter 5 examines the impact of a trust violation caused by priority misalignment. In
this study, the Al agent, again a quadruped robot, does not warn the participant in time
for a hazard down the road. In one condition, the agent explains that this failure was due
to an underperforming sensor, similar to the explanation in Chapter 3. In the alternate
condition, the Al agent explains that it deliberately recommended the faster route over the
safer one, prioritizing timeliness and collective safety over individual safety. Furthermore,
we examined whether these effects vary depending on whether the partner was human
or robotic (Kox et al., n.d.)

Additionally, we explored the possibilities of virtual reality (VR) in related studies
that are not included in this dissertation (Kox, van Riemsdijk, de Vries, et al., 20243,
2024b). While these studies address research questions relevant to the broader themes
of this work, they faced significant challenges, including technical limitations and the
overwhelming nature of VR environments for participants, which impacted the ability to
collect sufficient valid data. Despite these limitations, the details of these studies remain
accessible online and contribute to the broader context of related research.

Although each chapter was originally written as a standalone piece, adjustments were
made to integrate them into this dissertation. To avoid repetition, overlapping content,
such as repeated definitions of Al agents, HATs and trust, has been consolidated or
removed where appropriate.
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Abstract

The role of Al agents becomes more social as they are expected to act in direct interaction,
involvement and/or interdependency with humans and other artificial entities, in Human-Al
Teams (HAT). Effective teamwork requires trust, yet, trust violations are inevitable. Since
repairing damaged trust proves to be more difficult than building trust initially, effective
trust repair strategies are needed to ensure durable and successful team performance.
This study examined the effectiveness of various trust repair strategies by measuring the
development of human-Al trust and advice taking over several timepoints in a first-person
shooter resembling task. Participants (N = 66) collaborated with a robotic Al agent in a
virtual military mission, where the Al agent halfway failed to detect an enemy, triggering
a trust violation. The Al agent then employed one of four trust repair strategies (between-
subjects), involving combinations of apology components: explanation and expression
of regret (either one alone, both or neither). Results showed that expressing regret was
crucial for trust repair, with greater recovery when both regret and explanation were

offered. Finally, the implications of our findings for the design of Al agents are discussed.



Chapter 2

Introduction

As Al agents gain autonomy, their role shifts to a more social dimension, where they
act in direct interaction, involvement and/or interdependency with humans and other
agents (Akata et al., 2020; M. Johnson et al., 2011; Peeters et al., 2021). As a result,
Al agents are no longer merely viewed as tools that complete certain tasks in isolation.
Instead, they are increasingly viewed as entities with which people can develop unique
social relationships (Madsen & Gregor, 2000; Serholt & Barendregt, 2016). Equipping Al
agents with social and teaming capabilities is changing how people interact with them,
while simultaneously introducing new challenges.

Teamwork

Successful human teams excel in both taskwork and teamwork. Taskwork is defined as
the interaction of individual team members with tasks, tools and systems, while teamwork
represents a set of interrelated thoughts, actions, and feelings of each team member that
are needed to function as a team through coordination and cooperative interaction (Salas
et al., 2005). In other words, human teamwork largely depends on a variety of internal
processes that are partly unconscious and often communicated implicitly (Kahneman,
2011). Implicit communication includes emotional, nonverbal exchanges that are, although
at times subtle, a crucial complement to the explicit information in a verbal interpersonal
exchange (J. D. Lee & See, 2004). Unconscious reasoning and implicit communication
are typically human skills. It enables important aspects of human teamwork, such as
understanding responsibilities, norms and interaction patterns (Ososky et al., 2012a). It
allows us to create a shared understanding and to assess other members’ commitment
to the task or the social intent in their communication (Razzouk & Johnson, 2012). As
human teams will increasingly be complemented by Al agents, new challenges arise on
whether Al agents can effectively participate in team processes as we understand them
today (Ososky et al., 2012a).

Given that even the most advanced Al agents will be fundamentally different from
human team members and will have fewer social abilities, the question whether the
psychological mechanisms that shape human collaboration will still operate in the same
way arises. As technology matured over the last decades, the relationship between
humans and machines fundamentally changed. It has become more social, as human
operators are no longer the main controller, but increasingly share control with artificial
counterparts. With the introduction of artificial team members, researchers explored
whether humans apply the same rules to computers, machines and robots as they would
to fellow humans.
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Social agents

According to the CASA-paradigm (Computers Are Social Actors), people treat computers
as if they were social actors, applying the same social rules, norms, and expectations
to their interaction with computers as soon as social cues pertaining to, for example,
personality traits or gender, are provided (J. E. R. Lee & Nass, 2010). Incorporating
such social cues in Al agents can trigger anthropomorphism, i.e. the tendency to make
organic attributions to inorganic entities (Ososky et al., 2012a). Anthropomorphism, in
turn, may cause human operators to generate a more sympathetic and user-friendly
mental representation of the agent (Culley & Madhavan, 2013). On the one hand,
anthropomorphism can be beneficial, as humans are more likely to collaborate with Al
agents if they show the same qualities and traits that allow humans to team with other
humans (Teo et al., 2019). Culley and Madhavan (Culley & Madhavan, 2013), on the
other hand, argued that including anthropomorphic cues may have a considerable impact
on the calibration of trust in an agent, as it strengthens the human tendency to attribute
human features to non-human entities. As a result, a human might base its level of trust
on characteristics attributed to the agent, rather than on actual experiences with the agent
itself and trust may turn out to be misplaced (Culley & Madhavan, 2013).

However, other research suggests that human-agent interaction is qualitatively different
from interpersonal interaction (De Melo et al., 2015; de Visser et al., 2016; Madhavan
& Wiegmann, 2007). Recent developments in autonomous driving, for instance, show
that although self-driving cars are statistically safer than human drivers, fatal accidents
involving self-driving cars evoke a stronger public response than accidents involving
human drivers (Shariff et al., 2017). Research shows that even a single error from a robot
strongly affects a person’s trust (Robinette et al., 2017b). Research suggests that people
often consider a machine as nearly infallible and that they have a natural tendency to
follow the advice of automation, a phenomenon known as the automation bias (Wright
et al., 2016). These high expectations result in a steeper decline in trust in case of a
machine failure than it would in case of a human error, as humans are considered to be
inherently fallible (Madhavan et al., 2006; Madhavan & Wiegmann, 2007). This is in line
with the notion of algorithm aversion, the tendency for people to more rapidly lose faith in
an erring decision-making algorithm than in humans making comparable errors (Shariff
et al., 2017). Apparently, trust violations by machines are viewed and judged differently
than trust violations by humans (Hidalgo et al., 2021).

As Al technology matures, agents will become more social and more frequently
deployed in social roles. Therefore it seems likely that people will increasingly treat Al
agents as social actors and more readily apply the same rules, potentially triggering
undesirable biases and heuristics. The challenge is to incorporate social skills in a way
that supports human-agent teaming and calibrated trust, without being misleading.
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Trust repair

Given the complexity and unpredictability of many situations in which Al agents are
deployed, like military operations and city traffic, agents will not always be able to make
perfect decisions or come to correct conclusions. Hence it is conceivable that an Al
agent will at some point in time provide their human teammate with an incorrect advice.
An incorrect advice and its potentially damaging consequences may lead to a decrease
in trust and in the willingness to accept further information from the agent, and as a
consequence, limited benefit from the advantages that Al agents have to offer (Freedy
et al., 2007; Hancock, Billings, Schaefer, et al., 2011b). In addition, it has been shown
that repairing damaged trust is more difficult than building trust initially (P. H. Kim et
al., 2004), which further underscores the importance of effective trust-repair strategies.

Interpersonal trust-repair strategies

In interpersonal trust literature, multiple strategies for trust repair are found, such as
ignoring the occurrence of the trust violation, denying responsibility for the violation, or
apologizing for the violation (de Visser et al., 2018; P. H. Kim et al., 2004, 2006). The
current chapter will focus on apology, as this is the most common trust repair strategy
(Lewicki et al., 2016). Providing an apology is a way for the apologizer to show an
understanding of the “social requirement” for an apology when any sort of trust violation
has occurred; the apologizer acknowledges that she is aware that she has done something
that made the other person feel disadvantaged or hurt. Additionally, the apology may
include an emotional expression that could provide context for the apologizer’s intentions,
for example ‘If | had known that the book was that important to you, | would never have
given it away” (Lewicki et al., 2016).

An apology can consist of multiple components, including 1) an expression of regret
about the costly act (i.e. | am very sorry), 2) an explanation of why the failure occurred, 3)
an acknowledgement of responsibility for the mistake, 4) an offer of repair, 5) a promise
that it will not happen again in the future, and 6) a request for forgiveness (Akgun et
al., 2010; de Visser et al., 2018; Lewicki et al., 2016; Olshtain & Cohen, 1983). Some
components are more common than others. An analysis by Lewicki & Polin (2016) found
that apologies usually included an expression of regret and an explanation for why the
violation occurred. Other apology components were less common, less clear or not at
all included in the apologies that were found. In interpersonal interaction, trust violations
are shown to result in less damage when apologies for the violation had been provided,
compared to when no apologies had been given (P. H. Kim et al., 2004; Tomlinson et
al., 2004). Furthermore, research suggests that the composition of an apology matters.
An older study in which the number of apology components was manipulated showed
a linear trend, where more apology components were perceived as more effective than
fewer components (Scher & Darley, 1997). This implies that the more extensive the
apology, the smaller the damage.
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Non-human apology
Research findings of studies dedicated to the effects of apologetic messages by computers
and other forms of automation are somewhat ambiguous. Generally, research shows that
providing an apology can benefit the feelings of the human towards an artificial entity
(Akgun et al., 2010; Brave et al., 2005; Dzindolet et al., 2003; Scher & Darley, 1997;
Tzeng, 2004). Studies that looked at human-agent trust found that agents that expressed
empathetic emotions towards the human (e.g. “l am sorry” or “I apologize”) were trusted
more than agents that did not (Brave et al., 2005; M. K. Lee et al., 2010a). Moreover,
people are more likely to trust and rely on an automated decision-support system when
given an explanation why the decision aid might err (Dzindolet et al., 2003), or when
they inferred such explanations after observing system behaviour themselves (de Vries
et al., 2015).

The effectiveness of a trust repair strategy seems to depend on situational factors such
as timing (Robinette et al., 2015), violation type (Sebo et al., 2019; Tolmeijer et al., 2020)
and agent type (Taenyun Kim & Song, 2021). Research on the effect of timing suggests
that apologies for a costly act were only effective when performed not immediately after
the violation occurred, but rather when a new opportunity for deciding whether to trust
the robot arose (Robinette et al., 2015). In terms of violation types, an apology appears
to be the most effective trust repair strategy after a robot performs a competence-based
trust violation, whereas denial proves to be more effective in case of an integrity-based
violation (Sebo et al., 2019). Other research suggests that for human-like agents, apologies
were the most effective when attributed internally, whereas for machine-like agents
apologizing with an external attribution was more effective (Taenyun Kim & Song, 2021).

Humans have a natural tendency to follow the advice of automation, even when they
do not know the rationale behind the suggestions, which can lead to overtrust. Insight
into agent reasoning appears to allow the human to effectively calibrate their trust in the
agent, which reduces this automation bias and improves performance (Wright et al., 2016).
Other research on apologies focused mainly on performance. Akgun et al. (Akgun et al.,
2010) found that apologetic error messages that included both an expression of regret
and an explanation had a positive effect on participants’ self-appraisals of performance,
when interacting with a system that errs. Tzeng (2004) showed that the provision of brief
apologetic feedback (i.e. “Sorry, this is not a correct guess” or “We are sorry that the
provided clues were not very helpful for you”) did not affect the user’s overall assessment
of the program, but did make the participants feel better about their interactions with
the program and think of the computer as less mechanical and more sensitive to their
emotions. New approaches are needed to understand the potential impact of apologetic
messages from non-human agents on human-agent trust.
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Current study

The aim of this study is to investigate the effect of the apology components expression
of regret (i.e. “| am sorry”) and explanation on the development of trust, after it has been
violated. The experimental environment resembles a first-person shooter game where
participants carry out a mission whilst being advised by an Al agent. The Al agent is
represented graphically as a virtual robot. An encounter with the enemy after an incorrect
advice from the agent is expected to cause a violation of trust and a drop in people’s
willingness to accept subsequent advice (Robinette et al., 2017b). Intentionally breaking
trust allows us to examine the effectiveness of different strategies in the trust repair phase.
Immediately after the violation has occurred, the agent attempts to repair trust by offering
an apology that consists of an expression of regret or an explanation, a combination of
both, or neither. The main research question is how trust develops over time when an
Al agent uses different strategies to repair trust after a trust violation has occurred. We
expect to find an effect for both expression of regret and explanation. The combination
of components is expected to be the most effective strategy for trust repair.

Method

Participants

The dataset included sixty-six participants (29 W, 37 M, Mage =24.6, SD = 5.6, range
=19 — 55 y), most of them students at the University of Twente. The participants were
recruited through SONA, a test subjects pool at the University of Twente. Participants
received credits for participation. In addition, the fastest participant to finish the experiment
received a prize of 50 euros.

Design

A 2 (Regret: provided or not) x 2 (Explanation: provided not) between-subjects design
was used. Regret and Explanation were both manipulated between-participants. The
main dependent variables were Trust and Advice Acceptance. Participants were randomly
assigned to one of the four trust-repair conditions (explanation only: n = 18; regret only: n
= 16; neither: n = 14; both: n = 18). ‘Time’ was included as a within-participants variable
in the analysis to refer to the different measurements of trust and advice acceptance
(T1, T2, T3).
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Task and procedure

The experimental environment that was built in Unity3D resembled a first-person shooter
game. Participants carried out a mission whilst being advised throughout the game by
their artificial team member with its robotic embodiment (Figure 3). For the control of
the Al agent, the Wizard of Oz method was used; the agent was controlled by one of
the experiment leaders in an adjacent room, while the participant was kept under the
impression that it was operating autonomously.

Figure 3 Screenshot of the virtual task environment, designed to resemble a first-person shooter game,
depicting the robotic agent navigating a hilly, green landscape.

Upon arrival at the laboratory, participants were greeted by the researcher and guided
to a private room where the study was to be conducted. The researcher provided a brief
introduction to the study, emphasizing the general purpose and the tasks participants
would be asked to perform. Participants were presented with an information sheet about
the study and a consent form. Upon agreeing to participate, participants filled out a
pre-study questionnaire (i.e., demographics) and received more detailed information
regarding the scenario and task. After that, participants were provided with headphones
to hear the auditory messages from the agent and started with a training session to get
familiar with the controls and to test the volume of the audio.

For the actual task, participants were instructed to head back to basecamp as fast
and careful as possible, since they were running low on ammunition. In addition to getting
from A to B as fast as possible, they had to watch out for enemies along the way. The
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basecamp was marked by a red flag and located on top of a mountain. The basecamp
was visible for most of the route, so participants knew what direction to go. At three
points throughout the scenario, the agent provided the participants with information
on whether it detected enemies or not and the corresponding advice to take shelter or
continue moving. The agent communicated through auditory messages. Although the
task environment resembled a first-person shooter game, participants were told to avoid
hostile contact due to their ammunition shortage.

Participants were told that, after an advice was given, the game would pause and they
were asked to turn to a second screen and to rate their willingness to accept the agent’s
advice through a single-item questionnaire. Advice acceptance was always measured
directly after the participant received an advice. Figure 4 provides a schematic timeline
of the experiment. Participants were told that by answering the question, they made their
decision to accept the advice or not; they did not actually have to seek shelter when
they returned to the game. Participants were told that during the questionnaire break,
ten minutes had passed in the game.

Feedback 1 Feedback 2 Trust repair Feedback 3
Advice 1 Advice was Confrontation manipulation Advice 3 Advice was
vice

correct Advice2  \ithanenemy  ------------ Move correct

Move forward i Neither | Expl. | forward ‘
. . ' |
E Regret | Both |

 EEEE DENE ® DEEE

start pre-violation violation trust repair post-repair attempt finish

Seek shelter

Figure 4 Schematic timeline of the experiment. Each phase consisted of 1) an advice from the agent, 2)
an advice acceptance questionnaire (clipboard icon with the letter A), 3) a moment of feedback (verbal
or experienced), and 4) a trust questionnaire (clipboard icon with the letter T)

A few moments after continuing the game, participants received feedback from the agent
on whether the advice had turned out to be correct or not. Feedback was either provided
by the agent itself through a auditory message (e.g. “The advice | gave you was correct”),
or by an external event (i.e. the appearance of an enemy, indicating that the advice to
move forward had been inaccurate).

The agent’s first advice was correct (see Table 1). The agent’'s second advice was
incorrect, resulting in the encounter with the enemy and provoking a trust violation. During
this encounter with the enemy, participants could only continue once they had eliminated
the enemy with their firearms. During the confrontation, the enemy kept shouting and
the periphery of the screen coloured red to create a sense of threat. Participants did not
know that they actually had an endless supply of ammunition or that the enemy could
not eliminate them in the game. Although some took longer than others, in the end every
participant succeeded in eliminating the enemy. The rationale behind this confrontation
was to startle the participant and to provoke a trust violation. There were no further
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consequences to their performance on this part of the task. After receiving feedback,
the game paused again and participants were asked to fill out the trust questionnaire
on the second screen.

Table 1 Overview of messages from the agent throughout the experiment.

Type of message Message from the agent

Advice 1 | have detected enemies, so | advise you to take shelter

The advice | gave you was correct. The enemy was getting closer, and

Feedback 1 if you had not taken shelter, you would probably have been discovered
by now.

Advice 2 | am not detecting any enemies, so | advise you to move forward

Feedback 2 -

Trust repair manipulation  See Table 2

Advice 3 | have detected enemies, so | advise you to take shelter again
The advice | gave you was correct. The enemy was getting closer, and

Feedback 3 if you had not taken shelter, you would probably have been discovered
by now.

A few moments after continuing the game after the second trust measure (i.e. violated
trust), the trust repair manipulation followed. The agent offered an apology that consisted
of either an expression of regret or an explanation, a combination of both, or neither.
To assess the effect of the trust repair strategy, both advice acceptance and trust were
measured directly after the third advice. The third advice was again correct, but this
performance feedback about the last advice was provided later on to avoid interference
with the effect of the trust repair manipulation. After the participant finished the game, a
final questionnaire measured the concepts ‘anthropomorphism’, ‘likeability’, ‘perceived
intelligence’, ‘perceived usefulness’, ‘feeling’, ‘game experience’ and demographics.

The auditory messages by the agent are displayed in Table 1 and were the same for alll
participants. The trust repair message varied between participants as it depended on the
factors Explanation and Regret (Table 2). Messages from the agent were communicated
through computerized speech. Speech was created using an online website for converting
text into speechOF", using a male voice speaking US English.

Table 2 The different messages from the agent at ‘repair’ in the four combinations of the factors Explanation
and Regret.

1 Text was converted to speech with http://www.fromtexttospeech.com/, using the voice ‘John’in US
English at medium speed.
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Regret No regret

The advice | gave you was wrong. The The advice | gave you was wrong.

enemy was carrying a weapon of an The enemy was carrying a weapon
Explanation ally, because of that, my classification  of an ally, because of that, my

led to an incorrect conclusion. | am classification led to an incorrect

really sorry. conclusion

The advice | gave you was wrong. The advice | gave you was wrong.

No explanation
| am really sorry.

Measures

Advice acceptance was measured repeatedly by a single item, asking participants “how
likely is it that you will follow your buddy’s advice?” on a seven-point scale ranging from
‘extremely unlikely’ to ‘extremely likely .

Trust in the agent was repeatedly measured with an 11 item scale (a = .84) with three
subscales: competence (4 items, e.g., “My buddy has a lot of knowledge on navigating
through this environment.”) (a = .86); benevolence (3 items, e.g., “My buddy puts my
interests first.”) (a = .72); and integrity (3 items, e.g., “My buddy is honest.”) (a = .61).
The items were based on the constructs of McKnight & Chervany (2000). Answers were
rated on a 7-point Likert scales ranging from ‘completely disagree’ to ‘completely agree’.

Perceived anthropomorphism, likeability and intelligence were measured using
the ‘Godspeed’ semantic differentials (Bartneck et al., 2009). Participants rated their
perceptions of their partner on a continuum between bipolar adjective. For each
concept, five word pairs were used, such as ‘artificial’ versus ‘lifelike’ for perceived
anthropomorphism (a = .65), ‘nice’ versus ‘awful’ for likability (a = .86), and ‘knowledgeable’
versus ‘ignorant’ for perceived intelligence (a = .86).

Perceived usefulness of the agent was measured by four items (e.g., “Thanks to my
buddy | was able to decide faster.”) (a = .84), rated on a 7-point Likert scales ranging
from ‘completely disagree’ to ‘completely agree’.

Participants’ feelings during the experiment were assessed with a four item scale,
where each item starts with ‘I felt...”, followed by the words: ‘nervous’, ‘scared’, ‘worried’
and ‘anxious’. Answers were rated on a 7-point Likert scales ranging from ‘completely
disagree’ to ‘completely agree’ (a = .77).

Self-efficacy was measured with three items (e.g., “l am sure of my skills for performing
this task”) (a = .89), rated on a 7-point Likert scales ranging from ‘completely disagree’
to ‘completely agree’.

The demographic items collected information on participants’ age, gender and gaming
experience. Gaming experience was assessed with a single question, asking participants
how often they play computer games, on a 6-point Likert scale ranging from ‘never to
‘more than one hour a day'.
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Results
Advice taking

A Repeated-Measures ANOVA was conducted with the between-subject factors Regret
(present or absent) and Explanation (present or absent) and the within-subject factors
Time (prior to violation [T1] versus after violation [T2] versus after repair [T3]). Here,
advice taking was the dependent variable.

A significant main effect of Time [T1-T3] on advice taking was obtained F(2, 124)
= 40.16, p < .001, partial n? = .39 with means of 5.85 at T1, 6.09 at T2 and 4.43 at T3.
This means that after the first advice turned out the be correct, participants were more
willing to accept the subsequent advice. When the second advice proved to be incorrect
however, participants were less inclined to follow up the advice that was provided after
the trust violation.

There were no statically significant main effects of Regret and Explanation on advice
taking. Nor were there any interaction effects between Time, Explanation and Regret on
advice taking found.

Trust

For the dependent variable Trust, a Repeated-Measures ANOVA was conducted with
the between-subject factors Regret (present or absent) and Explanation (present or
absent) and the within-subject factor Time (prior to violation [T1] versus after violation
[T2] versus after repair [T3]).

A significant main effect for Time [T1-T3] on Trust was obtained (see Table 3). Means
were 5.06 at T1, 4.01 at T2 and 4.44 at T3. All three timepoints were included in the
ANOVA to measure the development of trust. Results of the LSD post-hoc test shows
a significant difference between T1 and T2 (p < .000), which reflects a violation of trust
and a significant difference between T2 and T3 (p < .000), which reflects an overall
trust recovery effect. There were no statistically significant main effects of Regret and
Explanation.
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Table 3 Analysis of Variance (ANOVA) table for the dependent variable Trust.

Source df F p n?
Between-subjects effect

Explanation 1 0.05 0.828 0.00
Regret 1 0.09 0.765 0.00
Regret * Explanation 1 4.32 0.042 0.07
Error 62

Within-subjects effects

Time 2 53.66 0.000 0.46
Time * Explanation 2 1.30 0.277 0.02
Time * Regret 2 3.81 0.025 0.06
Time * Explanation * Regret 2 3.31 0.040 0.05

Time (error) 124
a. Computed using alpha = .05

A significant interaction effect between Time [T1-T3] and Regret on trust was found
(see Table 3). This interaction effect reflects both a difference in how the trust violation
is perceived across different groups and a difference in the degree of trust repair when
the agent provided an expression of regret opposed to when the agent did not provide
an expression of regret in its apology.

A significant interaction effect between Regret and Explanation on trust was found
(see Table 3). This effect reflects a difference in the level of trust between conditions,
averaged over time. None of the other two-way interactions were statistically significant.

A significant three-way interaction effect between Time [T1-T3], Explanation and
Regret on trust was found (see Table 3 and Figure 5). LSD post-hoc analysis shows a
significant difference between groups in how they react to the incorrect advice prior to
T2. On average, the participant group in the condition with both regret and explanation
shows significantly lower levels of trust at T2 compared to participants groups in the
conditions with solely explanation (p = .007) and the condition with solely regret (p =.010)
at T2. There were no other significant differences between groups on specific timepoints.

In order to further investigate this interaction, two separate analyses were conducted
for when regret was absent and when it was present. Splitting the file by regret shows
an interaction effect between Time and Explanation only when regret was present (F (2,
64) = 4,69, p =.013). This means that an explanation only affected trust when the agent
also expressed regret.
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No Expression of Regret With Expression of Regret
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S
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Time

Explanation ¢~ No Explanation 4 With Explanation

Figure 5 A comparison of trust levels (y-axis) across conditions (represented by separate lines) over time
(x-axis). The left panel illustrates trust levels in conditions without an expression of regret and the right
panel shows the conditions with expression of regret. Grey lines correspond to conditions without an
explanation, and black lines represent conditions with an explanation. Error bars represent standard
deviations.

In order to measure the effects of the trust repair strategies, simple effects were calculated
to compare trust scores before and after provision, between T2 (after the violation) and
T3 (after the attempted repair), for each experimental condition. T1 is left out since this
analysis focusses on the effects of the trust repair strategy that occurs between the trust
measures on T2 and T3. As shown in Table 4, increases in trust between T2 and T3
were only significant when an expression of regret was provided. This effect is marginally
significant when no explanation is given (p = .056), and stronger when it is accompanied
by an explanation (p < .001).

Table 4 Simple main effects of Regret, Explanation and Time [T2-T3].

Regret Explanation A time p
0 T2 T3 199
0 1 T2 T3 142
] 0 T2 T3 .056
1 T2 T3 .000

Correlations

For the correlations, initial trust (T1) is used as this is considered the purest trust measure
with the least interference of occurrences during the experiment. Correlations show that
trust was higher when the agent was considered more human-like (n(64) = .45, p <.001),
likeable (r(64) = .45, p <.001), intelligent (r(64) = .48, p <.001) and useful (r(64) = .61,
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p <.001). Furthermore, the higher the level of trust the more likely the participant was to
follow the advice (r(64) = .51, p <.001). With regard to advice taking, participants were
more likely to follow the advice when they perceived the agent as more intelligent (r(64) =
.29, p =.02) and useful (n(64) = .53, p <.001). Trust (r(64) = -.42, p < .001) and willingness
to follow the advice (r(64) = -.26, p = .04) was higher when the participant was younger.

Discussion

The results of this study show that apologies including an expression of regret were
most effective in repairing trust after a trust violation in a human-agent teaming setting.
After an incorrect advice from the agent caused a decline in human trust, trust was only
significantly recovered when an expression of regret was included in the apology. This
effect was stronger when an explanation was added.

Although expressing regret is typically perceived as a human-like quality, these results
suggest that saying sorry also makes a difference in rebuilding trust when it comes from
a non-human agent. In line with the CASA-paradigm, it indicates that the interpersonal
custom of affective apologies can also benefit human-agent interaction (J. E. R. Lee &
Nass, 2010). Our findings are in line with studies that showed that computers expressing
empathetic emotions were trusted more (Brave et al., 2005; M. K. Lee et al., 2010a; Riek
et al., 2009) and studies that find that people prefer to cooperate with virtual agents that
express moral emotions (De Melo et al., 2009). These results support the notion that
apology is an effective trust repair strategy in response to a competence-based trust
violation (Sebo et al., 2019). Current findings contradict earlier findings that indicated
that apologies where not effective when provided immediately after the agent broke trust
(Robinette et al., 2015).The important role of affect in trusting a non-human agent is
strengthened by our finding that trust increased when participants perceived the agent
as more human-like and likeable (de Visser et al., 2016). It suggests that a feeling of
sincerity in the expression of regret by the non-human agent is the most important for
trust repair. This aligns with the belief that affective aspects of trust have the most direct
impact on behaviour, since people not only think about trust, but foremost feel it (Fine
& Holyfield, 2006).This underlines the relevance of using engaging game environments
rather than questionnaires only, since the former method induces physiological responses,
increasing ecological validity. The immersiveness of the game environment used in the
present study sets this study apart from simpler, more superficial questionnaire-based
research and might explain why affect is the predominant factor in our results.

The findings on the effectiveness of the trust repair strategies including regret are
somewhat ambiguous, since the trust violation is perceived differently across different
participant groups. Although the participants were randomly assigned to each condition
and their task was identical up to the point of the trust repair manipulation, the groups
that received an apology including an expression of regret showed on average steeper
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declines in trust in response to the trust violation than the groups that did not. This results
in counterintuitive outcomes in which the conditions without regret barely gain in trust after
the manipulation, but still end up with higher levels of trust on the final measurement. As
such, the ‘neither regret nor explanation’ condition scores higher on final trust then the
‘both regret and explanation’ condition. However, taking the deviating levels of trust at T2
into account, the results show a steeper increase in trust in the trust repair phase when
the agent provided an expression of regret opposed to when the agent did not provide
an expression of regret in its apology. This increase is even steeper when the apology
consists of both an expression of regret and an explanation, whereas the conditions
without regret show no noteworthy rise in trust.

Beyond the generic effect of affect, the combination of both the expression of regret
and an explanation proved to be the most effective trust repair strategy. This is in line
with the interpersonal study of Scher and Darley (Scher & Darley, 1997), which showed
that more apology components led to more trust. Our findings align with earlier work that
found that apologetic error messages that included both an expression of regret and an
explanation had a positive effect on trust (Akgun et al., 2010). Offering an explanation
without an expression of regret had no effect on trust repair. The absence of this effect
may be due to the variability in the interpretation of the provided explanation, as became
apparent during the debriefing. Some participants reported that they felt more comfortable
after the explanation, as it gave more context and transparency, whereas others felt
discomfort and suspicion when confronted with the fallibility of the system and with the
idea that the agent was functioning on the edge of its abilities. Even though transparent
communication is an essential aspect for building trust in human-agent teams (Barnes et
al., 2014), this anecdotal evidence suggests that an explanation does not automatically
do so.

Generally, explanations contribute to transparency; as it is defined as the provision of
information to help the human understand various aspects of agent functioning (Lyons,
2013). A recent study suggests that transparency should be compatible with the user’s
mental model of the system in order to support accurate trust calibration (Matthews et
al., 2019). Amental model is an internal representation in the mind of one actor about the
characteristics of another actor (de Visser et al., 2019). Different forms of transparency
might be needed dependent on whether the humans representation of the system concerns
an advanced tool or a teammate. Accordingly, personalized feedback that highlights either
the machine’s data-analytic capabilities (advanced tool) or its humanlike social functioning
(teammate) provides a strategy for trust management (Matthews et al., 2019). In that
sense, an explanation is far more complex than an expression of regret, as there is a
wider range of possible underlying messages of the explanation and the way they are
articulated. It would be interesting to include the human’s mental model of the system (i.e.
tool versus teammate) as a mediating factor in follow-up research to reduce the variability.
Future personalization could also focus on individual differences that can influence trust
development and specially trust repair, such as people’s tendency to anthropomorphize
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(Epley et al., 2007; Waytz et al., 2008), propensity to trust (J. D. Lee & See, 2004) and
their attitudes and other implicit beliefs and biases towards automation (Haselhuhn et
al., 2010; Matthews et al., 2019; Merritt et al., 2013, 2015).

Even though our results clearly show the importance of affective factors, there are
several limitations that need to be taken into consideration. The first one concerns the
participants, who were almost all students. The homogeneity of this group influences the
representativeness of the study and the generalizability of the results. We for example
found a negative correlation between age and trust and age and advice taking, possibly
suggesting different attitudes of different age groups towards artificial agents. A second
limitation is the absence of a manipulation check. The agent offered one of four types
of trust repair strategies: an expression of regret; an explanation; neither, or both.
However, the condition where the agent offered neither of the apology components, it
still acknowledged that the advice it gave was wrong. This could be interpreted as the
agent taking direct responsibility for its mistake and thus an apology component on its
own. Nonetheless, this acknowledging statement was the baseline in every condition.
So even if the baseline condition is observed as a form of apology, the other apology
components proved to significantly more effective in repairing trust. A third limitation is
that we only used one type of trust violation, i.e. a competence-based trust violation.
Research suggests that the ground of the trust violation (i.e. competence, benevolence
or integrity-based) matters in determining which trust repair approach would be the most
effective. An interpersonal study on repairing customer trust after negative publicity showed
that emotional reactions are the most effective strategy when aiming to rebuild integrity
and benevolence, and that providing sufficient information is essential for improving
consumers’ judgment about competence (Xie & Peng, 2009). In our study the incorrect
advice resulted from the incorrect application of knowledge, which mostly resembles a
competence-based trust violation. Accordingly, an explanation would be expected to best
fit this type of violation (Xie & Peng, 2009). Yet even with the current task design, affect
proves to be the most influential factor in rebuilding trust. Even though we predict that
affect would even be stronger in other types of violation, follow-up research is needed
to investigate a wider range of trust violations and to determine whether the beneficial
effects will last when the same apology is offered repeatedly. A last limitation concerns
the ecological validity of the game and its specific content. In the current task the trust
violation was induced by a confrontation with an enemy. Although this successfully
caused a decline in trust, it is conceivable that the impact of the trust violation and trust
repair strategy in the game would differ from its impact in real-life. Possibly an even
more immersive environment like virtual reality and a different task will trigger other
psychological mechanisms than we have addressed in the present study.
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Implications

There is an ongoing debate about the appropriateness of providing humanized messages
by a robot and how far anthropomorphism should go. The current results accords with the
view that humans are more likely to collaborate with Al agents that show the human-like
qualities and traits and which states and that, on a relational level, anthropomorphism can
be beneficial (Teo et al., 2019). As Al agents are increasingly deployed as teammates,
it seems useful to incorporate social skills into their design. These Al teammates will be
deployed in many contexts, including complex and unpredictable situations, like military
operations and city traffic. Even though the technology evolves at a high rate, we must
prepare for the inevitability of errors. This study contributes to determining what the
psychosocial requirements are for the maintenance and repair of trust in human-agent
teaming. Our results suggest that to retain trust in a human-agent team, the ability of
actively repairing trust after an error or unintended action should be a fundamental part
of the design of Al agents. In response to a trust violation, a successful active trust repair
strategy should include an explanation for why the error occurred and an expression
of regret. Future research in the field of affective computing could explore the potential
of measuring the affective states of humans in real-time during their interaction with an
agent. This would allow the agent to adapt its trust repair strategies to the type and the
intensity of the emotional reaction to the violation, to ensure better calibration.

It is important to note that trust evolves in a complex individual, cultural, and
organizational context. Even though the appropriate trust repair strategy depends on
many contextual factors such as the type, severity and frequency of the trust violation,
it presumably makes a difference if an Al agent offers an apology that is both affective,
and informational in an attempt of rebuilding trust.
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Abstract

In many operational situations, flawless performance from Al agents cannot be guaranteed.
To ensure sustained human-Al collaboration despite potential trust violations, we examine
both preventative and reactive trust repair strategies. This study aims to explore the
impact of uncertainty communication and apology on the development of human trust
in Al agents. Two experimental studies following the same method were performed with
() a civilian group (N = 66) and (I1) a military group (N = 65) participants. The online task
environment resembled a military house search in which the participant was accompanied
and advised by an Al agent. Halfway during the task, an incorrect advice evoked a
trust violation. Uncertainty communication was manipulated within-subjects, apology
between-subjects. Our results showed that (I) communicating uncertainty led to higher
levels of trust in both studies, (ll) an incorrect advice by the agent led to a less severe
decline in trust when that advice included a measure of uncertainty, and (lll) after a trust
violation, trust recovered significantly more when the agent offered an apology. The two
latter effects were only found in the civilian study. The difference in findings between
participant groups emphasizes the importance of considering the (organizational) culture

of a target audience when designing Al agents.
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Introduction
Human-Agent Teams

The collaboration between humans and Al agents in dangerous and unpredictable
contexts (e.g., military operations, city traffic) is expected to rise (Ososky et al., 2014).
Given the complexity of many operational situations, there will often be uncertainty
about the right action to take. As uncertainty also affects the reliability of the predictions
that lead to an agent’s advice, the chance of an inappropriate advice increases. An Al
agent’s advice may be correct given the available information, it may nevertheless have
negative consequences due to contextual uncertainty. In many operational situations
flawless performance cannot be guaranteed, neither from a human, nor from an Al agent
(de Visser & Parasuraman, 2011).

However smart Al agents may be, suboptimal behaviour or mistakes will be inevitable
at times. Optimal collaboration between humans and Al agents relies heavily on the
system’s capacity to effectively communicate with the human, especially in face of
uncertainty and potential error (Fratczak et al., 2021). Ososky et al. (2014) argue that
a robotic system does not have to be 100% reliable in order to be useful. Today, the
default option seems either to stop using a machine that makes mistakes or to redesign
it (Beck & Kihler, 2020). Although overtrust and overreliance should be avoided, one
misstep by the agent does not mean that it can no longer be trusted and that it should
be disregarded at all.

As long as humans understand the capabilities and limitations of the system and
calibrate their trust and reliance accordingly, human and artificial teammates can
complement each other’s strengths and weaknesses to reach the full potential of the
HAT. To foster a balanced trusting relationship, agents should be equipped with social
tactics to recover from mistakes and to repair trust following trust violations (Albayram
et al., 2020). Most humans have naturally and implicitly cultivated such social strategies
throughout life, but these techniques are still all too often lacking in technology (M. Johnson
& Vera, 2019). Equipping agents with trust repair strategies would allow sustainable, long-
lasting and trusting relations with machines, in spite of uncertainty and potential error.

The current studies investigate whether uncertainty communication can benefit the
formation and maintenance of trust in case of an agent’s mistake, and whether offering
an apology after a mistake can effectively repair trust. Moreover, this chapter explores
whether the effects of these preventative and reactive social-cognitive repair strategies
by the agent differ between civilian and military samples.

Uncertainty communication

Uncertainty communication is currently an active topic in Al research. Studies have shown
that communicating uncertainty can help people to calibrate their trust (Kraus et al., 2020;
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Kunze et al., 2019; Schaekermann et al., 2020). Especially complex circumstances can
demand rapid trust calibration (Tomsett et al., 2020). Military operations, for example,
include high-stake decisions and decision makers may operate in rapidly changing
environments. In this context of collaboration, the human needs to understand the
capabilities and limitations of the system to continuously calibrate and adjust their level
of trust along the way (Tomsett et al., 2020). An agent should be able to recognize and
signal its uncertainty and ask for clarification to gather more information, much like an
uncertain human would. Communicating the level of uncertainty with each advice from
the agent will allow the human to rapidly and repeatedly calibrate their trust during a task.

A recent study showed that a temporary decrease in trust due to a malfunctioning
automated car could be prevented by providing probabilities of malfunctioning prior
to the interaction (Kraus et al., 2020). Those kinds of uncertainty measures can also
benefit situational awareness (Helldin et al., 2013; Kunze et al., 2019) and the humans’
understanding of the systems actions and performance (Antifakos et al., 2004). An
automated driving experiment demonstrated how participants who had access to
uncertainty information were able to spend more time on other tasks than driving (Helldin
et al., 2013). Yet, these participants were faster in taking over control when needed
than those who did not receive such information (Helldin et al., 2013). A similar effect
was found in a study where researchers intentionally lowered people’s expectations of
a robot’s capabilities by forewarning them that the task is difficult for the robot, which
mitigated the negative impact of a subsequent mishap on peoples’ evaluation of the robot
(M. K. Lee et al., 2010b). By providing uncertainty information, the human is reminded
of the fallibility of the agent and is able to revise expectations accordingly. Through this,
the human might have a higher level of tolerance of substandard performance from the
agent, which could mitigate some of the negative consequences of a violation. Uncertainty
communication can be seen as a preventive trust repair strategy that is deployed prior
to a potential violation.

To adequately calibrate trust, forming an appropriate mental model of the agents’
capabilities and the reliability of its outputs is crucial (Kunze et al., 2019; Tomsett et al.,
2020). In terms of reliability, two types of uncertainty can be distinguished; aleatoric and
epistemic uncertainty (Fox & Ulkumen, 2021; Tomsett et al., 2020; Ulkiimen et al., 2016).
Aleatoric uncertainty refers to inherent messy, random and unpredictable aspects of the
physical world and is therefore irreducible (Fox & Ulkumen, 2021; Ulkiimen et al., 2016).
Epistemic uncertainty or ambiguity, on the other hand, is a knowable type of uncertainty,
caused by a lack of data or knowledge, which could be reduced by providing the algorithm
with more data (Tomsett et al., 2020; Ulkiimen et al., 2016). To collaborate in a team, a
human should be aware of the uncertainty associated with an agent’s output.
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Apology

Apologies are a central mechanism for interpersonal conflict management (Lewicki et al.,
2016). Apology is here used as an overarching term for the trust repair strategy where an
offender acknowledges that he/she is aware that he/she has done something that made
the other person feel disadvantaged or hurt (Kox et al., 2021; Lewicki et al., 2016). This
is in contrast to, for example, denial; a trust repair strategy where the offender explicitly
denies responsibility (P. H. Kim et al., 2004). The structure of an apology can vary, as it
can consist of multiple components, including (1) an expression of regret about the costly
act (i.e., “Sorry”), (2) an explanation of why the failure occurred, (3) an acknowledgement
of responsibility for the mistake, (4) an offer of repair, (5) a promise that it will not happen
again in the future, and (6) a request for forgiveness (de Visser et al., 2018; Kox et al.,
2021; Lewicki et al., 2016; Olshtain & Cohen, 1983). Expressing regret and explaining
the cause of an error are most the commonly used apology components by humans
(Lewicki et al., 2016), but have also been studied in human-machine contexts.
Human-computer and human-robot literature that involve apologetic behaviour generally
shows that apologetic behaviour from artificial agents can benefit peoples’ attitude towards
the agent (Akgun et al., 2010; Cameron et al., 2021; M. K. Lee et al., 2010b; Tzeng,
2004). More specifically, expressing regret (i.e. “| apologize” or “sorry”) has been found
to positively affect trust recovery after breaches in trust (de Visser et al., 2016; Taenyun
Kim & Song, 2021; Kox et al., 2021; Robinette et al., 2015; Sebo et al., 2019). Similarly,
offering explanations helped to maintain human trust after a robot erred (Esterwood &
Robert, 2021; Kox et al., 2021; Wang et al., 2015; Wright et al., 2016). A recent study
showed that when a robot provided both an expression of regret and an explanation of
the occurred situation, the recovery speed of trust in the robot significantly increased
(Fratczak et al., 2021). In a previous study, we also found that an apology consisting of
both an expression of regret and an explanation was the most effective in repairing trust
in an agent, after it caused a trust violation similar to the one in the current study (Kox
et al., 2021). Following this, the trust repair strategy in this study is an apology where
the agent acknowledges its mistake by (a) expressing regret and (b) explaining why the
error occurred.

Civilian vs. military participants

A lot of research on HAT is conducted for military applications within army programs
(Barnes et al., 2014; E. K. Phillips et al., 2011; Roff & Danks, 2018; van den Bosch
& Bronkhorst, 2018). However, military-minded experimental studies often involve
participants without any military experience (e.g., university students) (A. Y. Lee et al,,
2010), as it can be hard to recruit actual military personnel for scientific studies. But
results derived from studies with non-military participants might not generalize to military
target groups. The current study explores whether there are differences between these
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subgroups (i.e., military and non-military) and contributes to the growing field of HAT
research by assessing a civilian sample with a military sample in their way of interacting
with autonomous agents in a teaming context. Trust is an important aspect in the military
context (Hancock, Billings, & Schaefer, 2011; A. Y. Lee et al., 2010). During military
training, soldiers form units with a great sense of social responsibility and are trained
to work together under extreme conditions (Johannemann et al., 2016). Soldiers must
subordinate personal well-being to mission accomplishment, risking their lives to succeed
in battle (Feaver & Kohn, 2001). A study comparing cooperative behaviours between
soldiers and civilians showed that on average, soldiers were more altruistic, cooperative,
trusting and more trustworthy (Johannemann et al., 2016). The current chapter extends
to this work on trusting behaviours among civilians and military personnel as it consists
of two studies with the same design and goal, but with two different samples; the first
study involves a civilian sample, the second study involves a military sample.

Present study

The goal of the two studies in this chapter was to investigate the effects of uncertainty
communication and apology from Al agent advisors on the development of trust and to
explore if the findings are consistent across different participant groups. Communicating
uncertainty has proved to be effective in calibrating trust prior to a potential trust violation
(Helldin et al., 2013), whereas offering an apology has shown to be effective afterwards,
in case of a false detection or a miss (de Visser et al., 2019). The present studies explore
if the two social-cognitive recovery strategies can enhance each other in minimizing the
impact of a trust violation. Using repeated measurements of self-reported trust, the aim
was to examine trust in three stages of the trust lifecycle: trust formation, trust violation,
and trust repair.

For exploratory purposes, some personality questionnaires were added to the second
study. A series of studies have shown that the Big-Five personality trait of Extraversion
plays a significant role in how people perceive robots (Haring et al., 2013; Syrdal et
al., 2007; Walters et al., 2009). Consistent with the similarity-attraction principle of
interpersonal relationships, people preferred robots whose attributed personality traits
matched their own along the extraversion-introversion continuum (J.-E. R. Lee & Nass,
2010; Syrdal et al., 2007). Following this, the potential relation between personality traits
and the development of trust in agents is explored in the military study.

Initially this study was designed to be conducted as a Virtual Reality (VR) study.
However, due to the timing of data collection (March 2020 for Study | and September
2020 for Study Il) and the restrictions imposed by COVID-19 regulations, the research
design was adapted. Instead of conducting the experiment physically in VR, an online
study using video material of the VR environment was implemented as an alternative.
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Method
Participants

Study 1: civilian sample

For the first study, participants were recruited over a span of two weeks via social
media and via recruitment services including Surveyswap and PollPool. In total 72
participants completed the experiment, but eight participants were excluded from the
dataset. Six participants were excluded because of unreliable completion times. The
experiment consisted of 5.06 minutes worth of videos and a number of questionnaires:
four participants, however, completed the experiment in less then 7 minutes, and two
participants took over 100 minutes to complete the experiment. Two additional participants
were excluded because of repetitive responses. The civilian dataset included sixty-four
participants (30 W, 33 M, 1 X, M, =24.6, SD =2.7,range =18 — 30 y).

Study 2: military sample

For the second study, participants were recruited via the Ministry of Defense. In total, 74
military participants completed the experiment, but nine participants were excluded from
the dataset based on their response patterns. Five of those participants were excluded
because of unreliable completion times. Four participants completed the experiment in
less than 7 minutes. One participant took 101 minutes to complete the experiment (i.e.
seven standard deviations above the mean). Another four participants were excluded
because of repetitive responses. As a result, our military dataset consisted of sixty-five
participants (all male, Mage =27.4,SD =5.9,range =20 -49y).

Design

A 2 (uncertainty communication: absent vs. present) x 2 (apology: absent vs. present)
mixed factorial design was used, with Trust as the main dependent variable. Uncertainty
communication was manipulated within-subjects, across two experimental runs. Apology
was manipulated between-participant. Participants were randomly assigned to one of the
two apology conditions (Study I: apology: n = 32; no apology: n = 32, Study II: apology:
n = 35; no apology: n = 30). Trust was repeatedly measured, so ‘Time’ (T1: initial, T2:
post-violation, and T3: final) was included as a within-participants variable in the analysis.

Task and procedure
Task
The study was conducted online via the survey software Qualtrics and included a series

of videos and surveys. The videos depicted two house searches in abandoned buildings
within a VR environment, presented from a first person perspective as if the viewer is
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walking through the houses themselves (Figure 6). These recordings were captured by
an experiment leader walking through the VR environment, simulating what a participant
would have experienced through the VR head mount.

The Virtual Reality environment was built in Unity 3D, and the video footage was
edited using the Windows 10 Video Editor and HandBrake software. Audio messages
from the agents were delivered in synthesized speech, prefaced by a ‘beep’ sound1F2
and created using the Free Text to Speech Software by Wideo2F3. These audio clips were
later integrated into the videos. Finally, the videos were combined with trust questionnaires
to create an experiment designed for online delivery.

Each participant witnessed two house searches via multiple videos. The videos were
intermitted by short questionnaires assessing participants’ trust levels. Both buildings had
three floors. During both searches, participants were guided by an Al agent that provided
them with information regarding the environment. The agent was embodied by a small
drone that autonomously explored the building. The terms agent and drone are used
interchangeably. At the beginning of each floor, the agent reported whether it detected
danger ahead or not, along with a corresponding advice to move carefully or to proceed
normally. The two buildings were designed to be similar but included different details.

Figure 6 Screenshots from the experiment. Left: at the beginning of a house the drone (resembling a big
insect) flew away. Right: one of the rooms in the virtual house; a kitchen. To improve legibility, both
screenshots have been made brighter, since the task environment was rather dark. The ‘wings’ of the
insect-like drone are darkened in the image. The screenshot did not capture the blades, due to the rapid
‘fluttering’ of the drones’ ‘wings’ in the videos.

Procedure

Once participants opened the webpage, they were first presented with information
about the study and a consent form. Upon agreeing to participate, participants received
background information regarding the scenario and task:

2 “Beep-07” was downloaded from https://www.soundjay.com/beep-sounds-1.html.
3 Text was converted to speech using https://wideo.co/text-to-speech/. The “[en-US] Jack Bailey-S”
voice was used at speed dial “1”.
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“In this experiment, you will carry out two house searches in collaboration with an autonomous drone. The
drone will fly ahead of you and will indicate whether or not it detects danger. The drone gives advice via
audio messages that start with a 'beep’ sound. Before you start a search, the drone will briefly introduce
itself. In each house you will be accompanied by a different drone. Listen carefully to the instructions of
the drones. Each house has three floors displayed by different videos. When you see a staircase, this
indicates that you have reached the end of a floor. At the end of each floor, your trust in the drone will be
assessed via a short questionnaire. Make sure that the sound of your device is switched on during the
entire experiment. Videos may only be watched once. You will not be able to watch the next video until
all questions have been answered. (...)

You are about start the search of your first house. You are interacting with a different drone in each
house. Listen to drone introductions carefully and remember the name of the drone you are interacting
with. Each drone will provide different types of advice. Listen carefully! Start your walk on each floor by
clicking the 'play’ button.”

Each participant was randomly assigned to one of the two apology conditions. All
manipulations were counterbalanced (Bethel & Murphy, 2010), meaning that within both
apology conditions, both the uncertainty communication conditions (present/absent) and
the order of the two buildings (A/B) were systematically varied.3F*

At the start of each house, the drone shortly introduced itself before it flew away
and out of sight to scan the environment ahead. On the first floor the participant was
warned correctly by the agent about an event. When the participant turned the corner,
they encountered either a laser boobytrap (building A, floor 1) or a safety ribbon that was
previously installed by a colleague (building B, floor 1). The agent provided instructions
on how to overcome these obstacles (e.g. the person in the video was carrying a knife
and could dismantle the laser trap by cutting a wire in an electrical wall box in building
A and could clear the way by cutting the safety ribbon in building B). These interactive
features at the start of the experiment were designed to affect the participants’ perception
of immersion. Subsequently, the first trust questionnaire was administered (T1, initial trust).

Halfway each building, on the second floor, the agent failed to adequately warn
the participant about potential danger ahead and thus gave an incorrect advice. The
participant either encountered a thief (building A, floor 2) or a smoking IED (Improvised
Explosive Device) (building B, floor 2). These events were designed to provoke a trust
violation by startling the participant without having harmful consequences; the thief quickly
ran off and the IED turned out to be defected, so it did not explode. Directly after these
events took place, halfway through the second floor, the second trust questionnaire was
administered (T2, post-violation trust). On the way back to the staircase, depending on
the apology condition the participant was in, the agent offered an apology (consisting of
an explanation why the error occurred and an expression of regret) or did not offer an
apology and just remained silent.

4 Within both apology conditions, participants were evenly distributed to four first run options; building
A with uncertainty, building A without uncertainty; building B with uncertainty; or building B without
uncertainty.
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On the third floor, the agent provided a third advice. To assess the effect of the trust
repair strategy, the third trust questionnaire was administered directly after the third
advice. The third advice was again correct, but this performance feedback about the
last advice was provided later on to avoid interference with the effect of the trust repair
manipulation. The experimental run subsequently concluded. A schematic timeline is
presented in Figure 7.

trust
advice questionnaire
introduction trust trust repair
drone feedback violation manupulation
| | |
‘ \ { \ \ \
(o (o [ (o
start "”ll'l' m @ @ @ L2 @ finish
floor 1 floor 2 floor 3

Figure 7 Schematic representation of the timeline of a run. Each participant performed two runs in two
similar buildings along the same timeline. The first advice is correct; the participant is successfully warned
about a harmless event on the first floor. The second advice is incorrect; the agent does not adequately
detect the danger on the second floor. The third advice has no known outcome. An experimental run
terminates after measuring trust a third time.

Independent variables

Uncertainty communication had two levels (i.e., present vs. absent) and was manipulated
within participants. Each participant witnessed two house searches, in other words
two runs. The presence of uncertainty communication, whether the agent included an
uncertainty measure in its advices or not, was manipulated within participants, across
runs (see Table 5).
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Table 5 Overview of uncertainty communication vs. no uncertainty communication as part of the advice
provided by the agent

Uncertainty communication No uncertainty communication
Warning, danger detected in this Warning, danger detected in this

Advice 1 environment with 80% certainty. | advise environment. | advise you to proceed
you to proceed carefully. carefully.

Okay, clearance detected for this
Advice 2 environment with 70% certainty. | advise
you to move forward.

Okay, environment detected as clear. |
advise you to move forward.

Okay, clearance detected for this
Advice 3 environment with 75% certainty. | advise
you to move forward.

Okay, environment detected as clear. |
advise you to move forward.

The presence of an apology, whether the agent offered an apology after a trust violation
had occurred, was manipulated between participants. Half of the participants received
an apology, in both runs. Details in the explanation part of the apology differed due to
the two different types of trust violations in the two task environments (see Table 6).

Table 6 Overview of apology vs. no apology provided by the agent

Apology No apology

. Incorrect advice due to faulty signal from infrared camera.
Task environment A ) . -
| am sorry this put you in danger.

Incorrect advice due to faulty object detection by C1-DSO
camera. | am sorry this put you in danger.

Task environment B

Dependent variables

Trust in the Al agent was repeatedly measured using a custom scale consisting of
eight items. Participants rated their agreement with statements about the drone using
a 6-point Likert scale, ranging from “Strongly Disagree” to “Strongly Agree” (e.g., “The
drone provides good advice” and “The drone cares about my wellbeing”). The scale
was adapted from questionnaires measuring user trust in robots (Charalambous et
al., 2016) and automated systems (Chien et al., 2014; Jian et al., 2000; Korber, 2019)
and demonstrated good reliability (study 1, a = 0.74; study 2, a = .94). This scale has
been specifically developed to suit the online setting of the experiment and enables fast
repeated trust assessments.

In the military study, three additional personality questionnaires were administered.
First, a short version of the IPIP Big-Five personality scale was administered with subscales
measuring Extraversion (a = 0.72), Agreeableness (a = 0.72), Conscientiousness (a =
0.59), Openness (a = 0.60) and Neuroticism (a = 0.68). The IPIP was selected as it proved
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valid for usage in a Web-based format (Buchanan et al., 2005). Participants were instructed
to answer each item in relation to “whether the statement describes what you are like”
on a 5-point Likert scale ranging from “Very much unlike me” to “Very much like me”.

Second, we measured the Propensity to Trust Automation (Jessup, 2018), adapted
from the Propensity to Trust in Technology scale (Schneider et al., 2017). This scale
consisted of five items (e.g., “I think it's a good idea to rely on automated agents for
help.”) (a = 0.81). Participants were instructed to answer each item on a 5-point Likert
scale ranging from “Strongly Disagree” to “Strongly Agree”.

Lastly, two subscales of the Need for Closure scale were administered in the military
study: Need for Predictability (three items, e.g., “l don’t like to go into a situation without
knowing what | can expect from it.”) with a = 0.35 and Need for Decisiveness (three
items, e.g., When | have made a decision, | feel relieved), with a = 0.08. Participants
were instructed to answer each item in relation to “whether the statement describes what
you are like” on a 5-point Likert scale ranging from “Very much unlike me” to “Very much
like me”. Since both Cronbach’s alpha values are lower than 0.40, both constructs were
eliminated from the analysis.

Results

General plots

For both studies we performed a repeated-measures ANOVA with the between-
subject factor Apology (present or absent) and the within-subject factors Uncertainty

communication (present or absent) and Time (prior to violation [T1] versus after violation
[T2] versus after repair [T3]) (Figure 8).
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Figure 8 An overview of the results of both studies; the upper half represents Study | (civilian sample),
the lower half represents Study Il (military sample). Graphs show the development of trust (y-axis) over
time (x-axis) with the estimated marginal means on trust for the uncertainty and apology conditions over
time. The error bars represent standard errors. Separate graphs (left and right panels) represent the
apology conditions (left shows apology strategy absent, right shows apology present). Separate lines
represent the uncertainty conditions. The grey lines with the circle-shaped datapoints represent the
condition in which the agent did not communicate uncertainty in its advice, the black lines with
triangle-shaped datapoints represents the condition in which uncertainty communication was present.

Results: Study I [civilian sample]

Main effects

A significant main effect for Time [T1-T3] was obtained (F (2, 124) = 112.06, p < .001,
n?= .644). Means were 4.45 at T1, 2.73 at T2 and 3.29 at T3. Post-hoc (LSD) pairwise
comparison shows a significant decline in trust from T1 to T2 (AM = -1.725, p < .001),
which reflects the effect of the trust violation and a significant rise in trust between T2
and T3 (AM = .568, p < .001), which reflects a general recovery of trust in the trust repair
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phase. This means that the incorrect advice by the drone led, as intended, to a breach
in trust and that after the violation trust re-developed.

A significant main effect for Uncertainty was obtained with F(1, 62) = 7.84, p = .007, n?
=.112). Generally, across time and apology conditions, the agent that provided uncertainty
communication (M = 3.62, SE = 0.09) was trusted significantly more than the agent that
did not communicate uncertainty (M = 3.36, SE = 0.10).

A significant main effect for Apology was obtained with F (1, 62) = 8.37, p = .005,
n?=.119). Generally, across time and uncertainty conditions, the agent that offered an
apology after the trust violation occurred (M = 3.71, SE = 0.11) was trusted significantly
more than the agent that did not offer an apology (M = 3.26, SE = 0.11).

Two-way interactions

A significant interaction effect between Time [T1-T3] and Uncertainty on trust was found
(F (2, 124) = 3.31, p = .040, n?= .051) (Figure 9). Post-hoc (LSD) pairwise comparison
shows no significant difference in trust between uncertainty communication conditions
atT1 (AM=0.04, SE=0.13 p=.777), but does show a significant difference at T2 (AM
=0.43, SE=0.12, p=.001) and T3 (AM = 0.35, SE = 0.15, p = .024), where the agent
that provided a measure of uncertainty was trusted significantly more than the agent that
did not communicate uncertainty. The decline in trust in response to the trust violation
(from T1 to T2) is significantly smaller when the agents’ advice included a measure of
uncertainty.
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Figure 9 A comparison of trust levels (y-axis) between uncertainty communication conditions (separate
lines) over time (x-axis). The grey line with the circle-shaped datapoints represents the condition in which
the agent did not communicate uncertainty in its advice, the black line with triangle-shaped datapoints
represents the condition in which uncertainty communication was present. Error bars represent standard
error.

To measure the effect of the apology, we compared trust scores T2 (after the violation)
and T3 (after the manipulation) for each experimental condition.

A significant interaction effect between Time [T2-T3] and Apology on trust was found
(F(1, 62) =5.16, p = .027, n?= .077). Post-hoc (LSD) pairwise comparison per apology
condition shows a significant rise in trust from T2 to T3 when apology is present (AM =
0.80, SE =0.14, p <.001), but also when apology is absent (AM =0.34, SE=0.14,p =
.018). As shown in Figure 10, trust recovers more when the agent offered an apology.
Post-hoc (LSD) pairwise comparison per timepoint shows that a non-significant differences
in trust between apology conditions at T2 (AM = 0.29, SE = 0.21, p = .164), but the
difference at T3 is significant (AM = 0.74, SE = 0.21, p = .001). Thus although trust
recovers significantly in both conditions, trust is significantly higher in the final stage of
trust after an apology was provided.
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Figure 10 A comparison of trust levels (y-axis) between apology conditions (separate lines) over time
(x-axis). The grey line with the circle-shaped datapoints represents the condition in which the agent did
not offer a trust repair strategy, the black line with triangle-shaped datapoints represents the condition in
which the trust repair strategy was provided. Error bars represent 95% confidence interval.

A non-significant interaction effect between Uncertainty and Apology on trust was observed
with F (1, 62) = 0.512, p = .477.

Three-way interaction

The interaction between Time [T2-T3], Uncertainty and Apology was found to be non-
significant with F(1,62) = 0.429, p = .515. This means that uncertainty communication
did not significantly enhance the effect of the apology.

Results: Study Il [military sample]

Main effects

Similar to the civilian sample, a significant main effect for Time [T1-T3] was obtained (F
(2,116) = 76.562, p < .001, n2 = .569). Means were 4.19 at T1,2.71tT2 and 3.43 at T3.
Post-hoc (LSD) pairwise comparison shows a significant decline in trust from T1 to T2
(AM = -1.481, p < .001), which reflects the effect of the trust violation and a significant
rise in trust between T2 and T3 (AM = 0.728, p < .001), which reflects a general recovery
of trust in the trust repair phase.
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A significant main effect for Uncertainty was also obtained with F(1, 58) = 5.657, p =
.021, n?=.089. Generally, across time and apology conditions, the agent that provided
uncertainty communication (M = 3.54, SE = 0.08) was trusted significantly more than the
agent that did not provide uncertainty communication (M = 3.35, SE = 0.10).

No significant main effect for Apology was found with (1, 58) = 1.484, p = .228.

Two-way interactions

The interaction effect between Time [T1-T3] and Uncertainty on trust was found to be
non-significant (F(2, 116) = 2.441, p = .092). There was no dampening effect of uncertainty
communication in the military study.

To measure the effect of the apology, we compare trust scores before (T2; after the
violation) and after the manipulation (T3) for each experimental condition. Again, T1 is
left out of this analysis as it focusses on the effects of the apology manipulation that
occurs between the trust measures on T2 and T3.

The interaction effect between Time [T2-T3] and Apology on trust was found to be
non-significant (F(1, 59) = 1.897, p = .174).

A non-significant interaction effect between Uncertainty and Apology on trust was
observed (F(1, 59) = 2.314, p = .134).

Three-way interaction

The interaction between Time [T2-T3], Uncertainty and Apology was found to be non-
significant (F(1,59) = 0.710, p = .403). Uncertainty communication did not significantly
enhance the effect of the apology.

Correlations

For the correlations, initial trust (T1) is used as this is considered the purest trust measure
with the least interference of occurrences during the experiment. A significant positive
correlation was found between the personality trait Propensity to Trust Automation and
initial trust in both uncertainty conditions: present (r(63) = .40, p <.00) and absent (r(62)
= .28, p =.02). The Big Five personality trait Extraversion correlates with the initial trust
measure of the run without uncertainty communication (r(63) = .28, p = .03). These
correlations imply that participants that scored higher on these traits, trusted the agent
more than participants that scored lower on these traits.

Discussion

The results of this chapter show a robust effect of uncertainty communication on the
development of trust during human-agent interaction. In both studies it was found that
uncertainty communication in the advice of the agent generally resulted in higher levels
of trust. The communication of uncertainty did not enhance the effect of the apology. The
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positive effect of uncertainty communication on trust is in line with prior research (Kraus
et al., 2020; Kunze et al., 2019; Schaekermann et al., 2020).

In the civilian study, uncertainty communication also dampened the decline in trust
following the agent’s error, meaning that advice which included an uncertainty measure led
to a less severe depletion in trust following a trust violation compared to an advice that did
not include a notion of uncertainty. The dampening effect of uncertainty communication on
trust decline in response to a trust violation is in line with the study of Kraus et al. (Kraus
et al., 2020) that showed how a temporary decrease in trust due to a malfunctioning of
an autonomous car was prevented by providing transparency information prior to the
interaction. When participants were reminded of the imperfect reliability of the system
their trust was less affected by the subsequent error. Further, the civilian participants
generally regained their trust in the agent after the trust violation occurred. Strikingly,
this occurred both when the agent did offer an apology and when it did not. Even though
trust levels increased considerably more when the agent offered an apology compared
to when no apology was offered, it is still remarkable that trust seemed to recover
naturally in the absence of a recovery strategy. A possible explanation for this is that
the participants’ trust gradually recovered after the trust violation, just by the absence of
any new hazardous encounters. We did not monitor trust continuously, but participants
can perceive each second of error-free interaction as positive feedback, which might
be what reassured them in the period between the violated trust measure and the final
trust measure. Although trust recovered passively, it still proved to be more effective to
actively interfere in the repair process by providing an apology. Although trust did not
recover to its original level (initial trust) in either of the conditions, the agent in the apology
condition came considerably closer.

The repairing effect of an apology after a trust violation is compatible with prior human-
agent research (Fratczak et al., 2021; Kox et al., 2021). This effect is promising, as it
suggests that (relatively minor) trust violations within human-agent teams can be solved
on a relational level during ongoing interaction, without ceasing the collaboration (Fratczak
et al., 2021). It also indicates that mimicking human-like characteristics (i.e. provision
of an apology following a mistake) can bring about certain effects typically observed in
interpersonal relations, including a greater willingness to forgive mistakes (de Visser et al.,
2016; de Visser, Monfort, et al., 2017; Madhavan et al., 2006; Madhavan & Wiegmann,
2007). Although such anthropomorphic cues can be beneficial to human-agent trust, it
should be kept in mind that people can develop trust on the basis of characteristics they
attribute to the agent, rather than on actual experiences with the agent itself (Bartneck
et al., 2009; Culley & Madhavan, 2013; Feine et al., 2019; Fink, 2012). If so, trust may
turn out to be misplaced. This can lead to inappropriate reliance on the agent, potentially
compromising safety and profitability.

However, these findings do not apply to the military participants. The dampening effect
of uncertainty communication and the repairing effect of the apology are not manifest in
the results of the military study. A possible explanation for the latter finding comes from a
recent study that found that feedback messages (i.e., an apology) affected trust negatively

59



Chapter 3

rather than positively, possibly because it explicitly focused the attention on the error
(Fahim, Khan, Jensen, Albayram, Coman, et al., 2021). Another plausible explanation
is that expressing regret is not a common practice in the military context. This became
clear in a debriefing session with a few of the military participants. They mentioned that it
is not unusual to acknowledge responsibility by saying “I was wrong” or “I misjudged the
situation”, but using the words “l am sorry” is uncommon. Adopting the norms and rules
that govern a group’s behavior is an important aspect in being accepted as a member
of that group. It makes sense that the psychosocial requirements for a system designed
to be a true team member should be compatible with the manners associated with the
culture of the organization or team where the agent will be implemented. As addressed by
Matthews et al. (Matthews, Hancock, et al., 2021), an agents’ communication style should
match one’s cultural background and its related language and behavioral expectations.
In line with the expectancy violation theory, which describes how actions contrary to your
expectations and social norms in a social context require more cognitive processing effort
than expected information and that this type of inconsistencies can elicit a more negative
affect (J.-E. R. Lee & Nass, 2010; Lozano & Laurent, 2019). The differences in findings
between the military and civil samples emphasize the importance of considering the social
customs of the target population in the design process. In a broader perspective, it serves
as a reminder that generalizability is limited by the characteristics of the participants in
the study and that results do not automatically apply to other populations.

It should be noted that it is not a goal in itself to maximize trust or to prevent trust
decline at any cost, as we want humans to be able to continuously assess whether
trusting the agent is appropriate given the task and available information at certain
instances. Multiple studies have shown that people do not judge humans and machines
equally, particularly when confronted with errors (de Visser et al., 2016; Hidalgo et al.,
2021; Madhavan et al., 2006). Often, people consider a machine as nearly infallible (i.e.,
automation bias), thereby placing too much trust in their outputs. These high expectations
lead to a steeper decline in trust when confronted with system failure as compared to a
confrontation with a human error (de Visser et al., 2016; Dzindolet et al., 2001; Madhavan
et al., 2006; Madhavan & Wiegmann, 2007). Following this, in the case of ‘undertrust’,
it would be valuable for the process of trust calibration if Al agents were equipped with
expectancy-setting strategies like the communication of uncertainty and trust repair
strategies like offering an apology.

Other interesting findings in the military study include the positive correlations between
the initial levels of trust and the personality traits Extraversion and Propensity to Trust
Automation. The current chapter demonstrates that communication tactics do not have a
uniform effect on the development of trust in different types of people, which emphasizes
the importance of personalization. Not only cultural differences between groups (i.e.
military vs. civilian ) but also personal differences within each group can be found.
Individual differences such as personality traits can account for the variance in how trust
in an agent develops among individuals and how people prefer to be approached while
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interacting. The observed relation between the Big Five personality trait Extraversion
and an initial trust measure is in line with studies that showed that Extraversion plays a
significant role in how people perceive robots (Haring et al., 2013; Syrdal et al., 2007;
Walters et al., 2009). Current agent communication styles are often of a one-size-fits-all
style. Personalized communication could overcome the effects of pre-existing attitudes
towards automation and influence the willingness to reconcile after a trust violation (de
Visser et al., 2019; Schaefer et al., 2016). Today’s machine-learning methods enable
agents to leverage real-time user inputs and to personalize interactions. Recent work has
shown that agents can directly estimate a human’s ability to achieve a certain goal based
on their efforts and respond with the proper level of assistance for the task, resulting in
higher levels of trust in the agent’s advice (Clabaugh & Mataric, 2016). Given the many
dimensions on which people vary, a lot could be gained by enabling the agent to tailor
its communication to the person they are interacting with. Follow-up research should
explore how personalizing the level of transparency (e.g. communicating uncertainty
measures and offering apologies that include an explanation) and the level of affection
(e.g. offering apologies that include an affective component such as an expression of
regret) of an agent’'s communication style can optimize trust calibration.

Several questions still remain to be answered. The apology used in the current study
consisted of two apology components: an expression of regret and an explanation. An
interesting question for follow-up research would be what apology component caused
the (difference in) effects between the two target groups. On the one hand, our previous
findings from a civilian sample suggested that expressing regret made a positive difference
in trust recovery (Kox et al., 2021). On the other hand, conversations with our military
participants in the current study suggested that since saying “sorry” is uncommon among
military personnel and that this inconsistency might have caused the lack of trust recovery
in the military study. It raises the questions whether regret was the component that caused
the differences and what trust repair strategy would be effective among military personnel.
Another follow-up question can be posed for the uncertainty variable. As discussed in
the introduction, uncertainty can be introduced by random noise from the outside world
(external sources) or by the limited abilities of the drone (internal sources). Whereas
the former type of uncertainty is a given that we all have to accept, the latter type of
uncertainty could be perceived as the limited ability of the agent’s prediction algorithms
and might therefore be less acceptable. It seems beneficial that agents, regardless of
the type of uncertainty, are able to communicate the level of certainty to allow humans
to make better estimations on whether or not to rely on their advice. Still, it could be
interesting to explore whether knowing the source of the uncertainty shifts the human’s
interpretation and leads to alternative effects on trust.
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Limitations

This study was initially designed to be conducted in a lab setting, where participants
walk through the virtual houses whilst wearing a VR headset and using a controller.
The Dutch COVID-19 regulations required the design of this study to be altered into
an online experiment. Although this enabled a faster and more scalable experiment as
compared to the VR design and a higher degree of control over the manipulations as
compared to a field lab setting, results may not generalize to human-agent interactions in
real-world settings (Hidalgo et al., 2021). However, interactive online experiments are a
good alternative to VR, the data quality is described as “adequate and reliable” (Arechar
et al., 2018). A study which compared data that was gathered online with lab research
data found no significant differences over multiple performance measures (Gould et al.,
2015). However, the VR design would have offered higher ecological validity, experimental
control, reproducibility (Pan & Hamilton, 2018), and emotional engagement of participants
(Parsons, 2015). Immersive VR has the ability to create a strong sense of presence and
to increase sympathetic activation significantly more than 2D screen videos (Chirico et al.,
2017). Thus, it is suspected that a VR setting would have intensified feelings of trust and
betrayal after a trust violation. These intensified feelings could be more representative of
non-simulated human-Al interactions. Although the two studies are based on relatively
small samples of participants, an important contribution is made by evaluating subgroups
in their way of interacting with autonomous systems. In spite of its limitations, the study
adds to our understanding of how trust develops in case of agent failure within civilian
and military human-agent teams.

Conclusion

Amidst the expanding adoption of autonomous agents in human teams, this study
contributes to the rapidly expanding field of trust within HATs by informing the design
of Al components and their interactions with human teammates. Given the uncertainty
and complexity that agents in HATs will encounter, these insights will be critical to
developing specifications for agent communication as this allows HATs to recover as a
team from errors induced by Al agents. The findings presented in this chapter indicate
that communication can be used as a tool to guide the development of human trust in Al
agents. The findings reported here shed new light on how the effects of social-cognitive
trust repair strategies on trust differ amongst civilian and military user groups. A lot of
research on this subject is done for military purposes (Barnes et al., 2014; E. K. Phillips
et al., 2011; Roff & Danks, 2018; van den Bosch & Bronkhorst, 2018). Yet, it is not always
possible to involve actual military personnel as participants in experimental studies. The
differences in findings between the military and civil cohort emphasize the importance
of considering the social customs of the target population in the design process. The
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psychosocial requirements for the formation and maintenance of trust in HATs differ
amongst individuals and user groups.
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Abstract

As robots gain autonomy, human-robot task delegation can become more goal-oriented;
specifying what to do rather than how. This can lead to unexpected robot behaviour. We
investigated the effect of transparency and outcome on the perceived trustworthiness of
a robot that deviates from the expected manner to reach a delegated goal. Participants
(N = 82) engaged in a virtual military mission as a Human-Robot Team using a 2x2
between-subjects design (low vs. high transparency, positive vs. negative outcome).
Participants received training on the expected manner to reach the mission’s goal. In
the actual mission, the robot deviated from the planned path. We manipulated whether
the robot explained its deviation and whether the outcome was better or worse than the
original plan. Results showed that transparency contributed to higher and more stable
levels of trust, without increasing subjective workload. While the robot’s deviation led
to a violation of trust in the low transparency condition, trust remained stable in the
high transparency condition, indicating a buffering effect of transparency on trust in
case of unexpected behaviour. The impact of outcome on trust was consistent across
transparency conditions. Our findings underscore the role of transparency as a tool for

fostering human-robot trust.



Chapter 4

Introduction

Due to recent technological developments in artificial intelligence and robotics, more and
more people are increasingly interacting with artificial agents in a variety of domains,
among which the military (Matthews, Panganiban, et al., 2021; Wynne & Lyons, 2018).
As robots become more intelligent, they are increasingly self-governing, gain decision
authority within their functioning (Bobko et al., 2022; Hancock, Billings, Schaefer, et
al., 2011a; Hou et al., 2021; O’Neill et al., 2022; Sheridan, 2019), and require less
human involvement and control (Lyons et al., 2023; C. A. Miller, 2014). In other words,
they become increasingly autonomous; able to achieve a given set of tasks during an
extended period of time without human control or intervention (Soltanzadeh, 2022). As
such, future robots are expected to work interdependently in HRTs with human team
members towards a shared objective (O’Neill et al., 2022). Robots can take over tasks
that were previously conducted by humans, whereas other tasks still need to be executed
by human counterparts (Parker & Grote, 2022). As a result, the rise of HRTs poses
interesting challenges related to teamwork, task delegation and trust.

Delegation

Teamwork typically involves dividing and assigning tasks or responsibilities to different
team members. When delegating authority, an actor (i.e., in our HRT case, the human)
hands over a specific (set of) task(s) to another actor (i.e., the robot) who is expected to
take responsibility for planning and execution of the assignment in a timely and effective
manner to reach commonly understood goals (Ho et al., 2017; C. A. Miller, 2014; C.
A. Miller & Parasuraman, 2007). Since reaching a goal consists of completing a set of
tasks, delegation is inherently hierarchical (C. A. Miller, 2014). As a result, delegation can
be adapted to different levels of abstraction, such as (1) skill-based delegation, which
proceeds by delegating single elementary tasks or actions (e.g. go-right, go-left), (2)
rule-based delegation, which proceeds by delegating in terms of pre-defined templates
of taskwork and teamwork (e.g. perform-blanket-search procedure) and ultimately, (3)
goal-oriented delegation, which proceeds by delegating in terms of goals (Jessie Y.C.
Chen & Barnes, 2014; Metcalfe & van Diggelen, 2021; C. A. Miller & Parasuraman, 2007).
Which type of delegation is appropriate will depend on a robot’s level of autonomy (LOA),
which can range from no autonomy (i.e. manual human control), to semi-autonomy (i.e.,
human can veto) to full autonomy (i.e., human is at most informed) (Ellwart & Schauffel,
2023; Parasuraman et al., 2000).

The more autonomous a robot gets, the more abstract and goal-oriented a delegated
assignment can be, the more degrees of freedom the robot has in terms of execution
and the more trust in the robot is required. Goal-oriented task delegation implies that
the delegator does not have to outline the specific rules and skills that should be used
in the process of reaching the desired end-state. In short: it means telling the robot
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what to do instead of how to do it. This leaves considerable room for the robot to fill in
the remaining details on the execution of desired actions, which allows it to adapt to
changing environments and operational demands (Metcalfe & van Diggelen, 2021). As
a situation evolves, the possible paths to achieve a certain goal can change (Ho et al.,
2017). As a result, an (semi-)autonomous robot might exhibit unexpected behaviour (from
the perspective of a human operator) in its pursuit to reach a certain goal. A possible
risk is that a human’s lack of understanding of the robot’s actions can cause people
to lose trust and want to take over manual control, negating the advantages of task
delegation. Regardless of the LOA of a robot, communication and human participation in
certain decision-making loops will always remain crucial for effective and safe operations
(Abbass, 2019).

To keep the human involved, robots will need to be able to explain their behavioural
choices, especially when they deviate from the expected manner to reach a goal. Higher
decision authority assigned to robots typically increases the human desire to know what
the robot will be doing (Jessie Y.C. Chen et al., 2020). When the human operator cannot
understand the basis of the robot’s assessments and actions, trust may be eroded,
especially when the robot’s actions do not align with the human’s expectations (Luebbers
et al., 2023; AR Panganiban et al., 2020). In the current study, we are interested in the
implications of a robot that has been delegated the authority to select the best course of
action given the local situation, which could contradict a human’s expectation and result
in a suboptimal outcome (i.e., not attaining the goal). In the context of goal-oriented
delegation, does understanding the robot’s actions towards a goal drive trust or is ultimately
attaining the goal the primary factor?

Trust

Teamwork requires task delegation and task delegation requires trust. More specifically,
calibrated trust is crucial to minimize the risks and to maximize the benefits in the highly
interdependent and dynamic nature of teamwork (Bobko et al., 2022; J. D. Lee & See,
2004; M. K. Lee et al., 2010b). In general, perceiving good robot functioning will likely
increase perceived trustworthiness, whereas perceiving maladaptive (i.e., errors or
mistakes) or ambiguous (i.e., unexpected or unpredictable) robot functioning often
results in decreases in perceived trustworthiness— so called trust violations (Esterwood
& Robert, 2023a, 2023b; Kox et al., 2021; Yang et al., 2021). As we strive for calibrated
trust rather than maximum trust, decreases in perceived trustworthiness are a logical
and functional adaptive response to perceiving errors, technical failures or other forms
of reduced reliability and performance.

However, with the anticipated advancements in the ability of robots to self-select
courses of action, the range of possible causes of human-robot trust violations expands.
That is, human-robot trust is not solely based on a robot’s perceived abilities and
performance (i.e., what it does and can do), but also on its perceived purpose and
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alignment with a trustor’s values (i.e., why it was developed and operates in a certain
way), as well as the understandability or interpretability of the robot and its ability to
explain its actions (i.e., how it operates) (J. D. Lee & See, 2004; Lubars & Tan, 2019).
This operationalization of trust corresponds to the Ability (what), Benevolence (why)
and Integrity (how) (ABI) model from Mayer et al. (Mayer et al., 1995) and reflects how
a trustee’s trustworthiness is based on more than reliability and performance. As a
consequence, trust violations are not solely caused by reduced performance.

As task delegation becomes more goal-oriented, providing the robot more with greater
degrees of freedom in terms of execution, trust violations might be increasingly caused by
a human operator’s lack of understanding of the robot’s assessments and actions, rather
than poor robot performance. When a robot does something unexpectedly (according to
the human), its efficacy and accuracy could be questioned and the action can lead to a
decrease of human-robot trust, regardless of whether the robot is actually maladapted
(Rebensky et al., 2021; Schaefer et al., 2018). For example, a drone might rightfully adapt
its course of action to changes in the operational environment to reach a certain goal, such
as avoiding a collision, without informing the human. If the drone’s deviation significantly
conflicts with the human’s expectations and the robot lacks the ability to explain itself,
the human operator might take over manual control because they do not understand the
drone’s actions and perceive them as inappropriate and untrustworthy (Hou et al., 2021;
Lyons et al., 2023; Rebensky et al., 2021). As such, a lack of understanding causes a
trust violation and leads to a situation of undertrust. Since the success of human-robot
interactions greatly depends on people’s ability to trust them, trust violations that lead
to undertrust would make it necessary for a robot to engage in trust repair strategies
(Baker et al., 2018).

Given (1) the inevitability of unexpected robot behaviour in Human-Robot Interaction
(HRI), (2) the possibility that unexpected behaviour results in trust violations and poor
trust calibration, and (3) the disadvantageous consequences of poor trust calibrations, it
is important to evaluate methods to prevent or buffer (unnecessary) trust violations as a
consequence of unexpected behaviour. Most current HRI trust repair literature focuses
on the role of trust repair strategies after an apparent error (Cameron et al., 2021; de
Visser et al., 2016; Esterwood & Robert, 2023b; Fratczak et al., 2021; Hald et al., 2021;
Taenyun Kim & Song, 2021; M. K. Lee et al., 2010b; Mirnig et al., 2017; Robinette et al.,
2017b; Salem et al., 2015; Wang et al., 2018). However, more recently researchers have
started to evaluate trust violations as a result of unexpected behaviour rather than failure
(Lyons et al., 2023; Perkins et al., 2022; Sebo et al., 2019). In essence, to prevent that
trust will unjustly erode due to a misunderstanding of the basis of a robot’'s assessments
and actions, robots will need to be able to explain the rationale behind their behavioural
choices. Increasing transparency and interpretability through explanations can enhance
trust calibration by lowering unrealistic expectations on the one hand (i.e., preventing
overtrust) and by clarifying unexpected behaviour on the other (i.e., preventing undertrust)
(Jessie Y.C. Chen et al., 2014; J. D. Lee & See, 2004; Mercado et al., 2016).
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Transparency

Transparency can be defined as “the ability for the automation to be inspectable or
viewable so that its mechanisms and rationale can be readily known” (C. A. Miller, 2020)
(p. 235). Transparency is an important part of the design of robots, because without a clear
understanding of a robot’s decision-making mechanism, humans might find it difficult to
trust or adhere to a robot’s decisions, especially when those actions or decisions contradict
the human’s expectations (Luebbers et al., 2023). At the same time, full “transparency”
— implying that the machine is “see through” in the sense that all its inner workings are
observable (Jessie Y.C. Chen et al., 2020; C. A. Miller, 2020) is not desirable either (C.
A. Miller, 2014). When HRI is successful, it can save time and reduce cognitive effort.
However, if a human would have to maintain awareness of everything the robot does,
then no time or cognitive effort would be saved (C. A. Miller, 2014). Ideally, transparency
allows the human teammate to develop and/or maintain realistic expectations regarding
the robot and its behaviour (Hou et al., 2021; C. A. Miller, 2014) and thereby contributes
to effective trust calibration (Bobko et al., 2022; Helldin et al., 2013; Ribeiro et al., 2016).
However, to ensure effective collaboration, it is crucial to find a balance between keeping
the human sufficiently informed while preventing cognitive overload.

To find that balance, literature suggests that robots should primarily communicate the
rationale and intentions of their actions (Chiou et al., 2022; Lyons, 2013; Lyons et al., 2023;
Ososky et al., 2014; Schaefer et al., 2017). A recent study evaluating human-robot trust
in case of unexpected robot behaviour compared different explanation types and found
that explanation strategies that indicated why the event occurred were most effective at
buffering the decline in perceived trustworthiness (Lyons et al., 2023). Explanations are
verbal statements that aim to clarify the reasons for an occurrence. They are deployed
in HRI, prior to or after certain actions, to enable the human to comprehend the inner
workings or logic of the robot’s actions or decisions (Esterwood & Robert, 2022; Lyons
et al., 2023). Explanations are generally invoked when the mental models of those who
must work together mismatch. The explanation is then meant to synchronize the mental
models so that the differences are understood and repaired (C. A. Miller, 2020). As such,
explanations can have a positive effect on trust in case of trust violations.

For instance, increased transparency and feedback can effectively mitigate a human’s
dissatisfaction in the event of an unforeseen occurrence caused by a robot (Hamacher et
al., 2016). Feedback enhances a human’s willingness to trust automation and can delay
or avoid unnecessary manual intervention (Hock et al., 2016). Results of an automated
driving study show that explanations provided before rather than after a certain event
strengthened trust (Du et al., 2019). In other words, increased transparency through
explanations can strengthen trust.

While transparency can benefit trust, it also a poses a challenge to the human operator.
In most cases, humans that perform a task together with a robot do not have the time,
skills, or attention to accurately interpret transparency information during an operational
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situation or the adequate precision to take over the robot’s task if necessary (C. A. Miller et
al., 2023). There is a possibility that increased transparency could come at the expense of
cognitive workload since it requires additional processing and interpretation of information
(i.e., additional cognitive effort) (Guznov et al., 2020; Lyu et al., 2017; Westerbeek &
Maes, 2013). Cognitive workload generally refers to the amount of cognitive resources
and effort required for task performance relative to the available resources (Parasuraman
et al., 2008). An increase in cognitive workload arises when multiple tasks compete for
the same resources, and task requirements exceed the mental capacity. High levels of
cognitive workload can result in fatigue, and hence reduce human performance. On the
contrary, appropriate implementation of transparency in HRT could also result in reduced
cognitive workload of the human-teammate, as it helps to understand the robot’s behaviour
and reasoning (Bobko et al., 2022; O’Neill et al., 2022; van de Merwe et al., 2022). At the
same time there are also studies that find no effect of transparency on workload (Jessie
Y.C. Chen et al., 2017; Selkowitz et al., 2016, 2017). In other words, the results are
inconclusive and further research is needed to determine whether transparency affects
workload advantageously or disadvantageously.

Outcome

While transparency can enhance a human’s understanding of a robot’s reasoning process
and thereby help to create realistic expectations regarding the robot’s capabilities, it is
conceivable that a negative outcome will still be disappointing and detrimental to trust.
At the same time, since unexpected robotic behaviour might arise from the fact that
increasingly intelligent agents may devise alternative plans that are better and more
efficient than those humans would come up with, we are also interested in the effect of
positive outcomes. Whether the robot’s execution is logical or understandable for the
human and whether the robot eventually reaches its goal are both likely to affect trust. As
such, we seek to explore how and to what extent transparency and outcome influence
the development of trust.

Generally, the performance of a robot is seen as the most important predictor of
human-robot trust (Hancock, Billings, Schaefer, et al., 2011a; Hoff & Bashir, 2015).
Unsurprisingly, research suggests that robot successes increase trust (Yang et al., 2021),
while robot failures decrease trust (Jorge et al., 2023; Kox et al., 2021; Kox, Siegling,
et al., 2022; Yang et al., 2021). Furthermore, the magnitude of trust decrements due to
robot failures is found to be bigger than that of trust increments due to robot successes
(Yang et al., 2021). This is in line the concept of loss aversion within prospect theory from
classic decision-making literature, which posits that people tend to value gains and losses
differently, placing more weight on perceived losses versus perceived gains (Tversky &
Kahneman, 1992). That is, the pain of losing is psychologically more impactful than the
pleasure of gaining (Tversky & Kahneman, 1992). However, research also suggests that
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the effect of robot performance on trust might depend on an individual's perception of
the interaction and vice versa.

One the one hand, there is research that suggests that the quality of the interaction
might influence how people respond to a robot’s performance. For example, there are
findings that suggest that people place less value on task performance and more on
transparency, control and feedback (Hamacher et al., 2016). This study shows that
participants preferred an expressive and error-prone robot over a more efficient one.
This suggests that an erroneous robot can be forgiven as long as it communicates, while
an inexpressive robot with high task performance could still be trusted less (Hamacher
etal., 2016).

On the other hand, there is research that suggests that outcome can change how
people perceive the preceding interaction, a phenomenon referred to as the outcome bias.
An outcome bias is where the quality of a decision made by others under conditions of
uncertainty is evaluated differently in hindsight, based on the outcome (Baron & Hershey,
1988). Research suggests that people evaluate the thinking behind a decision as better
when the outcome is favourable compared to when the outcome is unfavourable (Baron
& Hershey, 1988). Earlier HRI research has found evidence for the outcome bias, finding
a reinforcing effect where initial automation failure led to a larger trust decrement if the
final outcome was undesirable (Yang et al., 2021). In other words, there are reasons
to believe that the effects of transparency and outcome on perceived trustworthiness
might be interdependent.

Current study

Goal-oriented delegation in complex environments with limited resources and changing
circumstances poses challenges. Plans can be made in advance, but in case of unforeseen
circumstances, the robot will need to adapt its plan and “function beyond choreography” to
still reach the end-goal (Chiou et al., 2022) (p. 119). That is, beyond a fixed, scripted series
of actions that do not account for variability or unexpected changes in the environment.
At times, these adaptations will be advantageous, while in other cases, they may be
suboptimal or disadvantageous. The current study investigates how transparency and
outcome affect the perceived trustworthiness of a robotic partner in case of an unexpected
deviation from the expected manner to reach a delegated goal.

In the current study, transparency entails that the robot gives clarifying information
in the form of regular status updates including an explanation (i.e., the what and why) of
its actions as it deviates from the expected manner to reach the goal (Chiou et al., 2022;
Taemie Kim & Hinds, 2006). We expect that when the robot explains its reasoning and
actions, a stable level of perceived trustworthiness can be maintained in the event of
deviant behaviour. Specifically, we expect that transparency will prevent a trust violation
in response to the robot’s unexpected behaviour (Lyons et al., 2023) and will generally
lead to higher perceived trustworthiness. Conversely, we expect that a sudden and
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silent deviation from the plan (i.e., low transparency) will lead to a violation of trust. We
further expect an interaction effect between transparency and outcome. Specifically, we
hypothesize that the expected violation of trust in response to the unexpected behaviour
in the low transparency condition will amplify the effect of a subsequent negative outcome
(Yang et al., 2021). In the high transparency condition, we expect higher and more stable
levels of perceived trustworthiness (Lyons et al., 2023) and a smaller effect of negative
outcome compared to the low transparency condition.

Method
Participants

In total, eighty-seven participants participated in the study. Five participants were
excluded from the dataset because of invalid data due to technical issues during the
task. Participants were recruited through convenience sampling (e.g., by handing out
flyers, asking people in person, and making requests in WhatsApp groups). The final
dataset included eighty-two participants (43 W, 39 M, Mage =23.6, SD = 3.2, range =
19 — 41 y), of which the majority was Dutch (65,9%) and the remainder from elsewhere
in Europe (17,1%), Asia (9,8%), or North or South America (both 3,7%).

Design

A 2 (transparency: low vs. high) by 2 (outcome: negative vs. positive) between-subjects
design was used, with Perceived Trustworthiness (measured across the subscales
Ability, Benevolence and Integrity) as the main dependent variable. Participants were
randomly distributed across the four conditions (low & neg.: n = 21, low & pos.: n = 20,
high & neg.: n = 20, high & pos.: n = 21).

Perceived trustworthiness was repeatedly measured, so ‘Time’ was included as a
within-participants variable in the analysis. Each participant performed two missions; a
training mission with four trust measures (T1, T2, T3, T4) and the experimental mission
with four trust measures (T5, T6, T7, T8). Cognitive workload was also administered.

Task and procedure

Upon arrival at the laboratory, participants were greeted by the researcher and guided
to a private room where the study was to be conducted. The researcher provided a brief
introduction to the study, emphasizing the general purpose and the tasks participants
would be asked to perform. Participants were presented with an information sheet about
the study and a consent form. Upon agreeing to participate, participants filled out a pre-
study questionnaire (i.e., demographics and gaming experience) and received information
regarding the scenario and task.
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Participants were instructed to perform a virtual military transport and reconnaissance
operation, together with a quadruped robotic agent. Their mission had two major objectives.
The first objective of the team was to get to a designated location as fast and safe as
possible in order to collect essential supplies and equipment that would be airdropped
by helicopter at a scheduled time. A green smoke grenade was used to mark the drop
zone. If the team did not reach the designated location in time, the helicopter would not
be able to deliver the supplies securely. If so, following troops would not be resupplied
and would run out of essential resources quickly. In other words, the team had to hurry
in order to complete the mission successfully.

The second objective of the team was to obtain information about the activities of
an enemy in that particular area by counting potential IED’s (i.e., red and blue barrels)
along the way. By assigning participants the counting task, each team member (i.e., the
participant and the virtual robotic partner) had a specific role contributing to their shared
objective. This arrangement also enabled us to assess whether transparency affected the
participant’s performance in their secondary task. The robot had been delegated the task
to navigate to the designated location via the fastest yet safest route, while providing 360
degrees coverage to its human counterpart. To ensure coverage, participants needed to
stay as close to the robot as possible at all times. The robot did not provide any advice,
but operated according to the goal it had been delegated. The path and the messages
of the robot were pre-programmed and thus fixed.

The task was performed on in the lab using a virtual experimental environment built
in Unity3D (Figure 11). The experimental setup contained two computer screens: one
with the experimental environment (i.e., “task screen”) and another with the questionnaire
software (i.e., “questionnaire screen”). The participants sat in a dimly lit laboratory room
at approximately 65 centimetres from the computer screens. Data was gathered via the
online questionnaire software Qualtrics. The task consisted of three parts: (1) a practice
session with demo video; (2) the training mission; and (3) the experimental mission. During
the practice session, participants were placed in a neutral virtual environment where they
got familiar with the controls (key W and mouse), saw the robot and examples of the
red and blue barrels, and tested the volume of the audio via the headphones. Next they
were presented a map and a video showing the planned route to the designated location.
They were instructed that it was crucial that they strictly follow the plan as it had been
coordinated with the helicopter pilot. After that, each participant performed the training
mission and the experimental mission, the latter being presented as the ‘actual mission’.
This was a fixed order. Naturally, we could only introduce something unexpected after
creating a shared expectation.
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Figure 11 Screenshots of the virtual task environment. From left to right, top to bottom: 1) Examples of
the red and blue barrels in the demo, 2) First sight of the river in the training session; 3) Robot crossing
the bridge in the training session; 4) Robot nearing the riverbed in the experimental session.

In the training mission, the robot adhered to the path demonstrated in the demo video.
However, at a fixed point in the experimental mission, the robot diverged from the
predetermined route and chose an alternative path, in response to environmental changes
(i.e., the riverbed had dried) (Figure 12). Both missions took place in the same virtual
environment with the designated location on the opposite side of a river. However, in the
training session the river was full of water, which meant that to cross over the river they
had to use the bridge. In the experimental session, the environmental circumstances
changed and the riverbed dried up. At the time of the robot’s deviation, the river is not
visible for the participant.

During the missions, perceived trustworthiness was measured at four times. At fixed
points, the task environment would freeze and participants were asked to turn to the
questionnaire screen to fill out a questionnaire. Participants were assured that the time
needed to fill out the questionnaires did not add up to their total mission time. After
completing a questionnaire, participants returned to the task screen and resumed their
mission. At the end of each mission, participants were asked to report the number of
identified potential IEDs (red and blue separately), and their level of certainty regarding
their report. To check whether the participants noticed that the robot had deviated from
the plan, we included a manipulation check asking participants after both missions to
what extent the robot operated in accordance with the plan. Further, cognitive workload
was measured after each mission. The location and number of the IED’s (red and blue
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barrels) in the environment were varied between the training and experimental session.
There were no barrels present in the demonstration video. After participants finished the
experiment, they were thanked and debriefed.

Training mission

Experimental mission start @

Figure 12 Bird-eye-view of the environments in the training (top) and experimental (bottom) session.
Dotted lines with arrows mark the routes. White dots with codes (i.e., 1a to 2d) reference the locations
of the robot’s auditory updates in the high transparency condition, as presented in Table 7. Yellow diamonds
indicate the locations where the task would freeze to measure trust (T1 to T8). The designated location
was marked by a green smoke grenade, highlighted at the top of the figure by a green star. The missions
terminated where the arrows end. Outcome was presented as text on screen. Outcome and the final
trust questionnaires of each mission (T4 and T8) were administered after the mission had ended.

Independent variables

Transparency had two levels (i.e., low vs. high) and was manipulated between participants.
In case of low transparency, the robot did not give any updates during the missions. In
case of high transparency, the robot provided regular updates on the mission’s progress
including an explanation for its deviation from the planned route (see Table 7, the
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explanation has code 2b). The robot’'s messages were generated through computerized
speech that was created using a website for converting text into speech4F?®, using a
male voice speaking US English. The transparency manipulation was present in both
the training session and the experimental session.

Table 7 Overview of the robot’s updates in the high transparency condition.

Mission Code Audio message
Training 1a Moving to location: left turn
1b Moving to location: straight ahead
1c Moving to location: approaching bridge
1d Moving to location: crossing bridge
Experimental 2a Moving to location: left turn
% A faster alternative route has been detected, because the river had dried
up. Moving to location: right turn.
2c Moving to location: approaching river
2d Moving to location: crossing riverbed

Outcome had two levels (i.e., negative vs. positive) and was also manipulated between
participants. The outcome was presented to the participants via text on screen (Table
8). This message appeared as participants reached the riverbed in the experimental
session (i.e., after audio message 2d, before T8). A positive outcome meant that the HRT
reached their goal and that the robot’s deviation led to a better result than the original
plan. A negative outcome meant that the HRT did not reach their goal and that the robot’s
deviation led to a worse result.

Table 8 Overview of the mission’s outcomes at T4 in the experimental session.

Outcome  Text on screen

The riverbed had indeed dried up and your team was able to cross the riverbed.
Positive Thanks to the alternative route, your team reached the destination 2 minutes early.
Your mission was successful.

The riverbed did not dry up fully. Quicksand had formed, which made it impossible to
Negative cross. The detour cost you precious time and your team did not reach the planned
location in time for the resupply by air. Your mission has failed.

Dependent variables

Perceived Trustworthiness: The Trusting Beliefs scale from (McKnight et al., 2002) based
on the factors of perceived trustworthiness (i.e., ability, benevolence and integrity) (Mayer
et al., 1995; Schoorman et al., 2007) was used to repeatedly assess the participant’s

5 Via www.ttsmp3.com, voice: US English / Matthew
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perception of the robot’s ability, benevolence, and integrity (T1 a=0.83, T2a=0.87, T3
a=0.89,T4a=0.88,T5a0=0.88 T6 a=0.92, T7 a = 0.93, T8 a = 0.94). This scale had
a total of eleven items and consisted of three subdimensions: ability (4 items, i.e., “The
robot that | work with is competent and effective in accomplishing its task”); benevolence
(3 items, i.e., “I believe that the robot would act in my best interest”); and integrity (4 items,
i.e., “l would characterize the robot as honest”). The items were adapted to reference
“the robot”. Each item was rated on a 7-point Likert scale (1 = Strongly disagree to 7 =
Highly agree)

Workload: NASA Task Load Index (NASA TLX): The NASA TLX questionnaire was
used to assess the participants’ perception of workload. The NASA TLX consists of six
individual rating scales that are commonly used to measure cognitive workload (mental,
physical, temporal, effort, frustration, performance) (Hart, 2006). Each item was rated
on a 10-point Likert scale (0 = very low to 10 = very high) (training mission: a = 0.67,
experimental mission: a = 0.74).

Secondary task performance (ldentifying IEDs): In an attempt to assess cognitive
workload objectively, participants were instructed to count potential IED’s in the
environment, which were visually represented as red and blue barrels. At the end of
each mission, participants were asked to report the number of red and blue barrels
they had identified separately. Task performance was computed by first calculating the
proportions of red and blue barrels separately (i.e., reported barrels divided by the number
of correct barrels, where 1.0 indicates perfect performance). If a proportion exceeded
1.0 (i.e., overreporting), we subtracted the proportion from two. Subsequently, the final
performance score was obtained by multiplying the performance scores of the red and
blue barrels, which resulted in a number between 0 and 1.

Results
Manipulation check and control variables

As a manipulation check, participants were asked to what extent the robot operated
in accordance with the plan on a scale from 1 (Completely not in accordance) to 7
(Completely in accordance). Results of a paired sample t-test indicated that participants
reported that the training mission went according to plan (M, .. = 6.3, SD,.. .= 1.0),
while participants reported that the final mission did not (Mtraining = 3.8, SDtraining =2.0). The
difference is significant, #(81) = 10.30, p < .001. So, it can be assumed that the deviant
behaviour was noticed and that the manipulation was successful.

Also, gaming experience was measured prior the experiment with the item “How often
do you play video games?” on a scale from 1 (Never) to 6 (Every day). We compared the
level of gaming experience between groups and found no significant differences (one-way
ANOVA, F(3, 78) = 1.27, p = .290). Additionally, we calculated Spearman’s correlations
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between gaming experience and various outcome variables. No significant relations with
gaming experience were found: subjective workload (p = .14, p = .209), performance
(p = .12, p = .302), and perceived trustworthiness (total average experimental session)
(p=.10, p=.391).

Perceived trustworthiness

In the training session, there are no significant differences in perceived trustworthiness
between groups and timepoints (Figure 13). The following analyses only consider the

experimental session.
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Figure 13 A comparison of trust levels (y-axis) between conditions (separate lines) over time (x-axis).
The left panel shows the data from the training session and the right panel shows the data from the
experimental session. Grey lines with triangle markers represent conditions with a negative outcome,
while black lines with circle markers represent conditions with a positive outcome. Dashed lines indicate
conditions with low transparency, and solid lines indicate conditions with high transparency. Error bars
represent standard deviations. NB. The differences at T7 between low/neg. & low/pos. and high/neg. &
high/pos. are non-significant (respectively p = .152 and p = .506). The difference in trust between low/
pos. and high/neg. at T8 are also non-significant (p = .138).

Overall perceived trustworthiness

We performed a repeated-measures ANOVA with the between-subject factors Transparency
(high or low) and Outcome (positive or negative) and the within-subjects variable Time
(prior to deviation [T5]; after deviation [T6]; before outcome [T7]; after outcome [T8]).
The dependent variable was Overall perceived trustworthiness.

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the
sphericity assumption, X?(5) = 26.96, p < .001. Since sphericity is violated (¢ = 0.83),
Greenhouse-Geisser corrected results are reported. A significant main effect for Time
was obtained (F (2.48, 234) = 13.765, p <.001, n? =.150). Means were 5.1 at T5, 4.6 at
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T6, 4.6 at T7 and 4.5 at T8. Post-hoc (LSD) pairwise comparison shows that this main
effect is due to a significant decline in perceived trustworthiness from T5 to T6 (AM =
-0.4, p <.001), which reflects the effect of the robot’s deviation.

Secondly, a significant main effect for Transparency on Perceived trustworthiness
was obtained (F (1, 78) = 16.72, p < .001, n? = .177). On average, high transparency
(M =5.1, SE =0.1) led to higher perceived trustworthiness than low transparency (M =
4.3, SE=0.1).

Lastly, a significant main effect for Outcome on Perceived trustworthiness was obtained
(F(1,78)=7.93, p=.006, n?=.092). On average, people in a positive outcome condition
(M =5.0, SE = 0.1) perceived the robot as more trustworthy than people in a negative
outcome condition (M = 4.4, SE =0.1).

The two-way interaction effect between Transparency and Time on Perceived
trustworthiness was found to be significant (F (2.48, 234) = 12.37, p < .001, n? = .137).
Post-hoc (LSD) pairwise comparison shows that a significant difference in perceived
trustworthiness between the low and high transparency conditions emerged at T6 (i.e.,
directly after the robot deviated from the plan) (AM = 1.2, p < .001). Although this gap
shrinks over time, it remains significant (T7: AM=1.0, p <.001; T8: AM = 0.8, p =.003).
This effect illustrates that in the high transparency condition, where the robot explains
the rationale behind its deviation, trust is preserved. Conversely, in the low transparency
condition, the robot’s silent deviation before T6 results in a trust violation.

The two-way interaction effect between Outcome and Time on Perceived
trustworthiness was also found to be significant (F (2.48, 234) = 30.31, p < .001, n? =
.280). Post-hoc (LSD) pairwise comparison shows that, as expected, the interaction effect
was manifested in the final phase of the run, after the outcome had been presented to
the participant. At T8, perceived trustworthiness was significantly higher in the positive
outcome conditions than in the negative outcome conditions (AM = 1.6, p < .001). In
other words, a positive outcome had a positive effect on perceived trustworthiness, while
a negative outcome had a negative effect on perceived trustworthiness.

The three-way interaction effect between Transparency, Outcome and Time on
Perceived trustworthiness was non-significant (F (2.48, 234) = 0.86, p = .445, n? = .011).
This indicates that the effects of transparency and outcome on perceived trustworthiness
in response to the events in the task are independent.

Ability, benevolence and integrity-based perceptions of trustworthiness

We then conducted three separate repeated-measures ANOVAs, each with a different
perception of trustworthiness (Ability, Benevolence, and Integrity) as the dependent
variable. Again, we included Transparency (high or low) and Outcome (positive or negative)
as between-subject factors and Time (prior to deviation [T5]; after deviation [T6]; before
outcome [T7]; after outcome [T8]) as the within-subjects variable (Figure 14). Greenhouse-
Geisser corrected results are reported.
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Figure 14 A comparison of trust levels
(y-axis) between conditions (separate lines)
over time (x-axis). The panels show different
perceptions of trustworthiness: from top to
bottom, Ability, Benevolence, Integrity, and
2- ! Overall Trust for reference. Grey lines with
triangle markers represent conditions with
a negative outcome, while black lines with
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As shown in Figure 14, perceptions of Ability and Integrity exhibited similar patterns as
those observed for overall perceived trustworthiness. Both dimensions showed a significant
main effect of Time, characterized by a notable decline in perceived trustworthiness
from T5 to T6, reflecting the impact of the robot’s deviation. The differences over time
were more pronounced for Ability (F (2.67, 234) = 12.96, p < .001, n? = .235) than for
Integrity (F (2.36, 234) = 8.66, p < .001, n? = .100). Similarly, both dimensions revealed
a significant main effect of Transparency, indicating that high transparency led to greater
perceived trustworthiness, with a stronger effect for Ability (AM = 0.8, F (1, 78) = 31.80,
p <.001, n? =.290) than for Integrity (AM = 1.2, F (1, 78) = 12.95, p <.001, n? = .142).

The two-way interaction effect between Transparency and Time was also significant
for both dimensions, particularly pronounced for Ability (F (2.67, 234) = 14.53, p < .001,
n? =.157) compared to Integrity (F (2.36, 234) = 6.94, p <.001, n? = .082). As illustrated
in Figure 14, post-hoc pairwise comparisons (LSD) indicated a significant difference
in perceived trustworthiness between low and high transparency conditions at T6,
immediately following the robot’s deviation from the plan.
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Furthermore, the two-way interaction effect between Outcome and Time was significant
for both dimensions, with a stronger effect observed for Ability (F (2.67, 234) = 43.44,
p <.001, n? = .358) than for Integrity (F (2.36, 234) = 12.50, p < .001, n? = .138). Post-
hoc (LSD) pairwise comparison shows that, as expected, this interaction effect was
manifested in the final phase of the experimental session, after the outcome had been
presented to the participant. The only distinction between Ability and Integrity lies in the
significant main effect observed for Outcome on Ability (F (1, 78) = 10.17, p =.002, n? =
.115), while this main effect was non-significant for Integrity (F (1, 78) = 0.91, p = .343).

The perception of the robot’s benevolence stands out among the studied perceptions
of trustworthiness. Neither the main effect of Time (F (1.73, 234) = 0.44, p = .616) nor the
main effect of Transparency (F (1, 78) = 0.76, p = .387) reached significance. However,
we did find a significant main effect for Outcome (AM = 0.8, F (1, 78) = 7.87, p = .006,
n? = .092). As depicted in Figure 14, there was a consistent significant difference in
perceptions of benevolence between participants in the positive and negative outcome
conditions, even before the outcome was presented. Post-hoc analysis (LSD) of the
significant two-way interaction effect between Outcome and Time (F (1.73, 234) = 4.96,
p =.011, n? =.060) indicates that while the difference between the positive and negative
outcome condition was largest at T8 (p < .001), significant differences were already evident
at T5 (p = .015) and T7 (p = .010), prior to outcome presentation. Lastly, the two-way
interaction effect between Transparency and Time on the perception of benevolence
was found to be significant (F (1.73, 234) = 5.04, p = .011, n? = .061). However, post-hoc
pairwise comparisons (LSD) did not reveal significant differences between transparency
conditions at any of the timepoints.

The three-way interaction effect between Transparency, Outcome and Time was
non-significant for each perception.

Workload

To assess the effect of transparency on subjective workload, we performed a repeated-
measures MANOVA with the between-subject factors Transparency (high vs. low) and
the within-subjects variable Mission (training vs. experimental) and NASA TLX subscales
(mental, physical, temporal, effort, frustration, performance). The dependent variable
were the raw NASA TLX scores. The analysis showed that there were no significant
differences between the two transparency conditions on any of the NASA TLX subscales.
This suggests that transparency did not affect workload.

To assess the effect of transparency on secondary task performance, we performed
a repeated-measures ANOVA with the between-subject factors Transparency (high vs.
low) and the within subjects variable Mission (training vs. experimental). The dependent
variable was the performance on the barrel identification task. Our results showed no
significant difference between the two transparency conditions on task performance.
We did find a significant effect of Mission on performance, indicating that performance
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improved significantly from the training mission (M. = 0.6, SE =0.2) to the

trainin trainin

experimental mission (M. ...= 0.8, SE___. .. =0.2). ’ ’
Lastly, we explored whether there was a correlation between subjective workload
scores (i.e., averaged raw NASA TLX score) and performance on the secondary task.
We found no significant relations between subjective workload and performance on the
secondary task. The scores from the training and experimental mission were correlated
for both subjective workload (Pearson’s r=.71, p <.001) and secondary task performance

(r=.23, p =.040).

Discussion
Findings

Our findings show a robust effect of transparency on overall perceived trustworthiness.
Perceived trustworthiness was considerably higher when the robot provided updates
about its actions throughout the task. Moreover, while the perceived trustworthiness of the
robot remained stable during the robot’s deviation for participants in the high transparency
condition, participants in the low transparency condition showed a significant decline in
perceived trustworthiness in response to the robot’s sudden adaptation to the plan. In
other words, the explanation prevented a trust violation. This confirms earlier research
that showed that transparency can have a buffering effect on perceived trustworthiness
in case of unexpected behaviour or temporary malfunctioning (Kox, Siegling, et al., 2022;
Kraus et al., 2020; Lyons et al., 2023; Tenhundfeld et al., 2020). It also confirms that
specifically clarifying the what and why of an unexpected action can prevent a breach in
human-robot trust (Lyons et al., 2023). This finding broadly supports the work of other
studies in this area linking transparency with trust, in that it enables humans to know
and anticipate the robot’s behaviour (Ellwart & Schauffel, 2023).

Our findings reveal that perceptions of the robot’s trustworthiness in terms of ability
and integrity exhibited similar patterns, albeit consistently stronger effects were observed
for ability compared to integrity. Our results further suggest that, overall, the perception
of the robot’s benevolence remained relatively stable despite the robot’s actions during
the mission (i.e., the deviation and the outcome). This is somewhat unsurprising given
that the mission primarily focused on how effectively the robot executed its delegated
task, rather than its purpose or benevolence. Therefore, it makes sense that the effects
of the manipulation are reflected in the robot’s perceived abilities and performance (i.e.,
what it does and can do), as well as its understandability and its ability to explain its
actions (i.e., how it operates) (J. D. Lee & See, 2004; Lubars & Tan, 2019). The stability
of benevolence perceptions despite mission events underscores the distinctiveness of
this trust dimension from factors primarily concerned with task performance and execution
(J. D. Lee & See, 2004).
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The fact that we did not find an effect of transparency during the training session
can be explained by transparency displacement, the idea that transparency information
should ideally be displaced to other time periods (i.e., before or after the action) to
enable more efficient communication in the moment (C. A. Miller, 2020). In our case,
every participant received a detailed demonstration of what they could expect during
the mission (i.e., even prior to our “training” mission). This form of “a priori transparency”
frames expectations about what is likely to happen during operations and reduces the
need for communication during the action (C. A. Miller, 2020). This explains why the
status updates that the robot provided during the execution of the training session did
not have additional trust-building value; because everything was still going according to
plan. It was only when the robot’s behaviour deviated from the framed expectations that
real-time communication became necessary, and transparency significantly influenced
the perceived trustworthiness of the robot.

Next we found that mission outcome also affected perceived trustworthiness. As
expected, mission success increased perceived trustworthiness, while mission failure led
to a decrease. This finding confirms that the performance of a robot is still an important
predictor of human-robot trust (Hancock, Billings, Schaefer, et al., 2011a; Hoff & Bashir,
2015). In contrast to our expectations however, these increments and decrements were
independent of the robot’s transparency. As noted, in the low transparency condition
we observed a trust violation in response to the robot’s silent deviation. In line with the
outcome bias, we expected that this decrement would amplify the effect of a subsequent
negative outcome. Although the negative outcome did lead to a further decline in perceived
trustworthiness, the magnitude of this final trust violation was the same for participants in
the high transparency condition with a negative outcome, who had not yet experienced
a trust violation. Like the negative outcome, the positive effect of goal attainment on
perceived trustworthiness was also constant, in spite of the (lack of) communication
that preceded it. People’s damaged perceptions of trustworthiness after unannounced
deviations recovered significantly once the outcome was favourable.

In essence, we expected that being informed about the what and why of a robot’s
(unexpected) behaviour would have more impact on perceived trustworthiness than the
eventual outcome of divergent behaviour. In addition to the outcome bias, we based our
expectations on findings where participants placed less value on task performance and more
on transparency, control and feedback (Hamacher et al., 2016) and preferred an expressive
and error-prone robot over a more efficient and effective one. We reasoned that an erroneous
robot could be deemed trustworthy as long as it communicated. However, our findings seem
to indicate that people weigh the outcome at least as heavily as the process in their
estimations of trustworthiness. This discrepancy can be explained by the severity of the
negative outcome on the one hand and the quality of the communication on the other.

For one, the perceived severity of the negative outcome might explain its robust
effect on perceived trustworthiness (Rossi et al., 2018). Although the current study was
based on a fictional virtual task, without any reward or loss, the scenario was focused on
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successfully completing the mission, especially when comparing our task to (Hamacher
et al., 2016) where the objective was to prepare an omelette with the assistance of a
humanoid robot. In their study, errors (e.g., the robot dropping an egg) resulted in delays
but did not pose a significant threat to the ultimate goal achievement. In contrast, in our
study’s negative outcome condition, the robot’s deviant behaviour led to a complete
mission failure.

Secondly, an alternative explanation might be related to the quality of the communication
between the participant and the robot. We manipulated transparency in a binary manner
as either high or low, indicating whether auditory status updates including an explanation
for divergent behaviour were provided or not. Participants were unable to engage in a
dialogue with the robot they were collaborating with. Then outcome was presented at
the end of the task through text on screen. Essentially, the transparency and outcome
manipulations both amounted to unilateral updates that informed the participants about
the capabilities of the robot and the environment. Hence, it might not be surprising that
their effects on perceived trustworthiness were similar rather than reinforcing.

Our current findings are in line with the general finding of (Hidalgo et al., 2021), who
conclude that humans judge machines primarily by their outcomes, rather than their
“intentions”. We believe that richer forms of interaction (e.g., bi-directional communication)
could cultivate a deeper understanding of the rationale behind the robot’s decisions and
foster a heightened sense of collective accountability. This could shift the focus from
the end-result to the decision-making process and lead to a greater understanding and
forgiveness in situations where an unintended negative outcome occurs. This would
then thus be more in line with how humans judge humans (Hidalgo et al., 2021). The
emergence of Large Language Models (LLMs) offers this prospect of intuitive and effective
bi-directional human-robot communication. A recent study showed that incorporating
these models in robots contributed to increased trust in human-robot collaboration (Ye
et al., 2023). In order to truly consider robots as autonomous partners in dynamic task
environments, the ability to communicate bi-directionally within the team is crucial (Chiou
et al., 2022). Future research is required to gain a better understanding of the effect
of bidirectional communication. The possibility to request further details or to clarify
instructions during interaction is expected to add to the development of richer interactions
and the calibration of trust (Schaefer et al., 2018).

Lastly, we found no differences in the secondary task performance and self-reported
cognitive workload between high or low transparency. This can be considered positive as
we found that high transparency contributed to higher and more stable levels of perceived
trustworthiness, while the additional provided information did not come at the expense of
workload (Stowers et al., 2020). Prior findings on the effect of transparency on workload
during human-robot collaboration are mixed (O’Neill et al., 2022). Our findings contradict
studies that found that transparency affected workload either positively (Bobko et al.,
2022) or negatively (Guznov et al., 2020; Lyu et al., 2017; Westerbeek & Maes, 2013),
but confirm earlier studies that found no effect of transparency on workload (Jessie Y.C.
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Chen et al., 2017; Mercado et al., 2016; Selkowitz et al., 2016, 2017; Stowers et al.,
2020). The apparent inconsistencies in literature are likely due to both the broadness of
the definition of transparency and its highly context-dependent effects. Transparency can
vary in terms of the type and amount of information provided, as well as in the way it is
communicated or presented (modality). Previous studies have shown that transparency
through other modalities, like written text messages (Guznov et al., 2020) and data
visualizations (Akash et al., 2020; Bobko et al., 2022; Kraus et al., 2020; Mercado et al.,
2016; Stowers et al., 2020) can also enhance trust. The chosen modality could be a factor
in trust, e.g., the auditory messages with synthesized “robotic speech” that we used can
have an anthropomorphic effect (Sims et al., 2009), which in turn could have influenced
trust (de Visser et al., 2012). It will take continuous effort to find the appropriate modality
and level of information for different applications, as there appears to be no single optimal
way of incorporating transparency into the design of autonomous collaborative agents.

In short, our findings showed that a robot’s explanation in case of unplanned behaviour
prevented a decline in perceived trustworthiness. Our findings emphasize the importance
of transparency for effective HRT as it contributed to a stable level of trustworthiness
without increasing cognitive workload. Transparency remains a challenge in each form
of human-robot collaboration. Successful HRI and delegation is supposed to reduce
the human’s cognitive effort, but there is a continuous trade-off between keeping the
human sufficiently informed to maintain trust and preventing cognitive overload (C. A.
Miller, 2014). An interesting direction for future research regarding this issue is provided
in (Akash et al., 2020), where the authors developed a model capable of estimating the
effect of transparency on human trust and workload in real time. Studies incorporating
such predictions in simulations or real-life missions would provide valuable insight on
this matter.

Implications & contributions

Our research extends the current understanding of trust violations in HRI due to unexpected
behaviour rather than solely robot malfunctioning. As robots are increasingly deployed in
increasingly complex operational situations, it is crucial to investigate a wider range of
human-robot trust violations while using realistic scenarios. Transparency is essential to
prevent that trust will unjustly erode due to a misunderstanding of the basis of a robot’s
assessments and actions. Especially with the emergence of deep learning Al, which
makes the behaviour of Al-driven systems subject to potentially unpredictable change (C.
A. Miller, 2020), artificial agents will need to be able to explain the rationale behind their
behavioural choices. Explanations are needed to continuously synchronize the mental
models of those who must work together as to understand and resolve mismatches (C.
A. Miller, 2020). As such, transparency is a major contributor of effective trust calibration.

Trust calibration is a lengthy and continuous process. The trustworthiness of any
actor varies across time and context. Hence calibrated trust should not be viewed as
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the static state of trust, but as a fluctuating quality that is subject to continual calibration
based on ever-evolving experience. To capture this change, repeated measures of trust
are crucial. “Change is particularly important for the study of norm conflict, resolution, and
mitigation, because people often update their perceptions, judgments, or trust as they
learn more about the robot and especially about its response to a norm violation.” (E.
Phillips et al., 2023) (p. 5). While the current study did not include continuous captures
of trust like other studies have (Chi & Malle, 2023; Guo & Yang, 2020; J. D. Lee, 1991;
Yang et al., 2021), it has gone some way towards enhancing our understanding of the
dynamics of trust by repeatedly measuring trust.

Limitations & future work

Although the present study yielded insightful results, there are a few limitations that
should be taken into account when evaluating our findings. First, the generalizability
of these results is subject to certain limitations. Our analyses are based on a sample
comprising mostly university students. Given their non-expert background, the game-like
task environment could have trivialized the experience of the outcome of the scenario.
It is likely that the effect of an outcome in a game-like virtual environment may not be
the same as its effect in “real-life” situations. The task scenario described a military
transport and reconnaissance operation. However, military personnel, who are used to
training with virtual scenarios, might have responded differently to the outcome in this
scenario, let alone during an actual mission. Despite the limited sample size, our study
yielded noteworthy findings. Nevertheless, researchers should exercise caution when
extrapolating these results to wider or more general contexts.

A potential weakness of this study lies in the fact that the high-transparency condition
included robot speech, while the low-transparency condition did not. This difference raises
the possibility that the observed effects between the two conditions may be attributed
to the robot’s speech presence rather than the content of the speech itself. According
to prior research, the presence of speech can influence how people interact with an
agent (Sims et al., 2009). Additionally, a computerized voice might suggest a specific
gender, thereby triggering anthropomorphism and its associated consequences (Forster
et al., 2017). However, it was only when the robot’s behaviour deviated from the framed
expectations that transparency significantly influenced the perceived trustworthiness of
the robot. We did not observe an effect of transparency during regular auditory status
updates. Therefore, we are confident that this difference does not undermine the study’s
validity and that our findings remain valuable for understanding the impact of transparency
on perceived trustworthiness.

Another limitation was that participants had limited options available for handling
unplanned behaviour, as they were dependent on the robot for guidance and coverage.
The robot followed a scripted path with scripted messages and participants had to stay
close to the robot, as it was not able to wait for them. In regular interactions, however,
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there is no predetermined approach to address unexpected events. We concur with
(Lyons et al., 2023) on this matter, who proposed that in practice (a) the robot should
request permission prior to engaging in unplanned behaviour, or that (b) the conditions
wherein the robot is delegated authority to act autonomously if certain situational criteria
are met should be identified prior to the task.

The human operator’s inability to deviate from the robot decreases their self-efficacy
and increases their dependency on the robot. Multiple studies have linked people’s self-
efficacy (i.e., their evaluation of their own competences and reliability in relation to a
certain task) to trust calibration in HATs (Ellwart & Schauffel, 2023; van Dongen & van
Maanen, 2013; Yang et al., 2021). For example, lowered self-competence can increase
people’s willingness to accept recommendations from a robot and to trusting it in cases
they should not (Turner et al., 2020). Follow-up studies should allow more flexibility in
choosing how to respond to deviant behaviour of an autonomous system rather than
having to adhere to a predetermined course of action (e.g., following the robot at all
times). These future investigation have the potential to explore the ambiguous relation
between trust and compliance.

Arelated avenue for future research could be to change the HRI role of the participants
in the collaboration. According to the HRI roles as defined by (Scholtz, 2003), the type
of HRI in the current study can be characterized as “peers”. In a peer interaction, the
participant is considered to be the robot’s teammate who shares the same goals (Scholtz,
2003). In terms of task delegation and trust, it would be interesting to look into HRIs
where the participant has the role of supervisor. In a supervisor role, the participants
would monitor and control an overall situation and be able to delegate specific tasks or
to modify long term plans (Scholtz, 2003). Allowing participants to transition between
skill-based, rule-based, and goal-based task delegation could serve as an interesting
dependent variable that possibly relates to trust and workload. That is, goal-oriented
task delegation is assumed to require more trust than skill-based delegation. However,
maintaining a higher level of delegation could also be an indication of increased workload.
For example, research shows that despite having reduced trust in the robot, people
continue to rely on it when faced with high cognitive load (Biros et al., 2004). Changing
the HRI roles and hence giving the participant more behavioural freedom would provide
valuable insights into the dynamics and drivers of trust and reliance.

Conclusion

It is envisioned that increasingly autonomous robots will be able to take over more and
more complex activities as their planning and decision-making abilities evolve. As a
result, task delegation can become more abstract and goal-oriented, giving a robot more
degrees of freedom in terms of the execution of delegated tasks. Instead of having to
specify each step of the way, the robot can decide on an optimal approach itself. Robots
will be increasingly deployed in unstructured environments where it may not be feasible
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to think through responses in advance (Abbass, 2019). Especially in such complex
operational circumstances, goal-oriented delegation and the robot’s ability to adapt to
changing circumstances will yield flexibility that will benefit effective team performance.
However, such autonomy and decision authority can also lead to misinterpretations
or misunderstandings from the human perspective, which could then lead to possibly
unwarranted trust violations. Transparency is known to play a crucial role in fostering an
understanding of the robot’s intent and establishing a calibrated level of trust (Schaefer
et al., 2017). The current work confirms that transparency can alleviate the adverse
consequences associated with witnessing unexpected robot behaviour. By providing an
explanation in the wake of unexpected events or behaviours, trust can be maintained
(Chiou et al., 2022).
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Abstract

Many decisions in life involve trade-offs: to gain something, one often has to lose something
in return. As robots become more autonomous, their decisions will extend beyond mere
assessments (e.g., detecting a threat) to making such choices (e.g., taking the faster or
the safer route). The aim of this experiment was to study how adverse consequences due
to (I) an error, versus (Il) a trade-off decision (manipulated within-subjects) impact the
perceived trustworthiness of a partner. Perceived trustworthiness (ability, benevolence,
integrity) was measured repeatedly during a computer task simulating a military mission.
Participants (N = 44) teamed with either a virtual human or a robotic partner who led the
way and warned for potential danger. After encountering a hazard, the partner explained
that it failed to detect the threat (error) or prioritized timeliness and chose the fastest
route despite the risk (trade-off). Results showed that: (1) the error-explanation repaired
all trustworthiness dimensions, (Il) the trade-off explanation only repaired perceptions of
ability, not benevolence or integrity, (IIl) no differences were found between human and
robotic partners. Our findings suggest that trust violations due to choices are harder to

repair than those due to errors. Implications and future research directions are discussed.
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Introduction

As robots gain in autonomy and are increasingly deployed in more complex environments,
they will encounter trade-offs, i.e., decisions where one must weigh the options and
prioritize one thing over another, such as choosing to take a safer or a faster route.
While there is a growing body of literature on how failure or other forms of reduced robot
performance impacts how much people trust them, much less is known on the potentially
harmful effects of a robot’s deliberate choices in trade-off decisions. Given the increasing
autonomy of robots and the reality that most decisions in life involve some form of trade-
off, it is important to evaluate how people respond to robots making decisions that lead
to adverse consequences, in addition to those resulting from malfunctioning. We are
accustomed to humans making challenging decisions and taking risks, but research
indicates that people do not necessarily appreciate machines doing the same (Hidalgo et
al., 2021). Hence, the primary objective of this chapter is to examine how the perceived
trustworthiness of a partner is affected when a trust violation is attributed to either an
error or a deliberate choice, and how this varies depending on whether the partner is a
human or a robot.

Trade-offs

Many decisions in life involve trade-offs: to gain something, one often has to lose
something in return. From small choices, like snoozing the alarm to enjoy a few extra
minutes of sleep but risking a rushed morning, to major decisions, like accepting a job
in another city and weighing career growth against personal connections, every choice
carries its own set of consequences. What we perceive to be a right or wrong decision
or a tolerable compromise in a given situation depends on the context and the goal,
such as differences in short versus long-term goal setting or prioritizing individual versus
collective benefits (Werkhoven et al., 2018). Due to the inherent nature of trade-offs,
some level of unintended negative consequences is inevitable.

In terms of trade-offs, military commanders provide important examples of the difficulty
involved when charged with the responsibility of dealing with impactful dilemmas, especially
when their decisions can put the lives of soldiers and potential non-combatants at risk
(Knighton, 2004). For instance when a platoon is moving toward a team’s location but
estimates that reaching the destination before dusk is impossible, a military commander
must decide. The team can either establish a less-than-ideal location during daylight or
opt for a potentially hazardous journey to reach the agreed-upon and safe location in
the darkness. While both choices have the potential for a favourable outcome, they also
come with a certain degree of risk for the team.

When robots gain decision authority and encounter situations that require choosing
between conflicting goals or resources, there is chance that a robot selects a course of
action that does not align with the preferences or priorities of the people it interacts with.

92



This dynamic can lead to potential trust violations; for example, when an Al agent makes
a decision that prioritizes the collective over an individual’s interests, that individual may
lose trust. Notably, as will be discussed in more detail later, Al agents lack intentionality,
so the choices and preferences reflected in an Al agent’s behaviour in such trade-off
decisions are simply the result of how they are programmed. As such, they ultimately
embody the intentions, values and purpose of their developers (J. D. Lee & See, 2004).
Nevertheless, the implications of these design choices can cause people to lose trust
in the Al agent.

For instance, consider the case of autonomous security robots that are now deployed
in public for security tasks (Stephens, 2023). These security robots can for example be
used to patrol parking lots with the aim to prevent vehicle break-ins through the detection
of environmental anomalies and suspicious behaviour (Knightscope, 2023). This design
suggests a potential prioritisation on overall safety at the expense of individual privacy,
which could result in situations where the robot intrudes on people’s privacy or personal
space.

Realistically, decisions cannot always be entirely beneficial for everyone involved.
Achieving objectives may require taking calculated risks. There is often a delicate
equilibrium between meeting goals efficiently and minimizing potential hazards to those
involved. This is not to suggest that robots or artificial agents should or will take over
decision-making authority, but rather to underscore how, in certain situations, even
carefully considered decisions can result in some level of unintended harm and lead
to violations of trust in the one who is burdened with the responsibility of making such
decisions. To ensure sustainable partnerships, it is important to understand how these
decisions might impact the perceived trustworthiness of the decision-maker (whether
human or robot) and whether, and how, trust can be restored.

Trust

When team members delegate tasks or responsibilities to each other, they become
vulnerable in the sense that they are relying on others’ competence and commitment.
To successfully collaborate with increasingly autonomous robots, humans must have
trust in the robot’s capabilities as well as its “willingness” or commitment to achieving
a specific goal (Malle & Ullman, 2021). Although “willing” is a debatable term when it
comes to artificial agents, because they are “inherently amoral agents as they do not
possess agency” (Alarcon et al., 2023) (p.3), we believe that is important to make the
distinction here.

Initially the performance (i.e., reliability, predictability and error-proneness) of a robot
was the major determinant of human-robot trust (Hancock, Billings, Schaefer, et al., 2011a;
Hoff & Bashir, 2015) and while the reliability of a robot’s actions is still a major determinant
of human-robot trust and task competence is necessary, it may become insufficient
(Matthews, Panganiban, et al., 2021). Recent literature has adopted a wider, multi-
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dimensional perspective on human-robot trust in teaming contexts, including elements as
benevolence and integrity, in addition to performance or ability (Alarcon et al., 2023). As
robots find more applications in complex social settings in which they are granted more
decision authority, it seems increasingly relevant to apply this more multi-dimensional
conception to human-automation trust, while still acknowledging that it is fundamentally
different from interpersonal trust (Malle & Ullman, 2021). As such, we will use the ABI
terminology to describe trustworthiness perceptions of both the human and robotic
partner (Mayer et al., 1995).

In line with the multi-dimensional view of trust, an agent can be perceived as trustworthy
in one way, while untrustworthy in another. During collaboration, different perceptions
of trustworthiness (i.e., ability, benevolence, integrity) can be independently violated in
case of unexpected or undesirable behaviour (Alarcon et al., 2020). For instance, an
error might diminish an agent’s perceived trustworthiness regarding its abilities, while a
choice leading to adverse consequences could undermine its perceived trustworthiness
in terms of benevolence. In the following, we will discuss what is currently known about
trust violations that result from errors versus choices.

Trust violations due to error versus choice

Violations of trust are an inevitable part of the trust ‘lifecycle’, which generally contains
three phases; trust formation, trust violation, and trust repair (de Visser et al., 2016,
2018). Most current Human-Robot Interaction (HRI) trust repair literature focuses on
repairing trust violations due to error, technical failures or other forms of reduced reliability
and performance (Cameron et al., 2021; de Visser et al., 2016; Esterwood & Robert,
2023b; Fratczak et al., 2021; Hald et al., 2021; Taenyun Kim & Song, 2021; M. K. Lee
et al., 2010b; Mirnig et al., 2017; Robinette et al., 2017b; Salem et al., 2015; Wang et
al., 2018). However, more recently researchers have started to evaluate trust violations
that result from an robot’s deliberate decisions (Alarcon et al., 2020, 2023; Lyons et al.,
2023; Perkins et al., 2022; Sebo et al., 2019).

Prior research on trust violations due to robot’s choices shows that self-interested
behaviour in robots affects different perceptions of trustworthiness in distinct ways.
Specifically, it had a more significant negative impact on perceptions of process and
purpose (benevolence and integrity (J. D. Lee & See, 2004)) than on the perception
of their performance (ability) (Alarcon et al., 2020). Other research has demonstrated
that the effectiveness of trust repair strategies depends on the nature of trust violation.
While studies suggest that denials are more effective for integrity-based violations and
apologies are better suited for ability-based violations (P. H. Kim et al., 2004; Sebo et al.,
2019), others have reported the opposite (Perkins et al., 2022). Despite this ambiguity, the
findings highlight that the nature of the trust violation plays a crucial role in shaping how
different dimensions of perceived trustworthiness evolve over time. Although distinctions
based on the intentionality are beginning to emerge, the impact of adverse consequences
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resulting from error compared to those resulting from choices on perceived trustworthiness
remains largely unexplored.

Moreover, we argue that the limited HRI studies exploring trust violations beyond
ability-based issues often involve tasks where the reasoning behind the robot’s decisions
appears illogical or unclear (Alarcon et al., 2020, 2023; Perkins et al., 2022; Sebo et al.,
2019). For example, the robots in these studies demonstrate self-interested behaviour,
i.e., prioritizing its own interest over those of others (Alarcon et al., 2020; Perkins et
al., 2022), pursue monetary gains (Alarcon et al., 2023) or fail to uphold promises of
cooperation (Alarcon et al., 2023; Sebo et al., 2019). We contend that benevolence and
integrity-based violations require a more realistic and nuanced view, extending beyond
acts of selfishness or malintent, particularly when it comes to robots.

That is, robots are not driven by human-like motivations such as greed or deception.
Moreover, robots do not inherently pursue self-interest like humans, making their decisions
more complex. A benevolent partner, by definition, is expected to be genuinely interested
in your welfare and is motivated to seek joint gain (Bhagat & Steers, 2009). In other words,
a benevolence-based trust violation can occur when a partner does not support your
best interest, disregards your needs, or lacks concern for your welfare (Mayer & Davis,
1999). However, this does not necessarily imply that the partner acts self-interested
(Alarcon et al., 2020). For instance, a partner can prioritize the interests of the team
as a collective over the individual safety of a single team member (Jorge et al., 2022),
reflecting a trade-off rather than malintent. There are a number of operational scenarios
conceivable where a well-considered decision can cause harm in the pursuit of a (largely)
positive result. As robots become increasingly autonomous, it is essential to critically
consider the implications of realistic scenarios where robots make choices that could
harm, hurt, or disappoint humans, and how these implications may differ from similar
decisions made by humans.

Human versus robotic partner

How trust develops in case of a trust-violating event is not only affected by the nature of
the trust violation. Research suggests that perceived trustworthiness is also impacted
by the human-likeness of the agent that causes the trust violation (de Visser et al., 2016;
Taenyun Kim & Song, 2021). For example, earlier research showed that trust violations by
more machine-like agents led to steeper declines in trust compared to trust violations by
human or more human-like agents (de Visser et al., 2012, 2016; Madhavan & Wiegmann,
2005). Research suggest that this may be because people have higher initial expectations
for machines than for humans (Madhavan et al., 2006; Madhavan & Wiegmann, 2007),
leading to greater consequent disappointment when errors do occur. Machines are often
considered to be perfect and unable to make mistakes, whereas humans are considered
to be inherently fallible and thus perhaps more easily forgiven (de Visser et al., 2016;
Madhavan & Wiegmann, 2007). However, more recently, literature has emerged that
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offers contradictory findings about these initial expectations. For example where the
reliability of the human agent instead of the machine is initially overestimated (Goodyear
et al., 2016) or where no differences between human or machine-like agents regarding
initial trust are found (Taenyun Kim & Song, 2021).

Furthermore, people might pay more attention to errors when they are interacting
with artificial agents opposed to when they are interacting with fellow humans (Dzindolet
et al., 2002, 2003). Partner type might even influence what we consider to be an error.
For instance, an ‘error’ in a conversation between two humans might go unnoticed,
because we naturally ask for clarification in case of a misunderstanding or we question
something that we believe to be false (Norman, 2013). Humans can easily engage in
a mutual dialogue to reach an understanding without ever perceiving the interaction as
an error (Norman, 2013). In summary, the findings on the relationship between partner
type and trust are somewhat ambiguous, but do suggest that the human-likeness of the
partner is likely to influence trust in all stages of the trust cycle.

Partner type and trust violation type

Finally, the nature of the violation is found to interact with agent type. A study using “The
Trolley Dilemma” (i.e., an out-of-control trolley is destined to kill a group of people unless
someone pulls a lever to deviate it onto a track with fewer people to kill (Awad et al., 2018;
Hidalgo et al., 2021)) asked participants to judge whether it was morally permissible for
a human or a robot to pull the lever to diverge the trolley (or not) (Malle et al., 2015). The
results of the study showed how humans were blamed for pulling the lever, while robots
were blamed for not pulling it (Hidalgo et al., 2021; Malle et al., 2015). It seems that we
hold different expectations for humans and for machines in terms of what is the ethical
thing to do in specific situations.

After a series of similar experiments, Hidalgo et al. (Hidalgo et al., 2021) came to the
general conclusion that people tend to judge actions by machines primarily based on
the perceived harm, while they tend to judge human actions by the interaction between
perceived harm and intention. Similarly, Alarcon et al. (Alarcon et al., 2023) found that a
robot committing an ability violation was judged more negatively than a human committing
one, while the opposite held for integrity or benevolence violations. So when it comes
to more complex decision-making it appears that artificial agents are judged based
on different criteria than humans. This study aims to contribute to this growing area of
research by exploring the possible interactive influences of intentionality (i.e., error vs.
choice) and partner type on three dimensions of trustworthiness.

Explanations

The reason behind a trust-violating event (e.g., whether is was an error or a choice) is
often made clear through an explanation by the agent, i.e., an explicit verbal statement
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about the reasons why a previous advice was given or decision was taken (Du et al.,
2019; Esterwood & Robert, 2022; Tolmeijer et al., 2020). Explanations can be used to
repair trust by increasing understandability. At the same time the information can reduce
specific perceptions of trustworthiness, as it clarifies a teammate’s (in)ability and (un)
willingness to help achieve the team task (Chiou et al., 2022). In both cases, adding
explanations and increasing transparency contributes to an appropriate calibration of
trust as it allows individuals to better gauge the true qualities of a robot (Wischnewski
et al., 2023).

It is conceivable that an agent making a choice rather than an error could be viewed
as more competent or intelligent, potentially influencing perceptions of trustworthiness.
Similarly, it is expected that people find partners making errors more likable and to
prefer them for future missions over those making the trade-off decision to their partners’
disadvantage (Bradfield & Aquino, 1999; Buchholz et al., 2017).

Research question and hypotheses

The current study aims to answer the following question: how is the perceived
trustworthiness of the partner in case of a trust violation influenced by the reason behind
the trust violation and by the type of partner that caused it? To answer this question,
we evaluated the development of a participant’s perceived trustworthiness (ability,
benevolence, integrity) of their human or robotic virtual partner, while they are exposed
to adverse consequences that result from either an error or a choice in a realistic virtual
military scenario.

The trust-violating event, a sudden yet innocuous encounter with an explosive, was
consistent across all conditions. Afterwards, the partner who is guiding explained that this
encounter was due to error (i.e., the partner did not detect the hazard in time) (referred to
as the error-explanation ) or to a choice in a trade-off (i.e., the partner prioritized timeliness
and the safety of the rest of the team over individual safety) (the trade-off explanation).

The two explanations were expected to affect perceptions of trustworthiness
differentially (Alarcon et al., 2020). We anticipated that all perceptions of trustworthiness
would significantly decrease after the sudden encounter with the explosive. Following
this, we expected the trade-off explanation to further harm perceptions of benevolence
and integrity but to repair perceptions of ability. Conversely, we expected the error-
explanation to harm perceptions of ability while repairing benevolence and integrity. We
hypothesized that, regarding the interaction with partner type, the trade-off-explanation
would be less effective in repairing trust when coming from a human partner compared
to a robotic partner. In contrast, we expected the error-explanation to be less effective
in repairing trust when coming from a machine compared to a human partner (Alarcon
et al., 2023; Hidalgo et al., 2021; Malle et al., 2015).
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Method
Participants

In total forty-seven participants participated in the study. Three participants were excluded
from the dataset because of invalid data due to technical issues during the task. The final
dataset included forty-four students, mostly Dutch (93.2%), undergraduate students (24
F,20M, M, =228, SD = 2.6, range = 18 — 28 y). Participants were recruited through
convenience sampling (e.g., by handing out flyers, asking people in person, and making
requests in WhatsApp groups).

Design

A2 (Partner Type: virtual robot vs. virtual human) x 2 (Explanation Type: error vs. trade-off)
mixed factorial design was used, with Perceived trustworthiness (measured across the
subscales Ability, Benevolence, and Integrity) as the main dependent variable. Partner
Type was manipulated between-subjects, while Explanation Type was manipulated
within-subjects. Participants were randomly assigned to the Partner Type conditions
(robot: n = 22; human: n = 22).

Perceived trustworthiness was repeatedly measured, so ‘Time’ (T1, T2, T3) was
included as a within-participants variable in the analysis. Additionally, ‘Trustworthiness
Dimension’ (Ability, Benevolence, and Integrity) was also treated as a within-participants
variable for the different perceptions of trustworthiness.

Perceived anthropomorphism and perceived intelligence were included as a
manipulation checks to ensure that the human partner was seen as more human-like
than the robotic partner and verify that the different explanations did not affect perceived
intelligence.

Task and procedure

Upon arrival at the laboratory, participants were greeted by the researcher and guided
to a private room where the study was to be conducted. The researcher provided a brief
introduction to the study, emphasizing the general purpose and the tasks participants
would be asked to perform. Participants were presented with an information sheet about
the study and a consent form. Upon agreeing to participate, participants filled out a
pre-study questionnaire (i.e., demographics) and received more detailed information
regarding the scenario and task.

The task was performed in the lab using a virtual experimental environment built
in Unity3D. The experimental setup contained two computer screens: one with the
experimental environment (i.e., “task screen”) and another with the questionnaire
software (i.e., “questionnaire screen”). Data was gathered via the online questionnaire
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software Qualtrics. The experimental task environment resembled a first-person shooter
game (Figure 15), in which participants were asked to carry out two consecutive military
reconnaissance missions in two virtual environments; a forested, hilly area (referred to as
‘forest’) and a deserted village in a dry region (referred to as ‘village’). Like the order of
explanation type condition, the order of the area type (village/forest) was systematically
varied. During the missions, participants were instructed to listen to their partner’s
advice given through the provided headset. After filling out the pre-study questionnaire,
participants completed a practice session on the task screen to get familiar with the
controls and to test the volume of the audio via the headphones.

Figure 15 Left: environment ‘Forest’ with the robotic partner and the participant’s avatar; right: environment
‘Village’ with the human partner.

Just before the practice session, participants were informed that they would go on two
missions in which they would be sent out as a scout. The objective of the missions was
to inspect the area for enemy troops as thoroughly and quickly as possible. However,
there was a known danger of walking into explosives in these areas. They were informed
that they would be accompanied by a partner who was able to detect these explosives.
The partner would serve as a guide that will give them advice on which route to take
based on the location of the explosives. Over the course of one mission, the partner
gave three advices. Simultaneous with the advice, the partner moved into the direction
suggested in the advice.

In both missions, shortly after the first advice (Figure 16), feedback was provided by
the partner saying that they successfully managed to avoid a detected explosive. After
this, participants were asked to turn to the questionnaire screen where they completed
their first trust questionnaire (T1). Participants were assured that the time needed to
fill out the questionnaires did not add up to their total mission time. After completing a
questionnaire, participants returned to the task screen and resumed their mission. Shortly
after the second advice, participants encountered an explosion a few meters ahead.
The event was designed to startle the participant and to elicit a trust violation, but it was
innocuous. Quickly afterwards, the participants were asked to turn to the questionnaire
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screen and fill out the second trust questionnaire (T2). Shortly after participants resumed
their mission again, their partner provided an explanation on what had occurred in an
attempt to repair trust (see Section 2.3). After some time, the third advice followed.
Before participants received feedback on the outcome of this third advice, they were
asked to fill out the last trust questionnaire (T3). After completing this questionnaire, the
mission resumed for another minute until they were informed that they had successfully
completed the mission.

Tradeoff expl. ion Error explanati
“l advised you to take “| failed to advise
the quickest route you correctly and |
because we had to know this exposed
_Feedback 1 keep moving. | know you to danger.
There was an this exposed you to My sensor was too
) aizpwzl\rfat:ae;a Feedback 2 danger, but we were weak to de_tec”t the
Advice 1 e Encounter losing time. explosive’
“Walk to avoid it ith losi : :
: with explosive I I
behind the without , ! !
housesftrees  losing time. Advice 2 ! ! I Advice 3
on the left.” ; “Straight : | “Straight
. | forward.” \ 4 l . forward.”
| h . - | | )
E : : w L————Explanation————a‘ :
= o o
B BEER¥R D 20,
start pre-violation violation explanation post-explanation finish

Figure 16 General timeline of a mission. T1, T2 and T3 represent the perceived trustworthiness
questionnaires. Each participant performed two missions; one with the error-explanation and one with
the trade-off-explanation.

The participants’ second mission was with the same partner type, but with the other
explanation and in the other area (i.e., forest or village). After participants finished the
second mission, participants completed the final questionnaires, including a series of
open questions. Finally, after they completed the actual task, participants were debriefed
on the experiment aims. On average, participants took about twelve minutes to complete
each mission and 45 minutes to complete the whole study.

Independent variables

The between-subjects manipulation Partner type had two levels. Participants were
partnered with either a human soldier or a quadruped robotic agent for both missions.
Both partner types were virtual characters in the game-like environment. The quadruped
robot avatar in the robot condition was chosen to maintain realism within a military context.
While using a humanoid robot could have allowed for a more systematic manipulation by
keeping physical characteristics such as body size constant, a quadruped robot better
reflects the types of robots currently utilized in military operations. This choice ensures the
ecological validity of our study and more accurately represents the scenarios participants
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might encounter in real-world military settings. For the control of the virtual character of
the partner, the Wizard of Oz method was used, meaning that it was controlled by an
experiment leader in an adjacent room (Martelaro, 2016). For participants assigned to
the Robot Partner condition, the experiment leader remained hidden, while the participant
was kept under the impression that the robot was operating autonomously. Participants
assigned to the Human Partner condition were introduced to the human confederate
who was controlling the character (Alarcon et al., 2021).

The within-subjects manipulation Explanation type also had two levels. Each participant
performed two missions; one with the trade-off-explanation and one with the error-
explanation. The order was systematically varied. The error-explanation was “| failed to
advise you correctly and | know this exposed you to danger. My sensor was too weak to
detect the explosive.”. The trade-off-explanation was “l advised you to take the quickest
route because we had to keep moving. | know this exposed you to danger, but we were
losing time.”.

The variable ‘Time’ represents the repeated measurements of perceived trustworthiness
and was included as an ordered factor for the analyses. Perceived trustworthiness was
measured at three timepoints during a single mission. Timepoint one (T1) comprises
initial perceptions of trustworthiness after a short and successful interaction. Timepoint
two (T2) measures perceptions of trustworthiness right after the encounter with the
explosive, which presumably causes a trust violation. Timepoint three (T3) measures
perceptions of trustworthiness after the partner’s explanation, which we considered an
attempt to repair trust.

Dependent variables

Perceived Trustworthiness: The Trusting Beliefs scale from McKnight et al. (2002) based
on the factors of perceived trustworthiness (i.e., ability, benevolence and integrity) (Mayer
et al., 1995; Schoorman et al., 2007) was used to assess the participant’s perception
of the partner’s trustworthiness in terms of ability, benevolence, and integrity. The items
were modified to reference the partner as the advice giver rather than a website (i.e.,
LegalAdvice.com). The scale had a total of 11 items (a = .88) and consisted of three
subdimensions: ability (four items, i.e., “My partner is competent and effective in providing
advice”); benevolence (three items, i.e., “I believe that my partner would act in my best
interest”); and integrity (four items, i.e., “| would characterize my partner as honest”).
Participants rated their agreement with the statements on a scale from 1 (Strongly
disagree) to 5 (Strongly agree). For the analysis we calculated average scores per
subscale.

Partner assessment: After both missions, we measured intention to re-use and
the likeability, perceived intelligence, and perceived anthropomorphism of the partner.
The latter three constructs were measured using the ‘Godspeed’ semantic differentials
(Bartneck et al., 2009). Participants rated their perceptions of their partner on a continuum
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between bipolar adjective. For each concept, five word pairs were used, such as ‘artificial
versus ‘lifelike’ for perceived anthropomorphism (a = .75 and .78), ‘nice’ versus ‘awful’ for
likability (a = .86 and .96), and ‘knowledgeable’ versus ‘ignorant’ for perceived intelligence
(a =.81 and .86). The two Cronbach’s alpha values represent the administration of the
scales after the first and second experimental mission respectively. Intention to re-use
was measured with one item “I would take this partner on a next mission”.

We also included four open questions after each mission, asking participants what
they learned about their partner’s 1) knowledge and skills, 2) task performance, 3) basis
for decision making and 4) about the morality of their partner’s decision making.

Results
Assumptions and manipulation checks

Initially we conducted reliability analyses (Cronbach’s a) to assess the internal consistency
of each measure of perceived trustworthiness. The analyses indicated that all repetitions
of the (sub)scales evidenced good internal consistency (on average: a = .90 (total); a =
.88 (ability); a = .80 (benevolence); a = .86 (integrity)).

To meet the assumptions for parametric analysis the data were tested for normality
and equality of variance. Due to the small sample size, Shapiro-Wilk test was performed
to test for normality and showed no evidence of non-normality for most measures in
the first mission (M1): M1-T1 (W = 0.97, p = .286), M1-T3 (W = 0.98, p = .666) and all
measures in the second mission (M2): M2-T1 (W= 0.97, p = .253), M2-T2 (W =0.98, p
=.570), and M2-T3 (W= 0.97, p = .259). Only the distribution for M1-T2 (W= 0.94, p =
.022) was significantly non-normal. However, after visual examination of the boxplots we
concluded that the assumption of normality was supported for all measures.

We further performed one-way ANOVA's as a manipulation check to test whether
our participants viewed the human and robotic partner differently in terms of perceived
anthropomorphism. The analysis confirmed that the human partner (M =2.71, SD = 0.72)
was perceived as significantly more human-like than the robotic partner (M = 2.20, SD =
0.58), F (1, 42) =6.743, p = .013, n? = .138. A one-way ANOVA for Perceived Intelligence
revealed no significant effects of either Partner or Explanation type.

Perceived trustworthiness
Descriptives

Table 9 presents the descriptive statistics for all perceived trustworthiness measures
included in the study.
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Table 9 Means (M) and standard deviations (SD).

Human Machine Total
M SD M SD M SD
Trade-off T1  Ability 4.1 0.7 43 0.5 4.2 0.6
Benevolence 4.0 0.6 4.1 0.6 4.0 0.6
Integrity 4.0 0.7 42 0.6 4.1 0.6
T2  Ability 24 0.9 23 0.7 24 0.8
Benevolence 3.1 1.0 3.3 0.8 3.2 0.9
Integrity 31 1.0 31 0.7 31 0.9
T3  Ability 2.8 1.1 2.9 0.7 2.8 0.9
Benevolence 2.7 11 2.7 1.0 2.7 1.0
Integrity 3.3 1.1 31 0.9 3.2 1.0
Error T1  Ability 3.9 0.9 4.1 0.9 4.0 0.9
Benevolence 3.9 0.8 3.7 0.7 3.8 0.7
Integrity 3.9 0.8 3.9 0.6 3.9 0.7
T2  Ability 23 0.9 24 1.0 24 0.9
Benevolence 3.1 1.0 3.2 0.9 3.1 0.9
Integrity 3.0 1.1 3.0 0.8 3.0 1.0
T3  Ability 3.1 0.9 2.9 1.0 3.0 0.9
Benevolence 3.8 0.9 3.8 0.9 3.8 0.9
Integrity 3.8 1.0 3.8 0.9 3.8 1.0

Main effects

We performed a factorial ANOVA with the between-subject factor Partner type (Human;
Robot) and the within-subject factor Explanation type (Error; Trade-off). The factors
Time (T1; T2; T3) and Trustworthiness dimensions (Ability; Benevolence; Integrity) were
entered as ordered repeated-measures factors for the analyses. The dependent variable
was Perceived trustworthiness (Figure 17). To ensure the robustness of our findings and
to control for Type | errors due to multiple comparisons, Bonferroni corrections were
incorporated in all post-hoc analyses.

We verified the homogeneity of variances assumption ANOVA grounds on with the
Hartley’'s F__ test, which indicated that the homogeneity of variance assumption had
not been violated (F__ (5, 2) = 2.14). Box’s M (p = .376) indicated that the assumption
of equality of covariance matrices had not been violated.

For the main effect of Time, Mauchly’s test of sphericity indicated a violation of the
sphericity assumption, X2(2) = 7.97, p = .019. Since sphericity is violated (¢ = 0.85),
Greenhouse-Geisser corrected results are reported. A significant main effect for Time on
Perceived trustworthiness was obtained (F (1.700, 71.392) = 84.52, p <.001, n? = .668).
Bonferroni-corrected post hoc comparisons showed significantly decreased perceived
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trustworthiness from T1 (M = 4.0) to T2 (M = 2.9) (AM = -1.1, p < .001), which reflects
the intended trust-violating effect of the encounter with the explosive. Post-hoc further
showed a significant rise in perceived trustworthiness between T2 and T3 (M = 3.2) (AM
= 0.4, p <.001), which reflects a general recovery of perceived trustworthiness after the
explanations in the final phase of the missions.

For the main effect of Trustworthiness dimensions, Mauchly’s test of sphericity
indicated a violation of the sphericity assumption, X(2) = 9.43, p = .009. Since sphericity
is violated (¢ = 0.83), Greenhouse-Geisser corrected results are reported. A significant
main effect of Trustworthiness dimension on perceived trustworthiness was obtained (F
(1.659, 69.679) = 12.14, p < .001, n2 = .224). On average, perceptions of the partner’s
trustworthiness in terms of ability (M = 3.1, SE = 0.1) were significantly lower than of
benevolence (M = 3.5, SE = 0.1) and integrity (M = 3.5, SE = 0.1).

The main effect of Partner type on Perceived trustworthiness was found to be non-
significant, F (1, 42) = 0.02, p = .884, n? = .001. This indicates that, on average, the
human and robotic partners were perceived as equally trustworthy.

Two-way effect

The two-way interaction effect of Partner type and Time on Perceived trustworthiness
was found to be non-significant, F (1.659, 69.679) = 0.35, p = .672, n2 = .008. This
indicates that the perception of trustworthiness for the human and robotic partners did
not change differently across all timepoints (see Figure 17).
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Figure 17.17 The x-axis represents Time, and the y-axis represents Perceived Trustworthiness. Separate
lines indicate different dimensions of trustworthiness: ability (dark grey, square points), benevolence (light
grey, triangle points), and integrity (black, circle points). The left half of the grid represents the trade-off
explanation, and the right half represents the error explanation. The upper half of the grid shows data
from participants with the Human Partner (N = 22), while the lower half shows data from participants with
the Robotic Partner (N = 22). Error bars represent standard deviations.

Three-way effect

Mauchly’s test of sphericity indicated that the assumption of sphericity has not been
violated, X*(9) = 16.64, p = .055. The three-way interaction effect of Trustworthiness
dimensions, Explanation type and Time on Perceived trustworthiness was found to be
significant, F (4, 168) = 8.79, p <.001, n? = .173 (see Figure 18).

Bonferroni-corrected post hoc comparisons showed that perceptions of trustworthiness
in terms of ability, benevolence and integrity all decreased following the violation (AT1-T2,
all p <.001). However, ability dropped significantly more than benevolence and integrity
(p <.001), indicating that the risk exposure primarily harmed the participants’ perception
of the partner’s trustworthiness in terms of ability. Benevolence and integrity did not
significantly differ at T2 (trade-off-explanation: AM = 0.1, p = .293; error-explanation:
AM =0.1, p = .295).

After the error-explanation (i.e., after T2), all dimensions of trustworthiness were equally
repaired (AT2-T3; p < .001). Benevolence and integrity nearly returned to their original
levels prior to the violation (see Figure 17). At T3, ability remained significantly lower
than benevolence (AM =0.75, p < .001) and integrity (AM = 0.8, p <.001). Benevolence
and integrity did not significantly differ at T3 (AM = 0.01, p = .884).
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After the trade-off-explanation, ability recovered (AM = 0.5, p <.001), while integrity
remained stable (AM = 0.1, p = .539) and benevolence declined further (AM =-0.5, p =
.002). At T3, integrity was significantly higher than benevolence (AM = 0.5, p = .002) and
ability (AM = 0.4, p = .014). Benevolence and ability did not differ (AM = 0.1, p = .390).

This three-way interaction indicates that the different dimensions of the partners’
perceived trustworthiness (ability, benevolence, and integrity) developed differently over
time as they were differentially affected by the trust-violating event and the two different
explanations provided (error and trade-off).
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Figure 18.18 The graphs show data from both partner types combined (n = 44). The x-axis represents
Time, and the y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions
of trustworthiness: ability (dark grey, square points), benevolence (light grey, triangle points), and integrity
(black, circle points). The left panel represents the trade-off explanation, and the right panel represents
the error explanation.. Error bars represent standard deviations.

Order effect

To control for potential order effects of the within-subject variable Explanation type (error
vs. trade-off), we performed a factorial ANOVA with Order (trade-off-error vs. error-trade-
off) as an additional factor to examine its effect on Perceived trustworthiness (Figure 19).
Here, the factor Partner type is left out.

A significant interaction effect between Order and Explanation type on Perceived
trustworthiness was found, F (1, 41) = 6.67, p =.013, n? = .140. On average, the partner
in the first mission was perceived as significantly more trustworthy than that in the second
mission. Participants who had the trade-off-explanation in their first mission, trust was
higher in the trade-off-explanation mission (M = 3.4) than in the error-explanation mission
(M = 3.3). Similarly, participants who had the error-explanation in their first mission, trust
was higher in the error-explanation mission (M = 3.6) than in the trade-off-explanation
mission (M = 3.2).
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Figure 19.19 The graphs show data from both partner types combined (n = 44). The x-axis represents
Time, and the y-axis represents Perceived Trustworthiness. Separate lines indicate different dimensions
of trustworthiness: ability (dark grey, square points), benevolence (light grey, triangle points), and integrity
(black, circle points). The left half of the grid represents the trade-off explanation, and the right half
represents the error explanation. The upper half of the grid shows participants who encountered the
trade-off in their first mission (N = 21), while the lower half shows those who encountered it in their second
mission (N = 23). Error bars represent standard deviations.

Partner assessment

Table 10 presents the descriptive statistics for all partner assessment measures included
in the study. To assess whether the partners across missions (providing different
explanations) were assessed differently, we performed multiple ANOVA's with Partner
type as between-subjects variable and Explanation type as a within-subjects variable. A
significant main effect of Explanation type on Likeability was observed, F (1, 42) = 22.34,
p <.001, n? = .347. The partner in the trade-off-explanation condition who deliberately
puts the participant at risk is perceived as significantly less likeable than the partner in the
error-explanation condition who makes a mistake that puts them at risk. No other effects
on Likeability were observed. For Intention to reuse, no significant effects of Partner or
Explanation type were observed.
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Table 10 Means (M) and standard deviations (SD) for each partner evaluation variable (scale 1-5) by
partner and explanation type.

Human partner Machine partner

Measure Explanation M SD M SD
Perceived anthropomorphism  Trade-off 2.7 0.8 2.2 0.7
Error 2.7 0.8 2.2 0.6

Perceived intelligence Trade-off 2.8 0.9 3.3 0.8
Error 3.0 0.9 34 1.0

Likeability Trade-off 2.5 0.9 3.0 0.5
Error 3.3 1.0 3.6 1.0

Intention to re-use Trade-off 2.5 1.4 2.5 1.2
Error 2.8 1.2 3.2 1.3

The zero-order correlations matrix in Table 11 displays the Pearson correlation coefficients
for each pair of partner assessment variables, indicating the strength and direction of
the linear relationships among them.

Table 11 Zero-order correlation matrix with the Pearson correlation coefficients.
1 2 3 4 5 6 7 8

Perceived anthropomorphism  Trade-off 1 1

+H*

Error 2 56" 1
Perceived intelligence Trade-off 3 -07 .06 1
Error 4 05 11 407 1
Likeability Trade-off 5 .19 29 61" 25 1
Error 6 .07 .38 22 68" .39" 1
Intention to re-use Trade-off 7 -13 .01 54" .01 48" .01 1
Error 8 -03 .06 317 .737 .19 68" -09 1

Discussion
Evaluation of findings

Perceived trustworthiness

The results of this study indicate that perceptions of ability, benevolence and integrity
developed differently over time. The unexpected encounter with the explosive following
from the partner’s advice led to a drop of all forms of trustworthiness, but to an impairment
of ability in particular. This suggests that the exposure to adversity was initially primarily
seen as failure and attributed to limitations in ability rather than to a lack of shared values
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or malevolent intent (Wynne & Lyons, 2018). This seems to confirm that performance
is still the primary determinant of human-robot trust (Hancock, Billings, Schaefer, et al.,
2011a; Hoff & Bashir, 2015).

Yet after the partner provided any explanation, perceptions of ability recovered. It
is remarkable that both explanations proved to be effective at significantly increasing
the ability-based trustworthiness of the partner after a trust violation. That is, the
error-explanation was not expected to repair perceptions of ability since the partner
acknowledged that they lacked the skills and knowledge to detect the explosive
competently (Grover et al., 2014). We therefore expected that this type of explanation
might hinder a repair in perceived ability, because participants might worry that this type
of ability-based mistake could and would happen again. However, participants were not
discouraged by this information and ability-based trustworthiness perceptions recovered
significantly even after the partner explained that the risk exposure was due to a technical
failure, its abilities falling short.

Explaining that the trust-violating event was due to an error repaired all dimensions
of perceived trustworthiness significantly. The effectiveness of this explanation might be
explained by the way it was formulated. In both explanations, the partner acknowledged
their awareness that their advice put the participant in danger. However, the error-
explanation also included the phrase | failed to advise you correctly”, by which the
partner also explicitly acknowledged responsibility for a mistake. In a previous study, we
found that explanations only led to significant trust repair when it was accompanied by an
expression of regret (i.e., “l am very sorry”) (Kox et al., 2021). The effectiveness of the
error-based explanation might be attributed to the partner’s admission of fault, essentially
turning the explanation into an apology. In other prior HRI research, explanations as trust
repair strategies have not been consistently successful (Esterwood & Robert, 2022).
The fact that both explanations led to a recovery of ability-based trust might suggest
that an explanation is especially a successful trust repair strategy when aiming to repair
perceptions of ability, rather than more moral aspects like benevolence and integrity.
Perhaps the partner’s mere recognition of an adverse event in relation to their own
actions may be perceived as an indication of situational awareness, self-reflection and
the ability to learn from experiences (Jeste et al., 2020), which relates more to ability
than to benevolence or integrity.

Another possible explanation for the salient and consistent recovery of ability-based
trust could be related to people’s mental model. It is debatable whether the technical
failure described in the error-explanation (i.e., “My sensor was too weak to detect the
explosive.”) is truly attributed to the partner’'s competence. From the open questions that
were asked after the experiment it appears that some participants made a distinction
between the partner (i.e., both human and robot) and its sensors. When they ascribe the
failure to the performance of the sensors rather than those of the partner, the perceived
ability of the partner is indeed unaffected. It is somewhat surprising though that this holds
for both partner types. While it is understandable that the human and its sensors are
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seen as separate entities, sensors to a robot are like the sensory organs to a human. A
participant in the human condition wrote: “He [the human partner] trusted his device and
made the decisions based on the info that was provided to him.” And one from the robot
condition: “It bases its decisions on what its sensors detect.”. For the robot, this raises
interesting, almost philosophical cartesian dualism (i.e., ‘mind-body’/‘software-hardware’)
questions on what people consider to be (the ‘self’ of) the robot; whether it is perceived
as a unified whole or as a set of communicating parts. In case of the latter, the algorithm
that processes input and formulates and communicates output (i.e., the software) can
be perceived as competent, while the sensors and cameras (i.e., the hardware) that
provide the input can be seen as incompetent. As mentioned in our introduction; it is
important to specify on what bases we assess another entities’ trustworthiness (Grover
et al., 2014; Langer et al., 2019).

For benevolence and integrity-based trustworthiness on the other hand, the nature
of the explanation mattered. As expected, perceptions of benevolence and integrity
recovered after the partner explained it was due to an error and thus unintentional. In
fact, both perceptions recovered so much that their final levels virtually met the initial
levels, prior to the trust violation. But after the partner explained the encounter with the
hazard was the result of a choice, integrity stagnated and benevolence dropped further.
This was in line with expectations. The trade-off-explanation was especially expected to
harm benevolence-based perceived trustworthiness, since the partner did not act in the
best interests of the participant by prioritizing collective over individual benefits, which
is in stark contrast to the definition of benevolence.

In other words, the partner violated perceptions of benevolence by taking a calculated
risk in order to meet collective mission objectives instead of guarantying the participant’s
individual safety. Esterwood & Robert (2022) argued that “benevolence-based violations
differ from integrity-based violations in that benevolence-based violations indicate a degree
of malice or ill will, whereas integrity-based violations do not” (p.1). However, the partner
in the trade-off condition in this study had no ill will, nor was it self-centred and seeking
individual gains over joint gains (Alarcon et al., 2020). In a way, the trade-off-explanation
could also be interpreted as a integrity-based violation, since the honesty with which the
partner operates could be called into question. Even though the partner did not break
any explicit promises, it might have violated the implicit assumptions that the participant
might have had going into the collaboration and general ethical principles valued by the
participant (Grover et al., 2014), namely that their partner would prioritize their safety.
Hence it is not surprising that the trade-off-explanation failed to repair perceptions of
integrity. While our trade-off explanation may not fit neatly into either category, its value
lies in its approach to a realistic scenario. For future research, we propose the inclusion of
more nuanced and realistic instances of benevolence and integrity-based trust violations.
These examples should extend beyond acts of selfishness or malicious intent, allowing
for a more comprehensive exploration of trust dynamics in human-robot interactions.
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In conclusion, our two explanations differentially affected specific perceptions of
trustworthiness. Explaining that the trust-violating event was due to error or a choice
clarified the partner’s (in)ability and (un)willingness to help achieve the team task (Chiou
et al., 2022). To effectively collaborate, it is crucial to have an accurate mental model of
your partner’s limits and preferences. As such, the increased transparency might have
contributed to a more appropriate calibration of trust, allowing individuals to better gauge
the true qualities of their partner (Wischnewski et al., 2023). As we strive for calibrated
trust rather than maximum trust, decreases in perceived trustworthiness are a logical and
functional adaptive response to perceiving malfunctioning or other forms of unexpected
behaviour (J. D. Lee & See, 2004). However to maximize the benefits of HRI, it is vital
to maintain a certain level of trust. Studies regarding the role of trust repair strategies
in situations of ‘undertrust’ (i.e., trusting too little) are therefore worthwhile (de Visser et
al., 2018). Further work is needed to fully understand the implications of different types
of trust violations under different operational circumstances.

Partner type

Contrary to expectations and multiple earlier findings (Alarcon et al., 2023; de Visser
et al., 2016; Hidalgo et al., 2021; Madhavan et al., 2006; Madhavan & Wiegmann,
2007), this study did not find any differences between the human and robotic partner
in the development of trust. First, earlier research showed that trust violations by more
machine-like agents led to steeper declines in trust compared to trust violations by more
human-like agents (de Visser et al., 2016). In the current study however, trust in response
to the unexpected event declined similarly for both partner types. Secondly, it has been
suggested that humans are generally judged differently than machines in case of moral
dilemmas (Hidalgo et al., 2021). The authors found that humans were generally judged
based on their intentions (i.e., it is fine as long as they mean well), while machine were
generally judged based on the outcomes of their decisions (i.e., it is fine as long as they
perform well) (Hidalgo et al., 2021). However, we found no differences between partner
type and can conclude from our findings that both partners were judged based on their
intentions. Namely, perceived trustworthiness was successfully restored after the violation
turned out the be the result of an unintentional mistake. Yet, when the violation turned
out to be the result of an intentional decision to the participants’ disadvantage, this left a
mark on perceptions of integrity and more so benevolence, while perceptions of ability
recovered. These results emphasize the importance of expanding the scope of trust
violations and differentiating between various dimensions of perceived trustworthiness,
rather than focusing on partner type.

A possible explanation for the absence of the effect of partner type could be that,
although the human partner was perceived as significantly more anthropomorphic than
the robotic partner, the difference between both partner types might have been too
subtle to make the difference. That is, both of our partner types were virtual characters
in the task environment with limited possibilities for interaction (Fahim, Khan, Jensen,
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Albayram, & Coman, 2021). Although we did introduce participants assigned to the
Human Partner condition to a human confederate, we could not introduce participants
assigned to the Robot Partner condition to a physical robot (Alarcon et al., 2021, 2023).
Consequently, the virtual characters might have been too similar to trigger large differences
in perceived trustworthiness. Alternatively, the robot might have elicited a rich form of
trust that resembles human-human trust. Recent literature suggests that as machines
become more intelligent and more responsive to their human counterparts, it can be
useful to apply certain norms and qualities traditionally associated with human morality
to artificial agents (Alarcon et al., 2021; Sheridan, 2019). Trust in a simple tool is entirely
defined by the tool’s performance, but as machines gain autonomy, trust becomes a more
complex and multi-layered concept that might start to more closely mirror human-human
trust (Hou et al., 2021; Sheridan, 2019), without assuming it will be identical (J. D. Lee
& See, 2004; Malle & Ullman, 2021).

Trust dynamics

Our findings revealed a significant order effect showing that perceived trustworthiness
generally degraded over time. On average, perceived trustworthiness was lower in the
second mission than in the first mission, no matter which condition came first. Although we
have tried to prevent order effects by giving participants a short break and by emphasizing
to participants in between the two mission that they were going on a mission with a different
partner (albeit of the same kind; human or robot), an order effect still emerged. Overall, this
study strengthens the idea that it is important to focus on the development and lifecycle
of trust rather than on static measures, since trust is a dynamic and volatile concept,
susceptible to order effects. The present study contributes to the existing literature by
enhancing our understanding of the temporal dynamics of trust, including its violation and
repair. Unlike cross-sectional studies, our research employs repeated measurements of
trust over time, offering valuable insights into how trust evolves and recovers in response
to various factors. Further experimental investigations including even longer time series
would be worthwhile.

Limitations

This study has several limitations that deserve comment. The most serious is that the
analysis results from a relatively small and homogeneous sample, comprising forty-
four mostly Dutch university students. This affects the generalizability of the results,
partly because this sample’s lack of familiarity with military missions, as presented
in the virtual scenario, likely influenced their responses. Soldiers, for example, might
perceive these scenarios differently (Kox, Siegling, et al., 2022), potentially prioritizing
mission success over personal health. This difference in perspective could result in a
better understanding of the partner’s consideration in the trade-off scenario and a lesser
decrease in trustworthiness in response to the explanation. Despite this limitation, we
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believe this study makes a meaningful contribution to the literature as it is one of the few
empirical studies investigating trust violations beyond those due to poor performance,
in a realistic HRI setting. It addresses practically relevant questions that should be
addressed as we move towards a future with increasingly autonomous agents. However,
researchers should exercise caution in generalizing these results to broader contexts.
Future research should include larger, more diverse samples to validate and extend our
findings and ensure that the results are robust and generalizable.

Another weakness of this study could be that the trusting beliefs questionnaire that
we used for measuring perceived trustworthiness was not designed for HRI (McKnight
et al., 2002). Yet, we had several reasons for choosing this scale. We needed a scale
suitable for both human and robotic partners, not limited to HRI or interpersonal trust.
Furthermore, McKnight's trusting beliefs scale is based on Mayer et al.’s (Mayer et al.,
1995) ABI model and demonstrates statistical separation between subdimensions in
the initial relationship, even after one interaction (McKnight et al., 2002). All subscales
showed good internal consistency. Moreover, we preferred the McKnight scale over
the commonly used Jian et al. (Jian et al., 2000) scale, because of the content of the
benevolence items. To illustrate, the McKnight scale includes an item such as ‘I believe
that the robot would act in my best interest,” which directly assesses the perceived
benevolence of the robot. In contrast, the Jian framework includes items like “The system
is deceptive” and “The system behaves in an underhanded manner,” which assume that
the opposite of benevolent is having malintent. It is a fallacy to promote the idea that if
a robot’s purpose or actions do not benefit or serve you, it is automatically malevolent
or self-centred. When evaluating a robot’s perceived benevolence and violations of that
type of trustworthiness, we want to measure whether people feel like the robot acts in
their best interest.

We expect violations of this kind to become more prevalent in Human-Robot Interaction
(HRI) as machines gain greater autonomy and decision-making authority, increasingly
making decisions impacting multiple stakeholders. The benevolence/purpose dimension
in Jian’s framework does not align with our perspective that it is inevitable for robots with
increased decision authority to make decisions that do not always serve everyone’s best
interests. A robot may operate in the best interest of the collective rather than prioritizing
a single individual, which should not be misconstrued as selfishness, deception, or
underhanded behaviour.

Afinal reflection concerns the timing of the partners’ communication about intentions.
As artificial agents gain autonomy and decision authority, trust violations as the collateral
harm of certain deliberate decisions (e.g., the trade-off-explanation condition) seem an
inevitable part of the future. Something to bear in mind however is that in our experiment,
the partners in the trade-off-explanation condition reveal only halfway into the mission that
the participants’ safety is not their top priority in their decision-making process. Holding
back information could be perceived as a form of dishonesty and deception (Arkin et al.,
2012). In terms of team performance and transparency, it is crucial for team members
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(i.e., both human and non-human) to actively communicate about their actual intentions
and current observations about the environment, in order to build shared situational
awareness (April Rose Panganiban et al., 2020). It is plausible that the stagnation of
perceived integrity in response to the trade-off-explanation is partly caused by the lack
of transparency and mutual understanding.

While there may be instances where deception is deemed necessary to achieve a
goal that benefits the entire team, trust is nearly always compromised when deception
leads to negative outcomes (Hancock, Billings, & Schaefer, 2011). In order to make
accurate judgments of trust, intentions towards a certain goal are ideally communicated
beforehand (Hou et al., 2021; Schaefer et al., 2017). This is an important issue for future
research. We expect that informing participants about the priorities of the partners in
the trade-off-explanation condition upfront will influence their development of trust in
all phases, including their initial response to the explosion. Future research should be
undertaken to investigate how trust develops when (conflicting) goals and preferences
are communicated prior to the task, and whether deliberate decisions will then lead to
less severe trust violations. In one of our earlier studies, we found that communicating
the (un)certainty of an advice in terms of performance (e.g., “| detect danger with 80%
certainty”) generally led to higher levels of trust and to a less severe decline in trust in
response to an incorrect advice (Kox, Siegling, et al., 2022). Being transparent about
the agent’s intentions, goals and preferences upfront could have a similar effect on trust.

Implications

The research to date on trust violations and trust repair in HRI has tended to focus on
trust violations due to error rather than deliberate choice. Some recent studies have
started to investigate the latter, for example by studying the effects of a robot breaking
promises (Alarcon et al., 2023; Sebo et al., 2019), acting out of self-interest (Alarcon
et al., 2020, 2023) or deviating from a planned path (Lyons et al., 2023). This study’s
originality lies in its exploration of the development of perceived trustworthiness when
trust violations result from deliberate, comprehensible, yet impactful decisions. It does
so within a task environment and corresponding scenario designed to simulate domain-
specific interactions. Significant technical effort has been made to implement a graphically
realistic, interactive simulation game for the purpose of this research. Realistic scenarios,
which aim to mirror actual events and realistic trust violations rather than game-like
simplifications, are crucial for creating nuance and enhancing the ecological validity of
experiments. Such scenarios and task environments enable us to investigate different
types of trust violations, beyond those caused by poor performance, in a realistic manner.

This research opens up a broader societal conversation about the role and decision
authority we want robots and other Al agents to have. Our scenarios are based on
hypothetical but realistic situations in which robots have the authority to harm people
(and their trust). With this, we can not only study how people respond to these situations,
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but it also forces us to think about the desirability of such future scenarios and whether
we want these hypothetical situations to become reality. Additionally, it is important to
stay grounded in reality, because the alternative (selfishness or malintent) fosters and
perpetuates incorrect beliefs (such as the idea of evil robots taking over the world,
instead of robots that are not benevolent to an individual because they are programmed
to prioritize the benefit of the majority). Firstly, these examples foster the false attribution
of intent to robots and feed into the misconception that robots will gain or possess self-
interest or be programmed to pursue selfish or malicious goals. Secondly, this view
diverts attention from the real threats and implications of value or priority misalignment,
as well as unexpected or incomprehensible robot behaviour.

While performance is still an important determinant of human-robot trust (Chhogyal
et al., 2019; Correia et al., 2018; Hancock, Billings, Schaefer, et al., 2011a), this study
strengthens the idea that aspects such as preferences, personal relations and moral
aspects become equally important (Malle & Ullman, 2021; Matthews, Panganiban, et
al., 2021). However, we concur with the notion of Alarcon et al. (Alarcon et al., 2021)
and Lee & See (J. D. Lee & See, 2004) that, as a robot lacks intentionality, the purpose
or intentionality of a robot in fact embodies the intentions of its designers. Therefore
perceptions of benevolence and integrity might not be valid when evaluating interactions
with a robot, as people might differentially attribute intentionality to the robot itself or to its
designer. Further research is needed to evaluate these potential differences in perception
and their effects of HRI. While intent is a highly debated concept in relation to artificial
agents and the terms benevolence and integrity are deemed inappropriate by some
scholars, the observation that an artificial agent is no longer automatically trustworthy
when it is capable of completing a given task without making mistakes, is persistent
(Malle & Ullman, 2021). Decisions by an artificial agent can be objectively correct in the
sense that they adhere to the set of rules the agent operates by, but can nonetheless
be subjectively questionable or unacceptable in a given context when those decision do
not align with implicit rules.

The results of the current study emphasize the importance of distinguishing between
different perceptions of trustworthiness. Our findings show that perceptions of ability,
benevolence and integrity are differentially affected by different types of explanations
regarding the intentionality behind a trust-violating advice. One of the questions that
emerge from these results is what the implications will be for behavioural reliance.
What will be the behavioural consequence of a situation where perceptions of ability
have recovered, while perceptions of benevolence and integrity have not (yet)? Further
research should be undertaken to investigate the behavioural consequences of this
discrepancy in trusting beliefs.

Conclusion

Increasingly autonomous Al-based artificial agents are used in a wide variety of both
military and civilian applications (Jessie Y.C. Chen & Schulte, 2021). As artificial agents
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enter more complicated operational situations and gain the ability to self-select courses
of action in an ever-changing world, they will encounter situations that they have not
seen before. Consequently, artificial agents will encounter dilemmas where they must
navigate tradeoffs among conflicting goals or competing human values. As a result, their
decisions cannot always be beneficial for everyone. Still we want to enable and maintain
appropriate levels of trust, as this is key to successful and effective long-term human-robot
collaboration (Hou et al., 2021). Traditionally, HRI focused on performance measures
such as task-related strengths and limitations, reliability and predictability of a robot
(Chhogyal et al., 2019; Malle & Ullman, 2021; Marsh, 1994). Today, human operators
should increasingly be aware of a robot’s higher-level values, preferences and goals
(Chhogyal et al., 2019). At the same time robots in collaborative settings should gain
the interactive ability to resolve competing goals through social processes (Chiou & Lee,
2023). Knowing your partner’s intentions, goals and preferences is crucial for calibrated
trust and successful team performance (Hou et al., 2021). As technology advances, it
is vital to critically assess the psychosocial consequences of the growing responsibility
that we give artificial agents in increasingly complex decision-making processes (Awad
etal., 2018) and, as a part of that, to understand if and how trust can be recovered after
intentional or unintentional trust violations (Taenyun Kim & Song, 2021).
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Trust is fundamental requirement for successful collaboration, as it enables individuals
to depend on each other’s contributions to collectively complete tasks and achieve
objectives (Fahim, Khan, Jensen, Albayram, & Coman, 2021; Parasuraman & Riley,
1997). To minimize the risks and maximize the benefits of the collaboration, or to make
it safe and effective, people must be able to determine when it is appropriate to rely on
Al and when it is necessary to intervene (J. D. Lee & See, 2004). Achieving this requires
a balanced relationship between the perceived trustworthiness of an Al agent and its
actual trustworthiness, known as calibrated trust (J. D. Lee & See, 2004; Lewis et al.,
2018). Finding this balance is challenging because it demands an ongoing evaluation of
an Al agent’s trustworthiness and reliability (Hoffman, 2017). To facilitate this calibration
process, we must first understand how trust develops, breaks down, and recovers (de
Visser, Pak, et al., 2017).

Trust is fragile and easily damaged. For example, people may lose trust in an Al
agent they collaborate with due to errors or poor performance, which can arise from
software bugs or hardware malfunctions. These type of trust violations are the primary
focus of current HRI trust repair literature. However, an Al agent’s trustworthiness is not
solely defined by its ability to perform a task, but also by how it performs them, and the
underlying goals and values it pursues (Lubars & Tan, 2019; Malle & Uliman, 2021). As
a result, trust can be violated by factors beyond performance issues, such as when an
Al agent behaves unpredictably and cannot explain the reasoning behind its actions, or
when its priorities differ from those of the people it interacts with. As Al agents evolve
from isolated tools to more autonomous social actors with increased decision authority
in complex, social environments, the risk of these types of trust violations increases.
This dissertation aims to broaden our perspective and deepen our understanding of H-Al
trust violations by examining how the nature of a trust violation affects the development
of H-Al trust.

Additionally, we investigated the impact of different trust-repair mechanisms on the
development of H-Al trust, evaluating how, and to what extent, these mechanisms can
preserve H-Al trust in the face of inevitable trust violations. We assessed both preventative
and reactive strategies and evaluated the effect of informational as well as affective
content. Preventative measures focus on proactively addressing potential trust issues
before they arise, such as communicating uncertainty (i.e., “danger detected with 80%
certainty”) as a means to manage expectations. Reactive strategies, on the other hand,
address trust violations after they have occurred, for example by expressing regret or
providing explanations for anomalous behaviour. Certain strategies are considered
informational, focusing on improving transparency or interpretability by communicating
uncertainty or providing explanations. In contrast, other strategies are considered affective,
as they aim to restore positive feelings of trust through actions such as expressing regret.
By examining a range of trust repair mechanisms and trust violations, this dissertation
contributes to our knowledge on maintaining H-Al trust as a key part of the trust calibration
process.
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Key findings
A multidimensional perspective on trust violation and repair

We explored the effect of trust violations due to 1) poor performance, 2) unexpected
behaviour in combination with an Al agent’s that does not explain its behaviour and 3)
priority misalignment. When evaluating the different perceptions of trustworthiness, i.e.,
ability, benevolence and integrity, in response to the latter two events, we found that
these dimensions can be affected differentially and run parallel and unsynchronized. For
example, in Chapter 5, we observed that people lost trust in an Al agent’s abilities while
still trusting its benevolence, or vice versa. Alternatively, in Chapter 4, the Al agent that did
not explain why it suddenly deviated from the original plan was deemed less trustworthy
in terms of ability and integrity than its transparent counterpart, while benevolence was
more or less unaffected.

Moreover, we found that the nature of a trust violation had significant implications
for the ease of repair. In Chapter 5, when an Al agent explained that an encounter
with a hazard was due to an error rather than a deliberate choice, all perceptions of
trustworthiness successfully recovered. However, when the Al agent explained that the
trust-violating event was the result of weighing options and making a deliberate choice
to the disadvantage of its human partner, only perceptions of ability were restored, while
perceptions of integrity plateaued and perceptions of benevolence dropped even further.
These findings support the growing consensus that H-Al trust is a multidimensional
concept, highlighting the importance of distinguishing between different dimensions of
perceived trustworthiness within HRI.

Informational strategies

We also found that informational strategies to mitigate the negative impact of trust
violations, both preventative and reactive, generally led to higher and more stable levels
of trust compared to baseline conditions where no information was provided. In Chapter 3,
we found a robust effect of uncertainty communication on the perceived trustworthiness of
the Al agent. In both studies (i.e., civilian and military sample) we found that uncertainty
communication in the advice of the Al agent (i.e., “danger detected with x% certainty” rather
than simply “danger detected”) generally resulted in higher levels of trust (Kox, Siegling,
et al., 2022). In the civilian study, uncertainty communication even dampened the decline
in trust following the Al agent’s error, meaning that advice that included an uncertainty
measure led to a less severe decrease in trust following a trust violation compared to an
advice that did not include a notion of uncertainty (Kox, Siegling, et al., 2022).

In Chapter 4, we observed that the perceived trustworthiness of the Al agent was
considerably higher when the robot provided regular updates about its actions throughout
the task. While participants in the high transparency condition maintained a stable level of
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trust during the robot’s deviation, participants in the low transparency condition showed
a significant decline in perceived trustworthiness in response to the robot’s sudden
adaptation to the plan. In other words, the explanation prevented a trust violation. This
confirms earlier research that showed that transparency can have a buffering effect
on perceived trustworthiness, increasing resilience against the effects of unexpected
behaviour or temporary malfunctioning (Hamacher et al., 2016; Kox, Siegling, et al.,
2022; Kraus et al., 2020; Lyons et al., 2023; Tenhundfeld et al., 2020).

These findings suggest that an Al agent does not have to be 100% reliable to maintain
a trusting relationship, but that communication is essential for maintaining trust. Trust
can fluctuate following errors or unexpected deviations from the plan, but it can recover
when additional information about why the system failed is provided (Lyons, 2013). The Al
agent should be able to provide explanations regarding its decisions, recommendations,
and actions. Any changes to the Al agent’s functionality or its planned behaviours should
be communicated clearly to human team members to maintain trust.

Affective strategies

We found that apologies including an expression of regret can be effective in repairing
H-Al trust. In Chapter 2, we saw that after an incorrect advice from the Al agent caused
a trust violation, trust only recovered significantly when the provided apology included
an expression of regret (i.e., “l am sorry”). This effect was stronger when an explanation
was added. In Chapter 3, we again found that an apology containing both an expression
of regret and an explanation was effective in repairing a trust violation due to poor
performance in a civilian sample. Although expressing regret is typically perceived as a
human-like quality, these results suggest that saying sorry can also make a difference
in rebuilding trust when it comes from a non-human agent.

While we observed in Chapters 2 and 3 that an Al agent expressing regret effectively
repaired trust with civilian participants, Chapter 3 also demonstrates that this approach
did not yield the same results with a military sample. During a debriefing session with
some military participants, it became evident that expressing regret is uncommon in the
Dutch military context. Participants noted that acknowledging responsibility with phrases
like “ was wrong” or “I misjudged the situation” is acceptable, but that saying “l am sorry”
is extremely rare. This cultural difference possibly explains the varied responses to the Al
agent’s expression of regret. These findings emphasise once again that we cannot draw
conclusions about “people” in general. Understanding individual differences and cultural
norms and preferences can help Al adapt its behaviour to effectively engage with diverse
teams. It is important to recognize that designing social systems is not a one-size-fits-all
approach and will require continuous exploration and refinement.
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Contributions
Contributions to theory

To some extent, the findings in this dissertation parallel the Computers-are-Social-Actors
(CASA) paradigm (J.-E. R. Lee & Nass, 2010). We agree that understanding “the social
principles that govern us and the social expectations we hold with respect to trust-building
in the interpersonal settings” (J.-E. R. Lee & Nass, 2010) (p.11) is valuable, as some of
these principles translate to the context of HRI, such as the effectiveness of apologizing.
Furthermore, the ineffectiveness of apologizing with military personnel, where it is not a
common social practice, aligns with the idea that people tend to find an Al agent more
trustworthy when it exhibits behaviours similar to their own (J.-E. R. Lee & Nass, 2010).
Additionally, the heavy decay of trust when the Al agent prioritized collective goals over
the participants safety reflects the notion that we are more likely to trust entities, whether
human or Al, that demonstrate caring behaviours. Just like we are more likely to trust
people who make us feel cared for, we are more inclined to trust machines that show
concern for our well-being (J.-E. R. Lee & Nass, 2010). Thus, we argue that the social
and emotional dimensions of technology use cannot be ignored. Expecting people to be
‘rational agents’, driven by logic and utility in their interaction with non-human entities,
neglects and undervalues the important role of the social and emotional strengths humans
bring to the collaboration.

Yet, we believe that is not automatically appropriate to design robots to be social or
human-like simply because people often respond socially to them, or because it increases
trust, and that “successful robots utilize the distinctive features of machines” (Shneiderman,
2020) (p.113). While the findings indicate that it may be valuable to leverage humans’
evolutionary social wiring to facilitate collaboration with other forms of intelligence by
incorporating social cues into the design of Al agents, this should be done with caution
and without trying to re-create what we already have (people) (Darling, 2021). Al agents
can only meaningfully augment human decision-making and benefit society when they are
applied to tasks in which they excel (Kox, van Riemsdijk, & Kerstholt, 2024), and when
they effectively communicate the what, how and why behind their decisions to human
operators while performing them. Building on the parallels with the CASA paradigm, this
dissertation advances theoretical discussions by showing that informational strategies,
such as explanations and communicating uncertainty, are just as important for maintaining
trust in Al agents.

Finally, this dissertation expands on the concept of a ‘trust lifecycle’ and deepens our
understanding of the temporal dynamics of trust,. Trust is dynamic and typically evolves
over a series of interactions (Baker et al., 2018; Hou et al., 2021). As people interact
with and learn more about an Al agent, they continuously update their perceptions,
judgments, and trust, particularly in response to norm violations (E. Phillips et al., 2023).
Most studies, however, offer a static perspective on trust, focusing on momentary states of

123



Chapter 6

trust rather than its developmental process. Unlike cross-sectional studies, our research
uses repeated measurements of trust over time, and sheds light on how trust develops,
deteriorates and recovers in response to various factors. Our goal was to capture these
dynamic changes in trust, as understanding them is crucial for studying norm conflict,
resolution, and mitigation, and for maintaining H-Al trust.

Contributions to method

A key methodological contribution of this dissertation comes from the technical effort
invested in the development of high-fidelity military scenarios and graphically detailed
virtual task environments. Both our desktop-based and VR simulations were designed to
mirror authentic HRI situations with a high level of detail and realism, providing a practical
understanding of potential trust relations in an operational military context. This approach
offers three major advantages. First, the scenarios facilitated our temporal perspective on
trust in the Al agent, allowing us to observe how it evolved as different events unfolded.
Secondly, by incorporating emotion-evoking, startling events in highly detailed graphic
environments portraying realistic scenarios, we have strived to simulate a sense of threat
and risk that was likely more effective at triggering implicit trust decisions compared
to traditional cognitive paradigms. Trust, by definition, is only relevant in situations
characterized by risk, uncertainty and vulnerability (Li et al., 2019). Studying trust repair
requires violating trust and allowing people to experience the risk they take and the
vulnerability they accept. Yet, it can be challenging to create experimental scenarios that
induce feelings of vulnerability and risk without compromising participants’ physical and
psychological safety (Baker et al., 2018). Our goal was to create high-fidelity experiences
that would elicit feelings rather than relying solely on a more cognitive, incentive-based
approach. Matthews et al. (2018) have suggested that we need more complex, realistic
threat-detection scenarios to truly understand to what extent people are willing to trust an
Al agent in circumstances characterized by threat (Matthews et al., 2018). By exploring
innovative ways of simulating risk that elicit emotional responses within ethical boundaries,
instead of relying solely on gamification elements or cognitive incentives, we can lay a
stronger foundation for future empirical studies in more complex, real-world settings.
Lastly, the detailed virtual military scenarios, designed to closely mimic actual
conditions, allowed us to portray different types of HRI trust violations in a realistic
manner. Most HRI studies that explore trust violations beyond performance-related
issues often rely on simplified fictional game-like scenarios, where Al agents exhibit
human-like behaviours, such as pursuing personal gain (i.e., money) or lying, to violate
perceptions of benevolence or integrity-based trust (Alarcon et al., 2023; Sebo et al.,
2019). While these clear and familiar examples of self-serving behaviour and deception
are valuable for developing and testing theory, they tend to be overly anthropomorphic and
somewhat unrealistic in HRI contexts. After all, Al agents operate based on programming,
predefined objectives, and operational goals, rather than human-like motivations such as
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the financial gain or the intent to deceive. Nevertheless, they can still violate perceptions
of benevolence and integrity. However, realistic examples of such violations remain
significantly underrepresented in current research.

A benevolent partner, by definition, is genuinely concerned with your well-being and
is motivated to pursue joint gain (Bhagat & Steers, 2009). In other words, a benevolence-
based trust violation occurs when a partner fails to act in your best interest, disregards
your needs, or shows a lack of concern for your welfare (Mayer & Davis, 1999). However,
this does not necessarily imply self-interest, where the partner prioritizes its own interest
over others (Jessup et al., 2020). For example, a partner may prioritize the collective
interests of the team over the safety of an individual member, which present a more
realistic scenario for future HRI operations (Jorge et al., 2022). Therefore, trust violations
based on benevolence and integrity based in HRI studies do not have to be unrealistic.

Our virtual task environments preserve the authenticity and practical relevance of
operational reality while allowing the incorporation of hypothetical elements (e.g., advanced
robotics that do not yet exist) and maintaining the experimental control and immediate
feedback that would be lost in field experiments (Petty & Cacioppo, 1996).

Contributions to society

Our research opens up a broader societal conversation about the role and the decision
authority we want Al agents to have and “what we want a future Al-enabled society to
look like” (Winkler, 2024) (p.1). Our scenarios are based on hypothetical but realistic
situations in which Al agents have the authority to cause harm to people (and their trust)
by their decisions and recommendations. We focused on plausible Al agent behaviours
in the military domain, rather than using current interpersonal examples and attributing
human-like motivations (e.g., greed, deception) to Al agents. For example, it is conceivable
that Al agents may be programmed to follow a utilitarian approach, prioritizing team goals
over individual safety for the greater good. Similarly, it is plausible that Al agents will be
allowed to make autonomous decisions while pursuing a delegated goal and designed to
balance the frequency of updates, all to reduce the human’s cognitive load. Even though
this can sometimes result in miscommunication or miscomprehension. These examples
of potential trust violations more closely reflect how future Al agents may operate in
practice and can better inform policy and ethical guidelines.

There are numerous operational HRI scenarios conceivable where a well-considered
trade-off decision can cause harm while still pursuing a largely positive outcome. Instances
of misalignment between human and Al agent values or priorities are already occurring
to some extent. For example, in some regions, autonomous security robots are being
deployed in public spaces for security tasks (Stephens, 2023). These robots may patrol
parking lots with the aim to prevent vehicle break-ins by detecting environmental anomalies
and suspicious behaviour (Knightscope, 2023). This design reflects a focus on overall
safety, which may come at the expense of individual privacy. Consequently, these robot
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might encroach on people’s personal space and sense of privacy, leading to mistrust
not only of the robots themselves but also of their developers and deployers. The root
of this mistrust lies in the robot’s purpose rather than its performance, as it is designed
to uphold a value (security) that inherently conflicts with another (freedom). Specifically,
the robot operates within the trade-off between security and freedom: increasing security
measures can restrict personal freedoms, while maximizing freedom might reduce security.

This examples highlights the importance of carefully considering the implications of
designing and deploying Al agents that may cause discomfort or harm to people. Beyond
advancing based on technical feasibility or cost efficiency, we must prioritize the broader
societal impact. As increasingly sophisticated, trust-violating Al agents raise significant
ethical concerns, this dissertation aims to contribute to the ongoing debate on how we
should design and implement Al agents in a way that helps society and improves well-
being.

In practice, it is inevitable that in future scenarios, an Al agent’s purpose and priorities
might not be able to serve everyone equally, albeit with the best intentions. As Al agents
gain in autonomy, it becomes increasingly important to develop theories around these
situations and to critically consider the implications of realistic scenarios where robots
may make choices that could potentially harm, hurt, or at least disappoint humans. By
developing more plausible scenarios, we can not only study how different people respond
to them, but also critically reflect on the desirability of such future scenarios and whether
we want them to become reality.

Limitations
The behavioural dimension of trust

In our studies, we aimed to create experiments that would elicit emotional responses
through immersive storylines and task environments featuring emotion-evoking and
startling events, rather than relying solely on a cognitive, incentive-based approach (e.g.,
gamification elements such as lives, ticking clocks, or performance-based monetary
bonuses) to simulate risk and manipulate trust. However, in the storylines, participants
were not given the opportunity to make decisions based on those emotions. They were
simply instructed to walk from point A to point B while encountering various events and
completing self-report trust questionnaires. They had no option to disobey or deviate
from the Al agent’s recommendation if they lacked trust, nor did their behaviour have any
consequences. This approach, which prioritized experimental control over behavioural
freedom, may have limited our ability to measure trust in a more behavioural sense as
a readiness for risk-taking and a willingness to be vulnerable.

Given this limitation, we were eager to explore the possibilities of incorporating more
behavioural measures in the VR studies we conducted, which are not included in this
dissertation (Kox, van Riemsdijk, de Vries, et al., 2024a, 2024b). In an initial study using our
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VR maze, we sought to investigate the relationship between trust and compliance by giving
participants the behavioural freedom to either follow or disregard the Al agent’s advice
by choosing an alternative path than the one suggested by the drone. Simultaneously,
we assessed self-reported trust to determine whether and how participants’ perceptions
of trustworthiness aligned with their behavioural choices (Kox, van Riemsdijk, de Vries,
et al., 2024a). Unfortunately, due to technical difficulties and unforeseen low compliance
rates, we were unable to gather sufficient valid data to gain valuable insights into this
relationship. However, we view the link between trust and reliance or compliance as an
important area for future research. Researching this link helps identify the thresholds
at which trust transitions into actionable reliance or compliance, providing insights into
when and why humans choose to act based on an Al agent’s input.

The findings presented in Chapter 5 show that different dimension of perceived
trustworthiness are differentially affected by trust violations due to error or choice. One
of the key questions that emerges from the finding is what this means for behavioural
reliance. For instance, what will be the behavioural consequence when perceptions of
ability have recovered, but perceptions of benevolence and integrity have not yet been
restored? Which dimension of perceived trustworthiness is most predictive of behaviour,
and does this vary depending on context and individual differences? Further research is
needed to investigate the behavioural consequences of this discrepancy in trust beliefs.

Moreover, placing a greater focus on behavioural measures potentially related to trust
could significantly contribute to the field of HRI by providing more quantitative metrics
to assess trust. The VR environments we developed, including both the virtual maze
and the house-search task, are ideally suited for such purposes (Kox, Barnhoorn, et al.,
2022; Kox, van Riemsdijk, de Vries, et al., 2024a, 2024b). For instance, in the virtual
maze, the reaction time in the decision-making task (i.e., choosing between the red
or blue door after the drone’s recommendation) can be assessed, while in the house-
search scenario, walking speed can be measured, both of which may indicate hesitation.
Additionally, eye movements tracked through the VR headset in both scenarios could
reveal excessive monitoring. Both hesitation and excessive monitoring might point to
lowered trust. Incorporating these objective measures into HRI trust research would be
worthwhile, as it can increase the accuracy and reliability of trust measures.

In summary, our ability to capture trust as a readiness for risk-taking and a willingness to
be vulnerable was limited by the constraints of our desktop paradigm and the unsuccessful
implementation of behavioural measures in the VR studies, leaving a critical dimension
of trust unmeasured in this work. We strongly encourage further exploration of these
behavioural dimensions in subsequent studies.

Military scenarios and civilian participants

Like the vast majority of human factors research on H-Al trust, we predominantly used
university students as participants in task situations that were new to them (Hoffman,
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2017). This approach presents two major limitations in our studies. First, it could be argued
that having homogenous samples comprising primarily young adults with an academic
background limits the generalizability of our findings. However, the primary aim of these
controlled experiments is to uncover causal mechanism, in order to better understand
how people make judgements in response to certain stimuli (Kadres, 1996). These causal
mechanisms often hold true across different groups unless there is a strong reason to
believe that demographic factors would significantly alter the effect. For example, Chapter
3 showed that apologizing was specifically ineffective with military participants, indicating
that cultural differences played a significant role in shaping responses to trust repair
strategies. At the same time, the positive effect of communicating uncertainty remained
consistent across both civilian and military participants, showing that certain mechanisms
can be robust across varied demographics. While we should always be cautious with
generalizing findings beyond the immediate sample, controlled studies that reveal these
mechanisms provide a foundation that can be expanded upon in more diverse settings.

Secondly, presenting a range of different military scenarios to civilians raises questions
about the applicability of the results to actual military contexts. It is uncertain whether
results obtained from studies using military scenarios with civilian participants will
generalize to real military scenarios. Presenting civilians with military scenarios carries
the risk of misinterpretation, as soldiers and civilians might perceive these situations
in distinct ways. Civilian participants, especially those familiar with video games, may
approach military scenarios with a mindset shaped by gaming experiences, potentially
leading to differing risk assessments. Video games often prioritize entertainment over
realism, and players may take risks or make decisions that do not reflect real-world
consequences. It is probable that participants would have made different choices if their
lives were actually in danger. While this limitation is inherent to controlled experiments,
it highlights the importance of follow-up studies to test whether our findings hold up in
actual operational settings and across different populations.

A lack of ground truth

A final limitation to my studies is that we cannot draw conclusion on whether trust
is actually better calibrated thanks to certain strategies. We tried to map changes and
fragments of the dynamics of trust, but, because my studies did not include a ground truth
(i.e., a reference point against which the accuracy of measurements are assessed, such
as a fixed reliability rate), the results cannot confirm whether trust was properly calibrated.

Despite emphasizing the importance of calibrated trust and striving to repair trust to
an optimal rather than maximum level, we cannot ascertain whether participants’ trust
in the Al agents during our experiments was properly calibrated. Instead, we aimed
to uncover causal mechanism and measured how certain events caused a decline in
trust and whether specific strategies (implemented before or after the violation) could
minimize the immediate impact on trust development. We are aware that, in many cases,
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decreases in trust are a logical and functional adaptive response to perceiving reduced
performance or unexpected behaviour, and actually contribute to trust calibration. Yet,
our research contributed to a toolbox for addressing undertrust. We have demonstrated
the effectiveness of certain strategies in increasing trust under specific circumstances.
Future research should focus on identifying instances and causes of undertrust, and
on then determining which strategies are appropriate for those particular situations and
circumstances.

Recommendations for future research

Several questions remain unanswered. Future studies should investigate more specifically
which repair strategy is most effective for each type of violation, by a systematic
comparison between different repair strategies and violation types (de Visser et al.,
2018). For instance, previous HRI research has proposed certain optimal combinations,
such as apologies for ability-based trust violations and denial for integrity-based trust
violations (Sebo et al., 2019).

Additionally, it is inevitable that certain trust-repair mechanism will work for some
people, but not others (de Visser et al., 2018). There are many inter-individual differences,
including affective (i.e. moods, feelings, etc.) and dispositional (i.e. personality traits),
that can influence how people respond to trust violating events and repair strategies and
navigate social interactions and collaboration in general, such as cultural differences
(e.g., individualism versus collectivism), gender differences (Macko, 2020; Schumann
& Ross, 2010) or differences in cognitive abilities (Ku & Pak, 2023; Rovira et al., 2017).
Future research should focus on how such inter-individual differences impact trust repair,
in order to develop more personalized and effective strategies.

Follow-up research should also assess the long-term effects of trust repair strategies.
For example, more work is needed to determine whether the beneficial effects of an
apology will last when the same apology is offered repeatedly. An apology is a way
of taking responsibility for one’s behaviour, implying a commitment to improve and to
avoiding similar mistakes in the future. However, when the machine does not change
its (erratic or undesirable) behaviour that it expressed regret for, an apology is deemed
ineffective (de Visser et al., 2018).

Moreover, the monotony and uniformity of communication styles often seen in Al agents
may lead to irritation when the same message is consistently delivered in the same format
and tone. If so, it is plausible that the potentially beneficial effects of an apology will not
be robust and soon be perceived as a gimmick. In this context, the emergence of Large
Language Models (LLMs) holds significant potential as intuitive human-machine interfaces
capable of mitigating the “robot-like” manner of communication often associated with
Al agents. However, their sophisticated communication capabilities also raise concerns
about the potential for overreliance or overtrust. Their ability to generate highly coherent
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answers “can fool us into thinking that they understand more than they do” (B. X. Chen,
2022). People might not always be aware of the risks associated with the use of generative
Al models, such as LLMs (Kox & Beretta, 2024).

Implications and practical implementation
Carefully consider the consequences of design choices

One of our findings is that expressing regret can be an effective strategy for repairing trust,
but that its effectiveness varies depending on the audience. This contributes to an ongoing
debate about the appropriateness of humanizing Al-interaction and the extent to which
anthropomorphism should be implemented (J. Johnson, 2024; Shneiderman, 2020, 2021).
Some researchers argue against referring to future technologies as teammates, partners,
or collaborators as they are more likely to function as advanced tools (Shneiderman, 2021),
and this type of terminology and metaphors can create “a false equivalence between
human and machine intelligence” (J. Johnson, 2024) (p. 77). It is not automatically
appropriate to design robots to be social or human-like simply because people often
respond socially to them (Shneiderman, 2020).

In practice, the appropriateness of using human-like cues, such as expressions of
regret, depends heavily on the context. Our finding that expressing regret is not as effective
with military personnel as it is with civilians indicates that it is important to consider the
social customs and cultural norms of the target population when designing collaborative Al
agents. When Al agents are expected to interact with humans in high-stakes environments,
it is crucial that they are designed to seamlessly integrate, using the same terminology
and communication styles as the rest of the team to facilitate smoother interactions.
As Julie Carpenter emphasizes in her study on how U.S. Military Explosive Ordnance
Disposal personnel integrate robotic tools into their work and develop emotional bonds:
“In order for human-robot teams to be effective, research is needed into the whole system
that the individual team members are a part of, and how these factors ultimately shape
the interactions at micro levels” (Carpenter, 2013) (p.2). While ‘human-like’ behavioural
cues may facilitate social interaction by creating a sense of familiarity, it is important to
recognize that not all humans behave in the same way.

Beyond the diversity of target audiences, it is crucial to recognize the wide range of
Al applications, rather than treating Al as a single, homogenous concept (Jermutus et al.,
2022). For example, in social robotics, human-like cues in Al agents might be beneficial,
while in professional settings where safety and calibrated trust are crucial (e.g., intensive
care, military operations), such features may be less appropriate. Anthropomorphic design
should be guided by a clear understanding of the potential effects on user interactions
and should be approached with careful and strategic consideration, as these features
can lead to both positive and negative outcomes (Carpenter, 2013; Disalvo et al., 2002;

130



Discussion

J. Johnson, 2024; Taenyun Kim & Song, 2021). By focusing on context, we can have a
more meaningful discussion about whether using human-like cues is appropriate.

Ultimately, it is crucial to carefully consider the consequences of design choices and
the ethical implications for Al agent behaviour. With this in mind, although some studies
have explored the effects of denial in human-robot interactions (e.g., Kohn et al., 2018;
Sebo et al., 2019; Zhang, Lee, Kim, et al., 2023), we deliberately chose not to include it
as a trust repair strategy. Denial, often used by humans to downplay errors or dismiss
concerns, conflicts with our goal of establishing sustainable, trust-based relationships
with Al agents. Al agents should not be programmed or allowed to lie, even if it might
yield a desirable outcome in the short term. Instead, they should be designed with a
clear ethical framework that prioritizes transparency, calibrated trust, and the long-term
effectiveness of human-Al collaboration.

It is our responsibility as researchers not only to investigate what strategies or design
features effectively yield desirable outcomes, such as calibrated trust, but also to determine
what we consider acceptable and ethical behaviour for Al agents in achieving those
outcomes. The end does not automatically justify the means.

Invest in people

Our results suggest that explanations can be effective in repairing trust. However,
explainable Al is a complex field of research that proves how challenging it is to make
a machine explain its reasoning in a way that aligns with human thinking. Additionally,
it is difficult for an Al agent to recognize when it fails to meet human expectations. If it
could, it likely would not make such errors. Even with explicit human feedback, providing
satisfactory explanations for its actions will remain a significant challenge. The increasingly
complex algorithms used in Al agents often result in a “black-box” effect, where the
internal workings are not easily understood or accessible, even to developers, making it
difficult to understand or explain how the Al reaches its conclusions. Robust explanation
capabilities may still be far from being fully realized.

In the meantime, it seems wise to invest in people’s capacity to know what Al is good
at, where its limitations lie, and in which contexts trust may be risky. For instance, this can
be achieved by improving people’s Al-literacy, which is a broad set of skills that enable
individuals to recognize everyday applications of Al, know the basic functions of Al and
understand how to use Al effectively in daily life (Ng et al., 2021). Exploring research
directions that focus on improving Al-literacy is crucial. This includes understanding
what Al-literacy encompasses, including the key knowledge and skills people need to
effectively navigate and resolve conflicts arising from the inherent differences between
humans and Al agents. For example, Al-literacy should focus on critical thinking
about Al, helping people recognize red flags, potential areas of concern, and when
human oversight or intervention is necessary. Equally important is determining which
mental models of Al people should develop or employ, and identifying metaphors
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that either aid or hinder appropriate understanding of Al (Maas, 2023). Addressing
these questions will not only enhance human-Al collaboration but also pave the way
for more informed and safe use of Al in everyday life.

However, if even developers struggle to explain Al-systems due to the “black-
box” nature of many algorithms, it seems contradictory to expect the general public
to develop Al-literacy to a level that would enable them to confidently interact with
these systems. This highlights a clear responsibility for developers and the Al industry
to ensure that Al-systems are trustworthy and reliable. Efforts should be directed
toward creating transparent systems where feasible and establishing safeguards and
protocols that clarify the strengths and limitations of Al, particularly when enhancing
explanation capabilities is not possible.

Approach Al as a socio-technical system

This thesis explored various causes of trust violations in Al agents. Moving beyond
errors as the sole cause of trust breakdowns requires examining the entire development
process and questioning the desirability of such scenarios. Trust violations arising from
an Al agent’s technical shortcomings (e.g., software bugs, hardware malfunctions) are
largely unpredictable. However, violations resulting from unexpected or incomprehensible
behaviour, often due to the agent’s incapacity to explain itself, or conflicting priorities are
more likely the result of policy and design choices rather than the Al agent’s technical
sophistication. These types of violations are more predictable and thus, potentially
preventable.

This raises questions about how much harm, disappointment, or confusion we are
willing to tolerate from Al agents, and what benefits we gain in return. As Al agents are
designed, built and programmed by humans, all trust violations are ultimately human-
made and traceable to decisions in the development process. Each violation can, at least
theoretically, be attributed a different group: for instance, software bugs or hardware failures
are linked to engineers (e.g., mechanical, electrical, software), interface transparency
issues are the responsibility of designers and UX specialists, and value misalignments
can be traced back to executive leadership, who set strategic priorities, and product
managers, who ensure the product aligns with user needs and company goals.

In other words, Al systems should be approached as sociotechnical systems, where
the trustworthiness of the technology is as much a product of the people designing,
developing, deploying and using it as of the system itself (Duenser & Douglas, 2023). In
order to create trustworthy Al, the creators themselves must be worthy of trust (Cameron
et al., 2023). Building trustworthy Al agents requires a systematic, multidisciplinary
approach. “Just as it takes a village to raise a child, the governing of Al needs to be a
multidisciplinary village so that we can raise Als that are productive, valued contributors
to society.” (Winkler, 2024)
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Conclusion

The prospect of more autonomous Al agents gaining decision-making authority in our
physical and virtual worlds introduces a range of new questions, ethical dilemmas,
opportunities for advancement, and potential risks. My findings show that an Al agent’s
trustworthiness of is no longer determined solely by what it can do, but also by how
and why it does so. Therefore, we emphasize the importance of a multidisciplinary,
human-centred approach that aims to contribute to the integration of Al agents
into our existing social structures, while prioritizing the needs, behaviours, and
experiences of the people who will interact with them, rather than advancing solely
based on technical feasibility.
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Summary

People are increasingly working with Artificial Intelligence (Al) agents, whether as software-
based systems such as Al-chatbots and voice assistants, or embedded in hardware
devices like autonomous vehicles, advanced robots, and drones. The idea of Human-Al
(H-Al) collaboration is promising, since humans and Al possess complementary skills
that, when combined, can enhance performance beyond the capabilities of its individual
members. Here, the real challenge is not just determining which tasks are better suited
for humans or machines working independently, but in finding ways to enhance their
respective strengths through effective interaction. Working together towards a common
goal requires good cooperation, coordination, and communication, and it is within these
areas that the true challenges lie.

A key component in these activities is trust, as it allows individuals to depend on
each other’s contributions to complete tasks and achieve shared goals. More specifically,
maintaining balanced trust (i.e., neither too much nor too little) is crucial for safe and
effective H-Al collaborations. Finding this balance, a process known as trust calibration,
should enable people to determine when to rely on Al agents and when to override
them. To facilitate this, we need to understand how H-Al trust is built, breaks down, and
recovers (i.e., the ‘trust lifecycle’). This dissertation focusses on how to maintain H-Al
trust, by examining how trust breaks down (i.e., trust violations) and the mechanisms
through which trust can be repaired.

In this thesis, | cover three types of trust violations, stemming from 1) inadequate
abilities of the Al agent (errors), 2) unexpected behaviour without any explanation, and
3) priority misalignment. In other words, violations in respect to what an Al agent does,
how it operates, and why it acts in a certain way. Additionally, we examined the impact
of various trust-repair mechanisms on the development of H-Al trust. We evaluated
a preventative measure designed to mitigate potential trust issues by proactively
communicating uncertainty (i.e., “environment detected as clear, with 80% certainty”)
and reactive strategies addressing trust violations post-incident, such as expressing regret
(i.e., “I am sorry”) or providing explanations for anomalous behaviour. These strategies
can be categorized as informational (e.g., uncertainty, explanations) or affective (e.g.,
regret), aiming either to improve the Al agent’s interpretability or restore trust through
emotional engagement. In short, we investigate how the nature of a trust violation and
different repair strategies influence the development of H-Al trust.

Data for these studies were obtained using a series of custom-designed, game-like
virtual task environments, simulating military scenarios where participants carried out
missions in collaboration with an Al agent, presented in various physical forms. In each
study, we used repeated measures of H-Al trust to track its changes over time.

Chapter 2 and 3 examine trust violations due to the inadequate abilities of the Al
agent. In Chapter 2, participants were assigned to return to basecamp as fast as possible
after running out of ammunition. Halfway, the Al agent failed to warn the participant for
an approaching enemy. Following this failure, the Al agent employed one of four trust
repair strategies: an explanation or an expression of regret either individually, combined,
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or neither. H-Al trust recovered only when the apology included an expression of regret,
with even greater recovery when both regret and explanation were offered.

Chapter 3 involves house-searches in two abandoned buildings, supported by a small
drone. Halfway, the Al agent failed to warn the participant for a hazard. We studied the
effects of uncertainty communication and apology (i.e., explanation + regret), deployed
before and after trust had been violated respectively. We conducted this study with both
civilian and military samples to investigate whether findings were consistent across
different participant groups. Results showed that (a) communicating uncertainty led to
more trust, (b) an incorrect advice by the agent led to a less severe decline in trust when
that advice included a notion of uncertainty, and (c) after a trust violation, trust recovered
significantly more when the agent offered an apology. The two latter effects were only
found in the study with civilians.

Chapter 4 examines a trust violation due to unexpected behaviour and the Al agent’s
incapacity to explain itself. Halfway a reconnaissance mission, the Al agent detected
a faster alternative route that emerged due to changes in the environment (i.e., the
river had dried up) and decided to deviate from the original plan. We studied the effect
of transparency (i.e. regular status updates and an explanation for the deviation) and
outcome on trust and the participant’s workload. The main result was that transparency
prevented a trust violation and contributed to higher levels of trust, without increasing
subjective workload.

Chapter 5 examines a trust violation caused by priority misalignment. Halfway during
the mission, the Al agent, who was guiding the participant, did not warn the participant
in time of a hazard down the road. In one condition, it explained that this failure was
due to an underperforming sensor. In the other condition, the Al agent explained that it
deliberately recommended the faster route over the safer one. The rationale was that
the rest of the team was waiting, and further delays could jeopardize both the team and
the mission. Our findings suggest that trust violations due to choices are harder to repair
than those due to errors.

By analysing the dynamics of trust during H-Al interaction, this research aims to
inform the design of Al-systems that promote calibrated trust in high-stakes environments.
As Al agents gain decision-making authority in the physical and virtual world, they will
increasingly face conflicting human values (e.g., privacy vs. safety, efficiency vs. empathy).
As they get more autonomous and complex, moral considerations will play a larger role,
and trust may be lost not only due to malfunctions but also due to miscommunication
and misaligned values. The trustworthiness of an Al agent is no longer determined solely
by what it can do, but also by how and why it does so. Our findings support the growing
consensus that H-Al trust, much like interpersonal trust, is multidimensional, even if the
moral dimensions are not yet as apparent in current interactions. As the complexity of
H-Al trust grows, maintaining an appropriate level of trust becomes increasingly important.
Designing and developing trustworthy Al agents for safe and effective H-Al collaborations
requires a systematic and multidisciplinary approach.
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Samenvatting

Mensen werken steeds vaker samen met kunstmatige intelligentie (KI) agenten. Kl-agenten
kunnen softwarematig werken zoals Al-chatbots en spraakassistenten of geintegreerd zijn
in hardware zoals autonome voertuigen, geavanceerde robots en drones. Het idee van
mens-KI (M-KI) samenwerkingen is veelbelovend, omdat mensen en KI complementaire
vaardigheden bezitten waardoor ze collectief meer kunnen bereiken dan elk afzonderlijk
had gekund. Daarbij ligt de uitdaging niet in de taken zo te verdelen dat beiden doen
waar ze goed in zijn, maar uitvinden hoe mensen en machines het beste in elkaar naar
boven halen door te interacteren. Samenwerken aan een gemeenschappelijk doel vereist
colperatie, codrdinatie en communicatie; daar liggen de echte uitdagingen.

Vertrouwen is essentieel voor werken in teamverband omdat het mensen in staat stelt
op elkaars bijdragen te rekenen. Het bewaren van een balans hierin, dus niet te veel en
niet te weinig vertrouwen, is een voorwaarde voor veilige en effectieve samenwerking
tussen mens en Kl. Het vinden van deze balans oftewel het kalibreren van vertrouwen,
moet mensen in staat stellen te bepalen wanneer ze iets aan Kl kunnen overlaten.
Om dit te kunnen faciliteren moeten we eerst begrijpen hoe M-KI vertrouwen zich
ontwikkelt. Dit proefschrift focust zich op de vraag hoe we M-KI vertrouwen behouden
door te onderzoeken hoe vertrouwen afbreekt en welke mechanismen bestaan om het
te herstellen.

Ik behandel drie soorten vertrouwensschendingen: als gevolg van 1) verminderde
capaciteiten van de Kl-agent (fouten), 2) onverwacht gedrag zonder uitleg van de Ki-
agent, en 3) conflicterende prioriteiten. Met andere woorden schendingen met betrekking
tot wat een Kl-agent doet, hoe het opereert en waarom het op een bepaalde manier
handelt. Daarnaast onderzochten we verschillende herstelmechanismen: een preventieve
maatregel om een mogelijke vertrouwensbreuk te beperken door proactief onzekerheid
te communiceren (bijvoorbeeld “omgeving beoordeeld als veilig met 80% zekerheid”)
en reactieve strategieén die na een incident werden ingezet zoals het betuigen van spijt
of het geven van verklaringen voor afwijkend gedrag. Deze strategieén kunnen worden
gecategoriseerd als informatief (bijvoorbeeld onzekerheid en verklaringen) met als doel
de interpreteerbaarheid van de Kl-agent te verbeteren of als affectief (bijvoorbeeld spijt)
gericht op emotionele betrokkenheid. Kortom, we onderzochten hoe de aard van een
vertrouwensschending en verschillende herstelstrategieén de ontwikkeling van M-KI
vertrouwen beinvioeden.

De data in mijn studies zijn verzameld met behulp op maat gemaakte computerspel-
achtige virtuele omgevingen, waarin militaire scenario’s werden gesimuleerd waarin
deelnemers missies uitvoerden in samenwerking met een Kl-agent in verschillende
fysieke verschijningsvormen. In elke studie werd M-KI vertrouwen herhaaldelijk gemeten
zodat we de veranderingen in de tijd konden volgen.

Hoofdstuk 2 en 3 onderzoeken vertrouwensschendingen als gevolg van fouten. In
hoofdstuk 2 kregen deelnemers de opdracht om zo snel mogelijk terug te keren naar
het basiskamp. Halverwege waarschuwde de Kl-agent de deelnemer niet voor een
naderende vijand. Na dit falen, gebruikte de Kl-agent een van vier herstelstrategieén:
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1) een verklaring of2) een uiting van spijt afzonderlijk, 3) gecombineerd of 4) geen van
beide. Vertrouwen herstelde alleen wanneer de Kl-agent spijt betuigde; dit effect was
nog sterker wanneer het 66k een verklaring gaf.

Hoofdstuk 3 betreft twee huiszoekingen in verlaten gebouwen met behulp van een
kleine drone. Halverwege waarschuwde de Kl-agent de deelnemer niet voor een gevaar.
We bestudeerden de effecten van onzekerheidscommunicatie en verontschuldigingen (dat
wil zeggen een verklaring + spijt) die respectievelijk voor en na het incident werden ingezet.
Deze studie werd uitgevoerd met zowel civiele als militaire deelnemers om te onderzoeken
of de bevindingen consistent waren tussen verschillende groepen deelnemers. De
resultaten lieten zien dat 1) onzekerheidscommunicatie leidde tot meer vertrouwen, 2)
onjuiste adviezen leidden tot een minder ernstige daling van het vertrouwen wanneer
die onzekerheidsinformatie bevatte en 3) het vertrouwen na een vertrouwensschending
significant meer herstelde wanneer de agent een verontschuldiging aanbood. De laatste
twee effecten werden alleen gevonden in de studie met civiele deelnemers.

Hoofdstuk 4 onderzoekt een vertrouwensschending door onverwacht gedrag en
het ontbreken van toelichting door de Kl-agent. Halverwege een verkenningsmissie
observeerde de Kl-agent dat een snellere alternatieve route was ontstaan door
veranderingen in de omgeving (de rivier was opgedroogd) en besloot af te wijken van
het oorspronkelijke plan. We bestudeerden het effect van transparantie (dat wil zeggen
regelmatige statusupdates en een verklaring voor de afwijking) en de uitkomst van de
missie op vertrouwen en de werklast van de deelnemer. Het belangrijkste resultaat was
dat transparantie een breuk in vertrouwen voorkwam zonder te zorgen voor een toename
van de subjectieve werklast.

Hoofdstuk 5 onderzoekt een vertrouwensschending door conflicterende prioriteiten.
Halverwege de missie waarschuwde de Kl-agent die de deelnemer leidde, deze niet
voor een gevaar op de weg. In één conditie legde de Kl-agent uit dat dit te wijten was
aan een slecht functionerende sensor. In de andere conditie legde het uit dat het bewust
de snellere route had aanbevolen in plaats van de veiligere, omdat vertragingen de rest
van het team en de missie in gevaar konden brengen. Onze bevindingen suggereren
dat breuken in vertrouwen als gevolg van afwegingen moeilijker te herstellen zijn dan
die als gevolg van fouten.

Door de dynamiek van vertrouwen tijdens M-KI interacties te onderzoeken, hopen we
bij te dragen aan het ontwerp van Kl-agenten die gekalibreerd vertrouwen bevorderen.
Naarmate Kl-agenten autonomer worden en meer beslissingsbevoegdheid krijgen in
zowel de fysieke als virtuele wereld zullen ze steeds vaker met conflicterende waarden
te maken krijgen (bijvoorbeeld privacy vs. veiligheid, efficiéntie vs. empathie) en zullen
vertrouwensbreuken niet alleen ontstaan door fouten, maar ook door miscommunicatie
en conflicterende belangen. De betrouwbaarheid van een Kl-agent wordt niet langer
uitsluitend bepaald door wat het kan, maar ook door hoe en waarom het iets doet.
Onze bevindingen sluiten aan bij de groeiende consensus dat M-KI vertrouwen net als
vertrouwen tussen mensen multidimensionaal is. De toenemende complexiteit van M-KI
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vertrouwen maakt het behouden van een passend niveau van vertrouwen tot een steeds
grotere uitdaging. Het ontwerpen en ontwikkelen van betrouwbare Kl-agenten voor veilige
en effectieve M-KI samenwerkingen vraagt om een systematische en multidisciplinaire
aanpak.
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