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ABSTRACT

Automatic object detection is increasingly important in the military domain, with potential applications including
target identification, threat assessment, and strategic decision-making processes. Deep learning has become the
standard methodology for developing object detectors, but obtaining the necessary large set of training images
can be challenging due to the restricted nature of military data. Moreover, for meaningful deployment of an object
detection model, it needs to work in various environments and conditions, in which prior data acquisition might
not be possible. The use of simulated data for model development can be an alternative for real images and recent
work has shown the potential for training a military vehicle detector using simulated data. Nevertheless, fine-
grained classification of detected military vehicles, using training on simulated data, remains an open challenge.

In this study, we develop an object detector for 15 vehicle classes, containing similar appearing types, such
as multiple battle tanks and howitzers. We show that combining few real data samples with a large amount of
simulated data (12,000 images) leads to a significant improvement in comparison with using one of these sources
individually. Adding just two samples per class improves the mAP to 55.9 [£2.6], compared to 33.8 [£0.7]
when only simulated data is used. Further improvements are achieved by adding more real samples and using
Grounding DINO, a foundation model pretrained on vast amounts of data (mAP = 90.1 [£0.5]). In addition,
we investigate the effect of simulation variation, which we find is important even when more real samples are
available.
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1. INTRODUCTION

Automatic object detection is increasingly important in various domains, including security,! robotics,? and the
military.? Military applications of object detection include surveillance and reconnaissance as well as target
identification and tracking. The vast amount of sensor data acquired by military platforms, both manned and
unmanned, is likely to expand in the coming years, increasing the demand for automated analysis methods.

Deep learning? has become the standard methodology for developing object detectors and typically requires
a large set of annotated data. Obtaining the necessary set of training images can be challenging due to the
restricted nature of military data, resulting in a lack of access to certain objects of interest. Moreover, for
meaningful deployment of an object detection model, it needs to work in various environments and conditions
for which data acquisition might not be possible.

An alternative for collecting a large set of real data that includes the environment variations and the objects
of interest is the use of simulated data. Simulated data for training deep learning methods has shown to be
promising for various applications, including autonomous driving,” radar image segmentation,® and thermal
infrared tracking.” Interestingly, even when a lot of real image data is available, the addition of simulated data
can be beneficial to model performance.®

In recent work, we showed that simulated data can be used for training a military vehicle detector® using a
Mask R-CNN model'® with transformer backbone.!! When sufficient simulation variation was included in the
simulated dataset, evaluation on a set of real images with 4 different military vehicles led to a mean average
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precision (mAP) of 0.76 and an mAP50 of 0.95. In the work, we identified several axes of simulation variation
that are important to achieve good detection performance on real data.’

Nevertheless, fine-grained classification of a larger set of military vehicles remains an open challenge and
previous work showed that simply expanding the pipeline to more object classes decreases the performance
significantly. One potential strategy to address this, is to include a small amount of real data to the simulated
dataset during training. An alternative is the use of a foundation model. Foundations models, such as Grounding
DINO,'2 have recently been introduced and are trained on a very large set of data to obtain rich features for
various downstream tasks.

So far, it remains unclear what the value is of combining simulated data with real data for training of a
fine-grained military vehicle detector. In this study, we investigate the effect of having access to a few real data
samples combined with a large amount of simulated data. We study this for Mask R-CNN and Grounding DINO
and compare the benefits of combining both sets with the added value of simulation variation.

2. RELATED WORK
2.1 Object detection

Deep learning has become the standard methodology for object detection, powering popular architectures such
as YOLO,'3 SSD,'* R-CNN, ! and their respective successors. In this study we use Mask R-CNN,!? which is an
extension of Faster R-CNN'6 with a parallel branch for predicting segmentations, as our baseline model, since
it provided good results in previous work.” In recent years, Transformer based backbones have shown to be
superior over their convolutional based counterpart,'” especially when training with synthetic data.'® Our Mask
R-CNN uses a Swin-T backbone,'' a type of Vision Transformer that constructs hierarchical feature maps by
progressively merging image patches in deeper layers.

2.2 Joined training of real and simulated data

When training object detectors exclusively with simulated data, a gap is observed in how well these models
perform on real-world data. This gap highlights the challenge for simulating data to fully replicate all complex
variations and nuances present in real-world scenarios. Adding even a small amount of real data to the mix
could significantly enrich the training set and allow the model to learn from this. Therefore, a method to bridge
the synthetic-to-real gap is to combine simulated and real data in the training process. This approach aims to
leverage the strengths of both data types.

There are two main methods to integrate simulated and real data.'®2° The first involves sequential training,
where the model is initially trained on simulated data and then fine-tuned. This approach allows the model
to first understand the broad concepts of classes using synthetic data, before addressing the synthetic-to-real
gap by adapting to a limited amount of real data. A potential drawback is however that the model overfits on
the simulated data during the initial training phase, which may not provide an ideal foundation for subsequent
fine-tuning on real data.

Alternatively, one can train a model using mixed batches, where simulated and real data are presented
together during the training process. In this way, the model can learn from both data types simultaneously. It
encourages the model to learn generalizable features across both datasets and reduces the risk of overfitting on
the simulated data. In preliminary experiments we found that mixed training works best, so we adopted this
approach for our study.

2.3 Foundation models

Self-supervised large vision models have marked significant advancements in computer vision research. Well
known approaches include SimCLR,?" 22 which leverages contrastive loss, and DINO,?? which not only improves
upon contrastively trained methods but is also fully transformer-based. CLIP?* was proposed to integrate vision
and language, employing an image-text contrastive objective to learn similar embeddings for corresponding text-
image pairs. GLIP?® takes the principals of CLIP and extends them for the use of object detection and phrase
grounding, where grounding refers to the process of matching words to specific regions within an image. Building
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Figure 1: Overview of methods.

upon this, Grounding DINO'? integrates ideas from both DINO and GLIP, improving zero-shot capabilities and
downstream object detection performance. We use Grounding DINO as the second object model in this study.

The rich representations created by foundation models can be utilized for downstream tasks such as object
detection, offering two main paths for adaptation to the specific task: zero-shot applications and transfer learn-
ing. In a zero-shot context, unsupervised vision models can utilize basic k-nearest neighbors (kNN) for object
classification. This approach allows for the categorization of new objects based on the similarity of their feature
representations to those of known objects, without requiring explicit example-based learning. Vision-language
models further benefit from prompt engineering,?% 27 to guide the model to apply its learned representations to
recognize and localize objects in images directly without labeled examples.

3. METHODS

An overview of our methods is depicted in Figure 1. Deep learning-based object detectors are trained using
simulated or real data, or a combination of both sources. Evaluation is done on a separate set of real images.
The experiments are performed with two object detection models: Mask R-CNN'? and Grounding DINO.!'?
We experiment with smaller sets of real training images as well as a simulated dataset that contains much less
variation. In the next sections, we provide details about the datasets, object detection models, and experiments.

3.1 Datasets

For the fine-grained military vehicle detection, fifteen distinct types of military vehicles were selected. The list of
vehicles is provided in Table 1 and includes armoured personnel carriers, reconnaissance vehicles, battle tanks,
howitzers, and military trucks.

Table 1: Overview of the military vehicle classes.

Superclass Classes

Armoured personnel carrier Boxer, BTR-80, TPz Fuchs, Patria

Scout car Fennek, BRDM-2

Battle tank Leopard, M1 Abrams, T90, CV90
Howitzer M109, 2519 Msta, Panzerhaubitze 2000
Military truck DAF YA 4440, Scania

3.1.1 Real data

A dataset of 959 real images was collected by scraping the internet. The data was split in sets of 360 train
images (24 per class), 150 validation images (10 per class), and 449 test images (21-50 per class). The images
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were annotated using the Computer Vision Annotation Tool (CVAT),?® an open-source interactive annotation
tool for videos and images, in combination with the Segment-Anything Model (SAM)? for fast semi-automatic
segmentation of the military vehicles. Mask R-CNN requires ground truth segmentations in addition to bounding
box annotations, while Grounding DINO only requires bounding boxes for training. In total 1,381 (488 train,
216 validation, 677 test) objects were annotated.

3.1.2 Simulation data

For generation of the simulated data, we used the same approach as Eker et al.® did for 13 classes. For this
study we added the Scania and CV90 classes. In brief, 3D models were placed in High Dynamic Range (HDRI)
scenes in Blender®® and virtual pictures were acquired from various viewpoints. Images were generated with
variation in the HDRI background scenes, object-camera distance, object yaw, pitch, and roll, model subtype,
model texture, and model configuration. In total, 12,000 images (800 per class) were simulated, and we refer to
this set as the full variation dataset.

To compare the effect of simulation variation (e.g. when only limited development time is available to
construct a simulation pipeline) with the added value of including real data, we created a second simulated
dataset. This low variation set also contains 800 images per class, but includes much less simulation variety.
Table 2 shows the simulation settings of both datasets.

3.2 Models

The object detection models were implemented in the MMdetection framework,?! which is based on a PyTorch
backend.?? Data augmentations were used for both the simulated and real dataset during training to increase
data variability and prevent overfitting. Photometric distortions (contrast, saturation, and hue) are applied,
followed by horizontal flipping, cropping, and scaling.

3.2.1 Mask R-CNN

Building upon our previous work,? we utilized a Mask R-CNN'? with a SWIN-T transformer backbone,'! with
weights pre-trained on the COCO dataset.?® The model was trained for 60,000 iterations (30 epochs) with
batches of 12 images. The backbone was step-wise unfrozen in four stages after every 6 epochs. At the same
epochs, the starting learning rate of 2 x 107? is decreased by a factor of four. A warm-up phase of 400 iterations
was used before reaching the starting learning rate.

3.2.2 Grounding DINO

We chose MM-Grounding-DINO?* as our foundation model, selecting a version pre-trained on a wide array of
datasets including 0365v1,3® Flickr30K,¢ V3Det,>” and GRIT,?® and equipped with the SWIN-T backbone.
We hypothesize that MM-grounding-DINO provides a superior starting point for fine-tuning on our real and
synthetic military vehicle datasets. This is due to its training in an open-world, multi-modal setting which

Table 2: Overview of the simulation settings over the axes of variation for both simulated datasets. For a detailed
explanation of the axes we refer to our previous study.’

Axis of variation Full variation Low variation
# of HDRI background scenes 100 4
Background resolution 12-24k 12-24k

Frequency inversely distributed
with distance [10, 100] meter 21.6, 36 and 60 meters
Object yaw Uniformly distributed [0, 360]° 0, 90, 180, 270°

Roll rotation: 0 +55
Pitch rotation: 5 £ 77
# of model textures All available textures (3-4) 1 texture for all classes
50% standard, 50% uniform 100% standard

distributed [min, max]

Object-camera distance
Pitch nor roll rotation

Object pitch and roll

# of model configurations
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improves the models generalization capabilities. Grounding DINO implements a end-to-end transformer based
model, in contrast with the Mask R-CNN which only utilizes a transformed-based backbone. We fine-tuned this
model for 5 epochs, since it convergences much quicker compared to the Mask R-CNN. The fine-tuning began
with a learning rate of 1 x 1075, reduced by a factor of 10 at the start of the fourth epoch, without implementing
a warm-up phase.

3.3 Experimental approach

We designed and executed a series of experiments to evaluate the value of simulated data in combination with a
few real data samples, for both detection models. Every experiment is repeated three times to obtain a standard
deviation of the performance metrics. In the first two experiments, only the simulated datasets with full variation
and low variation were used for training. Next, we trained the models on the full real dataset of the 24 collected
images, and on subsets of 8 and 2 samples. These subsets of the real training samples were made so that three
different, non-overlapping, splits are used in the three repetitions. To explore the added value of combining
both real and simulated data, the detector was also trained using mixed batches with equal amounts of real and
simulated data. The combined experiments were repeated for both simulated datasets.

For all experiments, we wanted to ensure that the total dataset encompassed 24.000 images (800 real and
800 simulated images for all 15 classes for a combined experiment). Therefore, the real dataset was repeated
(33, 100, and 400 times for 24, 8, and 2 real samples respectively). When training with either exclusively real
or simulated data, we still required a dataset of 24.000 images in total. Thus, we double the aforementioned
number of repeats for the real data or repeat the simulated data twice.

3.4 Evaluation

The mean average precision (mAP) is a popular metric for object detection tasks. It combines classification
accuracy with localisation accuracy. The latter is determined by how well the predicted bounding boxes match
the ground truth, measured by the Intersection over Union (IoU).3? In addition, we compute the mAP50,? which
is less strict in accepting the quality of the bounding box localisation and thus provides more insight in the
classification accuracy. Both metrics are computed for the test set. The normalized confusion matrices are
computed for each experiment, providing more information on how specific classes are predicted.

Table 3: The mAP and mAP50 of the two military vehicle detector networks trained using the different datasets
with either simulated or real data, or a combination of both. LV = Low Variation.

Mask R-CNN Grounding DINO
Training dataset mAP [+ std] mAP50 mAP mAP50
Simulated (LV) 19.2 0.8] 28.1 [1.2] 23.3[1.2] 25.8[0.8]
Simulated 33.8 [0.7] 411 [0.8] 33.7 [3.2] 37.4[3.6]
2 real 27.2 [2.8] 38.3 [3.7] 23.7[3.8] 26.3 [3.9]
Simulated (LV) + 2 real  40.6 [2.4] 54.1 [2.3] 44.5[6.3] 48.4 [6.5]
Simulated + 2 real 55.9 [2.6] 70.1 [2.1] 529 [4.5] 56.6 [4.3]
8 real 55.4 [1.0] 71.3 [1.6] 64.0[1.3] 68.1 [1.8]
Simulated (LV) + 8 real  62.9 [0.9] 78.4[0.3] 74.6 [2.0] 78.7 [2.4]
Simulated + 8 real 69.1 [1.2] 83.2 [1.1] 80.2 [1.0] 84.6 [0.6]
24 real 72.2 [0.6] 86.8 [0.5] 85.6 [1.1] 90.2 [1.0]
Simulated (LV) + 24 real 72.1 [2.0] 87.2[0.9] 88.40.3] 93.210.0]
Simulated + 24 real 76.2 [0.5] 89.4 [0.4] 90.1[0.5] 94.7 [0.4]

4. RESULTS

The mAP and mAP50 for the real test set images for all different training datasets and both models are pre-
sented in Table 3, including the standard deviation across the three iterations of each experiment. When only
simulated data or only two real samples are used to train Mask R-CNN, the mAPs are 33.8 [+0.7] and 27.2

Proc. of SPIE Vol. 13035 1303509-5



. 467678145

Figure 2: Bounding boxes predicted by the Mask R-CNN trained on 2 real samples in combination with the
full variation simulated data, on test images containing the four battle tank classes. From left to right and top
to bottom: M1A2 Abrams (photo by Staff. Sgt. Matthew Keeler/U.S. Army), T90, CV90 (photo by Martin
Bos/DefensieFotografie Nederland), Leopard 2A6 (photo by 7th Army Training Command/Flickr). One Leopard
is missed, the other detections are correct. The lines of the bounding boxes were thickened as a postprocessing
step to enhance visibility.
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Figure 3: Confusion matrices for Mask R-CNN when trained on 2 real samples (left) and a combination of the
simulated dataset with full variation and 2 real samples (right).

[£2.8] respectively. Combining both sources results in an mAP of 55.9 [£2.6] and in Figure 2 we show some
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selected detections by this model for the different battle tanks (Leopard, M1 Abrams, T90, and CV90).

Figure 3 displays the confusion matrices for the Mask R-CNN models trained with 2 real samples only and
trained with 2 real samples in combination with the simulated data. The improvement in mAP is clearly reflected
by the differences between the confusion matrices. While some classes are almost never predicted correctly with
only 2 real samples, this improves to substantial percentage when it is combined with simulated data, e.g. the
accuracy for the Leopard class increases from 3% to 26%, for the Patria class from 8% to 37%.

Increasing the number of real samples further improves the mAP, both in combination with the simulated
datasets and without. Figure 4 visualizes this trend for the experiments with Mask R-CNN. The effect of adding
simulated data on top of real samples becomes smaller when more real samples are used. The results for the
experiments with the low variation are all in between the experiments without simulated data and those with
the full variation dataset.

Further improvements are obtained by using Grounding DINO as the object detection model. The best
results are achieved when 24 real images per class are combined with full variation in the simulated dataset
(mAP = 90.1 [+0.5]), which is substantially more than Mask R-CNN achieves for this combination (76.2 [£0.5]).
Zooming in on the confusion matrices of Grounding DINO with 24 real images (Figure 5), we see a small benefit
of adding simulated data. In comparison with the set without simulated data (mAP = 85.6 [£1.1]), we see minor
improvements for correctly predicted objects for most classes and a reduction in missed detections.

Interestingly, when only very few real samples are available, Grounding DINO does not score better in our
experiments. Mask R-CNN trained with two real samples in combination with full variation simulated data
results in an mAP of 55.9 [+2.6] in comparison to 52.9 [+4.5] for Grounding DINO. When trained with only
the full variation simulated data, mAP scores are similar for both models, while Grounding DINO score better
when trained with the low variation set.
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Figure 4: mAP scores for Mask R-CNN experiments with increasing number of real samples, combined with
simulated data, either with full variation or low variation (LV). Error bars represent the observed standard
deviation.

In general, repeating the experiments three times yields consistent results. Notable is the increase in standard
deviation when training with a subset of only 2 real samples (2.6 - 3.0 percent) in comparison with a larger subset
of 8 real samples or the whole set (ranging from 0.5 to 1.2 percent). mAP50 scores show a similar trend as mAP.
The gap between the mAP and mAP50 indicates that part of the detection mistakes are related to the bounding
boxes localization. These gaps are larger for Mask R-CNN than for Grounding DINO. This indicates that
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Figure 5: Confusion matrices for Grounding DINO when trained on 24 real samples (left) and a combination of
the simulated dataset with full variation and 24 real samples (right).

the higher mAP scores for Grounding DINO are at least partly the result of more accurate bounding boxes
predictions.

5. DISCUSSION

We previously showed that a deep learning-based military vehicle detector can be developed with only simulated
data. While this detector performed well for four classes of quite distinct vehicles, extending the task to more
classes substantially decreased performance.® The set of 15 vehicle types we use in this study contains similar-
looking classes, such as multiple armoured personnel carriers, battle tanks, and howitzers, for which the nuances
in appearance difference might not be well-represented in the simulated data. This limitation is likely related to
the quality of the 3D models and other simulation factors, which could be addressed by spending more time on
the simulation pipeline and simulated object details. However, taking into account limited time for simulation
development, this might not be the most effective approach. Another strategy could be to collect more real data
and use this to enhance the detectors performance. This presents an important trade-off: should one focus on
generating and improving the simulated data, or on acquiring (more) real data?

In this study, we showed that for the development of a fine-grained military vehicle detector, combining
few real data samples with a large amount of simulated data leads to a significant improvement in comparison
with only using one of these sources. When only simulated data is used, even when using full variation in the
simulation settings, an mAP score of 33.8 is obtained using Mask R-CNN, which is not sufficient for meaningful
deployment. Similarly, a relatively low mAP score (27.2) is obtained when only two real samples are available
per class. Combining the two sources leads to a substantial improvement (mAP = 55.9), which almost equals
the sum of the mAPs for the two individual sources.

In the absence of simulated data, increasing the number of real samples from 2 to 8 and 24 improves the mAP
substantially, which is line with the consensus that deep learning models benefit from more data. When more
real samples are available, the addition of simulated data further improves performance, although the added
benefit with Mask R-CNN seems to be smaller for 24 real samples.

Grounding DINO is a foundation model that has been pretrained on a large amount of data. We therefore
hypothesized that this model might have a good performance even when providing a training dataset with only
a small number of real samples per class. When using 24 real samples per class, Grounding DINO indeed shows
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a high accuracy (mAP = 85.6) while Mask R-CNN scores 10 percents lower (mAP = 72.2). The benefit of
Grounding DINO is even more apparent when 24 real samples are combined with the simulated dataset (mAP =
90.1, in comparison with 76.2 for Mask R-CNN). Interestingly, this advantage did not extend to scenarios with
only 2 real samples per class, where Grounding DINO’s performance was low (mAP = 23.7), even being slightly
surpassed by Mask R-CNN (mAP = 27.2). This outcome suggests that, despite its potential for generalizability,
Grounding DINO’s large number of parameters may make it better suited to larger datasets. Alternatively,
dedicating more time on prompt engineering the class names could potentially mitigate this performance shortfall,
providing Grounding DINO with a more effective starting point for training with minimal data. Another possible
explanation why Mask R-CNN works better for two real samples lies in the extra annotations that were available
for Mask R-CNN. The ground truth segmentations, on top of the bounding box annotations, might have been
helpful when very few examples were used for training.

The experiments with low and full simulation variation underline the importance of having sufficient simula-
tion variation. In general, the mAP scores for experiments with the low variation dataset are in between training
without simulated data and training with the full variation dataset. This indicated that, while less variation in
the simulated data leads to a lower mAP, it still is beneficial in comparison with not adding any simulated data
at all.

For all experiments with 2 and 8 real samples we used non-overlapping data splits to run three unique
experiments. The confusion matrices of e.g. two real samples versus two real samples with simulated data were
compared using the same splits. We noticed biases occurring in these comparisons, over- or underestimating
specific classes. However, for a different split, the bias seems to be towards different classes, emphasizing the
dependency on the specific samples when only 2 images are available per class. This might be caused by differences
in image quality, or some samples not being very representative of the vehicle type.

In many situations, acquiring (more) real samples can be challenging or even impossible due to a lack of
access. In such situations, further improvements can be achieved by enhancing the simulated data. This can
be done by improving e.g., the details of the 3D models and background, and the configuration of the object
in the image. Another strategy is to use generative AI to further augment the simulated images.*® Potential
solutions include image-to-image translation to generate more photo-realistic images,*' local in-painting using
Diffusion,*? and image generation techniques where the simulated vehicle shape can be inputted as a prior, e.g.
using Controllable Diffusion Models.*

The military vehicle detector presented in this paper was limited to a set of 15 classes, but given the excellent
detection performance, we argue that the number of vehicles can be increased. Future research could also focus
on investigating the effect of more difficult use-cases, for example when the objects of interest are further away
or better camouflaged, or when challenging weather conditions make the images less clear.

In conclusion, we showed that a high-performing fine-grained military vehicle detector can be developed using
Mask R-CNN and a large set of simulated data in combination with a few real samples. Further improvements
can be achieved by using Grounding DINO, increasing the number of real images for training, and maximizing
variation in the simulated dataset.
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