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ABSTRACT

Acrtificial-intelligence (Al) applications need a large amount of data to train a reliable model. For document authentication
- which is relevant for border management, immigration or visa applications - this data is very sensitive. To develop
document authentication technology for authorities from multiple countries, it is essential to train Al models on the
distributed datasets provided by each authority. Federated learning (FL) enables the training on datasets of multiple
organizations while preserving the privacy by sharing only the model updates (gradients) and not the local data. This helps
avoiding the cross-border sharing of personal data. However, there are two main concerns related to FL: the communication
costs and the possible leakage of personal data through the model updates. The solution can be found in secure sparse
gradient aggregation (SSGA). In this method, we use top-k compression to speed up the communication. Additionally, a
residual memory is implemented to improve performance. The aggregation is made more secure by adding pairwise noise
to the gradients. In this paper, we show that SSGA can be implemented for various computer-vision tasks, such as image
classification, object detection, semantic segmentation, and person re-identification, which are relevant for document
authentication and other security applications.

Keywords: Computer vision, Document Authentication, Federated Learning, Image Classification, Object Detection,
Semantic Segmentation, Person re-identification.

1. INTRODUCTION

To train a reliable artificial intelligence (Al) model, a large amount of data is needed that contains a wide variety of
datapoints. However, for many areas training data can be very sensitive, for example in cross-border document
authentication. When using machine learning for document authentication of people crossing a border, the model can only
be trained on the data stored in that country. Ideally, data from other countries should also be incorporated to train a more
robust and reliable model, but sharing this is simply not possible nor allowed. Decentralized learning, such as federated
learning (FL) could be the perfect solution here.

If there are multiple organizations that would like to use Al technology this can be implemented in three ways. The first
approach is to centralize all available data. This would be optimal for the accuracy of the Al model, but it has the
disadvantage that personal data must be shared and cannot be kept on premise. The second approach is to train each party
separately on the local data. This would be optimal for security and privacy, but it has the disadvantage that accuracy of
the Al technology deteriorates. FL uses the best of both worlds, by preventing the sharing of raw data and allowing the
sharing of gradients of the Al model, and additionally performing almost as good as centralized training [1]. In this way,
an organization in one country can benefit from FL, because it allows increased accuracy and reduced annotation effort of
collective training with international partners without sharing personal data with other countries.
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There are two main concerns related to FL: the communication costs and the possible leakage of personal data in the model
updates. Privacy can be maintained with privacy enhancing techniques (PETSs) such as differential privacy, where noise is
added to the gradients. Communication costs can be reduced by not sending all model updates every round, but only
sending the most important ones. The solution can be found in secure sparse gradient aggregation (SSGA) [2], to improve
efficiency and privacy.

In this paper, we show that SSGA can be implemented for various computer vision (CV) tasks, such as image classification,
object detection, semantic segmentation and person re-identification (Re-ID), which are relevant for document
authentication and other security applications. Our novel contribution is that we present a custom FL framework, in which
we incorporate various security strategies that we evaluate on multiple CV tasks.

First, related work on FL, computer vision and security enhancing strategies are presented in Section 2. Our method is
presented in section 3. The experimental setup is described in Section 4. The experiments and results are presented in
section 5. Then a discussion of the results is given in Section 6, and finally a conclusion in Section 7.

2. RELATED WORK

This section discusses related work on federated computer vision tasks, especially frameworks that present their results on
more than one task. Furthermore, several security or privacy enhancing strategies are discussed that are relevant for FL.

2.1 Federated learning on computer-vision tasks in security

FL research is often focused on optimizing a single CV task, and not expanded to multiple tasks. While realistic
applications in the security domain, such as document authentication or surveillance, typically require the combination of
multiple tasks (Table 1). For example, in document authentication, CV is used in several stages [3]. If a FL framework
would be applied for document authentication, the FL could be of added value for document recognition, detail detection,
detail matching and detail segmentation. Document recognition spots the country (e.g., ‘The Netherlands”) and document
type (e.g., ‘birth certificate’). Detail detection localizes the position of details (e.g., stamp, signature, photo or barcode) on
a digital document scan and indicates the location with a rectangular bounding box. Detail matching uses an example detail
as query to retrieve similar details from a database. And detail segmentation makes a separation between foreground colors
(e.g., the ink of a stamp) and background colors (e.g., paper).

Another example of a security application is the task of person re-identification in CCTV surveillance video [4]. This task
never occurs without the task of person detection. Re-ID is a challenging task and is different from the other three, because
it naturally contains some form of non-homogeneity in the data, since the people that exist in the local data do not exist in
any other client data nor the test data.

Table 1: Relation between security applications (surveillance and document authentication) and their generalized computer-
vision technique.

Security application Computer-vision
Document authentication Surveillance technique
Document recognition Scene classification Image classification
Detail detection Person detection Object detection
Detail matching Person re-identification Object matching
Detail segmentation Person segmentation Object segmentation

Recently, several papers showed that FL can be applied to more than one CV task. There was an extensive overview of
research on FL focusing either on image classification, object detection, semantic segmentation and face recognition [5].
Furthermore, a novel framework generated results on four computer vision tasks, namely classification, object detection,
semantic segmentation and Re-ID [1]. FedCV [6] was tested on image classification, object detection and image
segmentation. FedScale [7] was used for image classification, object detection and action recognition and it claims to run
faster than FedML [8]. OpenFL [9] from Intel and FLARE [10] from NVIDIA includes several use cases, including object
segmentation.



These FL approaches were applied to several CV tasks that are relevant for security applications, such as image
classification, object detection, object segmentation and re-identification. However, they were lacking additional PETS to
further increase security and privacy.

2.2 Security and privacy enhancing strategies

One of the weaknesses of FL is possible image reconstruction with gradient inversion attacks [11]. In short, an inversion
attack is a malicious intent to capture the model updates, and use these updates to recreate a model that is able to reconstruct
training images based on the intercepted gradient updates. Another related threat is that it is possible to identify which
organization contributed to the training data.

The research in [11] nicely describes security strategies that make a successful inversion attack more difficult. In their
paper they describe several strategies, including data augmentation methods, gradient pruning (also called top-k
sparsification or top-k compression), adding noise to gradients (differential privacy), increasing training batch sizes and
not communicating the batch norm layers. They state that combining strategies improves the result.

Secure sparse gradient aggregation (SSGA) [2] is a security enhancing strategy that uses top-k compression, residuals and
addition of noise to the gradients. When only the largest gradients are communicated each batch, some information stored
in the smaller gradients may be lost, resulting in a performance decrease when the level of compression becomes too large
[12]. A solution for this is to keep track of the values that the clients did not send, called the residual memory [13]. Every
iteration, gradients that are outside the top-k largest values are added to the residual. Instead of selecting the top-k largest
gradients, the top-k largest values in the residual are chosen to be communicated.

Adding noise to gradients will simply decrease the performance (differential privacy), or very heavy computation is needed
(homomorphic encryption). In [2], a form of noise is used that cancels out in the server when the gradients are aggregated.
Each client pair adds opposite noise to its gradients based on a secret that is only known by these two clients before sending
them to the server. This will result in a solution that is more secure than sending the plain gradients, without the need for
costly and complex computations. One downside is that when only two clients participate in the training, they can use the
aggregated model to gain knowledge on the gradients of the other client. Therefore, it is advised to let aggregation be
performed by another client (or central server) that does not have access to secret keys, and/or use at least four clients.

The SSGA approach increases efficiency, security and privacy, but it was only tested on the image-classification task. In
this paper, we show that SSGA can be implemented for image classification, object detection, semantic segmentation, and
person Re-ID.

3. METHOD

The SSGA method uses top-k compression for higher efficiency, a residual memory for increased accuracy and pairwise
noise for added security and privacy. This method is applied to multiple relevant CV tasks. This section describes our
method, focusing on the system architecture of the FL framework, the security strategies and the computer-vision tasks.

3.1 System architecture

The FL setup could be implemented in various topologies, such as centralized or decentralized topology. The
implementation in this paper is based around a centralized topology, which means that several parties (clients) participate
in training, and a central party (server) performs the aggregation of the clients' gradients. This schematic is shown in Figure
1.

For this research we have chosen to limit the number of participating clients to four. The basic principle of training a
federated model goes as follows. First, each client computes the gradients on one batch of locally stored data. Note that
the local models are not yet updated with these gradients. The local gradients are sent to the central server where they are
aggregated. There are many aggregation strategies [1], but the most common one is FedAvg [14]. In FedAvg, the aggregate
is a weighted average of the local gradients, where the weighing factor is defined by the size of the local data portion
compared to the total amount of data. If all four clients have the same amount of data, the weighing factor would be 0.25
for each participating client. The server communicates the aggregated gradients to every client. The clients overwrite their
computed gradients with the aggregated gradients, and calculate the weights. In this way, the model updates are performed
with knowledge from other clients.
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Figure 1: System architecture of the FL setup.

There are several communication modules that can handle the communication of large tensors. Gloo, MPI or openMPI and
gRPC are three examples. These are successfully used in existing FL frameworks and differ in speed, bandwidth
availability/usage and security. Creating a custom framework provides freedom to choose a new communication module.
One very promising communication module is TNO MPC-lab®. This module is specifically designed to perform secure
communication where data is very sensitive, focusing on MPC and the update to support tensors is expected to be made
publicly available soon.

3.2 Compression and residual memory

One of the bottlenecks of FL is the communication speed. It is very costly to communicate the gradients of large models
back and forth between a server every batch. A solution for this problem is top-k compression, or top-k sparsification [15],
meaning that only the k largest gradients are communicated. In a FL setup, this consists of various steps. These steps are
based on the research in [13], and their open-source package ‘Grace’".

1. Every client selects their top-k largest gradients.

2. The indices of these gradients are communicated with the server.

3. The server calculates the union of these indices and sends the union back to all clients.
4. The clients communicate the gradients for all union indices to the server.

Residuals increase the quality of top-k by allowing submission of largest differences with previous submissions instead of
only focusing on the largest values. To use top-k compression with residual memaory, the following steps are needed:

All clients add their gradients to local residual memory. Note that at the first batch, the residual is empty.
Each client selects their top-k largest gradients from their residual.

The indices of these values from the residual are communicated with the server.

The server calculates the union of these indices and sends the union back to all clients.

Every client selects the values stored in residual memory at the union indices and sends this to the server.
The values that the client just communicated are removed from the residual — these indices are set to 0.

ok wnpE

The compression is defined as follows. For example, when using four clients, 5x compression means that each client sends
the indices of the top 5% of their gradients to the server. This 5% stems from the compression rate (5x is 20%) divided by
the number of clients (4). The server then calculates the union of these indices. This means that for 5x compression the
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union can contain somewhere between 5% and 20% of the model’s gradients, depending on the overlap between the
individual indices. This approach guarantees that 20% is not exceeded. The gradients at the union of these indices are then
communicated from the clients to the server for aggregation. Note that therefore no compression and 1x compression are
not the same. When using no compression, 100% of the gradients are communicated every batch. When using 1x
compression, somewhere between 25% and 100% of the gradients is shared. In the experiments carried out for this research
(Section 5), the compression is expressed in the range that is explained here. If only one compression ratio is mentioned
in the text, for example 200x, the range of 200x to 800x is actually referred to.

3.3 Noise and integer conversion

Adding noise to the gradients before communicating these to the server provides additional security, since a malicious
party cannot easily reconstruct the original gradients when intercepting the communication. The noise is generated between
a pair of clients that share a common secret key to generate noise with. The noise values are added in one client to the
gradients, and in the other client subtracted from the gradients. The simplest implementation would require an even number
of participating clients, but an odd number can be handled by allowing one client to exchange secret keys with two other
clients. Due to the noise vectors, the server has no knowledge on the local gradients and the individual contributions of
each client. This noise is added in each client. The aggregated model in the server is still in integer domain. In the clients,
upon receiving the aggregated model, they convert it back to floating point gradients.

Generation of noise is done in the integer domain. This is because for example a fictional floating point gradient of 1.2,
combined with 0.3 noise still reveals the most significant part of the value. In the integer domain, much more bits are
masked with noise. Note that the sum of all gradients in the integer domain can never be higher than the maximum integer
that can be stored in 32-bit. Therefore, the gradients are converted to 28-bit values. This conversion is done using the order
of the maximum gradient value between all clients. This floating point gradient value represents the maximum number
stored in 28 bits. Itis chosen to use the order instead of the value itself to protect this information and not share unencrypted
gradient values. The generated noise vector is stored in 24-bit values. Note that noise cancels out between client pairs when
aggregating all received gradients, thus these bits do not need to be accounted for when summing the values and making
sure the sum does not exceed the maximum of 32 bits. The difference in performance between 8-bit, 16-bit and 32-bit
unsigned integer seems negligible [2], so less bits than 28 will not immediately reduce accuracy.

3.4 Computer vision tasks

In this paper, four computer vision tasks will be evaluated, which are classification, object detection, (semantic)
segmentation and person Re-1D. The results on security strategies are presented on image classification, but additional
computer-vision tasks are also performed to show that the FL setup with additional security strategies also works with
more complex tasks. The models and datasets that are used per task are given in Table 2.

Table 2: Overview of the computer vision tasks and the models used to perform the task.

Computer vision task Model
Classification ResNet110 [16]
Obiject detection Faster R-CNN [17]
Semantic segmentation DeeplLabv3 [18] with MobileNetV3-Large backbone [19]
RelD Resnet50 [20]

4. EXPERIMENTAL SETUP

In the following sections, first the experimental setup is discussed, which includes hardware setup, datasets, performance
metrics and hyperparameters of the setup.

4.1 Hardware setup

The hardware used to perform the experiments is shown in Table 3. The four clients and the server all run in parallel in the
same GPU, but share no data of course. For every experiment, a number close to the maximum batch size is used that
would fit inside the respective GPU. A large batch size is used, since it significantly speeds up the training time. For
convenience, batch normalization layers are also communicated, but in future research it is expected that these layers will



not be shared. Models and datasets are both chosen to be relatively small, in order to let it all fit inside the hardware, and
speed up the training process.

Table 3: Overview of GPUs used of four computer vision tasks.

Classification Object detection Semantic segmentation Re-1D
Hardware GeForce RTX 2080ti NVIDIA A40 or L40 NVIDIA A40 or L40 GeForce RTX 3090
(11Gb) or RTX 3090 (45Gb) (45Gb) (24 Gb)
(24Gh)

4.2 Datasets

The specifics of the datasets of the four computer vision tasks are shown in Table 4. For all tasks, it is assumed that every
client has the same amount of data, and that the data is distributed equally, e.g. homogeneous data distribution.

Table 4: Overview of the datasets per computer vision task, the number of classes and the used train test split.

Computer vision task Dataset Number of classes Train/test split

Classification CIFAR-10 [21] 10 50.000 train images
10.000 test images
Object detection Uno Cards [22] 15 6.295 train images
899 test images
Semantic segmentation Foodseg103 [23] 15 4,983 train images
2135 test images
RelD Market-1501 [24] 1501 750 training persons with
12,936 training images.
751 testing persons with
3,368 query images and
15,913 gallery images.

In the CIFAR-10 dataset, ten classes are defined, and the task is to detect which one of these classes is in the input image.
Several examples of possible images are shown in Figure 2.
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Figure 2: 10 example images of the 10 classes in CIFAR-10 [21].

For object detection the Uno Cards dataset is used. This dataset contains images of Uno playing cards, where the computer
vision task is to detect the small numbers on the corner of these cards. Some examples are shown in Figure 3.



[ .-

Figure 3: Example annotations of numbers on playing cards in the Uno Cards dataset [22].

The Foodsegl03 dataset contains images of food, where 103 different ingredients are labelled, see Figure 4. Some
examples are wine, tomato, peach, pizza, popcorn. These labels can each be combined into one of the 15 superclasses (16
if background is included). Those include for example vegetables, fruit, main and beverage. Some superclasses have many
ingredients, and others have only one (soup, salad, tofu, sauce and egg each are both a superclass and an ingredient). To
make the segmentation process easier, it is chosen to do this computer vision task on the superclasses, and not on the
ingredients. This is also to speed up the training process.
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Figure 4: Some examples of annotated ingredients from the Foodseg103 dataset [23].

In the Market-1015 dataset, the area in front of a supermarket at a university is captured. Here, six cameras are used to
capture the dataset, placed at different locations on the scene with areas of overlap. This dataset contains 1501 people,
where train and test dataset do not contain overlapping people. The task is here, based on an input image, to sort images
from most similar to less similar, and rank images of the same person as high as possible.

Figure 5: Images of two persons reoccurring in the Market-1501 dataset [24].

4.3 Performance metrics

The performance of the four CV tasks is defined by a performance metric. For classification and semantic segmentation,
this metric is the accuracy, defined by the number of correct predictions divided by the total number of predictions. The
performance metric of object detection is the mean average precision (mAP), which is based on Intersection over Union
(loU). The loU thresholds are between 0.5 and 0.95 with steps of 0.05. For Re-ID, the mAP score is used too, in this
context it reflects the average accuracy of retrieval and the effectiveness of the ranking of relevant images across multiple
queries.

4.4 Hyperparameters of the setup

The batch size, learning rate and weight decay for each computer vision task are shown in Table 5. Each task is ran for
200 epochs and uses a momentum of 0.9.

Table 5: Used hyperparameters for the four computer vision tasks

Classification | Classification | Object detection | Semantic segmentation Re-1D
(baseline) (finetuned)
Batch size 128 6 12 64
(maximum) 0.1 0.2 0.001 0.001 0.00035
Learning rate
Weight decay 0.0001 0.01 0.0005 0.0005 0.0005




A learning rate scheduler typically performs better than one fixed learning rate value. We use the OneCycleLR scheduler
from PyTorch with in total 200 epochs, which increases until 1/3™ of the total epochs and then decreases until the end. The
curve of this scheduler is shown in Figure 6 for a maximum learning rate of 0.02. In Table 5 and in the remainder of this
paper, when we say something about the learning rate, we mean the maximum value in this scheduler.

Figure 6: Learning rate scheduler used for classification with a maximum learning rate of 0.02.
For object detection, semantic segmentation and RelD, the hyperparameters are based on literature.

For classification, an evaluation is performed to find optimal hyperparameters because insights from literature were not
consistent. The baseline parameters that could be found in literature are a learning rate of 0.1 and a weight decay of 0.0001
[16]. However, the best learning rate of 100% of the data is not necessarily the best option for 4 x 25% of the data in FL.
The open-source FL framework Horovod [25] recommends to multiply the learning rate by a factor proportional to the
number of clients in the FL setup”. The centralized approach with 100% of the data gives best results using a learning rate
of 0.1 with a weight decay of 0.0001 [16]. Thus a logical step is to apply a learning rate of 0.4 in each client (when using
four clients) with a weight decay of 0.0001, because the data is split in four parts. Nevertheless, this rule to scale the
hyperparameters might not be the optimal choice. First, this rule does not hold for a high number of participating clients
as the learning rate would simply be too high. Furthermore, [2] showed that best results were obtained with a learning rate
of 0.02 and a weight decay of 0.01, which are very different from the baseline hyperparameters. In order to choose an
optimal working point for our FL setup, an evaluation of possible learning rates and their resulting accuracy is done (see
Table 6). A weight decay of 0.01 from [2] and 0.0001 [16] are compared. Because the final setup should work with using
both top-k compression and residual, a configuration of 400x compression, and residual memory is applied.

Table 6: Evaluation of the various learning rates for a compression of 400x with using residual.

Experiment ID Learning rate Accuracy Accuracy
Weight decay = 0.01 | Weight decay = 0.0001
1 0.005 88.8% 79.6%
2 0.01 90.2% 82.4%
3 0.02 90.6% 84.1%
4 0.04 89.7% 85.4%
5 0.08 87.9% 86.5%
6 0.1 86.8% 86.6%
7 0.2 83.6% 87.7%
8 0.4 71.1% 88.3%

For the experiments on classification, the finetuned parameters with a learning rate of 0.02 and a weight decay of 0.01 are
used. Nevertheless, in the section on multiple computer vision tasks, baseline hyperparameters (learning rate of 0.1 and
weight decay of 0.0001) are also used to evaluate the possible configurations.

* https://github.com/horovod/horovod/issues/384



5. EXPERIMENTS AND RESULTS

This section contains the experiments and results. First, the effects of compression and residual (Sec. 5.1) and noise (Sec.
5.2) are shown for image classification. Then, SSGA results are shown on four CV tasks (Sec. 5.3).

5.1 Compression and residual

The aim of this experiment is to analyze the effect of compression and residual. The hypotheses are (1) that higher
compression will lead to lower accuracy and (2) that an approach with residuals will work better than without residual. An
experiment was performed for image classification with various compression factors up to 400x compression and without
noise. Note that the compression is actually a range that is defined by the union between the gradients of individual clients,
as explained in Section 3.2. If only one compression ratio is mentioned in the text, e.g., 400, it refers to the respective
experiment with the compression range between 400x and 1600x.

The results of top-k compression with and without residual on image classification are shown in Table 7. The results
without residual show that higher compression leads to lower accuracy. At 200x-800x compression, the approach without
residual is already almost as bad as the separate approach, where four clients train on 25% of the data, without sharing the
gradients. Note that no compression is different than 1x-4x compression, see brief explanation in Section 3.2. The results
with residual also show a trend of lower accuracies for higher compression, but the values are much higher. For example,
400x-1600x compression with residual is still much better than the separate approach and comparable with only 5x-20x
compression without residual. So, we can conclude that higher compression indeed leads to lower accuracy and that an
approach with residual works better than without residual.

Table 7: Resulting performance with top-k compression when residual memory is enabled and disabled.

Exp. ID Compression range | Accuracy (without using residual) | Accuracy (with using residual)

1 FL (no PETs) 94.5%

2 1x —4x 94.1% 94.1%
3 2X — 8x 93.2% 93.0%
4 5x — 20x 91.6% 91.7%
5 10x — 40x 90.2% 91.0%
6 50x — 200x 88.8% 90.7%
7 200x — 800x 88.3% 90.3%
8 400x — 1600x 88.4% 90.6%
9 Separate 88.2%

(lower bound)

5.2 Noise

The aim of this experiment with image classification is to verify that noise has no effect on accuracy, since pairs of noise
cancel each other out in aggregation. In the experiment, a compression factor of 400x-1600x is used and residual memory
is enabled.

The resulting accuracy of the models when the noise is added to the gradients is shown in Table 8. The performance
without noise is given for reference. These results show that including the noise does not influence the performance, and
that the noise created in the client pairs is successfully cancelled out in the server when the models are aggregated.

Table 8: Results of adding noise.

Experiment ID Configuration Accuracy
1 No noise 90.6%
2 With pairwise noise 90.6%




5.3 SSGA for multiple computer vision tasks

To evaluate the effect of the security strategies on the four computer vision tasks, there are six experiments, denoted by
their experiment ID in Table 9 that are performed for each CV task. The upper bound of the expected results is defined by
the centralized configuration (exp. 1) and the lower bound is defined by the separate configuration (exp. 2). The other
experiments test various configurations of security strategies: federated learning (exp. 3), adding 400x-1600x compression
(exp. 4), adding residual (exp. 5) and adding noise (exp. 6). The expected results are discussed in the last column.

Table 9: Explanation of the six experiments on computer vision tasks.

Exp. ID Configuration Explanation Expectation
1 Centralized (upper A model is trained on 100% of the train | Will give the best results out of all
bound) data, as is normally done when training | experiments.
an arbitrary model.
2 Separated (lower Four clients train on 25% of the train | Will give the worst results out of all
bound) data, without sharing the gradients. They | experiments.
only learn from that local data portion.
3 FL without security | All gradients of the model are | This is expected to give results
strategies communicated every batch. close to training on 100% of the
data in exp. 1.
4 FL with 400x Only the largest 0.25% of the gradients | Will give results close to separate
compression is shared each batch. No residual | training on 25% of the data in exp.
memory is kept updated on gradients not | 2.
sent.
5 FL with 400x In addition to exp. 4, residual memory is | This is expected to increase the
compression + residual | now updated with uncommunicated | performance compared to exp. 4,
gradients. and reach a value close to exp. 3
6 FL with 400x All security strategies are enabled, | The result is the same as exp. 5.
compression + residual | pairwise noise is added on top of the
+ noise configuration in exp. 5.

Results for image classification, object detection, semantic segmentation and RelD are respectively shown in Table 10,
Table 11, Table 12 and Table 13. For classification, the results on both baseline and finetuned hyperparameters are given.
For Re-1D, the standard deviation is also given, to show how much the four clients can differ in one run.

Table 10: Results for image classification with baseline and finetuned hyperparameters.

Exp. Configuration | Compression | Residual Noise Accuracy with Accuracy with
ID range baseline finetuned
hyperparameters | hyperparameters

(%) (%)

1 Central - 93.9 93.3

2 Separate - 85.7 88.2

3 Federated - Disabled 92.2 94.5

4 Federated 400x — 1600x Disabled Disabled 85.5 88.4

5 Federated 400x — 1600x Enabled Disabled 86.6 90.6

6 Federated 400x — 1600x Enabled Enabled 86.6 90.6




Table 11: Results for object detection.

Experiment | Configuration | Compression Residual Noise MAP (%)

1D range

1 Central - 90.2
2 Separate - 87.8
3 Federated - - Disabled 89.1
4 Federated 400x — 1600x Disabled Disabled 87.9
5 Federated 400x — 1600x Enabled Disabled 88.4
6 Federated 400x — 1600x Enabled Enabled 88.4

Table 12: Results for semantic segmentation.

Experiment | Configuration | Compression Residual Noise Accuracy (%)

1D range

1 Central - 80.2
2 Separate - 75.6
3 Federated - - Disabled 78.7
4 Federated 400x — 1600x Disabled Disabled 75.3
5 Federated 400x — 1600x Enabled Disabled 76.9
6 Federated 400x — 1600x Enabled Enabled 76.8

Table 13: Results for person RelD.

Experiment | Configuration | Compression Residual Noise MAP (%)
ID range
1 Central - 86.6
2 Separate - 62.9+-1.7
3 Federated - - Disabled 69.7+-1.4
4 Federated 400x — 1600x Disabled Disabled 62.6+-0.6
5 Federated 400x — 1600x Enabled Disabled 65.5+-0.9
6 Federated 400x — 1600x Enabled Enabled 65.4+-1.0

In general, these results are consistent throughout the various computer-vision tasks, and are in line with the expectations
from Table 9. In general, training on 100% of the data (exp. 1) gives the best performance. The worst performance is
obtained by the separated setup (exp. 2), where four clients independently train on 25% of the data. Furthermore, it can be
seen that keeping track of a residual memory (exp. 5) improves the result of the configuration without residual memory
(exp. 4). Where in all cases the performance of the compression without residual (exp. 4) is equal to the separated result
(exp. 2), the performance of residual (exp. 5) adds at least 1.5%. Also, the results without and with noise (exp. 5 and 6)
consistently show that noise does not significantly negatively affect the performance. So, the results confirm the
expectations presented in Table 9.

6. DISCUSSION

Section 5 showed that residual has a positive effect on accuracy and that noise does not have a negative effect on accuracy.
Nevertheless, there are a few points that need to be discussed.

6.1 Hyperparameters

For classification, the results in Table 10 use two configurations of hyperparameters, namely baseline parameters (from
literature) and the finetuned parameters (from Table 6). The finetuned parameters show a pattern that is exactly what is



expected (Table 9). The baseline parameters seem optimal for the centralized experiment (exp. 1), however, for all other
experiments the results of the baseline are worse than the finetuned parameters. Additionally, in the finetuned parameter
column, the FL approach (exp. 3) shows an extremely high accuracy that is even higher than the centralized approach (exp
1). One can argue that parameters that are optimal for a large dataset (exp. 1) are not optimal for a smaller dataset (exp. 2)
and this also has its effects on the FL-based approaches. This shows how much the performance of federated model can
be influenced by unlucky choice for hyperparameters, which is in line with the big differences shown in Table 6. It is
recommended to think about fitting hyperparameters for the chosen configuration.

6.2 Re-ID

For Re-1D, Table 13 shows a very large performance drop between the centralized approach (exp. 1) and the separate
approach (exp. 2) from 86.6% to 62.9%, which is almost 24%, while using the same hyperparameter settings. The
performance is somewhat increased when using high compression with residual memory opposed to not using residual,
but it does not reach a value close to the centralized result. On one hand, this behavior can be expected because of the non-
homogeneous nature of the data in Re-1D. On the other hand, it can also be related to the effect that was observed in Section
6.1, that these hyperparameters are optimal for the centralized approach and not for the other experiments. It again
emphasizes the relevance of hyperparameter tuning, but it was considered out of scope for this paper.

6.3 Aggregation

In all experiments FedAvg is used as aggregation method. Even though this method is fairly simple, it proves to be
effective. Nevertheless, in [2] they do not use FedAvg aggregation strategy. Instead of taking the weighted average, they
calculate the aggregate by taking the sum of all gradients. This aggregation method is also tried in this research, the results
are shown in Table 14. The hyperparameters used are the same as in experiment from Table 7 (Weight decay is 0.01 and
learning rate is 0.02). Note that the performance of Sum with residual is slightly better than when using FedAvg. However,
since this aggregation strategy does not hold for a large number of clients (the gradients will be too large for reliable
updates) it is chosen to use the FedAvg aggregation strategy that is widely used and reliable. It will also not hold for data
distribution where some clients have a different amount of local data.

Table 14: Average and sum aggregation for image classification

Accuracy
Without residual With residual
Experiment | Compression FedAvg Sum FedAvg Sum

ID range

1 1x — 4x 94.1% 94.1% 94.1% 94.2%
2 2X — 8X 93.2% 93.7% 93.0% 93.6%
3 5x — 20x 91.6% 92.4% 91.7% 93.5%
4 10x — 40x 90.2% 91.4% 91.0% 93.1%
5 50x — 200x 88.8% 88.8% 90.7% 92.6%
6 200x — 800x 88.3% 88.1% 90.3% 92.2%
7 400x — 1600x 88.4% 88.0% 90.6% 92.3%

Furthermore, for Re-ID — and in general for non-homogeneous data — FedAvg may not be the most effective aggregation
strategy. Due to the non-homogeneous nature of the data in Re-I1D, FedAvg may worsen the results, since not all gradients
need to be overwritten with an aggregate. There are various aggregation methods that are useful for Re-1D. Research in
FedPav [26], [27] and FedRelD [28] propose solutions to tackle this problem.

6.4 Future research

For future work, we will focus on expanding the FL setup in terms of making it more robust and secure. To make it more
robust, it has to be able to handle non-homogeneous data. Currently the assumption was that the amount of data and class



distribution are the same in every client for every computer vision task (aside from Re-ID). In future research, we will
investigate heterogeneous data distributions, aggregation methods for the heterogeneous data, and a way to measure or
visualize the added value of the security strategies.

7. CONCLUSION

In this paper, we made a custom FL framework. Since data in security applications is often very sensitive, it is important
to be very careful with what can be leaked trough the gradient updates. Therefore we applied secure sparse gradient
aggregation. The security strategies that we incorporate are top-k compression with residual memory, and adding noise to
the communicated gradients. The top-k compression reduces the communication time significantly, but the performance
drops when compression becomes too high. We showed that keeping track of a residual memory of uncommunicated
gradients boosts the performance at high compression values significantly. Additionally, we added noise to our gradients
to make deciphering intercepted gradients more difficult. Noise is added pairwise, so between a client pair, one adds the
noise to the gradient and the other subtracts it, giving that it will automatically be cancelled out at aggregation in the server.
Our experiments show that adding noise does not influence the performance. For real world applications, such as cross-
border document authentication, a federated framework might be used for multiple machine learning tasks. We showed
that our framework holds for image classification, object detection, semantic segmentation and person Re-ID.
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