
M. van der Spek, A. van Rooijen, H. Bouma, “Secure sparse gradient aggregation with various computer-vision techniques for cross-

border document authentication and other security applications”, Proc. SPIE Artificial Intelligence for Security and Defence 

Applications, vol. 13206, (2024). https://doi.org/10.1117/12.3032150 

Copyright © 2024 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal 

use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee  or for commercial purposes, or 

modification of the content of the paper are prohibited. 

 

 

Secure sparse gradient aggregation with various computer-vision 

techniques for cross-border document authentication and other 

security applications  

Muriel van der Spek, Arthur van Rooijen, Henri Bouma * 

 

TNO, The Hague, The Netherlands 
 

ABSTRACT 

Artificial-intelligence (AI) applications need a large amount of data to train a reliable model. For document authentication 

- which is relevant for border management, immigration or visa applications - this data is very sensitive. To develop 

document authentication technology for authorities from multiple countries, it is essential to train AI models on the 

distributed datasets provided by each authority. Federated learning (FL) enables the training on datasets of multiple 

organizations while preserving the privacy by sharing only the model updates (gradients) and not the local data. This helps 

avoiding the cross-border sharing of personal data. However, there are two main concerns related to FL: the communication 

costs and the possible leakage of personal data through the model updates. The solution can be found in secure sparse 

gradient aggregation (SSGA). In this method, we use top-k compression to speed up the communication. Additionally, a 

residual memory is implemented to improve performance. The aggregation is made more secure by adding pairwise noise 

to the gradients. In this paper, we show that SSGA can be implemented for various computer-vision tasks, such as image 

classification, object detection, semantic segmentation, and person re-identification, which are relevant for document 

authentication and other security applications.  

 

Keywords: Computer vision, Document Authentication, Federated Learning, Image Classification, Object Detection, 

Semantic Segmentation, Person re-identification. 

1. INTRODUCTION 

To train a reliable artificial intelligence (AI) model, a large amount of data is needed that contains a wide variety of 

datapoints. However, for many areas training data can be very sensitive, for example in cross-border document 

authentication. When using machine learning for document authentication of people crossing a border, the model can only 

be trained on the data stored in that country. Ideally, data from other countries should also be incorporated to train a more 

robust and reliable model, but sharing this is simply not possible nor allowed. Decentralized learning, such as federated 

learning (FL) could be the perfect solution here. 

If there are multiple organizations that would like to use AI technology this can be implemented in three ways. The first 

approach is to centralize all available data. This would be optimal for the accuracy of the AI model, but it has the 

disadvantage that personal data must be shared and cannot be kept on premise. The second approach is to train each party 

separately on the local data. This would be optimal for security and privacy, but it has the disadvantage that accuracy of 

the AI technology deteriorates. FL uses the best of both worlds, by preventing the sharing of raw data and allowing the 

sharing of gradients of the AI model, and additionally performing almost as good as centralized training [1]. In this way, 

an organization in one country can benefit from FL, because it allows increased accuracy and reduced annotation effort of 

collective training with international partners without sharing personal data with other countries.  
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There are two main concerns related to FL: the communication costs and the possible leakage of personal data in the model 

updates. Privacy can be maintained with privacy enhancing techniques (PETs) such as differential privacy, where noise is 

added to the gradients. Communication costs can be reduced by not sending all model updates every round, but only 

sending the most important ones. The solution can be found in secure sparse gradient aggregation (SSGA) [2], to improve 

efficiency and privacy.  

In this paper, we show that SSGA can be implemented for various computer vision (CV) tasks, such as image classification, 

object detection, semantic segmentation and person re-identification (Re-ID), which are relevant for document 

authentication and other security applications. Our novel contribution is that we present a custom FL framework, in which 

we incorporate various security strategies that we evaluate on multiple CV tasks. 

First, related work on FL, computer vision and security enhancing strategies are presented in Section 2. Our method is 

presented in section 3. The experimental setup is described in Section 4. The experiments and results are presented in 

section 5. Then a discussion of the results is given in Section 6, and finally a conclusion in Section 7. 

2. RELATED WORK 

This section discusses related work on federated computer vision tasks, especially frameworks that present their results on 

more than one task. Furthermore, several security or privacy enhancing strategies are discussed that are relevant for FL. 

2.1 Federated learning on computer-vision tasks in security  

FL research is often focused on optimizing a single CV task, and not expanded to multiple tasks. While realistic 

applications in the security domain, such as document authentication or surveillance, typically require the combination of 

multiple tasks (Table 1). For example, in document authentication, CV is used in several stages [3]. If a FL framework 

would be applied for document authentication, the FL could be of added value for document recognition, detail detection, 

detail matching and detail segmentation. Document recognition spots the country (e.g., ‘The Netherlands’) and document 

type (e.g., ‘birth certificate’). Detail detection localizes the position of details (e.g., stamp, signature, photo or barcode) on 

a digital document scan and indicates the location with a rectangular bounding box. Detail matching uses an example detail 

as query to retrieve similar details from a database. And detail segmentation makes a separation between foreground colors 

(e.g., the ink of a stamp) and background colors (e.g., paper).  

Another example of a security application is the task of person re-identification in CCTV surveillance video [4]. This task 

never occurs without the task of person detection. Re-ID is a challenging task and is different from the other three, because 

it naturally contains some form of non-homogeneity in the data, since the people that exist in the local data do not exist in 

any other client data nor the test data. 

Table 1: Relation between security applications (surveillance and document authentication) and their generalized computer-

vision technique. 

Security application Computer-vision  

technique Document authentication Surveillance 

Document recognition Scene classification Image classification 

Detail detection Person detection Object detection 

Detail matching Person re-identification Object matching 

Detail segmentation Person segmentation Object segmentation 

 

Recently, several papers showed that FL can be applied to more than one CV task. There was an extensive overview of 

research on FL focusing either on image classification, object detection, semantic segmentation and face recognition [5]. 

Furthermore, a novel framework generated results on four computer vision tasks, namely classification, object detection, 

semantic segmentation and Re-ID [1].  FedCV [6] was tested on image classification, object detection and image 

segmentation. FedScale [7] was used for image classification, object detection and action recognition and it claims to run 

faster than FedML [8]. OpenFL [9] from Intel and FLARE [10] from NVIDIA includes several use cases, including object 

segmentation. 



 

 

 

 

These FL approaches were applied to several CV tasks that are relevant for security applications, such as image 

classification, object detection, object segmentation and re-identification. However, they were lacking additional PETs to 

further increase security and privacy. 

2.2 Security and privacy enhancing strategies 

One of the weaknesses of FL is possible image reconstruction with gradient inversion attacks [11]. In short, an inversion 

attack is a malicious intent to capture the model updates, and use these updates to recreate a model that is able to reconstruct 

training images based on the intercepted gradient updates. Another related threat is that it is possible to identify which 

organization contributed to the training data.  

The research in [11] nicely describes security strategies that make a successful inversion attack more difficult. In their 

paper they describe several strategies, including data augmentation methods, gradient pruning (also called top-k 

sparsification or top-k compression), adding noise to gradients (differential privacy), increasing training batch sizes and 

not communicating the batch norm layers. They state that combining strategies improves the result.  

Secure sparse gradient aggregation (SSGA) [2] is a security enhancing strategy that uses top-k compression, residuals and 

addition of noise to the gradients. When only the largest gradients are communicated each batch, some information stored 

in the smaller gradients may be lost, resulting in a performance decrease when the level of compression becomes too large 

[12]. A solution for this is to keep track of the values that the clients did not send, called the residual memory [13]. Every 

iteration, gradients that are outside the top-k largest values are added to the residual. Instead of selecting the top-k largest 

gradients, the top-k largest values in the residual are chosen to be communicated. 

Adding noise to gradients will simply decrease the performance (differential privacy), or very heavy computation is needed 

(homomorphic encryption). In [2], a form of noise is used that cancels out in the server when the gradients are aggregated. 

Each client pair adds opposite noise to its gradients based on a secret that is only known by these two clients before sending 

them to the server. This will result in a solution that is more secure than sending the plain gradients, without the need for 

costly and complex computations. One downside is that when only two clients participate in the training, they can use the 

aggregated model to gain knowledge on the gradients of the other client. Therefore, it is advised to let aggregation be 

performed by another client (or central server) that does not have access to secret keys, and/or use at least four clients. 

The SSGA approach increases efficiency, security and privacy, but it was only tested on the image-classification task. In 

this paper, we show that SSGA can be implemented for image classification, object detection, semantic segmentation, and 

person Re-ID. 

3. METHOD 

The SSGA method uses top-k compression for higher efficiency, a residual memory for increased accuracy and pairwise 

noise for added security and privacy. This method is applied to multiple relevant CV tasks. This section describes our 

method, focusing on the system architecture of the FL framework, the security strategies and the computer-vision tasks. 

3.1 System architecture 

The FL setup could be implemented in various topologies, such as centralized or decentralized topology. The 

implementation in this paper is based around a centralized topology, which means that several parties (clients) participate 

in training, and a central party (server) performs the aggregation of the clients' gradients. This schematic is shown in Figure 

1.  

For this research we have chosen to limit the number of participating clients to four. The basic principle of training a 

federated model goes as follows. First, each client computes the gradients on one batch of locally stored data. Note that 

the local models are not yet updated with these gradients. The local gradients are sent to the central server where they are 

aggregated. There are many aggregation strategies [1], but the most common one is FedAvg [14]. In FedAvg, the aggregate 

is a weighted average of the local gradients, where the weighing factor is defined by the size of the local data portion 

compared to the total amount of data. If all four clients have the same amount of data, the weighing factor would be 0.25 

for each participating client. The server communicates the aggregated gradients to every client. The clients overwrite their 

computed gradients with the aggregated gradients, and calculate the weights. In this way, the model updates are performed 

with knowledge from other clients. 



 

 

 

 

 

Figure 1: System architecture of the FL setup. 

There are several communication modules that can handle the communication of large tensors. Gloo, MPI or openMPI and 

gRPC are three examples. These are successfully used in existing FL frameworks and differ in speed, bandwidth 

availability/usage and security. Creating a custom framework provides freedom to choose a new communication module. 

One very promising communication module is TNO MPC-lab*. This module is specifically designed to perform secure 

communication where data is very sensitive, focusing on MPC and the update to support tensors is expected to be made 

publicly available soon. 

3.2 Compression and residual memory 

One of the bottlenecks of FL is the communication speed. It is very costly to communicate the gradients of large models 

back and forth between a server every batch. A solution for this problem is top-k compression, or top-k sparsification [15], 

meaning that only the k largest gradients are communicated. In a FL setup, this consists of various steps. These steps are 

based on the research in [13], and their open-source package ‘Grace’†. 

1. Every client selects their top-k largest gradients. 

2. The indices of these gradients are communicated with the server. 

3. The server calculates the union of these indices and sends the union back to all clients. 

4. The clients communicate the gradients for all union indices to the server. 

 

Residuals increase the quality of top-k by allowing submission of largest differences with previous submissions instead of 

only focusing on the largest values. To use top-k compression with residual memory, the following steps are needed: 

1. All clients add their gradients to local residual memory. Note that at the first batch, the residual is empty. 

2. Each client selects their top-k largest gradients from their residual. 

3. The indices of these values from the residual are communicated with the server. 

4. The server calculates the union of these indices and sends the union back to all clients. 

5. Every client selects the values stored in residual memory at the union indices and sends this to the server. 

6. The values that the client just communicated are removed from the residual – these indices are set to 0. 

 

The compression is defined as follows. For example, when using four clients, 5x compression means that each client sends 

the indices of the top 5% of their gradients to the server. This 5% stems from the compression rate (5x is 20%) divided by 

the number of clients (4). The server then calculates the union of these indices. This means that for 5x compression the 

 

* https://github.com/TNO-MPC/communication 
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union can contain somewhere between 5% and 20% of the model’s gradients, depending on the overlap between the 

individual indices. This approach guarantees that 20% is not exceeded. The gradients at the union of these indices are then 

communicated from the clients to the server for aggregation. Note that therefore no compression and 1x compression are 

not the same. When using no compression, 100% of the gradients are communicated every batch. When using 1x 

compression, somewhere between 25% and 100% of the gradients is shared. In the experiments carried out for this research 

(Section 5), the compression is expressed in the range that is explained here. If only one compression ratio is mentioned 

in the text, for example 200x, the range of 200x to 800x is actually referred to. 

3.3 Noise and integer conversion 

Adding noise to the gradients before communicating these to the server provides additional security, since a malicious 

party cannot easily reconstruct the original gradients when intercepting the communication. The noise is generated between 

a pair of clients that share a common secret key to generate noise with. The noise values are added in one client to the 

gradients, and in the other client subtracted from the gradients. The simplest implementation would require an even number 

of participating clients, but an odd number can be handled by allowing one client to exchange secret keys with two other 

clients. Due to the noise vectors, the server has no knowledge on the local gradients and the individual contributions of 

each client. This noise is added in each client. The aggregated model in the server is still in integer domain. In the clients, 

upon receiving the aggregated model, they convert it back to floating point gradients.  

Generation of noise is done in the integer domain. This is because for example a fictional floating point gradient of 1.2, 

combined with 0.3 noise still reveals the most significant part of the value. In the integer domain, much more bits are 

masked with noise. Note that the sum of all gradients in the integer domain can never be higher than the maximum integer 

that can be stored in 32-bit. Therefore, the gradients are converted to 28-bit values. This conversion is done using the order 

of the maximum gradient value between all clients. This floating point gradient value represents the maximum number 

stored in 28 bits. It is chosen to use the order instead of the value itself to protect this information and not share unencrypted 

gradient values. The generated noise vector is stored in 24-bit values. Note that noise cancels out between client pairs when 

aggregating all received gradients, thus these bits do not need to be accounted for when summing the values and making 

sure the sum does not exceed the maximum of 32 bits. The difference in performance between 8-bit, 16-bit and 32-bit 

unsigned integer seems negligible [2], so less bits than 28 will not immediately reduce accuracy. 

3.4 Computer vision tasks 

In this paper, four computer vision tasks will be evaluated, which are classification, object detection, (semantic) 

segmentation and person Re-ID. The results on security strategies are presented on image classification, but additional 

computer-vision tasks are also performed to show that the FL setup with additional security strategies also works with 

more complex tasks. The models and datasets that are used per task are given in Table 2. 

Table 2: Overview of the computer vision tasks and the models used to perform the task. 

Computer vision task Model 

Classification ResNet110 [16] 

Object detection Faster R-CNN [17] 

Semantic segmentation DeepLabv3 [18] with MobileNetV3-Large backbone [19] 

ReID Resnet50 [20] 

 

4. EXPERIMENTAL SETUP 

In the following sections, first the experimental setup is discussed, which includes hardware setup, datasets, performance 

metrics and hyperparameters of the setup. 

4.1 Hardware setup 

The hardware used to perform the experiments is shown in Table 3. The four clients and the server all run in parallel in the 

same GPU, but share no data of course. For every experiment, a number close to the maximum batch size is used that 

would fit inside the respective GPU. A large batch size is used, since it significantly speeds up the training time. For 

convenience, batch normalization layers are also communicated, but in future research it is expected that these layers will 



 

 

 

 

not be shared. Models and datasets are both chosen to be relatively small, in order to let it all fit inside the hardware, and 

speed up the training process.  

Table 3: Overview of GPUs used of four computer vision tasks. 

 Classification Object detection Semantic segmentation Re-ID 

Hardware GeForce RTX 2080ti 

(11Gb) or RTX 3090 

(24Gb) 

NVIDIA A40 or L40 

(45Gb) 

NVIDIA A40 or L40 

(45Gb) 

GeForce RTX 3090 

(24 Gb) 

 

4.2 Datasets 

The specifics of the datasets of the four computer vision tasks are shown in Table 4. For all tasks, it is assumed that every 

client has the same amount of data, and that the data is distributed equally, e.g. homogeneous data distribution. 

Table 4: Overview of the datasets per computer vision task, the number of classes and the used train test split. 

Computer vision task Dataset Number of classes Train/test split 

Classification CIFAR-10 [21] 10 50.000 train images 

10.000 test images 

Object detection Uno Cards [22] 15 6.295 train images 

899 test images 

Semantic segmentation Foodseg103 [23] 15 

 

4.983 train images 

2135 test images 

ReID Market-1501 [24] 1501  750 training persons with 

12,936 training images. 

751 testing persons with 

3,368 query images and 

15,913 gallery images. 

 

In the CIFAR-10 dataset, ten classes are defined, and the task is to detect which one of these classes is in the input image. 

Several examples of possible images are shown in Figure 2. 

 

Figure 2: 10 example images of the 10 classes in CIFAR-10 [21]. 

For object detection the Uno Cards dataset is used. This dataset contains images of Uno playing cards, where the computer 

vision task is to detect the small numbers on the corner of these cards. Some examples are shown in Figure 3. 



 

 

 

 

 

Figure 3: Example annotations of numbers on playing cards in the Uno Cards dataset [22]. 

The Foodseg103 dataset contains images of food, where 103 different ingredients are labelled, see Figure 4. Some 

examples are wine, tomato, peach, pizza, popcorn. These labels can each be combined into one of the 15 superclasses (16 

if background is included). Those include for example vegetables, fruit, main and beverage. Some superclasses have many 

ingredients, and others have only one (soup, salad, tofu, sauce and egg each are both a superclass and an ingredient). To 

make the segmentation process easier, it is chosen to do this computer vision task on the superclasses, and not on the 

ingredients. This is also to speed up the training  process. 

 

Figure 4: Some examples of annotated ingredients from the Foodseg103 dataset [23]. 

In the Market-1015 dataset, the area in front of a supermarket at a university is captured. Here, six cameras are used to 

capture the dataset, placed at different locations on the scene with areas of overlap. This dataset contains 1501 people, 

where train and test dataset do not contain overlapping people. The task is here, based on an input image, to sort images 

from most similar to less similar, and rank images of the same person as high as possible. 

 

Figure 5: Images of two persons reoccurring in the Market-1501 dataset [24]. 

4.3 Performance metrics 

The performance of the four CV tasks is defined by a performance metric. For classification and semantic segmentation, 

this metric is the accuracy, defined by the number of correct predictions divided by the total number of predictions. The 

performance metric of object detection is the mean average precision (mAP), which is based on Intersection over Union 

(IoU). The IoU thresholds are between 0.5 and 0.95 with steps of 0.05. For Re-ID, the mAP score is used too, in this 

context it reflects the average accuracy of retrieval and the effectiveness of the ranking of relevant images across multiple 

queries. 

4.4 Hyperparameters of the setup 

The batch size, learning rate and weight decay for each computer vision task are shown in Table 5. Each task is ran for 

200 epochs and uses a momentum of 0.9. 

Table 5: Used hyperparameters for the four computer vision tasks 

 Classification 

(baseline) 

Classification 

(finetuned) 

Object detection Semantic segmentation Re-ID 

Batch size 128 6 12 64 

(maximum) 

Learning rate 

0.1 0.2 0.001 0.001 0.00035 

Weight decay 0.0001 0.01 0.0005 0.0005 0.0005 

 



 

 

 

 

A learning rate scheduler typically performs better than one fixed learning rate value. We use the OneCycleLR scheduler 

from PyTorch with in total 200 epochs, which increases until 1/3rd of the total epochs and then decreases until the end. The 

curve of this scheduler is shown in Figure 6 for a maximum learning rate of 0.02. In Table 5 and in the remainder of this 

paper, when we say something about the learning rate, we mean the maximum value in this scheduler. 

 

Figure 6: Learning rate scheduler used for classification with a maximum learning rate of 0.02. 

For object detection, semantic segmentation and ReID, the hyperparameters are based on literature.  

For classification, an evaluation is performed to find optimal hyperparameters because insights from literature were not 

consistent. The baseline parameters that could be found in literature are a learning rate of 0.1 and a weight decay of 0.0001 

[16]. However, the best learning rate of 100% of the data is not necessarily the best option for 4 x 25% of the data in FL. 

The open-source FL framework Horovod [25] recommends to multiply the learning rate by a factor proportional to the 

number of clients in the FL setup*. The centralized approach with 100% of the data gives best results using a learning rate 

of 0.1 with a weight decay of 0.0001 [16]. Thus a logical step is to apply a learning rate of 0.4 in each client (when using 

four clients) with a weight decay of 0.0001, because the data is split in four parts. Nevertheless, this rule to scale the 

hyperparameters might not be the optimal choice. First, this rule does not hold for a high number of participating clients 

as the learning rate would simply be too high. Furthermore, [2] showed that best results were obtained with a learning rate 

of 0.02 and a weight decay of 0.01, which are very different from the baseline hyperparameters. In order to choose an 

optimal working point for our FL setup, an evaluation of possible learning rates and their resulting accuracy is done (see 

Table 6). A weight decay of 0.01 from [2] and 0.0001 [16] are compared. Because the final setup should work with using 

both top-k compression and residual, a configuration of 400x compression, and residual memory is applied. 

Table 6: Evaluation of the various learning rates for a compression of 400x with using residual. 

Experiment ID Learning rate Accuracy 

Weight decay = 0.01 

Accuracy 

Weight decay = 0.0001 

1 0.005 88.8% 79.6% 

2 0.01 90.2% 82.4% 

3 0.02 90.6% 84.1% 

4 0.04 89.7% 85.4% 

5 0.08 87.9% 86.5% 

6 0.1 86.8% 86.6% 

7 0.2 83.6% 87.7% 

8 0.4 71.1% 88.3% 

 

For the experiments on classification, the finetuned parameters with a learning rate of 0.02 and a weight decay of 0.01 are 

used. Nevertheless, in the section on multiple computer vision tasks, baseline hyperparameters (learning rate of 0.1 and 

weight decay of 0.0001) are also used to evaluate the possible configurations. 

 

* https://github.com/horovod/horovod/issues/384 



 

 

 

 

5. EXPERIMENTS AND RESULTS 

This section contains the experiments and results. First, the effects of compression and residual (Sec. 5.1) and noise (Sec. 

5.2) are shown for image classification. Then, SSGA results are shown on four CV tasks (Sec. 5.3).  

5.1 Compression and residual 

The aim of this experiment is to analyze the effect of compression and residual. The hypotheses are (1) that higher 

compression will lead to lower accuracy and (2) that an approach with residuals will work better than without residual. An 

experiment was performed for image classification with various compression factors up to 400x compression and without 

noise. Note that the compression is actually a range that is defined by the union between the gradients of individual clients, 

as explained in Section 3.2. If only one compression ratio is mentioned in the text, e.g., 400x, it refers to the respective 

experiment with the compression range between 400x and 1600x. 

The results of top-k compression with and without residual on image classification are shown in Table 7. The results 

without residual show that higher compression leads to lower accuracy. At 200x-800x compression, the approach without 

residual is already almost as bad as the separate approach, where four clients train on 25% of the data, without sharing the 

gradients. Note that no compression is different than 1x-4x compression, see brief explanation in Section 3.2. The results 

with residual also show a trend of lower accuracies for higher compression, but the values are much higher. For example, 

400x-1600x compression with residual is still much better than the separate approach and comparable with only 5x-20x 

compression without residual. So, we can conclude that higher compression indeed leads to lower accuracy and that an 

approach with residual works better than without residual. 

Table 7: Resulting performance with top-k compression when residual memory is enabled and disabled.  

Exp. ID Compression range Accuracy (without using residual) Accuracy (with using residual) 

1 FL (no PETs) 94.5% 

2 1x – 4x 94.1% 94.1% 

3 2x – 8x 93.2% 93.0% 

4 5x – 20x 91.6% 91.7% 

5 10x – 40x 90.2% 91.0% 

6 50x – 200x 88.8% 90.7% 

7 200x – 800x 88.3% 90.3% 

8 400x – 1600x 88.4% 90.6% 

9 Separate 

(lower bound) 

88.2% 

 

5.2 Noise 

The aim of this experiment with image classification is to verify that noise has no effect on accuracy, since pairs of noise 

cancel each other out in aggregation. In the experiment, a compression factor of 400x-1600x is used and residual memory 

is enabled. 

The resulting accuracy of the models when the noise is added to the gradients is shown in Table 8. The performance 

without noise is given for reference. These results show that including the noise does not influence the performance, and 

that the noise created in the client pairs is successfully cancelled out in the server when the models are aggregated. 

Table 8: Results of adding noise.  

Experiment ID Configuration Accuracy 

1 No noise 90.6% 

2 With pairwise noise 90.6% 

 



 

 

 

 

5.3 SSGA for multiple computer vision tasks 

To evaluate the effect of the security strategies on the four computer vision tasks, there are six experiments, denoted by 

their experiment ID in Table 9 that are performed for each CV task. The upper bound of the expected results is defined by 

the centralized configuration (exp. 1) and the lower bound is defined by the separate configuration (exp. 2). The other 

experiments test various configurations of security strategies: federated learning (exp. 3), adding 400x-1600x compression 

(exp. 4), adding residual (exp. 5) and adding noise (exp. 6). The expected results are discussed in the last column.  

 

Table 9: Explanation of the six experiments on computer vision tasks. 

Exp. ID Configuration Explanation Expectation 

1 Centralized (upper 

bound) 

A model is trained on 100% of the train 

data, as is normally done when training 

an arbitrary model.  

Will give the best results out of all 

experiments. 

2 Separated (lower 

bound) 

Four clients train on 25% of the train 

data, without sharing the gradients. They 

only learn from that local data portion.  

Will give the worst results out of all 

experiments. 

3 FL without security 

strategies 

All gradients of the model are 

communicated every batch.  

This is expected to give results 

close to training on 100% of the 

data in exp. 1. 

4 FL with 400x 

compression 

Only the largest 0.25% of the gradients 

is shared each batch. No residual 

memory is kept updated on gradients not 

sent. 

Will give results close to separate 

training on 25% of the data in exp. 

2. 

5 FL with 400x 

compression + residual 

In addition to exp. 4, residual memory is 

now updated with uncommunicated 

gradients.  

This is expected to increase the 

performance compared to exp. 4, 

and reach a value close to exp. 3 

6 FL with 400x 

compression + residual 

+ noise 

All security strategies are enabled, 

pairwise noise is added on top of the 

configuration in exp. 5. 

The result is the same as exp. 5. 

 

 

Results for image classification, object detection, semantic segmentation and ReID are respectively shown in Table 10, 

Table 11, Table 12 and Table 13. For classification, the results on both baseline and finetuned hyperparameters are given. 

For Re-ID, the standard deviation is also given, to show how much the four clients can differ in one run.  

 

Table 10: Results for image classification with baseline and finetuned hyperparameters. 

Exp. 

ID 

Configuration Compression 

range 

Residual Noise Accuracy with 

baseline 

hyperparameters 

(%) 

Accuracy with 

finetuned 

hyperparameters 

(%) 

1 Central  - 93.9 93.3 

2 Separate  - 85.7 88.2 

3 Federated - - Disabled  92.2 94.5  

4 Federated 400x – 1600x Disabled Disabled 85.5 88.4 

5 Federated 400x – 1600x Enabled Disabled 86.6 90.6 

6 Federated 400x – 1600x Enabled  Enabled  86.6 90.6 

 



 

 

 

 

Table 11: Results for object detection. 

Experiment 

ID 

Configuration Compression 

range 

Residual Noise mAP (%) 

1 Central  - 90.2 

2 Separate  - 87.8 

3 Federated - - Disabled  89.1 

4 Federated 400x – 1600x Disabled Disabled 87.9 

5 Federated 400x – 1600x Enabled Disabled 88.4 

6 Federated 400x – 1600x Enabled  Enabled  88.4 

 

Table 12: Results for semantic segmentation. 

Experiment 

ID 

Configuration Compression 

range 

Residual Noise Accuracy (%) 

1 Central  - 80.2 

2 Separate  - 75.6 

3 Federated - - Disabled  78.7 

4 Federated 400x – 1600x Disabled Disabled 75.3 

5 Federated 400x – 1600x Enabled Disabled 76.9 

6 Federated 400x – 1600x Enabled  Enabled  76.8 

 

Table 13: Results for person ReID. 

Experiment 

ID 

Configuration Compression 

range 

Residual Noise mAP (%) 

1 Central  - 86.6 

2 Separate  - 62.9+-1.7 

3 Federated - - Disabled  69.7+-1.4 

4 Federated 400x – 1600x Disabled Disabled 62.6+-0.6 

5 Federated 400x – 1600x Enabled Disabled 65.5+-0.9 

6 Federated 400x – 1600x Enabled  Enabled  65.4+-1.0 

 

In general, these results are consistent throughout the various computer-vision tasks, and are in line with the expectations 

from Table 9. In general, training on 100% of the data (exp. 1) gives the best performance. The worst performance is 

obtained by the separated setup (exp. 2), where four clients independently train on 25% of the data. Furthermore, it can be 

seen that keeping track of a residual memory (exp. 5) improves the result of the configuration without residual memory 

(exp. 4). Where in all cases the performance of the compression without residual (exp. 4) is equal to the separated result 

(exp. 2), the performance of residual (exp. 5) adds at least 1.5%. Also, the results without and with noise (exp. 5 and 6) 

consistently show that noise does not significantly negatively affect the performance. So, the results confirm the 

expectations presented in Table 9.  

6. DISCUSSION 

Section 5 showed that residual has a positive effect on accuracy and that noise does not have a negative effect on accuracy. 

Nevertheless, there are a few points that need to be discussed. 

6.1 Hyperparameters 

For classification, the results in Table 10 use two configurations of hyperparameters, namely baseline parameters (from 

literature) and the finetuned parameters (from Table 6). The finetuned parameters show a pattern that is exactly what is 



 

 

 

 

expected (Table 9). The baseline parameters seem optimal for the centralized experiment (exp. 1), however, for all other 

experiments the results of the baseline are worse than the finetuned parameters. Additionally, in the finetuned parameter 

column, the FL approach (exp. 3) shows an extremely high accuracy that is even higher than the centralized approach (exp 

1). One can argue that parameters that are optimal for a large dataset (exp. 1) are not optimal for a smaller dataset (exp. 2) 

and this also has its effects on the FL-based approaches. This shows how much the performance of federated model can 

be influenced by unlucky choice for hyperparameters, which is in line with the big differences shown in Table 6. It is 

recommended to think about fitting hyperparameters for the chosen configuration. 

6.2 Re-ID 

For Re-ID, Table 13 shows a very large performance drop between the centralized approach (exp. 1) and the separate 

approach (exp. 2) from 86.6% to 62.9%, which is almost 24%, while using the same hyperparameter settings. The 

performance is somewhat increased when using high compression with residual memory opposed to not using residual, 

but it does not reach a value close to the centralized result. On one hand, this behavior can be expected because of the non-

homogeneous nature of the data in Re-ID. On the other hand, it can also be related to the effect that was observed in Section 

6.1, that these hyperparameters are optimal for the centralized approach and not for the other experiments. It again 

emphasizes the relevance of hyperparameter tuning, but it was considered out of scope for this paper. 

6.3 Aggregation 

In all experiments FedAvg is used as aggregation method. Even though this method is fairly simple, it proves to be 

effective. Nevertheless, in [2] they do not use FedAvg aggregation strategy. Instead of taking the weighted average, they 

calculate the aggregate by taking the sum of all gradients. This aggregation method is also tried in this research, the results 

are shown in Table 14. The hyperparameters used are the same as in experiment from Table 7 (Weight decay is 0.01 and 

learning rate is 0.02). Note that the performance of Sum with residual is slightly better than when using FedAvg. However, 

since this aggregation strategy does not hold for a large number of clients (the gradients will be too large for reliable 

updates) it is chosen to use the FedAvg aggregation strategy that is widely used and reliable. It will also not hold for data 

distribution where some clients have a different amount of local data. 

 

Table 14: Average and sum aggregation for image classification 

  Accuracy 

  Without residual With residual 

Experiment 

ID 

Compression 

range 

FedAvg Sum FedAvg Sum 

1 1x – 4x 94.1% 94.1% 94.1% 94.2% 

2 2x – 8x 93.2% 93.7% 93.0% 93.6% 

3 5x – 20x 91.6% 92.4% 91.7% 93.5% 

4 10x – 40x 90.2% 91.4% 91.0% 93.1% 

5 50x – 200x 88.8% 88.8% 90.7% 92.6% 

6 200x – 800x 88.3% 88.1% 90.3% 92.2% 

7 400x – 1600x 88.4% 88.0% 90.6% 92.3% 

 

Furthermore, for Re-ID – and in general for non-homogeneous data – FedAvg may not be the most effective aggregation 

strategy. Due to the non-homogeneous nature of the data in Re-ID, FedAvg may worsen the results, since not all gradients 

need to be overwritten with an aggregate. There are various aggregation methods that are useful for Re-ID. Research in 

FedPav [26], [27] and FedReID [28] propose solutions to tackle this problem. 

 

6.4 Future research 

For future work, we will focus on expanding the FL setup in terms of making it more robust and secure. To make it more 

robust, it has to be able to handle non-homogeneous data. Currently the assumption was that the amount of data and class 



 

 

 

 

distribution are the same in every client for every computer vision task (aside from Re-ID). In future research, we will 

investigate heterogeneous data distributions, aggregation methods for the heterogeneous data, and a way to measure or 

visualize the added value of the security strategies. 

7. CONCLUSION 

In this paper, we made a custom FL framework. Since data in security applications is often very sensitive, it is important 

to be very careful with what can be leaked trough the gradient updates. Therefore we applied secure sparse gradient 

aggregation. The security strategies that we incorporate are top-k compression with residual memory, and adding noise to 

the communicated gradients. The top-k compression reduces the communication time significantly, but the performance 

drops when compression becomes too high. We showed that keeping track of a residual memory of uncommunicated 

gradients boosts the performance at high compression values significantly. Additionally, we added noise to our gradients 

to make deciphering intercepted gradients more difficult. Noise is added pairwise, so between a client pair, one adds the 

noise to the gradient and the other subtracts it, giving that it will automatically be cancelled out at aggregation in the server. 

Our experiments show that adding noise does not influence the performance. For real world applications, such as cross-

border document authentication, a federated framework might be used for multiple machine learning tasks. We showed 

that our framework holds for image classification, object detection, semantic segmentation and person Re-ID. 
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