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Abstract: Camouflage evaluation is traditionally evaluated through human visual search
and detection experiments, which are time-consuming and resource intensive. To address
this, we explored whether a pre-trained convolutional neural network (YOLOv4-tiny)
can provide an automated, image-based measure of camouflage effectiveness that aligns
with human perception. We conducted behavioral experiments to obtain human detection
performance metrics—such as search time and target conspicuity—and compared these to
the classification probabilities output by the YOLO model when detecting camouflaged
individuals in rural and urban scenes. YOLO’s classification probability was adopted as a
proxy for detectability, allowing direct comparison with human observer performance. We
found a strong overall correspondence between YOLO-predicted camouflage effectiveness
and human detection results. However, discrepancies emerged at close distances, where
YOLO’s performance was particularly sensitive to high-contrast, shape-breaking elements
of the camouflage pattern. CNNs such as YOLO have significant potential for assessing
camouflage effectiveness for a wide range of applications, such as evaluating or optimizing
one’s signature and predicting optimal hiding locations in each environment. Still, further
research is required to fully establish YOLO’s limitations and applicability for this purpose
in real time.

Keywords: camouflage; conspicuity; convolutional neural network; human behavior;
visual search; YOLO

1. Introduction
Camouflage involves the strategic use of materials, colors, or lighting to diminish

the visibility of an object against its immediate surroundings. Employed both in the
natural world and military practices, the primary aim of camouflage is to enhance survival
prospects by lowering the likelihood of detection. Within a military setting, various
camouflage techniques, including nets, paints with low emission, and specific patterns,
are used to merge crucial assets seamlessly with their environment. Understanding the
effectiveness of these camouflage strategies in reducing an object’s visibility and discerning
the conditions under which they are most effective is crucial. This evaluation necessitates a
standard for measuring detectability.

Over time, various methods for assessing the detectability of visual objects have been
established [1–5]. These methods include experiments with human participants as well
as objective, computational (image-based) analyses. Studies involving human observers,
which aim to evaluate the effectiveness of camouflage, usually require visual search and
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detection tasks. However, these behavioral experiments tend to be costly and time-intensive,
necessitating a significant number of participants and repeated trials. Additionally, the
inherent complexity of natural scenes, with their high degree of variability, complicates the
evaluation of camouflage for moving objects, as their visibility can change depending on
their immediate location. Therefore, there is a growing demand for computational models
capable of determining camouflage effectiveness using digital images.

This study investigates the use of a pre-trained convolutional neural network
(YOLOv4-tiny) to evaluate camouflage effectiveness from digital imagery, offering a faster
and less resource-intensive alternative to traditional human visual search experiments.
We find that the detection probability output by YOLO strongly correlates with human
search performance and object identification conspicuity, validating its use as a proxy for
human detection.

In the rest of this section, we first discuss the pros and cons of observer and computa-
tional object visibility metrics. Then we suggest adopting the YOLO predicted certainty
(confidence level) of an object’s identity as a measure of camouflage efficiency. In contrast
to standard camouflage evaluation methods based on human visual search and detection
experiments, which are time-consuming and expensive, a YOLO-based digital camouflage
metric aligned with human perception offers a faster and more cost-effective alternative.
Figure 1 represents the flowchart of the present study.
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1.1. Observer Camouflage Metrics 

Figure 1. Flowchart of the present study. For each experiment, we either generated (Experiments
1 and 2) or recorded stimuli (Experiment 3)—each consisting of a single person (at multiple locations
and sometimes poses) in a camouflage suit against a specific background. Human participants
completed two tasks: a visual search task, yielding search times (i.e., time required to locate the
person), and a visual conspicuity task, measuring identification conspicuity (i.e., the maximum angle
at which the person remains distinguishable from the background). Both metrics are established
indicators of camouflage effectiveness. In parallel, we used YOLOv4-tiny to detect the person in
each scene, extracting confidence levels for classification as a ‘person.’ The study examines whether
YOLO’s confidence scores predict camouflage efficiency as determined by human performance.

The main contribution of this paper is the finding that CNNs like YOLO can be valuable
tools for the automated assessment of camouflage in military and surveillance applications.

1.1. Observer Camouflage Metrics

Considering that camouflage aims to reduce detection likelihood, evaluating human
visual search effectiveness in field experiments under strictly managed setups is typically
seen as the benchmark for assessing camouflage effectiveness. Nonetheless, conducting
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field experiments is expensive, time-intensive, demands significant manpower, and poses
logistical challenges. Additionally, the range of conditions under which camouflage’s
effectiveness can be evaluated is restricted. Therefore, field trials are frequently substituted
with lab-based studies that employ photos and videos from field experiments. These lab
tests allow for complete control over influencing factors. However, there can be significant
discrepancies between human performance in these artificial lab settings and real-world
environments. Such differences might stem from the simulated conditions not accurately
reflecting real-world factors like resolution [6], brightness, color fidelity [7], and dynamic
range, among others, the impact of which remains largely unexplored.

An effective and practical alternative to extensive search and detection studies is
the concept of visual object conspicuity. This approach measures how much an object’s
visual characteristics stand out against its immediate environment, based on differences
in aspects such as size, shape, brightness, color, texture, depth perception, movement,
and the amount of surrounding clutter. An object is more readily spotted if it contrasts
sharply with its background, with detection speed increasing as this contrast becomes more
pronounced [8–10]. Consequently, visual conspicuity is a key factor in determining the out-
come of human visual search tasks. This concept can be defined by the maximum distance
in the visual field at which an object in peripheral vision remains distinguishable from its
surroundings. In other words, if an object is well camouflaged, then one needs to fixate
close to the object to identify it, while an easy-to-distinguish object can be viewed far in the
periphery. We have previously established and tested an efficient psychophysical method
to measure this principle, requiring only a minimal number of participants to achieve sta-
tistical relevance [11]. This approach is quick, works on-site, assumes complete knowledge
of the object and its location, and has proven to effectively predict human visual search
behavior in both simple and complex scenarios [11,12], including for both stationary [12]
and moving objects [13], in laboratory settings [12] and real-world environments [12,14].
Moreover, visual conspicuity can assess the detectability of camouflaged objects across
standard visual, near infrared, and thermal spectra [14–16]. Depending on the specific
criteria applied, it is possible to evaluate the conspicuity either for detection, which relates
to an observer’s subjective judgment of the object’s visual distinction from its background,
or for identification, which involves recognizing specific details at the object’s location.
Since identification conspicuity incorporates elements of cognitive recognition, it offers a
more accurate prediction of average search times compared to detection conspicuity [11].

1.2. Computational Camouflage Metrics

Image-based camouflage effectiveness assessment algorithms compute object saliency
using digital object–background contrast metrics [1,17,18]. These metrics frequently have
little or no relation to human visual perception. Furthermore, to compute overall object
saliency, an object’s position or area should be known in advance. In addition, there is no
unique definition of object saliency (e.g., one can arbitrarily adopt the average or maximum
saliency over the object support area [1]).

Another approach to the image-based assessment of camouflage effectiveness is visual
saliency models [1]. These models typically use human vision models to compute local
contrast maps (local saliency) from multiple multiresolution feature maps. Similar to simple
contrast metrics, the overall object saliency metric is ill-defined, while the object position
and outlines are required for its computation [1].

A promising avenue is presented by artificial neural networks. Even though neural
networks have been designed with engineering goals and not to model brain computations,
they show a large resemblance to the primate visual hierarchy [19]. The fact that these
models can perform many visual tasks up to a level similar to that of humans shows that
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the models do resemble human visual processing to some extent. However, it is also clear
that such models can be deceived in ways humans are unaffected by [20]. Also, models can
pick up coincidental correlations with no general validity [20,21]. The question, therefore,
remains to what extent these models resemble human visual processing (and in what
way they deviate from it), and whether they can be used to model human performance.
Talas et al. [22] have used a generative adversarial network framework to evolve camou-
flage pattern design for tree bark textures with patterns that show improved performance
with an evolution cycle, as validated by humans and the model evaluator, indicating that
their evaluator resembles the human perception of camouflage. Fennell et al. [23] used deep
learning techniques together with genetic algorithms to design and evaluate camouflage
patterns of (virtual) spheres against a more complex (less texture-like) background (plants,
occlusion, etc.) and showed that their algorithm was capable of generating patterns well
suited for the environment and predicting human search performance of the best and
worst pattern types.

Here, we investigate the resemblance of the performance of a pre-trained algo-
rithm (YOLO: You Only Look Once [24]) with the human perception of camouflaged
soldiers/persons. This type of algorithm is widely used (e.g., in video surveillance) and
shown to perform well for detecting persons in urban scenes. It remains to be tested as to
whether it can cope with a more military scenario, i.e., camouflaged persons in both urban
and woodland settings.

1.3. YOLO Camouflage Metric

State-of-the-art neural networks can detect and classify objects in digital imagery and
provide a degree of certainty, or confidence, in their classification. Since this confidence level
reflects an object’s visual distinctness, we propose to adopt it as a measure of camouflage
effectiveness. The benefit of this approach is that it requires no a priori knowledge of the
nature, size, and position of the object of interest.

Today, some of the best object detection results are achieved by models based on
convolutional neural networks (CNNs). YOLO [24] is currently one of the fastest and
most accurate object detection algorithms available. YOLO uses features learned by a deep
convolutional neural network to detect specific objects in videos, live feeds, or images. It
looks at the whole image at test time, so its predictions are informed by the global context
in the image. The YOLO algorithm first divides the image into a grid. For each grid cell, it
predicts a number of object bounding boxes (see the green squares in Figure 2a) with their
associated class probabilities or confidence scores using a single feed-forward convolutional
neural network. The confidence scores represent the degree of similarity of the detected
object to each of the predefined object classes (such as person, train, cat, etc.) and reflect
the accuracy of the model prediction. In this study, we validate the YOLO model for the
assessment of the effectiveness of camouflaged persons by relating its output to human
observer data (identification conspicuity and search performance) obtained in the lab.

In the next sections, we first investigate whether the level of confidence predicted
by YOLO can serve as a measure of camouflage effectiveness. To investigate whether the
predicted certainty (confidence level) of an object’s identity correlates with its degree of
camouflage (i.e., whether it decreases with decreasing visual object distinctness), we apply
YOLO to images of a single person situated in different environments and wearing clothing
that provides different levels of camouflage. Then, we investigate whether the level of con-
fidence predicted by YOLO also predicts human ratings of object identification conspicuity
and human visual search performance. Since identification conspicuity and the level of
confidence predicted by YOLO both increase with the visible amount of characteristic object
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details, we expect that both object distinctness measures will be correlated. A part of this
work was previously published as a conference paper [25].
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Figure 2. Results of experiment 1. (a) Example of the bush/desert background (location: Soester-
duinen) and urban background (location: Amsterdam) conditions. For illustrative purposes, multiple
targets are shown. In the actual experiment, there was always one single target, and YOLO provided
information about the detectability. In both panels, green squares signify that YOLO detected persons
(with a given detection probability). Red arrows indicate the persons that YOLO was unable to detect.
Note that the persons are scaled with distance. (b) Mean detection probability (i.e., the confidence
score generated by YOLO) in the bush/desert environment (left panel) and urban environment (right
panel). (c) Mean detection probability (collapsed over the horizontal plane) as a function of the target
height (image width and height were 1000 and 666 pixels, respectively). The shading signifies the
standard error (due to variation over the horizontal plane). Note that the target height also reflects
the distance since the target’s size is scaled with distance.

In this study, we focus primarily on static images to evaluate camouflage effective-
ness. Previous research has shown that motion significantly undermines the benefits of
camouflage—when an object begins to move, it becomes much more conspicuous, even if
its appearance is otherwise perfectly matched to the background (as in the classic example
of a well-camouflaged tiger revealing itself through movement; see [26–28]). That a moving
object is easy to detect holds true both for human observers and for artificial vision systems.
Given that motion inherently increases detectability (even under ideal camouflage circum-
stances), our current investigation is limited to static scenarios in which camouflage is most
likely to succeed. By isolating this condition, we aim to assess the extent to which YOLO’s
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predicted confidence scores correlate with human assessments of object conspicuity and
visual search performance under optimal camouflage conditions.

2. Experiment 1: YOLO Detection Performance for Camouflaged Persons
Using a photosimulation approach, we examined whether YOLO is able to detect a

person wearing camouflage clothing in two different (bush/desert and urban) environ-
ments and whether the associated confidence levels of the detections can serve as a measure
of camouflage effectiveness. Thereto, an image of a person in camouflage clothing was
digitally inserted at multiple locations in photographs of both environments, and YOLO
determined the probability that a person was present.

2.1. Methods

The background images used in this study were color photographs of a bush/desert
background (Soesterduinen, The Netherlands, see Figure 2a, left panel) and an urban
background (Amsterdam, The Netherlands, see Figure 2a, right panel). The original images
(recorded with a CANON EOS 80D; resolution width × height: 6000 × 4000 pixels) were
resized to a resolution of 1000 × 666 pixels (width × height) to increase the processing
speed. These images were also used in a previous study [29]. The images are available
online: https://osf.io/pjf4y/?view_only=c8dd075101ab469b8abd42562c33df88 (accessed
on 29 April 2025).

Test scenes were generated by inserting the image of a single person (i.e., the target)
wearing a grey camouflage suit at various locations in both the bush/desert and urban
background scenes. Figure 2a shows the image of the person that was used, superimposed
on different locations in the two backgrounds. Each test scene contained a single person at
a location (in x, y coordinates) that was both naturalistic (the person was never presented
in the air, in a tree, or in a river, etc., although no shadows were added to the ground plane)
and systematically manipulated within a certain range. For the bush/desert environment,
the x (horizontal) position varied between 66 and 900 pixels (at intervals of half the person
width), and the y (vertical; position) varied between 275 and 417 pixels (intervals of half the
person height), such that the person was positioned at most locations in the background
image. For the urban environment, x varied between 66 and 900 pixels (at intervals of half
the person width), and y varied between 150 and 417 pixels (at intervals of half the person
height). The size (i.e., height and width) of the person was scaled with distance in the
scene. As a result, only a few persons were presented nearby, while most were presented at
larger distances.

We used the YOLOv4-tiny pre-trained neural network to detect persons (Learn-
ing rate: 0.00261; Momentum: 0.9; Weight decay: 0.0005; Batch size: 64; Max batches:
2000200) [30]. The Python code is available online: https://data-flair.training/blogs/
pedestrian-detection-python-opencv/ (accessed on 29 April 2025). For more detailed
information regarding the hyperparameters used, see the yolov4-tiny.cfg file (originally
from the official Darknet repository: https://github.com/AlexeyAB/darknet (accessed on
29 April 2025)). Note that compared to other YOLO versions, the processing speed of the
YOLOv4-tiny algorithm is very fast (up to 200-2550 FSP, see [31,32]), making it one of the
faster detectors at the moment; therefore, it is ideal for real-time purposes. The detection
was set to classify persons only, and the input images used were small (1000 × 666 pixels)
to speed up the process. The threshold for overlapping predictions was low (0.03) since
we are only interested in a single class (‘person’). Furthermore, the minimum confidence
was set to 0.0001 (to increase the probability that the person was found). The minimum
confidence reflects the threshold for the confidence score returned by the model, above
which a classification (in our case a ‘person’) is considered correct.

https://osf.io/pjf4y/?view_only=c8dd075101ab469b8abd42562c33df88
https://data-flair.training/blogs/pedestrian-detection-python-opencv/
https://data-flair.training/blogs/pedestrian-detection-python-opencv/
https://github.com/AlexeyAB/darknet
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For each person detected by YOLO (i.e., a hit), we determined the detection probability
(i.e., the associated confidence score generated by YOLO, indicating the probability that the
detected object belongs to the class ‘person’). The probability was set to zero if the person
was not detected by YOLO (i.e., a miss). Note that there were no correct rejections since
the person was always present. Neither were there any false alarms, indicating that no
aspects of the environment were classified as persons. Subsequently, for each background
environment separately, we created a detection probability heatmap by summing the YOLO
confidence scores for the persons over the image area covered by their body. Then, finally,
we determined the average detection probability for each pixel in the image.

2.2. Results

The green squares (bounding boxes) in Figure 2a represent persons found by YOLO. It
is clear from the few random examples shown in Figure 2a that YOLO succeeds in finding
most persons in both scenes. Only a few were not found (as illustrated by red arrows in
Figure 2a). In general, YOLO is able to detect the persons, at least when they are presented
nearby, and the detection probability (i.e., the confidence score) decreases with increasing
distance (since the person scales with distance, resulting in a decreasing amount of detail).

The detection probability heatmaps are illustrated in Figure 2b for the bush/desert
and the urban environment (left and right panels, respectively). Figure 2c illustrates
the mean detection probability (collapsed over the horizontal plane) as a function of the
person height (i.e., distance of the person, since the person size is scaled with distance).
It is clear from this illustration that the detection probability decreases with increasing
distance (i.e., with decreasing object resolution or distinctness). YOLO did an excellent
job in detecting the persons, even though they were rather tiny (see the green squares
in Figure 2a). More specifically, a probability of 80% corresponds to an object size of
about ~60 and ~40 pixels in the bush/desert and the urban environment, respectively (see
Figure 2c). Therefore, in Experiment 1, we conclude that the person’s camouflage suit was
slightly better camouflaged in the urban environment than in the bush environment. This
is probably due to the higher homogeneity of the bush background or the color pattern of
the camouflage suit, which was visually closer to the colors in the urban environment than
the colors in the bush/desert environment.

3. Experiment 2: YOLO vs. Human Camouflaged Person Detection
on Photosimulations

It is known from the literature that a visual object captures attention when a specific
feature, such as its color, shape, or orientation, deviates from its immediate background [33].
Similar results were reported in a military context, indicating that camouflage efficiency
is best if a camouflage suit shares properties (such as colors and orientations) with its
local background [29,34].

In Experiment 2a, we examine whether YOLO is able to distinguish between good-
and bad-performing camouflage patterns based on a comparison of their spatio-chromatic
features with those of their local surroundings. Therefore, we manipulated both the pattern
and the colors of the camouflage suit and presented the person in either an urban or
bush/desert environment (like Experiment 1). The pattern was either an average color
or consisted of a 1/f fractal pattern (see Figure 3). The colors used for the camouflage
suits were either drawn from the bush/desert environment or from the urban environment.
Therefore, we specified a region of interest (ROI) from which the colors were drawn for
each environment separately (see Figure 3a). Throughout the experiment, we kept the
person’s pose fixed to prevent it from influencing YOLO’s performance. Moreover, we
included another condition by adding shading to the person’s camouflage suit since it
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is known that shading can affect YOLO’s performance (for example, for the detection
of fruit; see [35,36]). We manipulated the shade presence to examine whether shades
influence YOLO’s performance, as they make it feasible to distinguish human body parts.
Figure 3 illustrates the eight camouflage suits used in Experiment 2 (2 ROI’s × 2 camouflage
patterns × shade presence). We expect that YOLO has more difficulty in detecting the
person when the camouflage suit consists of colors selected from the same background
(e.g., a bush/desert camouflage suit in a bush/desert environment) than when it consists
of colors selected from a different background (e.g., a bush/desert camouflage suit in an
urban environment). Moreover, we expect that YOLO finds it more difficult to detect a
person wearing a 1/f fractal pattern than one wearing an average-colored uniform, given
that natural images also consist of similar 1/f structures [37–42]. Furthermore, we expect
that it is easier for YOLO to detect a person with shading than without shading, as the
former is more realistic (and YOLO is trained to identify realistic persons). Finally, we
expect the detection rate to decrease with distance and that the effect of shading ceases to
exist with distance (as the articulation of details decreases with distance).
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In Experiment 2b, we examine whether the detection probability provided by YOLO in
Experiment 2a generalizes to human observers using a visual search and an object identifica-
tion conspicuity paradigm. Thereto, we randomly selected a set of 64 images that were also
used in Experiment 2a. Each image was shown four times (randomly mirrored) to obtain
a better estimate of camouflage performance for each image, and participants performed
two tasks. First, an image appeared on the screen, and participants were instructed to press
the spacebar as soon as they found the person in the scene (i.e., search task). Subsequently,
a mask replaced the image, and participants were asked to indicate the location of the
person in the scene using their mouse to verify whether the participant correctly detected
the person. Second, we measured the object identification conspicuity [11]. Thereto, the
image reappeared on the screen, and participants were asked to fixate on a location on
either the left or right in the scene, far away from the person’s location so that they were no
longer able to resolve (identify) the person. Next, participants slowly fixated on locations
in the scene that were progressively closer to the person until they were able to identify
the object in their peripheral vision as a ‘person’. Finally, participants used the mouse
to indicate this location. The identification conspicuity reflects the distance between the
indicated location and the object’s location (i.e., the eccentricity). If the detection probability
derived by YOLO is a realistic measure for detecting persons, then we expect that the
detection probability increases with increasing identification conspicuity (i.e., a positive
correlation). Moreover, we expect that the detection probability increases with decreasing
search times (i.e., a negative correlation) and that the search time increases with decreasing
object conspicuity (i.e., a negative correlation).

3.1. Methods Experiment 2a

The method was identical to the previous experiment, except for the following changes.
In the present experiment, we used the images of the same person but manipulated the
pattern on his camouflage suit. Therefore, we first defined an ROI (the area in which persons
could reasonably be expected to appear in the scene) for each background environment
(see Figure 3a). Based on the ROI of the background (bush/desert or urban environment),
a fractal (1/f) camouflage pattern was created with colors (statistically) matching the
background, given that fractal structures are known to match the statistics of natural
images [41]. The pattern was created as follows [43]: First, a 1/f pattern (pink-noise)
pattern in RGB was created. Then, a texture is created for each of the layers of a multiband
image (R, G, B) using a random sample of this pink noise pattern. Finally, the color
distribution of the background sample (ROI) was applied to the texture using 3D histogram
equalization [44]. A second camouflage pattern that was used was the average color over
the ROI. Furthermore, we added shading to the camouflage suit to make the persons more
realistic. Thereto, half of the camouflage suits included shading (see Figure 3c), whereas
the other half of the camouflage suits were without shading (Figure 3b).

3.2. Methods Experiment 2b
3.2.1. Participants

Six participants (2 females, 4 males, mean age 31 years, ranging from 23 to 48 years)
participated in both Experiment 2b and Experiment 3b. Two participants were the authors
(PP, EVDB), while the others participated voluntarily and were naïve as to the purpose of
the experiment. None of the participants had a military background. All participants had
normal or corrected vision. None of them reported color deficiencies. The experimental
protocol was reviewed and approved by the TNO Internal Review Board (TNO, The
Netherlands: reference 2019-024), and it was in agreement with the Helsinki Declaration of
1975, as revised in 2013 [45].
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3.2.2. Stimuli and Apparatus

The experiment was programmed and run in Python using the Psychopy module [46,47].
For the validation of Experiment 2a, we selected 64 different images from Experiment 2a
(only persons with shading added). More specifically, for each background condition
(bush/desert and urban), we randomly selected eight different object locations. For each
object location, we manipulated the ROI (bush/desert and urban) and pattern (average
and 1/f) of the camouflage suit (see Section 3.1). It is important to note that we fixed the
object location within each background condition since this makes it feasible to compare
the behavioral performance across the different camouflage suits (i.e., ROI and pattern
combination). The images (1000 × 562 pixels; visual angle: 54.7◦ × 30.7◦) were shown
four times, either presented normally or mirrored horizontally. The images were presented
four times to obtain a better estimate of camouflage performance for each image shown.
Participants were seated approximately 100 cm from a 4k Samsung Monitor (UE65MU6100;
size: 140 × 80 cm; resolution: 1280 × 720 pixels; Refresh: 60 Hz) and used a standard
mouse and QWERTY keyboard to make responses.

3.2.3. Design and Procedure

A trial started with the presentation of a white fixation cross on a grey background
for a duration of 800 ms. Subsequently, one of the 64 images was shown, and participants
were instructed to press the spacebar as quickly as possible when they found the target
object (the person). The time between the image onset and the response reflects the search
time. A white noise mask replaced the image as soon as the participants pressed the
space bar, and participants were instructed to indicate the person’s location using the
mouse. Then, the identification conspicuity for the person was measured. Participants
used the mouse to indicate the maximum distance from the detected object to identify it
as being indeed a person (on either the left or right side of the person). The next trial was
initiated when participants made the unspeeded mouse response. Participants performed
256 experimental trials (64 images × 4 repetitions) divided over four blocks. Participants
were allowed to take a break between each block and received verbal instructions prior to
the experiment. Participants were already familiar with the task since they first performed
Experiment 3b, followed by Experiment 2b.

3.3. Results

Figures 4 and 5 illustrate the results of Experiment 2a for the bush/desert and urban
background environment, respectively. Here, the detection probability heatmap is shown
for each of the eight camouflage suits used.

Figure 6a,b illustrate the detection probability as a function of object height (i.e., dis-
tance) for each camouflage suit used in the bush/desert and urban environment (collapsed
over the horizontal plane), respectively. Even though for each panel the camouflage suit
was always the same, the error bars represent a variance of detection probability over the
horizontal plane. This variance is most likely a result of the heterogeneity of the environ-
ments. Indeed, the object–background similarity varied over the locations, making the same
person highly visible at certain locations and invisible at other locations. This is consistent
with the human visual search literature, showing that it is more difficult to find an object
that is similar to its background than one that is dissimilar to its background. Furthermore,
it is clear from these figures that, in general, the proportion of detected objects decreased
with distance. This is in line with the results of our previous behavioral study using the
same background images [29]. However, the 1/f camouflage suit with bush/desert colors
revealed a somewhat different pattern of results for both backgrounds used. It is clear here
that the detection probability did not decrease with distance but instead increased with
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distance for the urban background and was rather low for the bush/desert environment
in general. A feasible explanation for these deviating results is that the 1/f camouflage
suit was generated as a whole, without taking important properties of a human being (like
having arms, legs, etc.) into account. As a result, YOLO did not classify a large person as a
‘person’. It is interesting to see that for more distant persons, the performance of the 1/f
pattern was rather similar to that of the average uniform. Furthermore, it is also interesting
that the detection probability increased when shading was added to the camouflage suits
(compare the red lines with the black lines in each panel). This makes perfect sense, as
adding shading results in more realistic ‘persons’ by emphasizing the shape characteristics
of a human being. That the effect of shading disappeared over distance also makes perfect
sense, as environmental details (such as a trunk of a tree or a person’s hand) that are clearly
visible when observed nearby can no longer be resolved at larger distances.
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Figure 4. Detection probability heatmaps in the bush/desert background. (a) Mean detection
probability (i.e., the confidence score generated by YOLO) when the person was wearing a uniform
in an average color derived from a bush/desert ROI. The panels on the left indicate the detection
probability when no shading was added, whereas shading was added for the right panels. (b) Mean
detection probability when the person was wearing a 1/f fractal camouflage pattern derived from a
bush/desert ROI. (c,d) Same as panels (a,b) but for an urban ROI.
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Figure 5. Detection probability heatmaps in the urban background. (a) Mean detection probability
(i.e., the confidence score generated by YOLO) when the person was wearing a uniform in an average
color derived from a bush/desert ROI. The panels on the left indicate the detection probability
when no shading was added, whereas shading was added for the right panels. (b) Mean detection
probability when the person was wearing a 1/f fractal camouflage pattern using a bush/desert ROI.
(c,d) Same as panels (a,b) but for an urban ROI.

The persons were located at naturalistic locations for both background environments
(so that they were not presented in the air, tree, etc.). Due to this restriction, the persons were
smaller for the bush/desert background (ranging between 14.82 and 201.28 pixels) than for
the urban background (ranging between 24.37 and 214.20 pixels). Figure 6c,d illustrate the
overall mean detection probability for each camouflage suit for both backgrounds. However,
unlike the data presented in Figure 6a,b, we collapsed the results over all locations with
the constraint that the height of the person was between 24.37 and 201.28 pixels for both
background environments, thus enabling a comparison of the camouflage suits across the
two different background conditions.
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Figure 6. (a,b) Mean detection probability (i.e., the confidence score generated by YOLO) as a function
of object height (i.e., target distance) for each camouflage suit used in the bush desert and urban
environment (collapsed over the horizontal plane), respectively. Error bars represent the standard
deviation. (c) Overall mean detection probability for each camouflage suit used for bush/desert (left
panel) and (d) for the urban backgrounds (right panel). Unlike the data in panels (a,b), we collapsed
the results over all locations with the constraint that the height of the person was between 24.37 and
201.28 pixels for both background environments (making it feasible to compare the suits across the
two different background conditions).

In general, the camouflage efficiency was better (i.e., lower detection probability) for
the 1/f pattern (0.55) compared to the average-colored suit (0.85). Interestingly, when
focusing on the average-colored suit in the bush/desert background, the camouflage
efficiency was better when the colors were drawn from the bush/desert environment (0.46)
than from the urban environment (0.88). The opposite effect was observed for the urban
background, but only for the average-colored suit. That is, the camouflage efficiency was
worse when the colors were drawn from the bush/desert environment (0.93) than from the
urban environment (0.84). This opposing effect was not observed for the 1/f fractal pattern,
which is most likely due to the deviating results for the 1/f pattern with colors drawn from
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the bush/desert environment (which is expected to be due to the high contrast pattern
breaking the human form rather than to the colors). As expected, the detection probability
was lower when the camouflage suit’s color matched the environment (0.63; e.g., urban ROI
in an urban environment) than when it did not match the environment (0.77; e.g., urban
ROI in a bush/desert environment). This was the case for all four camouflage suits used.
This is consistent with the literature—it is easier to find an object when the color is dissimilar
to the background than when it is similar to the background [33].

Figure 7 illustrates the results from the behavioral tasks in Experiment 2b. Here,
Figure 7a depicts the number of responses as a function of the localization error. Trials were
excluded from further analyses if the participants were not able to localize the person accu-
rately (i.e., the localization error was >150 pixels) or when the search time was greater than
10 s. As a result, four trials were excluded where participants were not able to localize the
person correctly (0.3%), and one trial was excluded because of the long search time (0.07%).

Appl. Sci. 2025, 15, x FOR PEER REVIEW 14 of 27 
 

panel) and (d) for the urban backgrounds (right panel). Unlike the data in panels (a,b), we collapsed 
the results over all locations with the constraint that the height of the person was between 24.37 and 
201.28 pixels for both background environments (making it feasible to compare the suits across the 
two different background conditions). 

Figure 7 illustrates the results from the behavioral tasks in Experiment 2b. Here, Fig-
ure 7a depicts the number of responses as a function of the localization error. Trials were 
excluded from further analyses if the participants were not able to localize the person ac-
curately (i.e., the localization error was >150 pixels) or when the search time was greater 
than 10 s. As a result, four trials were excluded where participants were not able to localize 
the person correctly (0.3%), and one trial was excluded because of the long search time 
(0.07%). 

Figure 7b illustrates the search performance as a function of detection probability for 
each image used in Experiment 3b. There was a significant negative correlation between 
the search time (human performance) and detection probability (YOLO performance), 
Spearman r = −0.65, p < 0.001, indicating that the search time increased with decreasing 
detection probability. Note that here and elsewhere in the manuscript, alpha was set to 
0.05. Figure 7c illustrates the identification conspicuity as a function of the detection prob-
ability for each frame tested. As is clear from this figure, identification conspicuity corre-
lated positively with the detection probability, Spearman r = 0.76, p < 0.001, indicating that 
YOLO predicted the conspicuity performance quite well. The search performance also 
correlates with the identification conspicuity performance, Spearman r = −0.84, p < 0.001 
(see Figure 7d), indicating that search times increased with decreasing object identification 
conspicuity. What is interesting is that these three correlations were significant for each 
participant (see Table 1). 

 
Figure 7. Results of Experiment 2b. (a) Number of responses as a function of the localization error.
Trials were excluded from further analyses if the participants were not able to localize the person
accurately (i.e., localization error > 150 pixels; see the red dotted line). (b) Mean search time as
a function of the mean detection probability for stimulus. (c) Mean identification conspicuity (in
degrees visual angle: dva) as a function of the mean detection probability for stimulus. (d) Mean
identification conspicuity as a function of the mean search time for stimulus. Note that each datapoint
reflects an image used in the experiment.

Figure 7b illustrates the search performance as a function of detection probability for
each image used in Experiment 3b. There was a significant negative correlation between
the search time (human performance) and detection probability (YOLO performance),
Spearman r = −0.65, p < 0.001, indicating that the search time increased with decreasing
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detection probability. Note that here and elsewhere in the manuscript, alpha was set to 0.05.
Figure 7c illustrates the identification conspicuity as a function of the detection probability
for each frame tested. As is clear from this figure, identification conspicuity correlated
positively with the detection probability, Spearman r = 0.76, p < 0.001, indicating that
YOLO predicted the conspicuity performance quite well. The search performance also
correlates with the identification conspicuity performance, Spearman r = −0.84, p < 0.001
(see Figure 7d), indicating that search times increased with decreasing object identification
conspicuity. What is interesting is that these three correlations were significant for each
participant (see Table 1).

Table 1. Spearman correlations between the detection probability (i.e., performance YOLO), search
performance, and identification conspicuity performance for each participant and the group mean.
p-values were not Bonferroni-corrected.

p(Detection) × Search p(Detection) × Conspicuity Search × Conspicuity

Subject Spearman r p Spearman r p Spearman r p

1 −0.61 <0.01 0.75 <0.001 −0.77 <0.001
2 −0.55 <0.001 0.77 <0.001 −0.75 <0.001
3 −0.56 <0.001 0.75 <0.001 −0.80 <0.001
4 −0.59 <0.001 0.72 <0.001 −0.73 <0.001
5 −0.47 <0.001 0.67 <0.001 −0.48 <0.001
6 −0.67 <0.001 0.72 <0.001 −0.84 <0.001

mean −0.65 <0.001 0.76 <0.001 −0.84 <0.001

Figure 8 illustrates the mean search time and mean object identification conspicuity as
a function of ROI (bush/desert versus urban) and pattern (average versus 1/f) for each
background condition. Although our overall aim was not to examine which camouflage
suit performed better according to the behavioral measure, for each background condition
separately, we conducted a post hoc repeated measures ANOVA on the mean search time
and mean object identification conspicuity, with ROI (bush/desert versus urban) and
pattern (average versus 1/f) as within subject variables.

For the bush/desert background environment (Figure 8, left panels), the ANOVA on
the identification conspicuity yielded a significant ROI effect, F(1, 5) = 7.877, p = 0.038, as
the mean conspicuity was smaller when the camouflage suit contained colors from the
bush/desert background (5.3 dva) than from the urban background (6.4 dva). The mean
conspicuity was smaller when the camouflage pattern was 1/f (5.4 dva) than when it was
the average color (6.3 dva), as revealed by a significant pattern effect, F(1, 5) = 71.376,
p < 0.001. The two-way interaction failed to reach significance: F(1, 5) = 5.014, p = 0.075.
The ANOVA on the mean search time yielded a significant ROI effect, F(1, 5) = 50.369,
p < 0.001, as the search times were significantly larger when the suit’s color matched the
background color (ROI: bush/desert, 883 ms) than when it did not match the background
color (ROI: urban, 671 ms). The main effect of pattern and the two-way interaction failed to
reach significance: F-values ≤ 3.490, p-values ≥ 0.12.

For the urban background environment (Figure 8, right panels), the ANOVA on the
identification conspicuity yielded a significant ROI effect, F(1, 5) = 11.375, p = 0.020, as
the mean conspicuity was larger when the camouflage suit contained colors taken from
the bush/desert background (7.6 dva) than from the urban background (6.5 dva). There
was a trend towards a significant pattern effect, F(1, 5) = 6.192, p < 0.055, as the mean
conspicuity was smaller when the camouflage pattern was 1/f (6.8 dva) than when the
uniform had an average color (7.3 dva). The two-way interaction failed to reach significance:
F(1, 5) = 0.609, p = 0.471. The ANOVA on the mean search time yielded a significant ROI
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effect, F(1, 5) = 10.030, p < 0.025, as the search times were significantly larger when the suit’s
color matched the background color (ROI: urban, 935 ms) than when it did not match the
background color (ROI: bush/desert, 860 ms). The main effect of pattern and the two-way
interaction failed to reach significance: F-values ≤ 0.117, p-values ≥ 0.746.
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Figure 8. (a) Bush/desert (left) and urban (right) backgrounds. (b) Detection probability (according
to YOLO) for each background condition. (c) Human performance. Mean search time and mean
object identification conspicuity as a function of ROI (bush/desert versus urban) and pattern (average
versus 1/f) for each background condition. Error bars represent the standard error of the mean.
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The results are clear. As expected from the literature, camouflage efficiency was better
when the color of the camouflage suit matched the colors of the background than when it
did not [29,43]. This was revealed by both the mean search times as well as the mean object
identification conspicuity. Furthermore, the identification conspicuity was smaller for the
1/f pattern than for the average color pattern. However, this effect was only significant
for the object identification conspicuity measure but failed to reach significance for the
search time, probably due to the low number of observations in this study (given the large
inherent variation that is typical for search times, reliable estimates of mean search time
require many observers and a large number of repetitions [48]).

To summarize, the results of Experiment 2 show that YOLO predicted the human
detection of a camouflaged person quite well, with detection probability correlating neg-
atively with mean search time and positively with mean identification conspicuity. An
exception is the high 1/f (bush) pattern that was found to be difficult to detect by YOLO in
both environments, whereas human camouflage effectiveness was found to be higher for
the patterns matched to the urban environment when measured in that environment.

4. Experiment 3: YOLO vs. Human Camouflaged Person Detection on
Naturalistic Images

In the photosimulation experiments described in the previous sections, scenes contain-
ing a camouflaged soldier were created by embedding a soldier into the scene. Under these
conditions, we showed that YOLO is able to detect persons wearing camouflage clothing
and that its detection performance correlates with human detection performance. Although
the results are convincing, it is not clear to what extent this result holds for settings with
naturalistic lighting (shadows) and contrast. Here, we test whether YOLO is capable of
detecting persons wearing a camouflage suit and a helmet in a natural environment. To
investigate this issue, we performed two more experiments.

First, in Experiment 3a, we examine whether YOLO is able to detect persons wearing
camouflage clothing in naturalistic conditions. Therefore, we recorded a movie of a person
walking through the forest while wearing a standard Netherlands woodland camouflage
suit and a helmet. We expect that YOLO can also detect persons wearing camouflage
clothing in naturalistic conditions with a given probability.

Next, in Experiment 3b, we examine whether the detection probability provided by
YOLO for persons wearing camouflage clothing in naturalistic conditions correlates with
human performance. Thereto, we selected 14 different samples from the movie shown
in Experiment 3a and replicated the tasks from Experiment 2b (i.e., a visual search task
followed by an object conspicuity task). If YOLO detects the person in the naturalistic
environment, then we expect to replicate the results from Experiment 2b.

4.1. Methods Experiment 3a

The movie was recorded in Soesterberg, The Netherlands (9 August 2022). The person
was wearing a Netherlands woodland camouflage suit and a green helmet. The short movie
(950 samples; 59 s) was resized (1000 × 562 pixels), and YOLO predicted the camouflage
efficiency for each sample (as determined by the detection probability).

4.2. Methods Experiment 3b

The experiment was identical to Experiment 2b, except for the following changes:
We selected 14 different samples from the movie shown in Experiment 3a. The samples
were randomly selected such that the detection probability varied from trial to trial (de-
tection probability for the 14 different samples ranged from 0.26 to 0.97). Each sample
was presented four times to obtain a better estimate of camouflage performance for each
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sample, leading to a total of 54 experimental trials (14 movie samples × 4 repetitions).
Participants received verbal instructions prior to the experiment and practiced 6 trials to
get familiar with both tasks. Figure 9 illustrates a couple of samples from the movie for
illustrative purposes.
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Figure 9. Five random samples from the movie. The yellow line identifies the sample in the movie
(with corresponding detection probability). If YOLO detected the person, the green square signifies
its location with a given probability as shown in the graph. The graph illustrates the detection
probability for each movie frame. Note that the pose of the person varied during the movie and that
sometimes a part of the body was not visible.

4.3. Results

The results of Experiment 3a are illustrated in Figure 9. Here, five random samples
from the movie are shown (the person is always present). If YOLO detected the person, the
green square signifies its location with a given detection probability as shown in the graph.
The graph illustrates the detection probability for each movie frame. The movie can be
downloaded online from https://osf.io/vpcer/files/osfstorage/62fd376b7b16410c0c12f3b1
(accessed on 29 April 2025).

https://osf.io/vpcer/files/osfstorage/62fd376b7b16410c0c12f3b1
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Figure 9 illustrates that YOLO did a good job of finding the person. Even though
motion detection is not incorporated (i.e., our version of YOLO considers each image
as a static individual image), the person was detected in the vast majority of samples.
Interestingly, poses such as kneeling down and (partly) hiding behind a tree affected
performance significantly.

Figure 10 illustrates the results from Experiment 3b. Figure 10a illustrates the number
of responses as a function of the localization error. Trials were excluded from further analy-
ses if the participants were not able to localize the person accurately (i.e., the localization
error was >150 pixels) and responded too slowly (RTs > 10 s). As a result, we excluded 0.6%
of the trials (only localization errors).
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Figure 10. Results of Experiment 3b. (a) Number of responses as a function of the localization error.
Trials were excluded from further analyses if the participants were not able to localize the person
accurately (i.e., localization error > 150 pixels; see the red dotted line). (b) Mean search time as a
function of the detection probability for each stimulus. (c) Mean identification conspicuity (in degrees
visual angle: dva) as a function of the detection probability for each stimulus. (d) Mean identification
conspicuity as a function of the mean search time for each stimulus. Note that each datapoint reflects
an image used in the experiment.

Figure 10b illustrates the search performance as a function of detection probability
for each frame used in Experiment 3b. The negative correlation between the search time
(human performance) and detection probability (YOLO performance) was not significant:
Spearman r = −0.30, p = 0.296. Figure 10c illustrates the identification conspicuity as a
function of the detection probability for each frame tested. As is clear from this figure, like
in Experiment 2b, the identification conspicuity performance correlated positively with
the detection probability, Spearman r = 0.58, p < 0.05, indicating that YOLO predicted the
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conspicuity performance quite well. Table 2 illustrates the correlations for each participant
separately. Interestingly, even though we had only a few trials for each participant, the
identification conspicuity correlated positively with the detection probability for four
out of six participants. The search performance did not correlate with the identification
conspicuity performance: Spearman r = −0.05, p = 0.880 (see Figure 10d). This is most
likely due to the low number of search trials in this study [48].

Table 2. Spearman correlations between the detection probability (i.e., YOLO performance), search
performance, and the identification conspicuity performance for each participant separately. p-values
were not Bonferroni-corrected.

Search × p(Detection) Conspicuity × p(Detection) Conspicuity × Search

Subject Spearman r p Spearman r p Spearman r p

1 −0.11 0.70 0.71 <0.01 −0.20 0.49
2 −0.10 0.73 0.48 0.08 −0.42 0.13
3 −0.42 0.13 0.55 <0.05 0.09 0.75
4 −0.24 0.42 0.66 <0.01 −0.02 0.95
5 −0.24 0.42 0.10 0.74 0.16 0.59
6 −0.17 0.56 0.55 <0.05 −0.20 0.50

mean −0.30 0.30 0.58 <0.05 −0.05 0.88

To summarize, the results of Experiment 3 are in line with those from Experi-
ment 2, indicating that the detection probability correlated positively with mean iden-
tification conspicuity.

5. Discussion
In general, YOLO was able to detect the persons both in photosimulations (Exper-

iments 1 and 2) and in naturalistic stimuli (Experiment 3). The present study is not the
first study illustrating that convolutional neural networks (YOLO) are capable of detecting
camouflaged target objects in different environments [49–51]. Whereas the vast major-
ity focused primarily on the detection algorithm performance, in the present study, we
investigated whether YOLO is capable of assessing camouflage efficiency by comparing
its performance with human observer data. Here, we found evidence that camouflage
efficiency (as determined by YOLO’s confidence rating: detection probability) correlated
with human performance. More specifically, camouflage efficiency correlated positively
with the object identification conspicuity and negatively with mean search time. However,
the latter correlation was only significant for the photosimulation experiments (Experiment
2b) but failed to reach significance for the naturalistic setting (Experiment 3b). The absence
of a significant correlation in the naturalistic setting may be attributed to the combina-
tion of a low number of trials (i.e., four) per image and, probably more important, the
person being always highly salient. Indeed, the person was always easy to find, with
mean search times between 500 and 750 ms, indicating that the person did pop out from
their environment on every trial (regardless of their location) [8,9,52,53]. In contrast, in
the photosimulation experiment, the mean search time across the different images varied
between 500 and 2000 ms, indicating that the search was more difficult for at least some
of the images shown. As a result, fewer trials are required to find significant differences
across the different images used for the photosimulation than in the naturalistic setting.
However, in the visual search literature, a frequently used rule of thumb is that at least
20 trials are required to estimate search performance for a particular condition in a lab
setting [54,55] and at least 60 trials in a more applied setting [48]. Nevertheless, the strong
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positive correlation between the object conspicuity measure and YOLO’s performance is a
good indicator that YOLO is suitable for estimating camouflage efficiency.

It is interesting that the detection of persons by YOLO was influenced by whether
we superimposed shading on the person or not. It was easier to detect a person with
shading than without. This suggests that not only is the outline or silhouette of the person
an important factor, but also the articulation of other body parts, such as arms, which
became visible when adding shading (see Figure 3). From the perception literature, it is
well known that humans are particularly sensitive to the typical configuration of body parts.
For instance, studies using point-light displays have shown that observers can reliably
detect human figures based solely on the motion of a few key points (most of the time
joints), even in cluttered scenes (see, e.g., [56]). This implies that the brain uses information
about body part location and movement to detect people. Even without motion cues, the
human visual system can detect objects (including people) based on small, diagnostic image
fragments—even without seeing the whole object [57]. As expected, detection by YOLO
(and humans) decreases with decreasing target size. This can be viewed as a decrease in
the signal-to-noise in the system [58], in which the evidence (features) for the presence of
the target diminishes with size, with the evidence especially presented by the combination
of features and less by the low-level features themselves (that may occasionally resemble
elements in the background). The effect of shading disappeared with distance as well. That
the effect of shading disappeared with distance makes perfect sense, as for the human eye,
details such as the trunk of a tree, the arms of a person, or the letters on billboards typically
can no longer be resolved at larger distances. Although the distance effect was rather
consistent and present for the vast majority of conditions, it was interesting to observe
that YOLO had more difficulties in finding a person wearing a 1/f fractal camouflage suit
derived from the bush ROI when the person was nearby than when he was further away. A
feasible explanation for this counterintuitive finding is that the textual structures (pattern
elements) of the camouflage suit gave the percept that some diagnostic body parts, such as
an arm, were missing when the person was nearby but not when he was far away. This
occurred even in the condition where we superimposed a shading on the person. A feasible
explanation is that the shading had little effect when using a 1/f fractal pattern with colors
derived from the bush/desert ROI and not from the urban ROI. In the former condition,
the shading effect was minimized due to the dark textures in the camouflage suit (see
the shading for both 1/f fractal patterns in Figure 3c). That YOLO has difficulties with
detecting persons nearby is intriguing, as this suggests that the whole or at least a large
part of the body needs to be clearly visible to detect the person. Simply camouflaging a part
of the body (by using a high-contrast pattern like in the present study) seems to be enough
to trick YOLO but not the human observer (who is capable of detecting persons based on
smaller parts of a body). To enable the evaluation of camouflage in a realistic setting, it
would be good to realistically model shading and the different parts of the camouflage
suit such that the arms (and other body parts) become more articulated (and thus easier to
detect for YOLO).

The present study also replicates earlier findings. For instance, the camouflage effi-
ciency significantly improved when the colors of the camouflage suit (e.g., bush/desert)
consisted of colors taken from its immediate background (bush/desert environment) than
when it consisted of colors taken from another background urban environment. This color
effect was observed for both human behavior and for YOLO’s behavior. Furthermore, again,
human performance and YOLO’s performance both indicated that the 1/f fractal pattern is
a more efficient camouflage pattern compared to a uniform average color. Interestingly, as
is clear from the detection probability heatmaps, even though the camouflage suit and the
person’s pose were kept constant for each condition, the camouflage efficiency not only
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depended on the distance but also on where the person was presented on the horizontal
plane. This variance not only illustrates that the camouflage efficiency for a particular
camouflage suit depends on the local contrast with its immediate environment, but it also
illustrates the value of using YOLO as a tool to measure camouflage efficiency. Indeed,
estimating camouflage efficiency for each location using behavioral experiments is simply
too time-consuming, if not practically impossible.

To summarize, the finding that YOLO’s confidence score associated with the detection
of a camouflaged object correlates with human detection performance suggests that it may
be developed into a valid measure of camouflage effectiveness.

5.1. Limitations

In this study, we compared the performance of both humans and the pretrained
YOLOv4-tiny model for the detection of camouflaged persons. Since YOLOv4 was intro-
duced, several newer versions have appeared that either prioritize balancing the tradeoff
between speed and accuracy rather than focusing on accuracy [59,60], improve the ac-
curacy of person detection in conditions with occlusion [49,61–68] or camouflage [51,69],
or enhance the detection of camouflaged objects in general [70]. In contrast, the study
reported here was performed to investigate whether YOLO can predict human detection
performance for camouflaged targets. If so, it can be used to evaluate the effectiveness
of measures and materials designed to hinder the human visual detection of objects and
persons. Given its relatively high accuracy, YOLOv4 still appears to be a valid tool for this
purpose [64,71]. Hence, it was not the aim of this study to compare the performance of
YOLOv4 with other existing (camouflaged) person detection algorithms (that may well out-
perform human performance). Future research should investigate to what extent different
types of convolutional neural networks can predict human detection performance.

In its present form, YOLO’s classification performance appeared especially sensitive to
high-contrast, human shape-breaking camouflage (e.g., the 1/f fractal bush/desert camou-
flage pattern at short distances). The camouflage effectiveness of this pattern (when viewed
close by) was overrated when compared to human camouflage measures (e.g., compared to
that of the urban patterns in the urban environment). This shows that YOLO (in this form)
deviates from human perception in some cases. Similarly, the squatting soldier in the movie
was not detected by YOLO. These limitations of YOLOv4-tiny (e.g., sensitivity to body
part articulation pose and high-contrast elements) suggest incorporating motion-based
detection and custom training based on human data.

Other cases have also been found in which CNNs are shown to deviate from human
perception, e.g., CNNs can be fooled by adversarial patches to which humans are not
susceptible [20,72,73]. This shows that it remains important to be aware of the differences
between these algorithms and human perception, and these differences should be canceled
as much as possible (e.g., by training a CNN not solely on detecting the whole body
but also on parts of a human body) in order not to draw the wrong conclusions. An
ablation study (in which components of the AI network are systematically removed [74])
may be performed to gain insight into the way the network processes the image and the
elements it attends to. Another way to get insight into the attended elements is by using
deconvolution [75,76]. Such studies may reveal the ways in which the network algorithm
deviates from human perception. A complication is that good camouflage should protect
against different algorithms as well as humans [77], and what is optimally deceiving for
one algorithm may not work for another algorithm [72]. However, more effort might be put
towards deceiving those algorithms that may present an actual threat in military context,
i.e., those that are more easily accessible and implementable (such as YOLOv4-tiny).
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In this study, we did not investigate the effects of environmental factors such as fog,
rain, or low lighting on camouflage effectiveness. Each of these factors can significantly alter
both the appearance of camouflage and the performance of object detection systems. Future
work should, therefore, also study the impact of degraded image quality under inclement
weather conditions. In some cases, camouflage that is otherwise ineffective—such as white
clothing in a desert or urban setting—may become more effective under specific weather
conditions (e.g., snowy or foggy environments). Promising solutions to address visibility
issues in degraded imagery are, for instance, image dehazing methods. Applying real-
time enhancement methods could not only improve detection performance but could also
support the on-the-fly assessment of camouflage effectiveness. Such real-time feedback
could inform users in the field about how well they are visually blending with their
surroundings and could guide dynamic adjustments in adaptive camouflage systems.

5.2. Future Directions

In this exploratory study, we used only two background scenes and the image of
a person as the target object, always with the same pose and viewed from the front in
Experiments 1 and 2, and multiple poses (e.g., kneeling or a part of the body) in a naturalist
environment in Experiment 3. Future studies should investigate whether YOLO can be
applied to assess camouflage performance across a wider range of different backgrounds
(such as arctic, and different weather conditions), target objects (different poses, camouflage
patterns), viewpoints (from the front, observed from above), and combinations thereof.

In this study, we applied YOLOv4-tiny to detect persons in the individual frames from
a video sequence. It would be interesting to replicate the present study using a version of
YOLO that incorporates motion detection. Motion is a special case in the visual search liter-
ature, as a minimal motion change is known to capture attention immediately [10,78–80].
In the military context, it is also known that motion breaks camouflage [26], even if a person
wears an optimal camouflage suit [29].

Although we show that YOLOv4-tiny can assess the camouflage efficiency of static
images, in the future, it would be an excellent idea to replicate the current study using
different representative neural network models (such as Faster R-CNN, Mask R-CNN, etc.)
to examine whether other models can do a better job in approaching human camouflage
assessment (i.e., providing a better correlation between the model output and human
performance). Additionally, a promising direction would be to train models directly on
data from behavioral experiments like the present one, enabling them to more closely
mimic human camouflage evaluation.

5.3. Conclusions

Our findings show that YOLOv4-tiny can provide a meaningful measure of camouflage
effectiveness that aligns with human perception, particularly in terms of detection probabil-
ity and conspicuity. While the algorithm generally correlates well with human performance,
deviations occur at close distances, likely due to YOLO’s sensitivity to high-contrast camou-
flage elements. These results highlight the potential of convolutional neural networks for
evaluating and optimizing camouflage in diverse environments. However, further research
is needed to clarify their limitations and refine their application in this domain.
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