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ABSTRACT

Artificial intelligence (AI) models are at the core of improving computer-assisted tasks such as object detec-
tion, target recognition, and mission planning. The development of AI models typically requires a large set
of representative data, which can be difficult to acquire in the military domain. Challenges include uncertain
and incomplete data, complex scenarios, and scarcity of historical or threat data. A promising alternative to
real-world data is the use of simulated data for AT model training, but the gap between real and simulated data
can impede effective transfer from synthetic to real-world scenarios. In this study, we provide an overview of the
state-of-the-art methods for exploiting simulation data to train AT models for military applications. We identify
specific simulation considerations and their effects on AI model performance, such as simulation variation and
simulation fidelity. We investigate the importance of these aspects by showcasing three studies where simulated
data is used to train AI models for military applications, namely vehicle detection, target classification and course
of action support. In the first study, we focus on military vehicle detection in RGB images and study the effect
of simulation variation and the combination of a large set of simulated data with few real samples. Subsequently,
we address the topic of target classification in sonar imagery, investigating how to effectively integrate a small set
of simulated objects into a large set of low-frequency synthetic aperture sonar data. We conclude with a study
on mission planning, where we experiment with the fidelities of different aspects in our simulation environment,
such as the level of realism in movement patterns. Our findings highlight the potential of using simulated data
to train Al models, but also illustrate the need for further research on this topic in the military domain.
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1. INTRODUCTION

The rapid rise of artificial intelligence (AI) is supporting the improvement of computer-assisted tasks across
numerous fields. In the military context, AI models are anticipated to be integrated into operational systems for
a wide range of applications, such as detection of military vehicles,! detection of mines,? operation of autonomous
systems,? and mission planning.* Development of AI models typically requires large sets of representative data,
which can be challenging to obtain in the military domain.

Data accessibility is typically restricted due to its sensitive nature, leading to a scarcity of historical and
threat data. Additionally, the time-critical and sensitive dynamic of military operations leads to uncertain and
incomplete data, especially when dealing with complex scenarios. Target signatures are subject to change, either
due to technological developments or change in doctrine, meaning that even when a large dataset is collected, it
might not be representative for new missions.

An alternative to acquiring data is using simulation to generate data, for example by physics-based modeling
of the sensor and scenario of interest. Data simulation can be used to generate diverse and extensive datasets,
allowing for controlled acquisition variables and creation of novel and complex scenarios.>% Recent work has
shown the potential of using simulated data to train AI models in several modalities, including natural photo
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and video," " infrared (IR),'°"!? radar,!*1® and sonar.!6"'® Furthermore, simulations can be used to develop
Al-based tools for mission planning.* 19

Despite this potential, creating simulations that accurately represent real-world conditions remains challeng-
ing. One of the primary issues is the “reality gap” - the disparity between simulated and real-world data - which
can hinder the effective transfer of a model trained on simulated data to real-world applications.” To address
this, researchers have focused on investigating the reality gap, by studying the fidelity of simulators,?® or by
directly comparing data from both domains. For instance, studies have evaluated the appearance of raw real and
simulated data?! or the variations in feature space embeddings learned by the AI models during training.?!: 22

Nevertheless, the challenge of simulating datasets that enable AI models to perform well on real-world data
remains an open challenge. The key topics addressed in this paper are related to simulation variation and
simulation fidelity. With simulation variation, we aim to include all of the variations that occur in the distribution
of measured data. In contrast, simulation fidelity refers to the distance between the simulated and measured
data distribution. High-fidelity simulated data has a small distance to measured data, and the challenge is how
to measure the fidelity.

In addition, we investigate the value of combining simulated data with measured data for AI model training.
While simulated data provides a source that is plentiful and allows for all kind of variations and modification of
threat signatures, measured data can offer details that support AI model development where simulation fidelity
is lacking. Combinations of both sources are implemented by (1) injecting simulated threats into measured
environments and (2) mixing few real samples with a large amount of simulated data.

In this paper, we study the use of simulated data to train AI for applications and possible integration
into the military operational domain. First, an overview is provided of the relevant literature on applications
and methods (Section 2). In Section 3, we discuss how to bridge the reality gap through simulation variation
and fidelity, explaining the reasoning behind the selected experiments. Then, we present use cases on military
vehicle detection (Section 4), threat recognition in sonar (Section 5), and decision support for mission planning
(Section 6). Here, we experimentally investigate the effect of simulation variation and fidelity. We conclude in
Section 7, with a general discussion and an overview of the lessons learned.

2. RELATED WORKS

Simulated data provides a valuable resource when dealing with a lack of high-quality, annotated training data
in the context of developing AI models. The creation and use of simulated data can save time and resources in
the acquisition and annotation process, offers representation of a more diverse set of scenarios, and helps reduce
bias and privacy concerns.®% Simulated data has proven its value in numerous machine learning tasks,” but the
use of simulated data also presents challenges, such as reaching photo-realism, data diversity, and bridging the
gap between real and simulated data.® This section will provide an overview of the increasing use of simulated
data in the military domain, the different techniques for generating simulated data, and the reality gap.

2.1 Simulated data in the military domain

Particularly in the military domain, using simulated data can resolve issues regarding data accessibility and
confidentiality. Several recent publications have demonstrated the potential of using simulated data to train
AT models for tasks in the military domain. Most prominently, models have been developed for relevant object
detection tasks, such as military vehicle detection,!+® 23 24 automatic target recognition (ATR),!!:25 26 navigation
of unmanned aerial vehicles (UAV),2728 and mission planning.?? 3! This work covers RGB, IR, 11:13:26,32 apq
multi-modal, acoustic data.?” Other works have focused on the development of simulated data for mission
planning33 34 and the maritime domain.!3>26

Several studies have demonstrated the viability of training solely on synthetic images and evaluating on real
images. In one of the first works on this, Moate et al. (2018) trained a CNN using only IR imagery generated
from computer-aided design (CAD) vehicle models using a rendering tool.!Y Westlake et al. (2020) focused
on the generation of a synthetic IR dataset of maritime vessels to train for an ATR task and demonstrated
that high average precision and recall could be reached on real-world data despite training solely with synthetic
imagery.?% Ruis et al. (2024) demonstrated the feasibility of training solely on simulated images,’ developed
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best practices and showed the value of using a Transformer architecture and data augmentation methods for this
purpose. Alternatively, Spell et al. (2024) trained their models on a combination of real and simulated IR data
to perform vehicle and person detection, object identification, and vehicle parts segmentation.?? They concluded
that training on a combination of real and simulated imagery performs better than training solely on real data.

Lastly, de Melo et al. (2023) add a simulated dataset to the real training data for an ATR task and find
that this boosts their performance significantly.?> McKenzie et al. (2024) focus on acoustic sensing data, using
also a combination of real-world and synthetic data and thus demonstrating a proficient capability in ATR for
use in UAV.27 Xian et al. (2024) also experiment with real, synthetic and combined datasets but for the task of
real-time human recognition in UAVs and conclude that the combination of both performs best.?® Finally, Vo
et al. (2024) incorporate synthesized TIR data for a IR maritime classification task.'3

2.2 Methods for generating synthetic data

Several approaches exist for generating simulated and synthetic datasets. Traditionally, many follow a physics-
based approach, where laws of physics are used to replicate behavior of systems and physical phenomena in the
real world.

Several tailor-made physics-based simulations have been designed and evaluated specifically for the purposes
of gathering synthetic datasets for military purposes. As an example, Kenul et al. (2024) introduced a framework
that produces synthetic imagery that closely resembles real-world maritime data®® and Polat and Ozer (2022)
designed an approach using 3D rendering to simulate radiometric EO/IR data.?® As another example, Williams
et al. (2023) presented a customizable tool to generate large synthetic video datasets for aerial threat detection.3”
Uplinger et al. (2023) presents a solution based on a simulator that supports generation of physically accurate
custom synthetic IR training data.!!

Besides these approaches, gaming engines are also commonly used to support the simulation of datasets. One
regularly used one is Unreal Engine (UE), which enables multi-modal imagery generation. Nadell et al. (2023)
employ UE to generate a large training set for validation on real IR data.?® Dabbiru et al. (2024) also use UE
in combination with a separate vehicle simulator for the generation of object detection data.?® Soloviov et al.
(2024) design a dedicated headless open-source framework to generate high volumes and variety of synthetic data
for AI training, built on UE.*°

More recently, attention has shifted to novel, Al-based approaches to create synthetic datasets. Generative
models, like Generative Adversarial Networks (GAN) and diffusion models are particularity popular for this
purpose.*! These models can either generate datasets from scratch or augment existing datasets. One example
is the work by Vo et al. (2024), where a diffusion-based image-to-image translation model was used to translate
RGB images into synthetic infrared (TIR) data.'® Khullar et al. (2023) utilized a diffusion model pretrained on
a generic dataset for generation of road scenes from scratch.??> Yuan et al. (2023) designed an approach that
uses diffusion models to inpaint, inserting objects into scenes.*® Pichler and Hueber (2024)% developed a method
using Stable Diffusion to overlay vehicle patches onto relevant backgrounds. Trabucco et al. (2023) also employ
diffusion models as a data augmentation method, to generalize new visual concepts from a few labelled samples.**
Clement et al. (2024) implement a synthetic data pipeline for neural style transfer and GAN reskinning to train
object detectors.*> Eilertsen et al. (2021) took a different approach by using an ensemble of GANs to create a
diverse dataset.6 Pulakurthi et al. (2024) employ GANS to generate synthetic datasets from only a small sample
of real-world data.*” As a hybrid approach between aforementioned game engine UE and Al-based generation
methods, Kerley et al. (2024) use Large Language Models (LLMs) to generate scenes in UE.*8

Lastly, shifting the focus from sensor data to mission planning, the generally accepted approach for generating
simulated data is to use a simulator. The NATO Modeling and Simulation Group offers vast materials about
military simulations. Such military simulations require accurate models for various aspects, such as combat
modelling.?? Creating a precise and accurate simulator is not easy, and holds many theoretical and practical
challenges.>® An overview of military simulation tools can be found in Table 1 of van Oijen and Toubman.?!

In mission planning, there are two main paradigms. Firstly, data can be generated during the mission, using
the current state of the world as the starting condition. This approach requires an accurate digital twin of the
battlefield.*® By generating data in real-time, the decision support system provides mission-specific analysis,
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reducing generalization possibilities but potentially leading to more accurate outcomes. Secondly, data can be
generated ahead of time for various missions to train a generic decision support system. This approach is usually
applied for training intelligent agents that show relevant behavior, which can then be utilized during a mission.?”
In both paradigms, the simulator is tasked to find realistic continuations from a given starting state, which drives
the synthetic data generation.

2.3 Measuring the reality gap

The reality gap refers to the difference between real and simulated data, often caused by a lack of diversity, poor
domain fit, and low fidelity. Measuring this gap is an important first step to assess the quality of your simulated
dataset, as a significant reality gap can limit the ability of a model to generalize to real data. Strategies for
bridging this gap, once identified, will be further discussed in Section 3.

Several metrics and tools can be used to measure the reality gap, for which Dale et al. (2024) provide a
current overview.?! The mean square error (MSE), Structural Similarity Index (SSIM), binary cross entropy
(BCE), and Jensen Shannon Divergence (JSD) can be used to evaluate the domain gap in the image space. For
the abstract embedding of features in an Al model, MSE, BCE, and JSD can also be used. In addition to these,
the Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) could be used. Lastly, the Inception
Score (IS) can be particularly useful for the prediction space.?! Dale et al. conclude that SSIM is the best
measure for the image space and that BCE is the best measure for the latent space.

Adding to the existing measures, Reinhardt et al. (2024) introduce two new metrics tailored to images: the
Fréchet Embedding Distance (FED), a slight generalization of FID, and MAUVE scores, distribution comparison
measures using the f-divergence frontiers.?? Besides these measures, the distribution of real-world and simulated
datasets can be compared by visualizing their high-dimensional embedding spaces. Projection algorithms like
PCA, t-SNE, and UMAP can be used to project these high-dimensional data into lower dimensions, allowing for
a visual assessment of the similarity between the two distributions.??

3. BRIDGING THE REALITY GAP WITH SIMULATION VARIATION AND
FIDELITY

Our goal is to develop Al models with simulated data that perform well when applied to measured data. Al
models are known to learn shortcuts for predicting outputs based on the input data®" 52 and those shortcuts
are typically not applicable to data from a different domain. Bridging this reality gap requires some form of
approximation of the distribution of the measured data, but it remains unclear in what direction or to what
extend. In recent literature, authors have studied several methods for bridging the reality gap. This includes
diversification of data,’® variety in composition,®* occlusions and variations in lighting,?® and photo-realism.?®

The first topic of this paper is on simulation variation to bridge the reality gap. With simulation variation
we refer to the number of axes in which simulations are varied and to what degree. For example, for simulation
of scenes in RGB and infrared, relevant axes can be the number of viewpoints, the orientation of the objects,
the composition of the scene, the relation between the objects, the presence of non-targets, and many more.
It can even be beneficial to synthesize images with variations that are non-realistic in a process called domain
randomization.®” For mission planning, the speed at which soldiers move could be such an axis. The ease of
adding variation to the simulation depends on the use-case and the axes. For example, increasing the number of
object orientations can be relatively straight-forward, while increasing the number of appearances or camouflage
types can be laborious. With the addition of more variation options in the simulator, the amount of simulated
data is also likely to increase, making the process computationally expensive and resulting in more simulation
time. In Section 4, we investigate the importance of simulation variation for military vehicle detection and in
Section 5 for object detection in sonar use cases.

Closely related to the topic of simulation variation is data augmentation. Here, instead of directly simulating
variations, a processing step is applied that augments the data before feeding it to the AI model training process.
The variations that are added with data augmentation typically do not provide any additional information, but
are used as a trick to prevent an Al model from overfitting. For example, Ruis et al. (2024)! used several data
augmentation methods on top of well-known ‘traditional’ augmentations (flipping, cropping, rotating, scaling,
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blurring) like AutoAugment,®® MixUp,*® RandAugment,’® CutMix,%! or GAN-based augmentations®® leading
to improved performance for synthetic-to-real detection tasks in RGB images. For sonar imagery, traditional
augmentations are not necessarily applicable. Although we do use some form of data augmentations in most of
the experiments in this paper, we consider such experiments as part of the AI model improvement and therefore
outside of the scope of this paper.

The second topic of this paper is on how to measure and use the simulators fidelity to bridge the reality
gap. The term ‘fidelity’ originates from simulators and equipment that are used for training personnel.’3 In the
context of a decision support system for military operations, the term ‘fidelity’, often in conjunction with the
term ‘high’, is employed to describe the quality of a model.*5° So a high fidelity would indicate a small reality
gap. It is important to note that ‘high fidelity’ does not necessarily mean highly detailed. While greater detail
can enhance realism, it is not the sole determinant of fidelity. Fidelity is actually defined as the degree to which
a virtual environment accurately replicates the real world.%6 Therefore, even an abstract model can exhibit high
fidelity if it accurately portrays realistic behaviours. Consequently, the concept of fidelity can also be applied to
rudimentary decision support applications and its generated synthetic data.

High-fidelity models typically entail substantial development costs, often necessitating the expertise of spe-
cialists.5” Additionally, simulations with a high level of detail tend to be computationally expensive, resulting
in lengthy execution times.'* Hence, to design a simulation system that demands minimal maintenance and
expertise while ensuring high realism and accuracy, it is crucial to investigate how to achieve the optimal level of
fidelity necessary for AI model development. However, a persistent challenge in current literature remains how to
precisely define and measure the fidelity of a simulator. Intuitively, an AT model trained with high-fidelity data
seems desirable. Nonetheless, it has been shown that models defined as high-fidelity were not necessarily better
performing than low-fidelity models.5®6° This assessment has been conducted specifically for models employed
in the educational context but can also be generalized to a military application.”® In Section 5, we investigate
the effect of simulation fidelity for target recognition in sonar imagery and in Section 6, we investigate the effect
of simulation fidelity for development of a decision support system for mission planning.

A final strategy is based on domain adaptation, for example by finetuning with a small dataset of the target
domain.'* Similarly, training can be done with a mixed set of simulated and real samples.”! For example, Rizzi
et al. (2024)™ experimented with combining simulated and real data to build AI vision models with various
degrees of mixing. Although not the key focus of this paper, we do explore the combination of real and simulated
sources in Section 4, by training with mixed batches and in Section 5, by injecting simulated targets in measured
backgrounds.

4. VEHICLE DETECTION IN RGB IMAGERY

Automated detection of military vehicles in RGB photo and video data contributes to situational awareness
and supports timely decision making on the battlefield. Detection algorithms can be deployed in many systems
including stationary sensors, unmanned systems such as UAVs, and manned systems such as armored recon-
naissance vehicles. Development of these detection algorithms, however, remains a challenge due to the limited
availability of training data. This lack of data occurs for new types of vehicles, but also for well-established
vehicles that operate in a new environment, or of which the appearance has changed (e.g. upgrades, paint,
camouflage). Simulations can be used to create a dataset of military vehicles that includes a wide range of
variations.

In this chapter, based on recent publications by Eker et al. (2023)%4 and Heslinga et al. (2024),% simulated
data is used to train a deep learning model for automated detection and classification of military vehicles. We
do this for 4 and 15 object classes, including armored personnel carriers, reconnaissance vehicles, battle tanks,
howitzers, and military trucks. We evaluate the performance on real photos of military vehicles, scraped from the
internet. The main research questions for this use-case are related to simulation variation: How much variation
18 needed when simulating training data, and which axes of variation are important? In addition, we investigate
the effect of mixing a large set of simulated images with a small set of real samples.”! We do so for simulated
data that contains a lot of variations as well as a set that contains limited variation.

Proc. of SPIE Vol. 13206 132060M-5



4.1 Approach

Our strategy to determine the important axes of simulation variation is based on experimenting with the amount
of variation in several axes individually, training a deep learning-based detector for each simulated data set, and
evaluating the detection performance on measured data.

4.1.1 Experiments

We first experiment with a relatively easy detection challenge consisting of four vehicles classes: Fennek (scout
car), Boxer (armoured personnel carrier), Panzerhaubitze 2000 (Howitzer), and DAF YA 4440 (military truck).
A baseline data set of simulated images (800 images per class) is created that encompasses extensive variation
along several axes, including image background, object position, and object appearances. In separate experiments
for each axis, the amount of variation is reduced in comparison to the baseline set and the change in detection
performance is considered as the relative importance of that variation axis. A full overview of the experiments is
provided by Eker et al. (2023).2* Here, we only report the results for a single reduction step per axis of variation.

Next, we extend the concept of training with simulated data to an object detector for 15 classes. For this
fine-grained task, using only our simulated data results in an mAP of ~0.34, which we consider insufficient
for practical deployment. Therefore, we mix in a small amount of real data, which is combined with a full
variation dataset that contains maximal variation (similar to the baseline) for 15 classes. For an additional
set of experiments, we also mix the small amount of real samples with a low variation simulated dataset that
contains the reduced amount of variation along each axes described in the previous experiments.

We evaluate the models trained on various combinations of simulated and real samples using a test set of
449 images (21-50 per class). In each image, the object classes and locations are manually annotated. The
evaluation metric is the mean average precision (mAP), a popular metric for object detection tasks. It combines
classification accuracy with localisation accuracy, based on the Intersection over Union (ToU).

Figure 1. Examples of simulated military vehicle RGB images.

4.1.2 Data Simulation

3D models of military vehicles were placed in high resolution High Dynamic Range (HDRI) scenes in Blender
simulation software.”> HDRI scenes are 360° images that are wrapped against a distant sphere and include a
light source, typically from the position of the sun, that illuminates the object placed in the scene. Virtual
pictures were acquired from various viewpoints and some examples are shown in Figure 1.

The simulations were generated with variation in the HDRI background scenes (100 scenes), object-camera
distance (10-100 meter), object yaw (0-360°), pitch, roll, model subtypes (up to 7), model textures (3 or 4),
and model configuration (50% standard, 50% random). These settings were used to create the baseline set (4
classes, 800 images per class). We experimented with reducing the number of images per class to 100; reducing
the number of HDRI scenes to 4; reducing the number of textures to 1; only using a single model subtype per
class; only using standard configurations; removing pitch and roll; only using 4 horizontal viewing angles; and
reducing the number camera-object distances to 3 (Figure 2).

For the experiments with 15 classes, a full variation dataset was generated using the same simulation settings
as used for the baseline set. A low variation dataset was constructed with the reduction steps mentioned above,
except that all available model subtypes were used, as we noticed a large standard deviation between experiments
with only a single subtype. The number of images was also kept constant (800 per class) to make sure that the
number of iterations per epoch was the same across experiments.
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Figure 2. Effect of simulation variation on the performance of object detection in real images. Each bar represent a
single axis along which the variation is reduced. Error bars represent the observed standard variation based on three
experiments with newly simulated datasets. mAP = mean Average Precision.

4.1.3 AI methods

Simulation variation experiments were performed by training a deep learning-based object detector with a Mask
R-CNN architecture’® with a transformer backbone,” pre-trained on COCOQ.7® The transformer backbone had
been identified as beneficial when training with simulated data because of its sensitivity to shape over texture
compared to typical convolutional neural networks.! Training details are provided in Eker et al. (2023).%*

Another object detection model was used in addition to Mask R-CNN for the experiments with 15 classes.
Grounding DINO™ is a foundation model that integrates detection and grounding by combining vision and
language models, using contrastive loss to align image features with textual descriptions. Unlike typical object
detection models that rely solely on visual inputs, Grounding DINO is trained on large datasets with visual and
text annotations.

Besides training the Mask R-CNN and Grounding DINO detectors only with simulated images, we combined
the full variation and low variation simulated datasets with small numbers of real samples (2, 8 or 24 images
per class). Joint training is performed by using mixed batches instead of sequential training, to encourage the
models to learn generalizable features across both datasets and reduce the risk of overfitting on the simulated
data.™

4.2 Results

The results of the simulation variation experiments are shown in Figure 2. Interestingly, all considered axes
of variation seem important and reducing the variation in each single axis results in a lower mAP score than
obtained with a detector trained on the baseline dataset. The observed standard variation is small, except for
the experiments where only a single model subtype is used per class. This discrepancy is probably related to the
difference in the quality of the 3D models, which was found to differ across subtypes.

Object detection performances for 15 classes are displayed in Figure 3. When the object detectors are only
trained with simulated data, the mAP scores are lower than for the 4-class problem. The low variation simulation
set scores substantially lower than the full variation set, substantiating the importance of simulation variation.
A large increase in mAP is obtained when the simulated data sets are combined with a small number of real
samples. For example, Mask R-CNN trained with only simulated data leads to an mAP of 0.338 [+0.007]
compared to a mAP of 0.559 [£0.026] when two real samples per class are added to training data.

The positive effect of mixing both sources is consistent even when a larger number of real samples is available,
although the benefit of simulated data becomes smaller as the number of real images increases. Moreover, even
when real samples are mixed in, the simulated data set with full variation leads to a better mAP than the low
variation set. We note similar trends for both Mask R-CNN and Grounding DINO detectors, however when
more real samples are available (> 8 samples per class) Grounding DINO outperforms Mask R-CNN.
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Figure 3. Results for the experiments with 15 object classes, increasing number of real samples, combined with simulated
data, and either with full variation or low variation (LV). Error bars represent the observed standard deviation based on
three training repetitions.

Figure 4 shows more detailed results for a single model: the Mask R-CNN trained on 800 full variation
simulated images and 2 real images per class. The confusion matrix is relatively balanced and most confusion
occur between similar looking classes (e.g. the DAF and Patria military trucks, and the TPz Fuchs and Patria
armoured personnel carriers). The visual examples in Figure 4 show examples of predicted bounding boxes.

2 real samples + 800 simulated samples

I

Ground truth
label

0

Predicted label

Figure 4. Results for Mask R-CNN trained on 800 simulated and 2 real images per class. Left: Confusion matrix. Right:
Examples of predicted bounding boxes for two main battle tank classes. Top: M1A2 Abrams (photo by Staff. Sgt.
Matthew Keeler/U.S. Army). Bottom: Leopard 2A6 (photo by 7th Army Training Command/Flickr). The lines of the
bounding boxes were thickened as a postprocessing step to enhance visibility.

As a post-hoc analysis step, we looked at the t-SNE embedding of the simulated and real images. Figure 5
shows a t-SNE visualisation of the features from the final layer of the feature pyramid of a Mask R-CNN trained
with simulated data and 24 real samples per class. Despite a strong detection performance on real images by
this model (mAP = 0.762), a clear distinction can be seen between simulated and real data in the t-SNE plot.
This indicates that while the features extracted from simulated and real samples are quite distinct, the model
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Figure 5. t-SNE plot for features extracted from the final feature pyramid layer of the a Mask R-CNN trained on a mix of
simulated data and 24 real samples per class. Features computed for the whole real dataset of 449 samples are shown, and
for both the full variation (sim_full) and the low variation (sim_LV') simulated sets, 449 images were sampled randomly.

generalizes nonetheless. Future work could focus on investigating the differences in feature space in more detail.

5. TARGET RECOGNITION IN SONAR

Automated interpretation of sensor data is highly relevant in sonar applications, and becomes even more im-
portant as a consequence of two recent developments: Both the amount of sensor data that is collected and the
quality increases. Furthermore, Maritime Unmanned Systems (MUS) are being introduced. To obtain actionable
information in-mission, there needs to be an effective automated perception capability at the MUS. Owing to
communication constraints, it is often not feasible to have a human in-the-loop in the perception process.

In this chapter, which is based on recent publications by van de Sande et al. (2023)7® and Kuijf et al. (2024),7
we consider perception in different modalities of low-frequency (LF) sonar data. Effective automation of target
recognition of these types of data is challenging for several reasons. First, the characteristics of LF sonar data
substantially differ from optical imagery. The resolution and Signal-to-Noise Ratio (SNR) of these data are much
lower compared to optical imagery. Second, it is anticipated that the information captured both in amplitude
and phase data (frequency content) needs to be made available as input to support target recognition. A third
challenge is scarcity of threat data. Although large volumes of sonar data can be made available as input to
training, they are unbalanced and hardly contain data with relevant threat signatures. A fourth challenge is
that the threat signature varies with environmental conditions and with relative position and orientation with
respect to the sonar system. In low-frequency active sonar (LFAS), for example, the sound emitted by a sonar
system propagates through a waveguide, to a potential target, interacts with the target (target scattering), and
subsequently propagates back to the receiver system. The properties of the waveguide vary both in space and
in time.

To address these challenges, several solution directions are being proposed. It is advocated that the neural net-

work size should be tailored to the availability of data.®?' 8! Furthermore, it is hypothesized that environmentally-
adaptive target recognition techniques need to be developed to realize effective and reliable target recognition.®?

We investigate whether simulations can be used to address the scarce threat data and open-world/dynamic
environment challenges encountered in sonar data. This is done by considering two case studies. The first one
is the detection and classification of Unexploded Ordnance (UXO) in Low-Frequency Synthetic Aperture Sonar
Data (LF-SAS).™ The second case study investigates the classification of targets in a waveguide in LFAS data.”™
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5.1 Classification of Unexploded Ordnance in LF-SAS data

The analysis presented in this section uses data collected by TNO’s Mine Underground Detection (MUD) system®3
as input. The MUD system has been developed to detect and localize buried objects in the seabed in inshore
environments, such as harbours. It uses an interferometric LF-SAS as primary sensor to detect proud and buried
objects, and operates at frequencies below 30 kHz.

During several field experiments, recordings have been made of mine-like targets. Among those are two
dummy UXO: NL-REF and NL-CYL. NL-REF is a 0.5 m x 1 m aluminium cylinder with internal structure
and filled with water. NL-CYL is a 0.3 x 0.6m solid aluminium cylinder, which is a replica of the target used
by Williams et al.®% We generate high-fidelity simulations of these targets by using a finite-element modelling
(FEM) approach® and subsequently inject synthetically generated targets in real data measured by TNO’s MUD
system. With this approach, the full elastic response of axisymmetric objects is obtained, which comprises both
a geometric response and target resonances. More than 1000 synthetic realizations of NL-CYL and NL-REF
were generated by changing target ranging (grazing angle random between 25 and 65 degrees), target orientation
(azimuth angle random between -90 and +90 degrees), burial depth and sediment type (sand and mud). The
training set is complemented by approximately 400 clutter contacts extracted from measured data.

In this use case, we investigate whether there is a reality gap between simulated NL-REF and NL-CYL
targets and the corresponding target signatures LF-SAS data. This will be done by training a CNN classifier
on synthetic targets and measured clutter, and subsequently evaluating the performance both on synthetic and
measured targets and clutter contacts. Refer to van de Sande et al.”™® for a more elaborate description of the
experiment.

The goal of the classification is to discriminate the dummy UXO objects NL-REF and NL-CYL from the
clutter contacts. The architecture of the CNN used is described in van de Sande et al.”® The model is trained
on roughly 1000 synthetic NL-REF and NL-CYL views and 500 clutter data snippets. The classifier is evaluated
on independent synthetic and/or measured target and clutter data sets. The set of measured targets consists of
72 NL-REF and 15 NL-CYL images and the evaluation set for clutter consists of 153 data snippets.

As already indicated in the introduction, there are different representations that can be used for sonar data.
One representation is LF-SAS imagery.86 89 It is a spatial representation aiming to provide insight in the spatial
distribution of scatterers. A purely geometrical interpretation of LF-SAS imagery, however, is not appropriate
since objects excited by sound will resonate at specific frequencies. This complicates the interpretation of LF-
SAS imagery. On the other hand, these resonances are of specific interest as they contain clues not only on the
size of objects, but also on the composition.”’ Another representation is referred to as Multi-Aspect Acoustic
Color (MAAC). It focuses on the spectral response of objects and the variation of this response with the angle of
incidence. This representation can provide detailed information on the existence and the mechanism responsible
for resonances.”’ An example of LF-SAS and corresponding MAAC imagery for NL-REF for different aspect
angles is presented in Figure 6. It illustrates the variability of the SAS images with aspect angle. The variations
in MAAC should predominantly consist of a translation along the aspect angle axis. The MAAC imagery,
however, also contains substantial differences as a result of a limited opening angle of the SAS aperture.

Figure 7 shows receiver operator characteristics (ROC) curves for the experiments conducted on SAS and
MAAC imagery. For SAS imagery, there is only a small performance degradation on real targets compared to
synthetic targets, suggesting that there is hardly a reality gap between simulated and real target signatures. For
the corresponding MAAC results, a substantial performance degradation occurs when the classifier trained on
synthetic targets is applied to the measurements. These results indicate that the reality gap between simulations
and measurements is influenced by the data representation that is chosen, i.e. some information content is more
susceptible to differences between the simulated scenario and measurements.

This observation suggests that the reality gap between simulations and measurements is variable and depends
on the information used by the classifier to distinguish between targets and clutter. We found that the SNR of
the SAS imagery is higher compared to MAAC, indicating that the information content in SAS imagery is more
robust. Additionally, the information entropy of SAS imagery is lower compared to MAAC.
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Figure 6. Examples of LF-SAS simulations for NL-REF for different aspect angles. The top row shows LF-SAS images,

the bottom row the corresponding MAAC images (aspect angle vs frequency).
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Figure 7. ROC curves both for synthetic and measured UXO and clutter objects for CNN classifier based on MAAC (left)
and LF-SAS (right) imagery.

5.2 Target classification in a waveguide in LFAS data

This section considers target classification in Low-Frequency Active Sonar (LFAS) data.”>?% The goal is to
distinguish target echoes from air-filled objects positioned in the water column from echoes from clutter that
originate from back-scattering of sound at the seabed. This is investigated by considering air-filled spheres as
targets and granite spheres as clutter objects. It was hypothesized that the different types of objects can be
discriminated based on their target scattering response.”* The target echo, however, has traveled from the
emitter to the object of interest, and back to the receiver array through the water column. The properties of
the water column, which acts as a waveguide, have a substantial effect on the received target echo, i.e. the
target signature strongly varies with environment and with its relative position and orientation with respect
to the sonar (sonar depth, target depth and target range). Furthermore, the environmental conditions change
with space and time. This is a substantial challenge that needs to be addressed when designing solutions for
LFAS target classification. Measurements are conducted in specific environmental conditions and measurement
geometries, posing questions to the validity of the training when applied in different conditions.

To resolve this challenge, Kuijf et al.”™ hypothesized that target simulations can be exploited to develop
target classification approaches robust to environmental differences. This is demonstrated by comparing the
performance of classifiers trained on different data using three approaches:
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Figure 8. Illustration of LFAS use case geometry, synthetic target injection, and classification problem.

e Zero-shot/generalization approach: a classifier is trained without using any data corresponding to the
environmental conditions in which the classifier is evaluated; It is trained using data collected in different
environmental conditions;

e Environment-specific approach: only the limited subset of simulated data is used for training corresponding
to the same environmental conditions in which the classifier will be evaluated.

e Few-shot approach: the zero-shot classifier is fine-tuned using a limited subset of simulated data corre-
sponding to the environmental conditions in which the classifier will be evaluated. The few shot approach
uses the training data of the zero-shot combined with the environment-specific approach.

An artificial environment is combined with simulated target and clutter data, that are injected into the
environment Figure 8. Four different environments were simulated, corresponding to different environmental
conditions: Weston 1 (shallow water, iso sound speed profile), Weston 2 (shallow water, winter profile), Weston
3 (shallow water, summer profile), and Weston 7 (deep water, Munk profile).”>:%¢ These environments are
simulated with different water depths (50-2500 m).

Simulated targets (air-filled sphere of steel) and simulated clutter (solid sphere of granite) are injected at
different locations (range, bearing, depth) into the simulated environments. For every unique environment, 12
‘pings’ are simulated, of which six include 100 steel spheres as a proxy for targets and the other six include 100
granite spheres as a proxy for clutter. Targets are placed at a random position in the water column and clutter
is placed at the bottom of the sea. All objects are placed randomly between 2-15 km from the source.

Three different kinds of AT approaches are implemented: a support vector machine (SVM), a fully-connected
neural network (FCN), and a convolutional neural network (CNN).”™ These approaches are validated in a cross-
validation setting, where they are trained on a subset of the data (60 % of the data of an environment) and
tested on a separate subset (40 % of the data of an environment). In addition, the effects of varying the sound
speed profiles (the different Weston environments), the sediment types (coarse clay, medium silt, medium sand,
very coarse sand), and water depths are studied.

Results show that the zero-shot approach, which does not contain information about the environment in
which the system will be deployed, consistently has the worst performance. An example when varying the
Weston sound speed profiles is shown in Figure 9; and similar trends are observed when varying the sediment
types or water depths (see Kuijf et al.”). The few-shot and environment-specific approaches show the best
performance for all three machine learning approaches. Overall, the CNN consistently outperforms the SVM
and FCN by having higher receiver operator characteristics (ROC) area-under-the-curve (AUC) values.
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Figure 9. Results of the three machine learning approaches for the Weston 1 sound speed profile. From left to right:
the SVM, FCN, and CNN methods. Colours indicate the three approaches: zero-shot/generalization (blue), few-shot

(orange), and environment-specific (green). The CNN outperforms the SVM and FCN, which is also confirmed by higher
AUC values.

These results indicate that it is feasible to fine-tune a previously trained machine learning system with data
of simulated targets that are injected into the new environment. This outperforms the zero-shot approach, which
is unable to generalize to unseen environments. In practice, underwater environment information is available
and by injecting in-situ simulations of targets, training data can be generated for a target classification system.
The few-shot approach shows slightly better performance than the environment-specific approach, likely because
it is trained on more data. Both approaches can be considered in future applications for underwater target
classification.

6. MISSION PLANNING

This chapter aims to explore the relationship between the realism of the simulator (its fidelity) and the predictive
quality of a decision support system (DSS) that utilizes such a simulator. The study examines the significance of
various model parameters and further investigates the manoeuvre fidelity, extending earlier work.?” Furthermore,
the relation between the manoeuvre fidelity and the performance of a decision support model is analysed in greater
depth. Accurately assessing different aspects of simulator fidelity can support the development of future DSS.
Instead of repeatedly altering simulator parameters, generating synthetic data, and training the DSS, parameters
might be fine-tuned to enhance a fidelity measure, accelerating the feedback loop for the developer and avoiding
costly re-training of the DSS. The methods investigated are applied to a practical use case: a DSS focused on
the scenario of liberating a village from occupying forces.

6.1 Approach

To investigate the influence of the synthetic data quality on the performance of decision support applications, the
referent-abstract model concept is used.’® In other words, to assess the fidelity of an abstract model, a comparison
to a referent model is performed. The referent model is considered the most accurate model available, closely
mimicking the reality. The referent model serves as a benchmark against which the abstract model’s performance
and fidelity can be evaluated.

This comparison provides insights into how closely the model approximates the real-world, and the use of
real-world data in the referent model is encouraged. In order to facilitate a meaningful comparison between the
referent and abstract models, it is essential that both models simulate the same scenario. Hence, for this research,
the chosen scenario revolves around the liberation of a village from occupying forces as it is being performed in
the Mobile Combat Training Centre (MCTC) data.
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6.1.1 Experiments

The MCTC?1% was introduced in 2003 by the Dutch ministry of Defence and enables soldiers to practice
combat in a realistic setting, but without using real ammunition. Lasers and sensors are utilised to simulate
firing weapons. The system tracks the location of soldiers and vehicles, used ammunition, and health status. A
variety of weapons (e.g., rifles, heavy machine guns, indirect fire), vehicles (e.g., Fennek, Boxer) and terrain (e.g.,
cross-country, urban) may be included in the exercise. Figure 10(a) shows a soldier training with the MCTC.
Note the laser sensors on the helmet that registers hits, and the laser on the rifle for firing at opposing forces.
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(a) A soldier training in the Mobile Combat Training (b) Simulated forces are liberating the tralnlng village
Centre (MCTC).'%° Marnehuizen in an Agent-Based Model (ABM).

Figure 10. Illustrations of the data used in the mission planning experiments.

All the data that the systems generate are logged, so that they are available for the after-action review and to
provide a rough overview of the current state of the battlefield to the trainer. The logged MCTC data contains
the location of soldiers and vehicles at regular intervals. Also, fire events, hit events, kill events, and vehicle
associations (when a soldier enters or exits a vehicle) are recorded.

An exercise was selected that took place in the Dutch training village Marnehuizen, which was entirely built
to train Military Operations on Urban Terrain.'®® The Blue forces entered the village at the bridge in the
north-east and were tasked to clear the village of enemy forces. A house-to-house battle was fought, which lasted
20 hours, until the last houses on the west side of the village were declared free of enemies. Figure 10(b) shows
an excerpt of the village map, in which agent-based soldiers execute the same mission. The Blue forces occupy
several buildings in the east, and move forward building by building, eliminating any red forces (west) they
encounter. Even though only data from a single exercise was obtained, the manoeuvring of all soldiers of the
company in training during 20 hours of exercise is available.

The consistency of the data is somewhat lacking in several aspects, which is not a problem for gaining a
rough overview of the state of the operation for which the data was intended, but do form an additional hurdle
for training models.'°? In spite of the deficiencies, the recorded data is one of few examples in which actual data
is available of a mission execution. It accurately reflects the behaviour of the soldier, such as movement speed
and manoeuvre choices, as the soldier had to make such choices in the exercise.

One might argue that a single mission execution is not sufficient to avoid overfitting. This is in essence correct,
and more data will lead to better results. In this single exercise there are however 96 different participants that
generate data (i.e., including vehicles and red forces), over a period of 20 hours, providing ample information on
locations and movements of a soldier. Therefore we believe that data to be sufficient for the presented exploration
into simulation fidelity.

6.1.2 Data Simulation

For the simulation model, an Agent-Based Model (ABM) was created (see Figure 10(b)). It was not the aim
of this study to make this model perfect in terms of tactical military movements, as we want to study the
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differences between the real world and the simulation. The abstract ABM consists of an entity-level model,
where two opposite forces are facing each other. The red forces adopt a random walk with minor fluctuations in
the position, whereas the blue forces are moving towards the occupier.

The blue commander assigns a target zone for each blue unit to move towards to. The target zone is defined
by being between the centroid of the red forces and the centroid of the blue unit. On the way to the targeted
zone, the forces have to secure the closest building. The securing process functions similar to a progress bar,
with each soldier’s presence in the house incrementally increasing the value until it reaches 100%, at which point
the house is considered secure. However, this only holds true if there are no enemy occupants in the house. If
any unit (blue or red) has direct line of sight with the adversary, the unit opens fire.

The simulation ends when either no enemy forces are left or all the buildings have been cleared. During
the simulation, random events may occur, leading to different continuations even from the same starting state.
Moreover, the model includes three adjustable parameters (axes) - sensory capacity, velocity and firing success
- each of which influences the model’s behavioural dynamics. The sensory capacity is defined as the distance,
measured in meters, within which a soldier can perceive an enemy soldier. The velocity quantifies the speed at
which soldiers traverse their environment, expressed in kilometres per hour (km/h). The firing success is the
likelihood that a firing attempt directed at the adversary results in success.

6.1.3 AI methods

In this research, we further elaborate on a new fidelity aspect for computer generated forces, namely the ma-
noeuvre fidelity,”” which describes the degree to which the movements of agents in a simulation match those of
agents in a real-world setting.

It can be quantified by measuring the disparity between the paths followed in a simulation (abstract model)
and those observed in an actual scenario (referent). For measuring the manoeuvre fidelity, different measurement
methods can be used. In earlier work,”” we have shown that modified Dynamic Time Warping,'%® here referred
to as the Dynamic Time Dependent Warping (DTDW), works best. DTDW can be conceptualised as choosing
the minimum-cost path matching points of both manoeuvre paths. The costs of each edge in the graph are
determined by both the euclidean distance between the points as well as a difference in timing of when the
movement occurs. The exact formula is described by Weyland et al. (2024)°7 and contains a parameter « that
balances the importance between euclidean distance and timing aspects, which was set to 0.5. In this work,
we aim to optimize this a parameter to create the highest correlation between the fidelity measure and the
performance of a DSS.

We have implemented a rudimentary DSS that supports the user in estimating the remaining duration for
liberating the village. A linear regression model is used to fit the synthetic data and predict the remaining mission
time based on a given timestamp of the mission. The model is trained with one independent variable, the number
of houses secured, and the dependent variable, the remaining mission time according to the simulators.

6.2 Results

Figure 11 presents a thorough investigation into the relationship between the manoeuvre fidelity score, based
on the formulated DTDW formula, and the simulator’s generated mission time. In order to see what the best
weight « is between the distance term and the time term of the DTDW formula, we vary the weight between
0 and 1 with 0.1 step sizes®. A low « value puts more weight on the distance term, making it more important
that the same route is followed, while a large a puts more weight on the timing of the movement.

It is observed that progressively shifting the importance from the timing term to the distance term makes the
relationship between manoeuvre fidelity and simulated mission time more linear. It is interesting to point out
that in the bottom sub-figures, the patterns seems to indicate that if the fidelity score would further decrease,
the simulated mission’s time would further increase. This brings us to the conclusion that the corresponding
weights are not suitable to measure the manoeuvre fidelity.

The upper graphs of Figure 11 are in line with the expectations: when the DTDW measure shows lowest
distance (i.e., thus highest fidelity), the simulated mission time is closest to the actual mission time, and when

*a = 0.5 is omitted as it was already tested in earlier work.
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Figure 11. Investigating the impact of the temporal term and spatial term of the DTDW formula on the relation between
the fidelity score and the ABM’s accuracy in simulating the correct mission time. The fidelity was computed using
the ABM as abstract model and the MCTC data as referent. « correspond to the weight given to the temporal term,
consequently 1 — a corresponds to the weight given to the spatial term. A red cross corresponds to the average of
one distinct simulator with its unique parameter combination as described in Section 6.1.2. The underlying green blob
corresponds to the kernel density estimation of the red crosses. The horizontal lines correspond the the actual mission’s
time of 9 hours.

the DTDW measure increases (i.e., the fidelity decreases), the simulated mission time either is too long or too
short. From these results, an o weight of somewhere in the range including 0 and 0.2 seems to work best. "

The next experiment investigates how the performance of the classifier is affected when it is trained on data
originating from simulators of different fidelities.¥ The performance of the classifier is measured as the mean
absolute distance between predicted mission time versus actual mission time from the MCTC data, using a variety
of states that occurred in the real-world data. We calculate the Spearman coefficient between the simulator’s
fidelity and the performance of the classifier trained on data generated by the respective simulator, for different
« parameter settings. The results are depicted in Figure 12.

For a lower « value, i.e. more weight on the spatial term, the Spearman’s coefficient increases. An a value
close to 0 seems optimal, which is in line with the observations from Figure 11. In future research, to determine
a well-working « value that generalizes well, this test should be performed on multiple simulators. Preliminary
results with a different simulator suggest that well working « values range between 0 and 0.4.

As all Spearman’s coefficients of Figure 12 are positive, we can draw the conclusion that the manoeuvre
fidelity is a suitable fidelity measure to predict the performance of a DSS that is trained on synthetic data from
that simulator. Simulations can vary greatly after certain randomized events occur, which partly explains why
coefficients are still quite low. Even though the results are promising, it has yet to be determined whether the
current level of correlation is sufficient to aid the developer during the creation of novel simulators.

tPlease note, that when multiple missions with different mission times would be available, Figure 11 could be generated
for each individual mission. Possibly a different a value works best for different missions, and the results would have to
be aggregated to make a choice for the best working a value.

#We regard the agent-based simulator with a different parameter set as a different simulator, as it may have a large
difference in fidelity.
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Figure 12. The Spearman’s correlation coefficient that compares a simulator’s fidelity and the performance of a DSS
trained on the respective simulator’s data. Results are shown for different values of «, which determines the weight
between the distance and time term in the Dynamic Time Dependent Warping (DTDW) formula. The DTDW is used to
measure the maneouvre fidelity of the simulation.

7. DISCUSSION

Development of Al tools for military applications is challenging due to the lack of high-quality measured data in a
diverse set environments of scenarios. The use of simulated data for AI model training is a promising alternative.
In this paper, we investigated the relevance of simulation variation and simulation fidelity for bridging the reality
gap.

With the use case on military vehicle detection, we were able to show the importance of simulation variation.
Interestingly, all axes of variation that were explored were found to be relevant, indicating that it is beneficial
to define a broad range of variations. At the same time, each individual axis can only bring a limited amount
of variation and at some point the performance of the AI system will saturate because of it.?* Similarly, in
the use case on target classification in a waveguide in LFAS data, we found that the addition of extra variation
underwater environments can help some classifiers, even when these environments are different than the target
environment.

Despite including plenty of simulation in the military vehicle detection, it still proved insufficient for the more
fine-grained challenge with similar-looking vehicles. This could mean we missed key axes of variation, but the
fact that adding a small amount of real samples boosts the Al detection model performance strongly indicates
that some important details were lacking in the simulated data.'%* We hypothesize that these details can also
be incorporated by improving the fidelity of the simulations.

The value of simulation fidelity also follows from the other use cases. On the topic of mission planning,
we found that the quality of a decision support system is directly related to the fidelity of the simulation. A
higher manoeuvre fidelity indicates that the system is able to predict the total duration of the mission with
higher accuracy. In the low-frequency active sonar use case results we see the importance of including the target
environment in the training set. If the target environment is left out (as is the case in the zero-shot method),
the classification performance is substantially reduced. We also learned that fidelity does not only refer to the
quality of the simulated objects, but also to the data representation that is chosen as input for an Al model:
the classifier trained on simulated LF-SAS generalizes well to real data, while the classifier trained on simulated
MAAC data does not.

In conclusion, Al tools are likely to play a role in various military use cases and simulated data will be
important for AT model development. Incorporation of sufficient simulation variation is essential to make Al
tools effective in real-world situations. As an added benefit, simulations allow for quick modifications to new
environments and mission goals. Furthermore, the measuring of the fidelity provides valuable insights in the
relation between specific aspects and the performance of a classifier or decision support system. The envisioned
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use case of such systems pose requirements on the fidelity on certain aspects of the simulator or data, and not
every aspect is required to have high fidelity to create a well-working classifier or decision support system.

[1]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Ruis, F. A., Liezenga, A. M., Heslinga, F. G., Ballan, L., Eker, T. A., den Hollander, R. J., van Leeuwen,
M. C., Dijk, J., and Huizinga, W., “Improving object detector training on synthetic data by starting with
a strong baseline methodology,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools,
Techniques, and Applications II], 13035, 333-345, SPIE (2024).

Steiniger, Y., Kraus, D., and Meisen, T., “Survey on deep learning based computer vision for sonar
imagery,” Engineering Applications of Artificial Intelligence 114, 105157 (2022).

Chen, J., Sun, J., and Wang, G., “From unmanned systems to autonomous intelligent systems,” Engineer-
ing 12, 16-19 (2022).

Soleyman, S. and Khosla, D., “Multi-agent mission planning with reinforcement learning,” in [AAAT Sym-
posium on the 2nd Workshop on Deep Models and Artificial Intelligence for Defense Applications: Poten-
tials, Theories, Practices, Tools, and Risks|, 51-57, AAAT (2020).

Man, K. and Chahl, J., “A review of synthetic image data and its use in computer vision,” Journal of
Imaging 8(11), 310 (2022).

Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cherubin, G., Maple, C., Cohen, S. N., and Weller,
A., “Synthetic data—what, why and how?,” arXiv preprint arXiv:2205.03257 (2022).

Sariyildiz, M. B., Alahari, K., Larlus, D., and Kalantidis, Y., “Fake it till you make it: Learning trans-
ferable representations from synthetic imagenet clones,” in [Proceedings of the IEEE/CVFE Conference on
Computer Vision and Pattern Recognition (CVPR)], 8011-8021 (June 2023).

Pichler, A. and Hueber, N., “Method for training deep neural networks in vehicle detection using drone-
captured data and background synthesis,” in [Synthetic Data for Artificial Intelligence and Machine Learn-
ing: Tools, Techniques, and Applications II], 13035, 150-162, SPIE (2024).

Hueber, N. and Pichler, A., “Comparison of hybrid real and synthetized image sources for training an
object detector,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques,
and Applications II], 13035, 1303505, SPIE (2024).

Moate, C. P., Hayward, S. D., Ellis, J. S., Russell, L., Timmerman, R. O., Lane, R. O., and Strain, T. J.,
“Vehicle detection in infrared imagery using neural networks with synthetic training data,” in [Image
Analysis and Recognition: 15th International Conference, ICIAR 2018, Poévoa de Varzim, Portugal, June
27-29, 2018, Proceedings 15], 453-461, Springer (2018).

Uplinger, J., Schesser, D., Meyer, C., Conroy, J., and de Melo, C., “Adversarial learning using synthetic
ir imagery,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and
Applications], 12529, 103—-108, SPIE (2023).

Pichler, A. and Hueber, N., “Automated method for generating datasets of infrared or visible images for
context-specific training of deep neural network-based object detectors,” in [Image and Signal Processing
for Remote Sensing XXIX], 12733, 141-160, SPIE (2023).

Vo, D. T., Duc, P. A., Thao, N. N., and Ninh, H., “An approach to synthesize thermal infrared ship
images,” in [Synthetic Data for Computer Vision Workshop - CVPR], (2024).

Heslinga, F. G., Uysal, F., van Rooij, S. B., Berberich, S., and Caro Cuenca, M., “Few-shot learning for
satellite characterisation from synthetic inverse synthetic aperture radar images,” IET Radar, Sonar &
Navigation 18(4), 649-656 (2024).

Rizaev, I. G. and Achim, A., “Synthwakesar: A synthetic sar dataset for deep learning classification of
ships at sea,” Remote Sensing 14(16) (2022).

Ochal, M., Vazquez, J., Petillot, Y., and Wang, S., “A comparison of few-shot learning methods for
underwater optical and sonar image classification,” in [Global Oceans 2020: Singapore — U.S. Gulf Coast],
1-10 (2020).

Koo, S., Youm, S., and Shin, J., “Cycle-gan-based synthetic sonar image generation for improved under-
water classification,” in [Ocean Sensing and Monitoring X V1], 13061, 69-83, SPIE (2024).

Proc. of SPIE Vol. 13206 132060M-18



[18]

[19]

[20]

[34]

[35]

Denos, K., Ravaut, M., Fagette, A., and Lim, H.-S., “Deep learning applied to underwater mine warfare,”
in [OCEANS 2017 - Aberdeen], 1-7 (2017).

Wang, X. and Fang, X., “A multi-agent reinforcement learning algorithm with the action preference se-
lection strategy for massive target cooperative search mission planning,” FEzpert Systems with Applica-
tions 231, 120643 (2023).

Huerten, C., Sieberg, P. M., and Schramm, D., “Determining required simulation model fidelity for devel-
oping an advanced driver assistance system for automated lane change decision making,” in [AmE 2022 -
Automotive meets Electronics; 18. GMM-Symposium], 1-6 (2022).

Dale, A. S., Reindl, W. R., Sanchez, E., William, A., and Christopher, L., “Mind the (domain) gap: metrics
for the differences in synthetic and real data distributions,” in [Synthetic Data for Artificial Intelligence
and Machine Learning: Tools, Techniques, and Applications II], 13035, 312-321, SPIE (2024).
Reinhardt, C. N., Brockman, S., Blue, R., Clipp, B., and Hoogs, A., “Toward quantifying the real-versus-
synthetic imagery training data reality gap: analysis and practical applications,” in [Synthetic Data for
Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II], 13035, 261-274,
SPIE (2024).

Heslinga, F. G., Eker, T. A., Fokkinga, E. P., van Woerden, J. E., Ruis, F. A., den Hollander, R. J.,
and Schutte, K., “Combining simulated data, foundation models, and few real samples for training object
detectors,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and
Applications II], 13035, 44-55, SPIE (2024).

Eker, T. A., Heslinga, F. G., Ballan, L., den Hollander, R. J., and Schutte, K., “The effect of simulation
variety on a deep learning-based military vehicle detector,” in [Artificial Intelligence for Security and
Defence Applications], 12742, 183-196, SPIE (2023).

de Melo, C., Conover, D., Poster, D., Leung, S., Nguyen, R., and Conroy, J., “Synthetic data for automatic
target recognition from small drones,” in [Synthetic Data for Artificial Intelligence and Machine Learning:
Tools, Techniques, and Applications], 12529, 191-196, SPIE (2023).

Westlake, S. T., Volonakis, T. N., Jackman, J., James, D. B., and Sherriff, A., “Deep learning for automatic
target recognition with real and synthetic infrared maritime imagery,” in [Artificial intelligence and machine
learning in defense applications 1], 11543, 41-53, SPIE (2020).

McKenzie, K., Jacobs, E., Ramirez, A., Conroy, J., and Watson, T., “Acoustic sensing on multi-rotor uav
for target detection using a convolutional neural network,” in [Synthetic Data for Artificial Intelligence
and Machine Learning: Tools, Techniques, and Applications II], 13035, 1303504, SPIE (2024).

Xian, R., Vogel, B. 1., De Melo, C. M., Harrison, A. V., and Manocha, D., “Real-time human action recog-
nition from aerial videos using autozoom and synthetic data,” in [Synthetic Data for Artificial Intelligence
and Machine Learning: Tools, Techniques, and Applications II], 13035, 119-129, SPIE (2024).

Tolk, A., [Engineering Principles of Combat Modeling and Distributed Simulation], Wiley (3 2012).

Oren, T., Zeigler, B., and Tolk, A., [Body of Knowledge for Modeling and Simulation], Simulation Foun-
dations, Methods and Applications, Springer International Publishing, Cham (2023).

van Oijen, J. and Toubman, A., “Are We Machine Learning Yet? Computer Generated Forces with
Learning Capabilities in Military Simulation,” in [2021 Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC)], (2021).

Spell, G. P., Tran, M., Torrione, P., Jeiran, M., Bahhur, B., and Manser, K., “Integration of synthetic
data into real world computer vision pipelines,” in [Synthetic Data for Artificial Intelligence and Machine
Learning: Tools, Techniques, and Applications II], 13035, 275-283, SPIE (2024).

Ozdemir, M. R., Cevher, L., and Ertekin, S., “Ai-based air-to-surface mission planning using predic-
tive launch acceptability region approach,” in [2021 International Conference on Military Technologies
(ICMT)], 1-8 (2021).

Scholl, K., Briggs, G. J., Zhang, L. A., and Salmon, J. L., [Understanding the Limits of Artificial Intelligence
for Warfighters: Volume 5, Mission Planning], RAND Corporation, Santa Monica, CA (2024).

Kenul, E., Black, M., Massey, D., Havelka, Z., Henkai, M., Gavin, K., and Shellhorn, L., “Replicanttm
framework for synthetic data generation,” in [Synthetic Data for Artificial Intelligence and Machine Learn-
ing: Tools, Techniques, and Applications II], 13035, 445-459, SPIE (2024).

Proc. of SPIE Vol. 13206 132060M-19



[36]

[37]

Polat, O. M. and Ozer, Y. C., “Generating physics-based synthetic data for infrared /electro-optical system
analysis and design,” in [Optical Modeling and Performance Predictions XII], 12215, 19-29, SPIE (2022).
Williams, G., Lecakes Jr, G. D., Almon, A., Koutsoubis, N., Naddeo, K., Kiel, T., Ditzler, G., and
Bouaynaya, N. C., “Dyvir: dynamic virtual reality dataset for aerial threat object detection,” in [Synthetic
Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications], 129-139,
SPIE (2023).

Nadell, C. C., Spell, G. P., Jeiran, M., and Manser, K. E., “Real-data performance evaluation of unreal
engine synthetic ir data,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools,
Techniques, and Applications], 12529, 19-33, SPIE (2023).

Dabbiru, L., Goodin, C., Carruth, D. W., Aspin, Z., Carrillo, J., and Kaniarz, J., “Simulation fidelity
analysis using deep neural networks,” in [Synthetic Data for Artificial Intelligence and Machine Learning:
Tools, Techniques, and Applications II], 13035, 346352, SPIE (2024).

Soloviov, A., Anderson, D. T., Buck, A. R., and Alvey, B., “Mizsim: a headless open-source simulation
framework for training and evaluating artificial intelligence,” in [Synthetic Data for Artificial Intelligence
and Machine Learning: Tools, Techniques, and Applications II], 13035, 247-260, SPIE (2024).

Azizi, S., Kornblith, S., Saharia, C., Norouzi, M., and Fleet, D. J., “Synthetic data from diffusion models
improves imagenet classification,” arXiv preprint arXiv:2304.08466 (2023).

Khullar, D., Shah, Y., Kulkarni, N., and Sokhandan, N., “Synthetic data generation for scarce road scene
detection scenarios,” in [NeurIPS 2023 Workshop on Synthetic Data Generation with Generative Al,
(2023).

Yuan, L., Hong, J., Sarukkai, V., and Fatahalian, K., “Learning to place objects into scenes by hallucinating
scenes around objects,” in [NeurIPS 2023 Workshop on Synthetic Data Generation with Generative Al,
(2023).

Trabucco, B., Doherty, K., Gurinas, M., and Salakhutdinov, R., “Effective data augmentation with diffusion
models,” arXiv preprint arXiv:2302.07944 (2023).

Clement, N., Schoen, A., Boedihardjo, A., and Jenkins, A., “Synthetic data and hierarchical object detec-
tion in overhead imagery,” ACM Transactions on Multimedia Computing, Communications and Applica-
tions 20(4), 1-20 (2024).

Eilertsen, G., Tsirikoglou, A., Lundstréom, C., and Unger, J., “Ensembles of gans for synthetic training
data generation,” arXiv preprint arXiv:2104.11797 (2021).

Pulakurthi, P. R., De Melo, C. M., Rao, R., and Rabbani, M., “Enhancing human action recognition with
gan-based data augmentation,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools,
Techniques, and Applications IT], 13035, 194-204, SPIE (2024).

Kerley, J., Anderson, D. T., Buck, A. R., and Alvey, B., “Generating simulated data with a large lan-
guage model,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and
Applications II], 13035, 25-43, SPIE (2024).

Metcalf, J. G. and Laffey, J. A., “Integrating Digital Twin Concepts to Enhance Agility of the United
States Marine Corps’ Decision Support Framework,” tech. rep., Naval Postgraduate School, Monterey, CA
(2023).

Goecks, V. G., Waytowich, N., Asher, D. E., Park, S. J., Mittrick, M., Richardson, J., Vindiola, M., Logie,
A., Dennison, M., Trout, T., Narayanan, P., and Kott, A., “On games and simulators as a platform for
development of artificial intelligence for command and control,” (2021).

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A,
“Shortcut learning in deep neural networks,” Nature Machine Intelligence 2(11), 665-673 (2020).

Ong Ly, C., Unnikrishnan, B., Tadic, T., Patel, T., Duhamel, J., Kandel, S., Moayedi, Y., Brudno, M.,
Hope, A., Ross, H., and McIntosh, C., “Shortcut learning in medical ai hinders generalization: method for
estimating ai model generalization without external data,” NP.J Digital Medicine 7(124) (2024).

Wang, Q., Gao, J., Lin, W., and Yuan, Y., “Learning from synthetic data for crowd counting in the
wild,” in [2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)], 8190-8199
(2019).

Proc. of SPIE Vol. 13206 132060M-20



[54]
[55]
[56]

[57]

(73]

[74]

Dwibedi, D., Misra, I., and Hebert, M., “Cut, paste and learn: Surprisingly easy synthesis for instance
detection,” in [2017 IEEFE International Conference on Computer Vision (ICCV)], 1310-1319 (2017).
Rajpura, P. S., Hegde, R. S., and Bojinov, H., “Object detection using deep cnns trained on synthetic
images,” ArXiv abs/1706.06782 (2017).

Movshovitz-Attias, Y., Kanade, T., and Sheikh, Y., “How useful is photo-realistic rendering for visual
learning?,” in [Computer Vision - ECCV 2016 Workshops], 202-217 (2016).

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon,
S., and Birchfield, S., “Training deep networks with synthetic data: Bridging the reality gap by domain
randomization,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) , 1082-10828 (2018).

Cubuk, E. D.; Zoph, B., Mané, D., Vasudevan, V., and Le, Q. V., “Autoaugment: Learning augmentation
policies from data,” CoRR abs/1805.09501 (2018).

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D., “mixup: Beyond empirical risk minimization,”
(2018).

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V., “Randaugment: Practical automated data augmentation
with a reduced search space,” (2019).

Yun, S., Han, D.; Oh, S. J., Chun, S., Choe, J., and Yoo, Y., “Cutmix: Regularization strategy to train
strong classifiers with localizable features,” in [Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV)], (October 2019).

Motamed, S., Rogalla, P., and Khalvati, F., “Data augmentation using generative adversarial networks
(gans) for gan-based detection of pneumonia and covid-19 in chest x-ray images,” Informatics in Medicine
Unlocked 27, 100779 (2021).

Hays, R. T. and Singer, M. J., [Simulation fidelity in training system design: Bridging the gap between
reality and training], Springer Science & Business Media (2012).

Nunez, P., Jones, R., and Shoop, S., “High-Fidelity Ground Platform and Terrain Mechanics Modeling for
Military Applications Involving Vehicle Dynamics and Mobility Analysis,” tech. rep., US Army RDECOM
Tank Automotive Research Development and REPORT NUMBER Engineering Center (TARDEC) (2004).
Baqar, S., Low-cost PC-based high-fidelity infrared signature modelling and simulation, PhD thesis, Dept.
of Aerospace, Power and Sensors, Defence College of Management and Technology, Cranfield University
(2007).

Alexander, A. L., Brunyé, T., Sidman, J., Weil, S. A.| et al., “From Gaming to Training: A Review of Stud-
ies on Fidelity, Immersion, Presence, and Buy-in and Their Effects on Transfer in PC-Based Simulations
and Games,” DARWARS Training Impact Group 5, 1-14 (2005).

Roza, Z. C., Simulation Fidelity Theory and Practice: A Unified Approach to Defining, Specifying and
Measuring the Realism of Simulations, PhD thesis, Technische Universiteit Delft, Delft, The Netherlands
(2004).

Feinstein, A. H. and Cannon, H. M., “Constructs of Simulation Evaluation,” in [Simulation in Aviation
Training], Jentsch, F. and Curtis, M., eds., 459-474, Routledge, Oxfordshire, England, UK (2017).
Mania, K., Wooldridge, D., Coxon, M., and Robinson, A., “The Effect of Visual and Interaction Fidelity on
Spatial Cognition in Immersive Virtual Environments,” IEEE Transactions on Visualization and Computer
Graphics 12(3), 396-404 (2006).

de Reus, N. M., Kerbusch, P., Schadd, M. P. D., and de Vos., A., “Geospatial analysis for machine learning
in tactical decision support,” in [STO-MP-MSG-184], NATO (2021).

Seib, V., Lange, B., and Wirtz, S., “Mixing real and synthetic data to enhance neural network training -
A review of current approaches,” arXiv preprint arXiv:2007.08781 (2020).

Rizzi, P., Gormish, M., Kovarskiy, J., Reite, A., and Zeiler, M., “Mixing synthetic and real data to build
ai vision models,” in [Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques,
and Applications II], 13035, 360-370, SPIE (2024).

Community, B. O., Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam (2018).

He, K., Gkioxari, G., Dollar, P., and Girshick, R., “Mask R-CNN,” arXiv preprint arXiv:1703.06870 (2018).

Proc. of SPIE Vol. 13206 132060M-21



[75]

[76]

[77]

(78]

[82]

[83]

[84]

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B., “Swin transformer: Hierarchical
vision transformer using shifted windows,” (2021).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., and Zitnick, C. L.,
“Microsoft COCO: Common objects in context,” in [Computer Vision — ECCV 201/4], Fleet, D., Pajdla,
T., Schiele, B., and Tuytelaars, T., eds., 740-755 (2014).

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., and Zhang, L.,
“Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection,” (2023).
van de Sande, J. J. M., Huizinga, W., den Hollander, R. J. M., van den Burg, D. W., and van Vossen,
R., “Application of a convolutional neural network trained with simulated low-frequency synthetic aper-
ture sonar data for classification of buried uxo,” in [Proceedings of Underwater Acoustics Conference and
Ezhibiition (UACE), Greece], (2023).

Kuijf, H. J., van Heteren, A. M., Oppeneer, V. O., van Leeuwen, M. C., and van Vossen, R., “Evaluation
of machine learning approach for underwater target classification with low-frequency active sonar robust to
environmental differences,” in [Proceedings of International Confernce on Underwater Acoustics (ICUA),
Bath, United Kingdom], (2024).

Williams, D. P.; “On the use of tiny convolutional neural networks for human-expert-level classification
performance in sonar imagery,” IEEFE journal of oceanic engineering 46(1), 236-260 (2020).

Williams, D. P., “Underwater target classification in synthetic aperture sonar imagery using deep convolu-
tional neural networks,” in [2016 23rd international conference on pattern recognition (ICPR)], 2497-2502,
IEEE (2016).

Stack, J., “Automation for underwater mine recognition: current trends and future strategy,” in [Detection
and Sensing of Mines, Explosive Objects, and Obscured Targets XVI], 8017, 205-225, SPIE (2011).

van Vossen, R., van de Sande, J., Duijster, A., van der Burg, D., Mulders, 1., and Beckers, G., “Seabed
characterization with multi-band interferometric sonar,” in [Proceedings of Meetings on Acoustics], 40(1),
ATP Publishing (2020).

Williams, K. L., Kargl, S. G., Thorsos, E. 1., Burnett, D. S., Lopes, J. L., Zampolli, M., and Marston,
P. L., “Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements,
modeling, and interpretation,” The Journal of the Acoustical Society of America 127(6), 3356-3371 (2010).
Zampolli, M., Tesei, A., Jensen, F. B., Malm, N., and Blottman, J. B., “A computationally efficient finite
element model with perfectly matched layers applied to scattering from axially symmetric objects,” The
Journal of the Acoustical Society of America 122(3), 1472-1485 (2007).

Hansen, R. E., Callow, H. J., Sabo, T. O., and Synnes, S. A. V., “Challenges in seafloor imaging and
mapping with synthetic aperture sonar,” IEEFE Transactions on geoscience and Remote Sensing 49(10),
36773687 (2011).

Hansen, R. E., “Synthetic aperture sonar technology review,” Marine Technology Society Journal 47(5),
117-127 (2013).

Vossen, R. v., Hunter, A. J., Duijster, A. J., and Beckers, A. L. D., “Uxo detector for underwater surveys
using low-frequency sonar,” tech. rep., Netherlands Organisation for Applied Scientific Research (TNO)
(2015).

van Vossen, R., van de Sande, J., van der Burg, D., Duijster, A., Mulders, 1., and Beckers, G., “Area
and depth coverage assessment for low-frequency synthetic aperture sonar unexploded ordnance detection
surveys,” in [Proceedings of Meetings on Acoustics], 44(1), AIP Publishing (2021).

Hoang, T., Dalton, K. S., Gerg, 1. D., Blanford, T. E., Brown, D. C., and Monga, V., “Resonant scattering
inspired deep networks for munition detection in 3d sonar imagery,” IEEFE Transactions on Geoscience
and Remote Sensing (2023).

Kargl, S. G., Williams, K. L., Marston, T. M., Kennedy, J. L., and Lopes, J. L., “Acoustic response
of unexploded ordnance (uxo) and cylindrical targets,” in [OCEANS 2010 MTS/IEEE SEATTLE], 1-5
(2010).

Tyler, G. D., “The emergence of low-frequency active acoustics as a critical antisubmarine warfare tech-
nology,” Johns Hopkins APL Technical Digest 13(1), 145-159 (1992).

Proc. of SPIE Vol. 13206 132060M-22



[93]

Beerens, S. P. and van der Spek, E., “The interim removable low frequency active sonar system,” in
[Proceeding of the European conference on Undersea Defence Technology, UDT Europe 2006, June, 27-29,
Hamburg, Germany], Nexus Media, Ltd (2006).

Dragonette, L. R. and Gaumond, C. F., “Transient and steady-state scattering and diffraction from un-
derwater targets,” Handbook of Acoustics , 373 (1998).

Ainslie, M., “Editorial: Validation of sonar performance assessment tools,” in [Proceedings of the Institute
of Acoustics], 32 (2010).

Zampolli, M., Ainslie, M., and Schippers, P., “Scenarios for benchmarking range-dependent active sonar
performance models,” in [Validation of Sonar Performance Assessment Tools], (11 2010).

Weyland, L. F., Schadd, M. P. D., and Henderson, H. C., “Exploring the fidelity of synthetic data for de-
cision support systems in military applications,” in [International Conference on Military Communication
and Information Systems, ICMCIS 2024, Koblenz, Germany, April 23-24, 2024], 1-8, IEEE (2024).
Schricker, B. C., Franceschini, R. W., and Johnson, T. C., “Fidelity Evaluation Framework,” in [Proceed-
ings. 34th Annual Simulation Symposium], 109-116, IEEE Computer Society, Los Alamitos, California
(2001).

Groen, S., “De Genie versus het Simulatiecentrum Landoptreden,” Promotor 39(4), 33-39 (2015).

de Boer, A., “Naar een hoger level,” Landmacht 13(3) (2015).

de Jong, J., Burghouts, G., Hiemstra, H., te Marvelde, A., van Norden, W., and Schutte, K., “Hold your
fire!: Preventing fratricide in the dismounted soldier domain,,” in [Proceedings of the 15th International
Command and Control Research and Technology,], Bellevue, WA, USA (2008).

Schadd, M. P. D.,; de Reus, N. M., Uilkema, S., and Voogd, J. M., “Data-driven behavioural modelling for
military applications,” Journal of Defence & Security Technologies 4(2), 12-36 (2022).

Berndt, D. J. and Clifford, J., “Using dynamic time warping to find patterns in time series,” in [Proceedings
of the 3rd International Conference on Knowledge Discovery and Data Mining], AAAIWS’94, 359-370,
AAAT Press (1994).

Eker, T. A., Fokkinga, E. P., Heslinga, F. G., and Schutte, K., “Balancing 3d-model fidelity for training

a vehicle detector on simulated data,” in [Artificial Intelligence for Security and Defence Applications I,
13206, in press, SPIE (2024).

Proc. of SPIE Vol. 13206 132060M-23



