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ABSTRACT

The use of simulated data for training deep learning models has shown to be a promising strategy for automated
situational awareness, particularly when real data is scarce. Such simulated datasets are important in fields
where access to environments or objects of interest is limited, including space, security, and defense. When
simulating a dataset for training of a vehicle detector using 3D models, one ideally has access to high-fidelity
models for each class of interest. In practice, 3D model quality can vary significantly across classes, often due
to different data source or limited detail available for certain objects. In this study, we investigate the impact
of this 3D model variation on the performance of a fine-grained military vehicle detector, that distinguishes 15
classes and is trained on simulated data. Our research is driven by the observation that variations in polygon
count among 3D models significantly influence class-specific accuracies, leading to imbalances in overall model
performance. To address this, we implemented four decimation strategies aimed at standardizing the polygon
count across different models. While these approaches resulted in a reduction of overall accuracy, measured
in average precision (AP) and AP@50, they also contributed to a more balanced confusion matrix, reducing
class prediction bias. Our findings suggest that rather than uniformly lowering the detail level of all models,
future work should focus on enhancing the detail in low-polygon models to achieve a more effective and balanced
detection performance.
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1. INTRODUCTION

Object detection models in high-stakes fields, such as the military domain, are required to have exceptional
accuracy and reliability. Deep learning-based' detection methods are known to depend on vast amounts of
real-world training data, which is costly and challenging to collect.

An effective alternative for model development is the use of simulated data. Recent work has shown the
potential for several object detection applications, including military vehicles,? maritime vessels,® and persons.*
The benefits of simulated training data have been studies for several imaging modalities, including natural
images,® infrared,® radar,” and sonar imagery.®

A key method for creating synthetic training data is to simulate scenarios where 3D models of the objects
are placed in a scenario of interest. This offers a controlled, scalable, and secure means of dataset creation,
assuming representative 3D models can be produced. However, synthetic data has its drawbacks, primarily the
‘synthetic-to-real gap’. This gap pertains to the differences between real and synthetic images (mainly in content,
texture, and environmental conditions). As a result, models trained on synthetic datasets often fail to transfer
effectively to real-world scenarios.”

Our research focuses on the development and enhancement of a military vehicle detection model using a
simulated dataset derived from 3D models of 15 military vehicles. Previous iterations of our research demon-
strated that while simulated data facilitates effective model training,'® the performance across different vehicle
classes was inconsistent. Some classes achieved as high as 85% classification accuracy, whereas others were never
identified correctly. This disparity prompted a detailed analysis of the factors influencing model performance,
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Class Accuracies vs. Polygon Counts
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Figure 1: Average class accuracy over 6 runs relative to 3D model polygon count.

revealing a strong correlation between the polygon count of the 3D models and the corresponding class accura-
cies, as shown in Figure 1. For an example of a low and high polygon count 3D model see the no decimation
column in Figure 3.

To address these inconsistencies, we hypothesized that normalizing the level of detail across all classes by
standardizing the polygon count of the 3D models would mitigate the skew in class accuracies. Consequently, we
implemented a decimation process to adjust the polygon count of each model to approximately 1,000 polygons.
This paper presents our methodology, the adjustments made to the simulated dataset, and the impact on the
performance of the object detection model. By balancing the details represented in each vehicle class, we ensure a
more uniform accuracy across different classes and we gain insight into the effect of variation in 3D-model fidelity.
Although we do not improve overall detection performance, a more uniform accuracy can improve robustness
and reliability of the system in operational settings.

2. METHODS

In this section, we describe how we standardize the level of detail across a set of 3D military vehicle models
used for generating a dataset. Each 3D model undergoes two main stages: initially, we apply a silhouette-based
refinement step, followed by our decimation strategy. Furthermore we demonstrate the steps involved in training
the model and generating the synthetic dataset.

2.1 Silhouette-based 3D model refinement

To begin, we remove fine details, such as antennas and smaller mirrors, that are not consistently present across
all 3D models. This process involves generating three silhouettes of the 3D model, one from each principal
axis perspective (X, Y, and X). Next, we refine these silhouettes using a morphological opening operation, as
illustrated on the left side in Fig. 2. The resulting silhouettes are shown on the right side in Fig. 2, projected
around the original 3D model. Finally, any vertices from the original 3D model that lie outside these processed
silhouettes are eliminated. Removing these vertices creates small holes in the 3D model’s surface, which are in
the next step automatically repaired as a by-product of our decimation strategy

2.2 Decimation strategy

After refining the silhouette to remove small details, we apply a decimation pipeline to reduce the complexity of
our 3D models to approximately 1,000 polygons. The threshold was chosen based on the observed correlation
between class accuracy and polygon count of the 3D models, as visualized in Fig. 1. We hypothesize that
reducing the polygon count to 10% will create a better balance in model complexity, potentially improving overall
accuracy or at least reducing the class prediction imbalance. Unlike standard decimation methods that often
retain fine details like mirrors or antennas, our pipeline is designed to preserve the primary shape of the object.
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Figure 2: Left: The silhouette over the X-axis of the 3D model before and after the opening operation. Right:
The complete model with refined silhouettes, vertices outside the silhouette boundaries will be removed.

The decimation process begins with two initial steps that streamline the later steps. First, we selectively
remove polygons that form angles below a 5-degree threshold, simplifying the model while maintaining its overall
form. Second, we enhance the structure by adding a minimal thickness to the geometry. This step prevents the
formation of holes and preserves the integrity of the model’s surface during the remeshing.

Next, the model is remeshed to ensure a uniform level of detail across all models. This process recalculates
the mesh based on a voxel grid that intersects with the original geometry. The voxel size controls the level of
detail: larger voxel sizes result in retention of less detail. In our study, we use two different remeshing settings,
referred to as light’ and heavy’ decimation. For light decimation, we use a voxel size of 0.05 with a minimal
thickness of 0.07, while for heavy decimation, we use a voxel size of 0.1 with a minimal thickness of 0.13.

Finally, we proceed with decimation of the model by progressively removing polygons that form smaller
angles, using an increasingly strict threshold beyond the initial 5-degree threshold, until the polygon count is
reduced to approximately 1,000.

In addition to the light and heavy decimation strategies, we apply combined decimation experiments: com-
bined (light) and combined (heavy). In this hybrid approach, we only decimate models that initially had more
than 10 polygons (Fig. 1). Those with a lower polygon count remain unaltered. We hypothesize that this com-
bined approach maintains the balance between outlier reduction in polygon count, while preserving accuracy, as
some models are more sensitive to decimation, due to their initial polygon count.

2.3 Dataset generation and model training

Following the described decimation strategy, we generate a dataset following the procedure described in previous
work.? Using the Blender 3D graphics software, we place the 3D model at the center of a High Dynamic
Range Imaging (HDRI) scene. Realistic camera positions and model orientations are sampled randomly within
predefined ranges and the images are rendered, with corresponding object masks automatically generated as
annotations. In this case, we used 100 unique HDRI scenes and generated 400 images per class, for a total of
6000 images per dataset.

We adopted the model architectures and training strategies outlined in.!° We utilized object detection
model implementations found in the MMdetection framework.!! The following data augmentations were applied:
photometric distortions, horizontal flipping, cropping, and scaling. The models used for fine-tuning on our
simulated datasets were a Mask R-CNN'!2? with a SWIN-T transformer backbone,'?® pretrained on the COCO
dataset,'* and MM-Grounding-DINO,'® pre-trained on various datasets.

To evaluate model performance, the mean average precision (mAP) and the AP at an intersection over union
(IoU) threshold of 0.5 (AP@50) are computed. Both are popular metrics for object detection tasks and combine

Proc. of SPIE Vol. 13206 1320600-3



classification accuracy with localisation accuracy. The latter, AP@50, is more focused on classification accuracy
than on localisation accuracy. To gain insights into the class prediction balance, the normalized confusion
matrices are computed for each experiment. Every experiment is repeated six times to obtain a standard
deviation of the performance metrics and to reduce variance in the confusion matrices.

3. RESULTS

Figure 3 shows examples of the decimation effects on two different models: the M109 and the T90, for which the
initial models consist of 625 and 12261 polygons respectively (see also Fig. 1). The M109 model, being simpler,
is less affected by the decimation process. It primarily removes elements such as antennas, highlighted by red
circles in the images. In contrast, the T90 model, which is more complex, exhibits a more significant reduction
in detail. In Fig. 3, the smoke grenade launchers are highlighted across the decimation settings. Initially, these
launchers appear as distinct components, but they gradually transform into a simple cube with only a textured
surface as decimation increases, similar to the simpler details observed in the initial M109 model.

(a) M109 No Decimation (b) M109 Light Decimation (¢) M109 Heavy Decimation

(d) T90 No Decimation (e) T90 Light Decimation (f) T90 Heavy Decimation
Figure 3: Comparative visualization of M109 and T90 models under different decimation settings. The top row
shows the M109 model from no decimation to light and heavy decimation settings, while the bottom row shows
the T90 model with similar variations. The red circles in the top row show that antennas are removed in the
decimation step of the M109. In the bottom row, the smoke grenade launchers of the T90 are highlighted, which
are gradually simplified in the decimation steps until only a cube with a textured surface remains.

In Table 1 the results for the experiments conducted using the Mask R-CNN and Grounding DINO models
are presented. The table reports the mAP and AP@50 for each model under different decimation settings: no
decimation (the initial 3D models), light decimation, heavy decimation, and combined decimation approaches
(light and heavy).

We observe that for four decimation approaches, the mAP and AP50 decrease with respect to the models
fine-tuned on datasets generated based on the initial 3D models. For the grounding DINO model, the least
performance loss is observed for the combined (light) method, where only models with a high polygon count
(> 103) were altered.

Figure 4 shows the confusion matrices from the Grounding DINO experiments. In the original confusion
matrix, several classes, particularly the T90, Fennek, Boxer, Scania, and the DAF truck, have a very high
prediction rate. Four of these classes correspond to those with higher polygon counts, as indicated in the accuracy
versus polygon count plot in 4. Although all decimation strategies result in a decrease in overall accuracy, the
confusion matrices appear to become more balanced. This is especially true for the combined (light) decimation
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Table 1: Results for Grounding DINO and Mask RCNN. All experiments were run six times to compute the
standard deviation.

. Grounding DINO Mask R-CNN
Experiment
mAP AP@50 mAP AP@50
No decimation 351 £29 389+31 349+08 44.0+09

Light decimation 308+26 34.7+28 31.8+04 40.1+04
Combined (light) 322+32 357+£36 31.3+10 384+1.1
Heavy decimation 29.6 &= 1.7 33.1 £ 1.9 296 +0.2 37.8 £ 0.2
Combined (heavy) 31.04+ 2.7 34.7+28 286+ 1.4 359+ 1.6

(Fig. 4d), which also shows the smallest decrease in AP. The heavy decimation strategies further appear to
balance the confusion matrix, but also come with a greater reduction in AP. The overall decrease in performance
can be explained by the increase in number of objects predicted as background and the fact that although there
are less false positives predicted for the highly detailed 3D models, the number of true positives also increases.
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Figure 4: Confusion matrices for the grounding DINO experiments, averaged over the six runs.

In Figure 5, we visualize how the class accuracy relative to polygon count changes after combined (light)
decimation. The models with initially > 10% polygons decrease in both accuracy and naturally, polygon count.
However, for the models in the lower left corner, so, those with initially a low accuracy and a low polygon count,
we observe an increase in accuracy.

4. DISCUSSION

In this study, we investigated the impact of 3D model fidelity, specifically in the level of detail, on the perfor-
mance of DL-based object detection models trained on simulated data. This investigation was prompted by the
observation that variations in polygon count among the 3D models used for the simulation correlate strongly
with the class-specific accuracies, and thus influence the overall accuracy of the model. To address this, we
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Figure 5: Change in average class accuracy versus polygon count, from no decimation (initial 3D models) to after
combined (light) decimation. for the Grounding DINO model. Although in the upper right corner (high polygon
count and accuracy), the accuracy decreases after decimation, in the lower left corner (low polygon count and
accuracy) the accuracy increases after decimation.

implemented four decimation strategies aimed at standardizing the polygon count across different models. While
all decimation approaches resulted in a reduction of overall accuracy - measured in mAP and APQ50 - they
also contributed to a more balanced confusion matrix. This indicates a reduction in class prediction bias. The
balance was most effectively achieved with the combined (light) decimation strategy, which maintained relatively
the highest accuracy while reducing the class prediction imbalance caused by the classes with initially much
higher polygon counts.

Our original hypothesis was that reducing the polygon count to a uniform level across all classes would mitigate
the imbalance in class prediction and in this way, increase overall accuracy. However, our results indicate that
while reducing the polygon count does decrease the prediction frequency for those classes, it also leads to a
noticeable drop in average precision AP. These findings are supported by Figure 5, which shows that although
class accuracies are converging, the overall accuracy decreases. This suggests that lowering the detail level to
match that of less frequently predicted classes does not solve the problem; in fact, these models lack sufficient
detail to effectively train a detector. Rather than attempting to reach a uniform level of detail by reducing the
complexity of high-detail models, a more effective approach might be to enhance the low-detail models, bringing
them up to the level of the high-detail models. This approach would ensure that all models possess the necessary
detail to contribute meaningfully to the training process. Furthermore, the results implicate that polygon count
might not be the decisive factor in determining model quality. Other aspects, such as texture quality or the
accuracy of the 3D model, might play a more significant role in influencing prediction performance.

While equalizing the level of detail is necessary, the goal should be to elevate all models to a higher fidelity
rather than reducing detail. Research consistently shows that models trained on highly detailed and realistic
synthetic data are better equipped to generalize to real-world scenarios, reducing the domain gap between
simulated and real environments.'®'? Future work should focus on enhancing the level of detail of 3D models
and thereby the quality of the simulated data. This could be achieved through the use of generative AT methods,
such as inpainting and controllable diffusion, which have shown promising results for creating more realistic and
detailed simulated data.?23
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