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ABSTRACT

The presence of igneous rocks in about 100 wells drilled for hydrocarbons, mainly concentrated in
the eastern provinces of the Netherlands, the western onshore and offshore areas and in the northern
offshore testify to the significance of magmatic activity in the geological history of the Netherlands.
Intrusive rocks, mainly emplaced into Carboniferous and younger sedimentary rocks dominate over
lavas and other extrusive products. Prominent exceptions are two buried Late Jurassic volcanoes. The
Zuidwal volcano under the Waddenzee consists of thick extrusive deposits and associated subsurface
features that collectively define a well-developed volcanic centre. The recently discovered Mulciber
volcano is a complex on the rim of the Central Graben below the North Sea.

Radiometric ages have been determined on samples from 25 wells, but most of the currently available
results are inaccurate due to ubiquitous effects of alteration. Despite this limitation, additional
stratigraphic, geochemical and petrological evidence indicates that magmatism in the Netherlands was
largely periodic and followed a pattern of intermittent activity in the North Sea region and adjacent
areas in late Paleozoic, Mesozoic and Cenozoic times.

Samples from ca. 15 core intervals studied in detail suggest that a large majority of igneous rocks in
the Dutch subsurface have a mafic composition and a moderate to high alkali content. Geochemical
signatures are consistent with a within-plate tectonic setting throughout the successive episodes
of magmatism, of which the Carboniferous — early Permian and Late Jurassic periods were the most
productive. The lithospheric rifting processes that have dominated the northwest European geological
history since Paleozoic times provided favourable conditions for melt generation, the emplacement of
intrusive magma bodies and associated volcanism.

Porphyritic trachyte lava in the upper Carboniferous Step Graben Formation in well F04-02-A
(offshore, Dutch Central Graben). Photo: Geert-Jan Vis.
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Introduction

Igneous rocks are not readily associated with the low-
lying, mostly flat landscapes of the Netherlands where
surface outcrops of any hard rock are rare and restricted
to the rolling countryside near the eastern border and to
the south-easternmost part of the country. The only no-
ticeable igneous rocks are building materials that were im-
ported from surrounding countries over many centuries.
Columnar basalts, traditionally used for the reinforcement
of dikes, are well-known examples.

Nonetheless, the long geological history of the lowlands
has known episodes of strong magmatic activity, as is ev-
idenced by a surprisingly rich hidden record in the sub-
surface across the country, both on land and below the sea.
Striking illustrations are the buried Zuidwal and Mulciber
volcanoes, which were active in Late Jurassic times. In
strong contrast, volcanic activity is ongoing in the Carib-
bean Netherlands at the present day. The latest eruption of
the Quill volcano on the island of Statia was around 250
AD, and that of Mount Scenery on Saba as recent as in
1640 AD or shortly before.

The first discovery of igneous rock in the Dutch subsur-
face dates back to 1923 when a dolerite intrusion was en-
countered in an exploration well near Corle in the east of
the country (Tesch, 1925, 1928; Tomkeieff & Tesch, 1931).
Several years later, similar intrusive rocks were found
in the Meddeho and Hupsel wells nearby (Tesch & Van
Voorthuysen, 1944). In all of these cases, the intrusion was
encountered in Carboniferous shales at current depths of
between 957 and 1320 m. Since then, a diversity of intru-
sive and extrusive igneous rocks has been found in numer-
ous wells drilled mainly by the hydrocarbon industry, both
onshore and offshore.

Based on published, unpublished and newly available
data, the number of wells in which pre-Quaternary igne-
ous material was identified has grown from 71 (Van Ber-
gen & Sissingh, 2007) to 101 (this work), while the num-
ber of radiometrically dated samples increased from 23 to
33. This update presents a thoroughly revized overview of
igneous intrusive material (sills, dykes, larger bodies) and
extrusive deposits (lavas, ash and other pyroclastic rocks)
reported from onshore and offshore exploration wells
in publicly available sources, ranging from hand-written
notes in internal company documents with core descrip-
tions to peer-reviewed publications. Indirect geophysical
evidence for the subsurface presence of igneous rocks is
included as well.

In comparison to the preceding overviews (Sissingh,
2004; Van Bergen & Sissingh, 2007) several adjustments
have been made. The most conspicuous change concerns
the re-evaluation of ages assigned to individual occurrenc-
es in the sources consulted. This issue is particularly rele-
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vant, given the difficulty of reliably dating magmatic rock
without information on the mode of emplacement and
the local geological context, a typical drawback in studies
of drill-core samples. Since the large majority of radiomet-
ric ages is based on conventional K-Ar dating of whole-
rock samples, and virtually all of this material underwent
significant post-emplacement alteration, the reported ages
are of limited value and mostly significantly too young.
The restricted number of ages obtained by Ar-Ar methods,
generally considered more accurate, should be considered
with caution as well, as only a few meet an acceptable
quality standard. Furthermore, (bio)stratigraphic age con-
straints for host sedimentary rocks have little relevance in
cases where petrography is inadequate to determine if an
interval of solid igneous rock represents effusive material
(lava) or a subvolcanic equivalent (sill or dyke). This un-
certainty applies to a fair number of cases.

Taking these limitations into account, the available in-
formation has been scrutinized and re-interpreted, result-
ing in an improved subdivision into distinct episodes for
Paleozoic, Mesozoic and Cenozoic magmatic activity in
the Netherlands. Supporting evidence comes from geo-
chemical signatures of Dutch igneous rocks including an
extensive set of new data compiled and discussed in this
work. Additional petrographic evidence is illustrated by
optical microscope images, representative for the distinct
rock types. Coherence from inferred chronology, compo-
sitional properties and geographic distribution yields new
time frames of recurrent igneous activity, which match the
general pattern of magmatism in neighbouring parts of
northwest Europe and can be linked to a common history
of episodic large-scale rift tectonics.

Finally, more attention is devoted to Cenozoic magmat-
ic activity, including Paleocene manifestations related to
the opening of the North-East Atlantic Ocean and the dis-
tribution of pyroclastic material in the Netherlands emit-
ted by Quaternary explosive volcanism abroad.

Rock names mentioned throughout this work are not
always based on a rigorous application of petrographic
or geochemical classifications because appropriate infor-
mation is sometimes lacking. Instead, the terminology of
the original sources is maintained, except for a few cases
of obviously incorrect labelling. Qualifications of intrusive
or extrusive modes of emplacement should also be taken
with care, as interpretations sometimes hinge on poor or

conflicting evidence.

Crystalline basement

The oldest igneous rocks in the Netherlands belong to
the crystalline basement and were encountered only in
offshore well A17-01 on the Elbow Spit High (Fig. 11.1).



According to Frost et al. (1981), the rocks can be classi-
fied as biotite monzogranite containing heavily altered
biotite and oligoclase (Fig. 11.2). The authors reported
a 4°Ar/39Ar age of 346+7 Ma, obtained from micas, but
this should be regarded as a minimum in view of the de-
gree of alteration. The considerably older U-Pb zircon age
of 410+7 Ma (A. Gerdes, pers. comm. 2022) is probably a
better approximation of the intrusion age. The granite is
covered by Devonian sediments and was presumably em-
placed during or shortly after the Caledonian Orogeny.

The A17-01 granite is one of 22 occurrences of igneous
rocks in the North Sea Basin that can be assigned to the
Caledonian basement complex, which further contains a
variety of metamorphic rocks (Frost et al., 1981). It is one
of the few locations where basement has been encoun-
tered in the far eastern Avalonia terrain, close to the Thor
Suture. The latter represents the structural border with
Precambrian crust of the Baltica paleo-continent (see Vis
et al,, 2025, this volume) and geophysical modelling sug-
gests that the suture originated from the south-westward
underthrusting of Baltica lower crust below the Avalonian
margin prior to collision of the continental blocks (Phar-
aoh et al.,, 2006; Lyngsie & Thybo, 2007). The A17-01 well
is situated in a 50-100-km-wide band running parallel to
this boundary, marking a crustal domain characterized by
abnormally low seismic velocity and interpreted as rem-
nants of a collapsed Caledonian accretionary complex
(Smit et al., 2016).

Available 4°Ar/39Ar ages of these metamorphic base-
ment rocks cluster around 450 to 440 Ma (latest Ordovi-
cian or earliest Silurian) and fall within the Caledonian
radiometric dates of Britain and Scandinavia (Frost et al.,
1981, and references therein). Many of the obtained ages
likely represent overprints of earlier phases of metamor-
phism or deformation related to the Caledonian Orogeny
or older, Precambrian orogenies. Post Caledonian over-
prints show less consistency and can be attributed to lo-
cal thermal or tectonic events. One such event around 350
Ma may explain the younger 4°Ar/39Ar age of the A17-01

monzogranite relative to its intrusion age.

Devonian

The A17-01 well (Fig. 11.3; Table 11.1) also contained De-
vonian igneous rocks consisting of altered rhyolitic vol-
canics or quartz porphyry. These rocks are intercalated in
non-metamorphic Old Red Sandstone, which covers the
basement and was dated at 341+30 Ma with unknown
method and reliability (see Sissingh, 2004). However, if
the extrusive mode of emplacement and stratigraphic
position are correct, this early Carboniferous radiometric

age is too young. In the southern end of the Norwegian

sector of the North Sea (Fig. 11.3), highly altered quartz
porphyries in the Embla oil field have been dated at 374+3
Ma (zircon U-Pb age). They are thought to represent mul-
tiple early Famennian alkali rhyolite eruptions with an
intraplate compositional signature that form a bimodal
suite together with transitional basalts (Lundmark et al.,
2012, 2018). These isolated examples of volcanic activity
in the North Sea area accompanied the tensional tectonics
characteristic for the Devonian development of northwest
and central Europe. Devonian bimodal alkaline volcanics
also occur in the Cornwall and Rhenish basins, as well as
in the more southerly Central Armorican-Saxothuringian
Basin. In contrast, calcalkaline volcanism and emplace-
ment of post-orogenic granites accompanied the devel-
opment of Old Red basins in the northern British Isles
(Ziegler, 1990).

Carboniferous and Permian

There is ample evidence for Carboniferous and Permian
magmatic activity in the form of igneous intrusive and
effusive rocks in ca. 30 wells in the Netherlands subsur-
face, both onshore and offshore (Fig 11.1). The majority
of these occurrences were found in the eastern part of the
country. Two igneous episodes have been distinguished
but it is worth emphasizing that radiometric age con-
straints are poor, making a chronological subdivision ten-
uous. Rocks here denoted as (late) Carboniferous are dom-
inated by mafic intrusions (dolerite, gabbro), while the
extrusive nature of subordinate rocks referred to as ‘ba-
salts’ is not always certain. On the other hand, ‘Rotliegend
volcanics’ of latest Carboniferous-early Permian age are
mostly effusive. Both rhyolitic and basaltic varieties occur
but compositional information is often lacking. The alloca-
tion of igneous rock intervals from individual wells to one
of these igneous episodes in the description below and
Table 11.1 should be taken with care, particularly for the
intrusions that lack independent stratigraphic age control.

Carboniferous

Igneous rocks with a radiometrically determined Carboni-
ferous age are restricted to onshore wells around the east-
ern Texel-IJsselmeer High (Fig. 11.1). A basaltic lava from
Nagele-1 (NAG-o1) has been K-Ar dated at 327+8 Ma,
which is consistent with its occurrence in the Epen For-
mation of the Limburg Group (Sissingh, 2004), i.e. near
the lower and upper Carboniferous transition. An ex-
trusive basaltic rock in Westphalian sediments in Steen-
wijkerwold-1 (SWD-o01), however, was K-Ar dated as early
Permian, in obvious conflict with its alleged extrusive na-
ture (Sissingh, 2004; core photo in Huis in 't Veld & Den
Hartog Jager, 2025, this volume). Gabbroic intrusive rocks
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< Figure 11.1. Well locations in the Netherlands where igneous rocks, attributed to the Carboniferous and latest Carbonifer-

ous-early Permian (‘lower Rotliegend’) episodes of magmatic activity, have been found. Wells with igneous material from other

or unknown periods are shown for comparison. Structural elements and faults from early Permian times are based on Gast et al.

(2010) and Pharaoh et al. (2010). Details on the rocks encountered in the wells are listed in Table 11.1.
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in Dwingelo-2 (DWL-02) (Thiadens, 1963; Eigenfeld & Ei-
genfeld-Mende, 1986) form a sill-like body of several kilo-
metres in length according to seismic data. K-Ar dating
yielded an age of 322+15 Ma. Based on the consistent maf-
ic (gabbroic) character and geographic clustering of these
intrusions, it is reasonable to suppose that all of the rocks
in the east of the Texel-IJsselmeer High and Dalfsen High
are manifestations of this Carboniferous igneous episode
despite their generally much younger K-Ar ages.

A similar affinity is probably also valid for some 15 ig-
neous bodies in well Wanneperveen-1 (WAV-o1, Fig. 11.1),
which were originally interpreted as basalts, dolerites
and olivine-dolerites intruded into lower Permian (Brit-
ish Autunian stage) shales and siltstones (Kimpe, 1953).
However, in a later revision of the biostratigraphy, Van
Amerom (1972) assigned an upper Carboniferous age

(Westphalian-A) to these sedimentary rocks. On the basis
of petrographic similarity, Dixon et al. (1981) proposed
that most, if not all of the igneous rocks in Wanneper-
veen-1 represent Permian flows equivalent to those pres-
ent in North Sea wells in the German, Danish and UK
sectors around the Ringkebing-Fyn High. K-Ar dating of
a sample from 2035-2030.5 m depth yielded an age of
217+20 Ma (Sissingh, 2004), but this is inconsistent with
Rotliegend (or older) volcanics and thus reflects the in-
accuracy of the method for these rocks. Hence, if (at least
some of) the igneous intervals in Wanneperveen-1 are
extrusive, the biostratigraphic age of the intercalated sed-
iments favours a late Carboniferous rather than a ‘Rot-
liegend’” magmatic episode. Available compositional evi-
dence is inconclusive as will be discussed below.

Doleritic intrusions in wells around Winterswijk (Fig.
11.1) have not been dated except for an olivine dolerite in
Winterswijk-1 (WSK-01; Figs 11.4d, 11.5a), which yielded
an (erroneous) K-Ar age of 218+6 Ma. They include the
nearby Corle ‘melaphyre’ and Gelria-3 (GEL-03) ‘leuco-
phyre’ intrusives, originally referred to as ‘dolerites’ (Tom-
keieff & Tesch, 1931; Tesch & Van Voorthuysen, 1944), and
the Gelria-5 (GEL-05) ‘dolerite’ and are presumably repre-
sentatives of the same (late) Carboniferous magmatic epi-
sode as that of the igneous intervals on the eastern Texel-
[Jsselmeer High.

Eigenfeld & Eigenfeld-Mende (1986) used petrographic
criteria to infer that ‘Permo-Carboniferous’ mafic intru-
sive rocks in the eastern Netherlands, including those in
Wanneperveen-1, Dwingelo-2, De Wijk-7 (WYK-07) (Fig.
11.6a), the undated intrusions in the wells around Win-
terswijk (Gelria-3, Corle-1 (COR-01)), and (equally al-
tered) equivalents encountered in wells across the border
in Germany all belong to a single magmatic province. An
olivine-gabbroic dyke in Balderhaar-Z1 (see Table 11.1b)
may well be an example that would fit into this group.
These authors proposed that these events could be genet-
ically related to a laccolithic intrusion (‘Bramsche Massif’)
in the southwestern part of the Lower Saxony Basin, in-
ferred from a sizeable gravity and magnetic anomaly coin-
ciding with high thermal maturity of sedimentary organic
matter. However, since the maturation process may have
been related to the Mesozoic basin evolution instead, a
magmatic intrusion as explanation for the anomaly is
questionable (Senglaub et al., 2006). In view of the poor
absolute age constraints, a Carboniferous rather than Per-
mian affinity is favoured.
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Table 11.1. Pre-Cenozoic igneous rocks encountered in wells in the subsurface of the Netherlands: a) Radiometrically dated
igneous rocks (33 ages, 25 wells); b) Igneous rocks without radiometric age dates, but with interpretation of igneous episode (42
wells); ¢) Igneous rocks without reliable age (41 wells). A more elaborate version of this table, including remarks is available as
online supplementary material. Igneous episode is interpreted from geochronological and stratigraphic evidence (letter code
with question mark indicates an expected but unconfirmed episode): C = Carboniferous; D = Devonian; ] = Jurassic; LC-EP = late
Carboniferous-early Permian. Emplacement is based on petrographic and stratigraphic evidence; note that original information
is not always conclusive (letter code with question mark indicates uncertainty): ? = undefined; E/E? = extrusive (possibly); E/I? =
extrusive or intrusive; LE = intrusive and extrusive; I/I? = intrusive (possibly); T/T? = tuff (possibly); V/V (rew.?) = volcaniclastic/
possibly reworked volcaniclastic. Rock type/composition is based on the original report where possible; note that the compositions
listed here do not follow a rigid classification scheme and must be used with care. NCP = Netherlands Continental Platform; MD =
metres along hole; T.D. = Total Depth; CWL = Composite Well Log. A more elaborate online version is available at: DOI: 10.5117/

aup.27114895.

Table 11.1. (a)

Location

Short name

Well name

Igneous interval(s) (MD)

Dated interval (MD)/

Sample depth

Age (Ma)

NCP A17-01 A17-01 2157.0-2295.0 ? 341+30
NCP A17-01 A17-01 3013.0-3044.0 (=T.D.) ~3043.0 Min. 3467
NCP A17-01 A17-01 3013.0-3044.0 (=T.D.) unknown 410+7
Andel-4 AND-04 Andel-4 1651-1657 1651.4-1652.1 or 1657.1-1658.0  133+2
Baarlo-1-S1 BRL-01-S1 Baarlo-1-S1 1772.5-1775.0; 1780.0-1782.0; 1775.6 266+18
1792.0-1794.0
Berkel-1-S1 BRK-01-S1 Berkel-1-S1 2952-2970 ~2964.66 214+25?
De Wijk-7 WYK-07 De Wijk-7 2443-2486 2456.1 155+4
De Wijk-7 WYK-07 De Wijk-7 2684.0-2691.0 2690.5 289+7
Drouwenermond- DRM-01-S1 Drouwenermond- 3920.5-3953.5 3921.0 258+6
1-S1 1-S1
Dwingelo-2 DWL-02 Dwingelo-2 3719.0-3799.7 (=T.D.) 3788.8 322+15
NCP E06-01 E06-01 2405-2428 2415 161+4
NCP E06-01 E06-01 2405-2428 2420 18314
NCP E12-03 E12-03 3653-3682; 3788-3875 (=T.D.) 3678 221+23
NCP E18-02 E18-02 4432-4460 4439 274+7
NCP F03-07 F03-07 ? ~2928.05 236+6
NCP F04-02-A F04-02-A 4630-4656 (=T.D.) 4650-4656 16542
NCP F10-01 F10-01 3426-3460 (=T.D.) 3450.25 99+5
NCP F10-01 F10-01 3426-3460 (=T.D.) ~3449-3460 >127
NCP F10-01 F10-01 3426-3460 (=T.D.) ~3449-3460 151+2
Giessendam-1 GSD-01 Giessendam-1 1190-1218; 1350-1380 ~1220 125425
Hardenberg-2-S1 HBG-02-S1 Hardenberg-2-S1 3376.5-3441.0 3410.6 290+16
NCP K12-05-51 K12-05-S1 3057-3292 ~3121-3133 15247
NCP L13-03 L13-03 877-909, 1604-1645; 1808-1821; ~1820 1011
1931-1943
Loon-op-Zand-1 LOZ-01 Loon-op-Zand-1 2454-2457.5; 2572-2610; 2682-2694 ? 13243
NCP M03-01 M03-01 4038-4055 4036-4055 188.5+8.4
Nagele-1 NAG-01 Nagele-1 2772.0-2776.0 2774.0 327+8
NCP Q07-02 Q07-02 3405-3440 ~3450 (7) 95+2to 106+2
Steenwijkerwold-1  SWD-01 Steenwijkerwold-1 1937.0-1944.5 1940.5 291+8
Wanneperveen-1 WAV-01 Wanneperveen-1 2017-2019; 2028-2028.5; 2064-2069.5 2034.0 217+20?
Winterswijk-1 WSK-01 Winterswijk-1 4078-4149 4150.0 218+6
Zuidwal-1 ZDW-01 Zuidwal-1 1944-3002 ? 144+1
Zuidwal-1 ZDW-01 Zuidwal-1 1944-3002 ? 145
Zuidwal-1 ZDW-01 Zuidwal-1 1944-3002 ? 152+3
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K-Ar
K-Ar
K-Ar

K-Ar
K-Ar
K-Ar

K-Ar

4OAr/3%Ar whole-rock
4OAr/3%Ar kaersutite
K-Ar

K-Ar

K-Ar

4OAr/39Ar

4OAr/39Ar

K-Ar

K-Ar

4OAr/39Ar

K-Ar

K-Ar

K-Ar

4OAr/3%Ar

K-Ar
4OAr/36Ar-40K 30Ar

Igneous episode
(interpreted)

LC-EP

J
J

S — BGE N BN — Kl N B

Stratigraphy of host/ Emplacement

intruded interval

Buchan Fm E
‘Basement’ |
‘Basement’ |
Werkendam Fm E/?
Ruurlo Fm |

Werkendam Fm |

Maurits Fm |

Maurits Fm |

Emmen VolcanicFm V

Baarlo Fm 1=

Elleboog Fm |
Elleboog Fm |
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Klaverbank Fm |
Lower Graben Fm V (rew.?)

Step Graben Fm E?

Zechstein Gp |
Zechstein Gp |
Zechstein Gp |
Nieuwerkerk Fm E/?
Ruurlo Fm |
Zechstein Gp |
Zechstein Gp |

Aalburg Fm E/?
Ruurlo Fm E
Epen Fm E/N?
Solling Fm |
Ruurlo Fm E?
Limburg Gp |
Epen Fm |

Zuidwal Volcanic Fm E
Zuidwal Volcanic Fm E

Zuidwal Volcanic Fm E

Rock type/composition as reported

Rhyolite-Rhyodacite
Biotite monzo-granite
Biotite monzo-granite
Nephelinite, basanite

Dolerite (‘diabase’)
Essexite or theralite
Olivine gabbro

Gabbro

Mixed clastic and igneous
Olivine gabbro

No data
No data

Dolerite or microgabbro

Gabbro
No data

Porphyritic rhyolite lava/
micro-granodiorite

Lamprophyre

Potassic alkaline lamprophyre
Potassic alkaline lamprophyre
‘Basalt’

Olivine gabbro

Alkali-rich lamprohyre

Resembling South Holland olivine
nephelinites

Nephelinite, basanite

Pyroxene basalt with trachytic texture
Thin dolerite-like intrusive bodies (?)
Undersaturated basalt

‘Basalt’

Dolerite, (olivine-) gabbro

Olivine dolerite

(Mafic) phonolite, phonolitic basanite
Trachyte

Trachyte, phonolite, leucitite

Reference(s)

Sissingh (2004)

Frost et al. (1981)

Axel Gerdes, pers. com. (2022)
Dixon et al. (1981)

Sissingh (2004)

Sissingh (2004); Dixon et al. (1981);
Van der Sijp (1953)

Sissingh (2004); Eigenfeld &
Eigenfeld-Mende (1986)

Sissingh (2004)
Sissingh (2004)

Sissingh (2004); Eigenfeld &
Eigenfeld-Mende (1986)

Sissingh (2004)
Sissingh (2004)

CWL on NLOG.nl; Peniguel et al.
(1992)

Sissingh (2004)
Sissingh (2004); Herngreen (1985)
Slater (1980); Kuijper (1991)

Kuijper (1991); Sissingh (2004)

Latin (1990)

Latin (1990)

Rieffe & Van Lil (1992); Sissingh (2004)
Sissingh (2004)

Well K12-05-S1 on NLOG.nl

CWL on NLOG.nl; Dixon et al. (1981)

Dixon et al. (1981)

Meadows & Hrycyszyn (1992)
RGD (1993); Sissingh (2004)
Dixon et al. (1981)

Sissingh (2004)

Sissingh (2004); Kimpe (1953)
Sissingh (2004); NITG (1998)
Dixon et al. (1981)

Harrison et al. (1979)

Perrot & Van der Poel (1987)
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Table 11.1. (b)

Location
Andel-2

NCP
NCP

Short name

AND-02
B10-02-S1
B17-04

Balderhaar Z1 (Germany)  BLDH Z1

Berkel-1-S1
Corle-1
Deurningen-1

Emmen-14

Emmer-Compascuum-

1(-S1)
Exloo-2-S2
NCP

NCP

Gasselternijveen-1
Gasselternijveen-2
Gelria-3 (Hupsel)
Gelria-5 (Meddeho)
Grollo-1
Heinenoord-1

Hoogenweg-1

NCP

NCP

NCP

NCP

NCP

NCP

NCP
Marknesse Oost-1
Marknesse-1
NCP

NCP

NCP

NCP

NCP

Slenk-1

Ter Apel-2-S1
Vlagtwedde-2
Zuidwal-2
Zuidwal-3
Zuidwal-A-01(-S1)
Zuidwal-A-02
Zuidwal-A-04
Zuidwal-A-05

BRK-01-S1
COR-01
DRN-01
EMM-14
EMC-01(-S1)

EX0-02-S2
F04-03
F16-02

GSV-01
GSV-02
GEL-03
GEL-05
GRL-01
HEI-01
HGW-01

K12-G-05-S1
K14-FA-103
K15-13
K18-01
K18-02-A
K18-03
K18-05
MKO-01
MKN-01
P02-06
P06-01
P06-B-01
P09-08-S1
P12-08
SLK-01
TAP-02-S1
VLW-02
ZDW-02
ZDW-03
ZDW-A-01(-S1)
ZDW-A-02
ZDW-A-04
ZDW-A-05
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Well name

Andel-2
B10-02-S1
B17-04

Balderhaar Z1 (Germany)

Berkel-1-S1
Corle-1
Deurningen-1

Emmen-14

Emmer-Compascuum-1(-S1)

Exloo-2-S2
F04-03
F16-02

Gasselternijveen-1
Gasselternijveen-2
Gelria-3 (Hupsel)
Gelria-5 (Meddeho)
Grollo-1
Heinenoord-1

Hoogenweg-1

K12-G-05-S1
K14-FA-103
K15-13

K18-01
K18-02-A
K18-03
K18-05
Marknesse Oost-1
Marknesse-1
P02-06

P06-01
P06-B-01
P09-08-S1
P12-08
Slenk-1

Ter Apel-2-S1
Vlagtwedde-2
Zuidwal-2
Zuidwal-3
Zuidwal-A-01(-S1)
Zuidwal-A-02
Zuidwal-A-04
Zuidwal-A-05

Igneous interval(s) (MD)

1355-1421
3780-3810
4376-4391

3608.4-3748.3; 3845.0-3847.0; 3863.0-3866.0

2863-2875; 2933-2984
970-983

1468-1471

4087-4153

3935-4014

4190-4200
4206-4250; 4262-4288; 4375-4403
1662-1701

3736-3766
3909.5-3941.0 (=T.D.)
1320.7-1321.7
957-958; 1070-1070.45
3513-3525.5
2213-2261

3134

3917-3971; 4011-4095; 4098-4104

3215-3240 or 3439-3459 (cored sections)?

3687-3691

2184-2436 (interval with tuffs)
2170-2190 (interval with tuffs)
1905-1927 (interval with tuffs)
2550-2645 (interval with tuffs)
1864-1882

1908-1918

1366-1560 (interval with tuffs)
2060-2180 (interval with tuffs)
1595-1640 (possible tuff layer)
3060 (breccia: 3049-3071)
2665 (breccia: 2659-2702)
2274.5-2352.5

4534.2-4601.5

4140-4165

2167-2189

2055-2080

1950-2060; 1950-2130 (S1)
2048-2245

2662-2835

2060-2260

Igneous episode
(interpreted)

n
LC-EP
LC-EP

(e

LC-EP
LC-EP
LC-EP

LC-EP

LC-EP
LC-EP
(&g
(erg
LC-EP

(o e T

-

LC-EP
LC-EP



Stratigraphy of host/

intruded interval

Werkendam Fm
Lower Rotliegend Gp
Lower Rotliegend Gp
Westphalian A

Werkendam Fm
Ruurlo Fm

Emmen Volcanic Fm
Emmen Volcanic Fm

Emmen Volcanic Fm

Emmen Volcanic Fm
Maurits Fm

New Fm; Mulciber

Emmen Volcanic Fm
Emmen Volcanic Fm
Ruurlo Fm

Ruurlo Fm

Emmen Volcanic Fm
Nieuwerkerk Fm

Maurits Fm

Zechstein Gp

Slochteren Fm

Slochteren Fm
Breeveertien Fm
Breeveertien Fm
Breeveertien Fm
Breeveertien Fm

Limburg Gp

Ruurlo Fm

Nieuwerkerk Fm
Nieuwerkerk Fm.

Vlieland Sandstone Fm
Breeveertien Fm

Vlieland Sandstone Fm
Wadden Volcaniclastic Mbr
Emmen Volcanic Fm
Emmen Volcanic Fm
Wadden Volcaniclastic Mbr
Wadden Volcaniclastic Mbr
Wadden Volcaniclastic Mbr
Wadden Volcaniclastic Mbr
Wadden Volcaniclastic Mbr

Wadden Volcaniclastic Mbr

Emplacement

E/I?

E/?

- 4 4 4 -

—

< < < < < < mMm m <

Rock type/composition as reported

Olivine nephelinite, basanite
Volcanic tuff

?

Dolerite (gabbroic rock containing abundant olivine and feldspar laths,

as well as magnetite, glass and biotite)
No data

Dolerite

?

No data

Basalt and tephra

No data

No data

Tuff grading into “basalt” and tuffaceous siltstone; porphyritic (basaltic-)

andesitic extrusive rock
No data

No data

Dolerite (“diabase”)
Dolerite (“diabase”)
Dolerite (“diabase”)
Alkali basalt

Sanidine-containing ash

No data

Trachybasalt

No data

No data

No data

No data

No data

Tuff with augite
Extrusive rock according to CWL
No data

No data

No data

Olivine basalt
Lamprophyric
Volcanic breccia (CWL)
No data

No data

Volcanic tuff (CWL)
Volcanic breccia (CWL)
Volcanic breccia (CWL)
Volcanic breccia (CWL)
Volcanic breccia (CWL)
Volcanic breccia (CWL)

Reference(s)

Kuijper (1991)

Sissingh (2004)

CWL on NLOG.nl

Sissingh (2004); Anonymous (1992)

Sissingh (2004)

Tomkeieff & Tesch (1931)
CWL on NLOG.nl

Sissingh (2004)

Sissingh (2004); NITG (2000)

Sissingh (2004)
CWL on NLOG.nl; De Bruin et al. (2015)

Lester (1985)

Sissingh (2004)
Sissingh (2004)
Tesch & Van Voorthuysen (1944)
Tesch & Van Voorthuysen (1944)
Sissingh (2004)
Helmers (1991)

Van Buggenum & Den Hartog Jager
(2007)

Neptune Energy
Dixon et al. (1981)
CWL on NLOG.nl
Sissingh (2004)

CWL on NLOG.nl
Sissingh (2004)
Sissingh (2004)

Rieffe & Van Lil (1992)
Sissingh (2004)
Sissingh (2004)
Sissingh (2004)

King et al. (1985)
Sissingh (2004); Galavazi (1999); NLOG.nl
Sissingh (2004); Galavazi (1999); NLOG.nl
Herngreen et al. (1991)
Sissingh (2004)
Sissingh (2004)
Herngreen et al. (1991)
Herngreen et al. (1991)
CWL on NLOG.nl

CWL on NLOG.nl

CWL on NLOG.nl

CWL on NLOG.nl
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Table 11.1. (c)

Location Short name
NCP A05-01
NCP A14-01
NCP A15-01
NCP A15-01
NCP B10-02-S1
NCP B17-04
Barendrecht-Ziedewij-1 BRTZ-01
Berkel-2 BRK-02
Coevorden-17-S1 COV-17-51
De Blesse-1-S1 BLS-01-S1
De Wijk-15-S1 WYK-15-S1
NCP E09-01
NCP E18-05
NCP F04-02-A
NCP F04-02-A
NCP F07-02
NCP F10-02
NCP F10-02
NCP F10-02
NCP F16-02
NCP F16-02
NCP G17-02
Haarle-1 HLE-01
Hellendoorn-1 HLD-01
Heugem-1 HEU-01
lsselmonde-64(-S1) 1JS-64(-S1)
NCP K02-02
NCP K09-01
NCP K12-05
NCP K12-05-S1
NCP K12-B-04
NCP K12-B-06
NCP K12-D-01
NCP K12-D-03
NCP K12-G-08
NCP K12-K-01
NCP K15-04-S2
NCP L10-06
NCP L10-31
NCP L10-L-05-51(?)
Oldenzaal-2 OLZ-02
Overkamp B34G1431
NCP P06-10
NCP P06-B-01
Sprang-Capelle-1 SPC-01
Sprang-Capelle-1 SPC-01
Sprang-Capelle-1 SPC-01
Werkendam-1 WED-01

Well name
A05-01

A14-01

A15-01

A15-01

B10-02-51
B17-04
Barendrecht-Ziedewij-1
Berkel-2
Coevorden-17-S1
De Blesse-1-S1

De Wijk-15-51
£09-01
E18-05
F04-02-A
F04-02-A
F07-02
F10-02
F10-02
F10-02
F16-02
F16-02

G17-02
Haarle-1
Hellendoorn-1
Heugem-1
lJsselmonde-64(-S1)
K02-02

K09-01

K12-05
K12-05-51
K12-B-04
K12-B-06
K12-D-01
K12-D-03
K12-G-08
K12-K-01
K15-04-52
L10-06

L10-31
L10-L-05-51(?)
Oldenzaal-2

Overkamp

P06-10

P06-B-01
Sprang-Capelle-1
Sprang-Capelle-1
Sprang-Capelle-1

Werkendam-1
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Igneous interval(s) (MD)
3930-3971.8 (=T.D.)
2718-2775

3591-3753

3753-3773; 3790-3883
3810-3972 (=T.D.)
4300-4376

3092-3096

1758-1784

?

2014-2070

?

3290-3345

~4318-4328

4400-4425; 4490-4515
4425-4533.5

3783-3927

2010-3441 (interval with tuffs)
4055-4061

4061-4090

1738-1872 (interval with tuffs)
1872-1985

4295-4310

1480-1497

1455-1493 (=T.D.)

397

2242-2263; 2260-2268 (S1)

4556-4588

3567-3571

2897-2902

2919-2923

4103.5-4110.5 (tuff band in this interval)
3875-3888 (within cored interval?)
3760-3765, 3854-3862, 3989-3997
3880-3890

3804-3810; 3881-3906, 4082-4248
3795-3917 (three intercalated salt layers)
3230, 3237, 3344, 3338, 3350, 3242, 3248, 3250, 3217, 3226, 3414, 3436, 3568
3835-3870

3610-3638

5164,5176,5194

269-274

142.0-142.5

3200-3227

?

2219-2223
2357-2377
2598-2606.5
1553.5-1554.5



Lower Rotliegend Gp

Epen Fm

Lower Rotliegend Gp

Lower Rotliegend Gp & Millstone Grit Fm
Lower Rotliegend Gp

Lower Rotliegend Gp

Strijen Fm

Nieuwerkerk Fm

?

Ruurlo Fm

?

Millstone Grit Fm
Limburg Gp

Lower Rotliegend Gp
Lower Rotliegend Gp
Lower Rotliegend Gp
Lower Zechstein salt
Lower Rotliegend Gp
Lower Rotliegend Gp
Zechstein Gp
Zechstein Gp

Limburg Gp
Maurits Fm
Ruurlo Fm
Zeeland Fm
Werkendam Fm
Klaverbank Fm
Z3 Salt Mbr
Zechstein Gp
Zechstein Gp
Zechstein Gp
Silverpit Fm
Slochteren Fm
Slochteren Fm
Zechstein Gp
Zechstein Gp
Lower and Upper Germanic Trias gps
Slochteren Fm
Slochteren Fm
Limburg Groep
Coevorden Fm

Volpriehausen Fm (?)

Detfurth Fm

?

Werkendam Fm
Sleen Fm
Hardegsen Fm

Brabant Fm

E/?

E/?

Volcanics in claystone
Porphyry?

?

Gabbro, micro-granodiorite
?

?

Dolerite

No data

Uncertain; no public data

Gabbroic (plagioclase, pyroxene, olivine in groundmass

of chloritic serpentinitic clays with local magnetite and
calcite)

No data

Porphyry?

Basaltic

Claystone with volcanic fragments

Volcanics (?) in siltstone/sandstone

Tuff (?) in claystone/siltstone/sandstone

No data

Leucocratic, equigranular, quartz, amphibole, feldspar
?

Anhydrite with tuff layers

Acidic porphyritic volcanic rock containing augite,
biotite, apatite; volcaniclastic sediment

Dolerite

Dolerite (diabase’)

No data

No data

Basanitic

No data

Olivine basalt

Lamprophyre

Alkali-rich lamprohyre

No data

No data

Andesite, olivine dolerite

No data

Lamprophyre

Lamprophyre

No data

Lamprophyre-type (?)
Lamprophyre-type (cutting thin section 3630 mMD)
High plagioclase content (14-60 wt.%)
Dolerite (hornblende ‘diabase’)

Tephra?

Mafic rock

Lamprophyre

Contains nepheline and biotite
Contains nepheline and biotite
Contains nepheline and biotite

Dolerite

CWL on NLOG.nl
Sissingh (2004)
CWL on NLOG.nl
Kuijper (1991)
CWL on NLOG.nl
CWL on NLOG.nl

Van Buggenum & Den Hartog Jager (2007)

Sissingh (2004)
Sissingh (2004)
Sissingh (2004); NLOG.nl

Sissingh (2004)
Sissingh (2004)
Kuijper (2003)
CWL on NLOG.nl
CWL on NLOG.nl
CWL on NLOG.nl
CWL on NLOG.nl
CWL on NLOG.nl; De Bruin et al. (2015)
CWL on NLOG.nl
Lester (1985)
Lester (1985)

Kuijper (1991)
Sissingh (2004)
Sissingh (2004)
Bless et al. (1981)
Sissingh (2004)
CWL on NLOG.nl
CWL on NLOG.nl
Kuijper (1991)
Neptune Energy
Neptune Energy
Neptune Energy
Neptune Energy
Neptune Energy
Neptune Energy
Neptune Energy
Sissingh (2004)
Neptune Energy
Neptune Energy
Neptune Energy
Van Voorthuysen (1944)

water well (pers. com. M. van den Bosch,
2022)

Sissingh (2004)
Kuijper (1991)
CWL on NLOG.nl
CWL on NLOG.nl
CWL on NLOG.nl
Sissingh (2004)

Geology of the Netherlands

403



404

Widespread kaolinite-coal-tonstein beds in the Limburg
Group represent altered tuffaceous horizons in the former
coal-mining district of the south-eastern Netherlands, pro-
viding evidence for explosive volcanism during the late

Figure 11.2. Microphotographs and the single available core
sample of the oldest igneous rock encountered in the Dutch
subsurface (well A17-01): a) Altered biotite granite (PPL)
(depth 2985 m); b) Same in XPL; c) Core sample of the same
rock of ~5 cm wide. (estimated depth 2985 m). Images (a-b)
are taken from De Vos et al. (2010) and were originally sup-
plied by Frost (Conoco) and Miller (University of Cambridge).

CHAPTER 11 - MAGMATISM IN THE NETHERLANDS

Carboniferous (Lippolt et al., 1984). A 5-cm-thick ash lay-
er at 3134 m depth in well Hoogenweg-1 (HGW-o01) (Huis
in 't Veld & Den Hartog Jager, 2025, this volume) may be a
northern equivalent.

In the offshore, dated and undated igneous intervals in
Carboniferous sediments have been encountered most-
ly in the Step Graben area and the Schill Grund Platform
(quadrants A, E, F and M; see Fig. 11.1). Putative extrusive
lavas and ash/tuff layers would be consistent with em-
placement during the Carboniferous episode (wells Eog-
01, E18-05, Fo4-02A), whereas a K-Ar age of 188.5+8.4 Ma
for a basaltic rock in the Ruurlo Formation (well Mo3-01;
Meadows & Hrycyszyn, 1992) is too young.

Considering the stratigraphic relationships of the ex-
trusive products, most of the magmatic bodies encoun-
tered in wells in the Netherlands would appear to have a
late Carboniferous age. Given the similar compositional
character and foreland position (just north of the Variscan
front), they likely correspond to manifestations of Namu-
rian-Westphalian magmatism cropping out in the British
Isles, in particular with alkaline and locally subalkaline
basaltic flows, sills and dykes in the English Midlands and
Derbyshire (Timmerman, 2004; Wilson et al., 2004). Prob-
ably, there also is a temporal and compositional overlap
with the long-lived magmatism in the Midland Valley of
Scotland where mostly mildly alkaline magmas were pro-
duced during intermitted pulses throughout Carbonifer-
ous times (Monaghan & Pringle, 2004; Upton et al., 2004;
Monaghan & Parrish, 2006).

Latest Carboniferous — early Permian
Igneous rocks representing ‘Rotliegend volcanics’ with
reliable, radiometrically determined ages around the Car-
boniferous-Permian boundary (299 Ma; Gradstein et al.,
2004) are lacking in the database documented here (Table
11.1). This is in spite of the widespread occurrence of ‘Rot-
liegend volcanics’ and intrusives in the Southern Permian
Basin (Fig. 11.7) (cf. Glennie, 1997, and references therein;
cf. Scheck & Bayer, 1999), which extend over some 1700
km from England across the North Sea through northern
Germany into Poland (Ziegler, 1990; Gast et al., 2010).
According to zircon U-Pb and whole-rock Ar-Ar ages
of igneous intervals in wells in the neighbouring north-
east German Basin system, North Sea Central Graben and
Danish North Sea, ‘Rotliegend volcanics’ were emplaced
in a narrow time window between 303+10 and 293+2
Ma (Heeremans et al., 2004; Breitkreuz et al., 2007). The
thickest occurrences of these volcanics may have been as-
sociated with caldera subsidence (Benek et al., 1996). In
North Sea wells, volcanic intervals from the lower Permian
have been referred to as the Inge Volcanics Formation in
the UK Central Graben and as the Karl Formation in the
Danish Central Graben and Norwegian-Danish Basin.



Early Carboniferous structural elements

- structural high W extrusive —interstratified volcanics (Linneman et al,, 2012)*
|:| structural high (inferred) W extrusive () - plutonic body (Linneman et al, 2012)*

l:] structural low @  extrusive/intrusive (?) | intrusive, extrusive - intrusion (Donato, 2020)

l:l collapsed Caledonian accretionary wedge 4  intrusive - felsic intrusive (Mansy et al., 1999)

- Caledonian massif A uff - late Caledonian intrusive (Donato, 1993;

_— (inferred) fault A W@ Milton-Worssell et al.,, 2010)

_»—""early Carboniferous position VDF « igneous basement in well (NL, UK, N) — seismic 2D line (Z2RGD1991A)

» lower Carboniferous (Dinantian)
(syn-extension) magmatic activity
(Timmerman, 2004) * size exaggerated for visualization

Figure 11.3. Onshore and offshore locations where the oldest igneous rocks in the Netherlands were recovered from drill cores.
Inwell A17-01, a pre-Devonian basement granite and a presumably late Devonian extrusive felsic rock were encountered. In
other labelled wells, intrusive or extrusive igneous rocks with an assumed (late) Carboniferous age were found. Red dots indicate
locations of Carboniferous magmatism in Britain and Ireland (Timmerman, 2004) and black dots indicate wells where igneous
basement rock was found in the northern North Sea (Frost et al., 1981; Slagstad et al., 2011; Lundmark et al., 201 2; Riber et al.,
2015). The horst-graben type structural framework at the end of the early Carboniferous and the approximate margin of the
Variscan Deformation Front (VDF) are after Smit et al. (2018). Late Caledonian, mostly granitic intrusions, inferred from gravity
anomalies after Donato (1993, 2020), Mansy et al. (1999), Linneman et al. (2012) and Milton-Worssell et al. (2010).
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Corresponding deposits in the Dutch subsurface on-
shore are represented by undated rocks of the Emmen Vol-
canic Formation (Fig. 11.7), which consist of basaltic lava
flows and pyroclastic rocks, usually intercalated between
clastic sedimentary rocks of the Limburg Group (below)
and basal layers of the Zechstein Group (above). Reaching
a maximum thickness of 66 m (TNO-GDN, 2022), they can
be considered as a westerly extension of ‘Rotliegend vol-
canics’ in the adjacent German Ems Graben (Figs 11.1 &
11.7), which have been described as spilitized, mildly alka-
line andesites with subordinate basaltic and rhyolitic rocks
(Eckhardt, 1979; cf. Plein, 1995, and references therein).
Volcaniclastics in the sidetrack of Drouwenermond-1
(DRM-01-S1) with a K-Ar age of 258+6 Ma may also belong
to this suite. Near the Dutch Central Graben, a porphyrit-
ic rhyolite in well Fog-02A (Figs 11.1 & 11.4e) and rocks
in wells within and near the A and B quadrants (Figs 11.1
& 11.7) represent time-equivalent magmatic rocks. These
volcanics are almost 150 m thick and consist of pyroclastic
rocks and lavas up to tens of metres thick (Geluk, 1997).

Dixon et al. (1981) reported the presence of a bimodal
association of lower Permian volcanics along the northern
and western flanks of the Ringkebing-Fyn High and from
within the Horn Graben, west of Denmark. Strongly altered
basalts contain primary biotite and, on the basis of immo-
bile trace elements, have been classified as transitional be-
tween olivine tholeiites and mildly alkaline basalts. The si-
licic rocks may represent silicified trachytes, although their
original chemical composition is unclear. Stemmerik et al.
(2000) suggested that Permian volcanism in the Danish
part of the North Sea took place during two separate events
dated 276-281 Ma and 261-269 Ma, thus postdating the
early Permian volcanism in the Southern Permian Basin
(Fig. 11.8). However, Heeremans et al. (2004) argued that
these K-Ar ages might be too young, based on an Ar-Ar age
of 299+3 Ma, which the authors obtained on a basalt sam-
ple from well 39/2-4 (Fig. 11.7) on the adjacent western
flank of the UK Central Graben. Thin intervals of (strongly
altered) alkaline intra-plate basalts have also been report-
ed from the Norwegian Embla oil field (well 2/7-23S, Fig.
11.3), and potentially correlative basalts from the nearby
Argyll and Auk oil fields in the UK sector of the Central
North Sea (Lundmark et al, 2012, 2018, and references

therein). A sample from the Danish offshore well C-1 in the
eastern North Sea near the Jylland Peninsula (Fig. 11.7),
yielded a high-resolution ion microprobe U-Pb zircon age
of 303+10 Ma (Breitkreuz et al., 2007).

Different periods of extensive intrusive and extrusive
magmatism accompanied the development of the Oslo
Rift (Fig. 11.7; Neumann et al,, 1992, 2004). According
to U-Pb dating (zircon, perovskite, titanite), initial main-
ly mafic magmatism at ca. 300 Ma was followed by a ca.
40 Myr long interval of mafic and felsic intrusive and ex-
trusive activity (Pedersen et al., 1995; Dahlgren et al,
1996; Corfu & Dahlgren, 2008; Corfu & Larsen, 2020). The
rocks vary in composition between basaltic and granitic,
all having a strongly alkaline character.

A comprehensive study of the widespread late Carbonif-
erous-Permian magmatism in the northeast German Basin
showed that thick rhyolitic rocks and ignimbrites volumet-
rically dominate over intermediate and basaltic varieties
in this part of the Southern Permian Basin (Benek et al,
1996). Zircon U-Pb dating yielded ages between 302+3
and 297+3 Ma for the volcanic activity in this area, thus
straddling the Carboniferous-Permian boundary (Breit-
kreuz & Kennedy, 1999). The authors also reported that
these rocks included populations of inherited zircons with
ages reflecting reworked Cadomian (650-550 Ma) and old-
er Gondwanan elements. Manifestations of corresponding
latest Carboniferous-earliest Permian volcanism and dyke
and sill emplacements on the British Isles include the
voluminous Whin Sill Complex (mostly high-Fe subalka-
line basalts) of northeast England and the extensive dyke
swarm and sill in the Midland Valley of Scotland (tholeiitic
quartz dolerites). Coeval intrusive rocks in southwest Eng-
land have a granitic composition and their emplacement
was probably accompanied by extrusion of rhyolitic lavas
(Timmerman, 2004).

In summary, although many of the Carboniferous and
Permian igneous rocks discovered in the Netherlands sub-
surface lack unequivocal constraints on their composition,
timing and mode of emplacement, they tend to fit well
into the distribution and setting of equivalent intervals in
onshore and offshore wells across northwestern Europe.

< Figure 11.4. Core photographs showing examples of igneous rocks from the Dutch subsurface: a) Volcanic agglomerate from

the Upper Jurassic Zuidwalvolcano (well Zuidwal-1, upper 0.4 m of interval 2505-2511 m); b) Olivine gabbro in the upper Car-

boniferous Ruurlo Formation (well Hardenberg-2-S1, 3408.2-3408.6 m), photo: NAM; c¢) Volcanic agglomerate from the Upper

Jurassic-Lower Cretaceous Zuidwal volcano (well Zuidwal-1, 3001.0-3001.2 m); d) Olivine dolerite in the upper Carboniferous

Epen Formation (well Winterswijk-1, 4149.0-4149.3 m), photo: NAM; e) Porphyritic trachyte lava in the upper Carboniferous Step

Graben Formation (well Fo4-02-A, 4652.27-4652.77 m); f) Dolerite sill or dyke in the Middle Jurassic Brabant Formation (well

Werkendam-1, 1554.70-1554.97 m); g) Alkali basaltic rock in the Upper Jurassic Nieuwerkerk Formation (well Heinenoord-1,

2239.31-2240.20 m), photo: NAM.
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Figure 11.5. Seismic profiles in which direct observations confirm the presence of intrusive magmatic rock (sill or dyke) as
high-amplitude reflectors in seismic data: a) Well Winterswijk-1 where the upper Carboniferous Epen Formation hosts an interval
of olivine dolerite (see Fig. 11.4d); seismic survey L2NAM1975L, line 1011; b) Well Heinenoord-1 where the Upper Jurassic Nieu-
werkerk Formation contains an interval of alkali basaltic rock (see Fig. 11.4g); seismic image from a depth-migrated merged 3D
seismic dataset for the West Netherlands Basin (TNO). GR = gamma-ray log, DT = sonic log.

Jurassic
In the Dutch subsurface, igneous rocks with a Late Jurassic

age have been found offshore in wells along the rim of the
Dutch Central graben (Fig. 11.9), in the Broad Fourteens
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Basin (K, L, P, Q-quadrants) and in the Vlieland Basin
(Zuidwal volcano), but also in onshore wells in the West
Netherlands Basin (near Andel, Berkel, Giessendam, Hei-
nenoord and Loon op Zand). They represent the southern-
most expression of Jurassic magmatism in and around the



North Sea Central Graben System (Fig. 11.9). Details on
the rifting history are given in De Jager et al. (2025, this
volume).

The igneous intervals encountered in wells in the West
Netherlands Basin are mostly relatively mafic rocks with a
silica-undersaturated affinity, referred to as nephelinites,
basanites, theralites/essexites and alkali basalts in original
descriptions (Table 11.1).

Fine-grained rocks in the Andel-2 and Andel-4 and
Loon op Zand-1 wells (AND-o02 and LOZ-o1 shown in Fig.
11.6¢,f) have been described as intrusions in the middle
and lower Jurassic, respectively. A sample from Andel-4
(AND-04) has been 4°Ar/39Ar dated at 133+2 Ma and one
from Loon op Zand-1 at 132+3 (Dixon et al.,, 1981). Be-
cause of a partial overprint at <120 Ma the emplacement
ages are likely older. The Loon op Zand-1 and Andel-4
rocks are highly altered glassy olivine nephelinites, con-
taining pseudomorphed olivine and clinopyroxene pheno-
crysts in a groundmass with the same mineral phases, as
well as kaersutitic hornblende, biotite and apatite. The
Andel-2 samples are probably basanites with pseudomor-
phed olivine, plagioclase and possibly nepheline. Several
observations cast doubt on the alleged intrusive nature
as dykes or sills in the Andel and Loon op Zand wells. The
strongly porphyritic texture and abundance of vesicles, as
well as the presence of a thin layer of baked sediment at
bottom sides only, as core descriptions suggest, are con-
sistent with an origin as lava flows. As the true emplace-
ment ages may well fall in the late Jurassic band (Fig 11.8),
an extrusive emplacement cannot be excluded at least for
the rocks in the Andel wells.

The Ar-Ar ages correspond reasonably well with a K-Ar
age of 125+25 Ma obtained on a body of (biotite-bearing?)
olivine basalt in the Tithonian-Berriasian sandstone-shale
succession of the Alblasserdam Member, which was sam-
pled in Giessendam-1 (GSD-o01) (Sissingh, 2004). The
thin basaltic layers found in this well may have had an
extrusive origin but the K-Ar age is not sufficiently relia-
ble to confirm this. Dixon et al. (1981) suggested that the
Berkel-1 (BRK-01) hornblende basalt intruded in Jurassic
sediments (Van der Sijp, 1953) may be a fine-grained es-
sexite or theralite, and is possibly also similar in age to the
Andel and Loon op Zand rocks.

A nearly 40 m thick interval of relatively fresh olivine-
rich alkali basalt in well Heinenoord-1 (HEI-o01, Fig. 11.5b)
has been studied in some detail (Helmers, 1991; Frez-
zotti, 1992; this work). The porphyritic rock (Figs 11.4g,
11.6d), carrying abundant clinopyroxene and olivine phe-
nocrysts, shows petrographic similarities with the olivine
nephelinites in Loon op Zand-1 (Fig. 11.6f). Although
the basaltic rock is considered to represent a near-surface
sill, emplacement as a lava flow cannot be excluded, giv-
en its stratigraphic position in the upper Jurassic-lower

Cretaceous Nieuwerkerk Formation, its textural appear-
ance (Fig. 11.4g) and the absence of a radiometric age
date. Based on the whole-rock composition, the basalt
classifies as tephrite or basanite. Helmers (1991) reported
the presence of accessory rhonite, a rare high-Ti alumino-
silicate, which is usually only present in silica-undersatu-
rated mafic to intermediate igneous rocks.

In summary, the available information suggests that
the intervals of igneous rocks in the onshore wells of
the West Netherlands Basin were emplaced in a Jurassic
shallow-marine succession of predominantly fine-grained
mudstones and minor silt- and sandstones, either as
near-surface subvolcanic intrusions or as lava flows.

Igneous rocks from wells in the offshore F, K, L, P and
Q quadrants have been described as strongly silica-under-
saturated basaltic intrusions (Dixon et al., 1981; Latin,
1990; Latin et al., 1990b). According to phenocryst as-
semblages and bulk-rock compositions, the rocks from
K12-05-S1, K14-FA-103 (in the border areas of the Broad
Fourteens Basin) and F10-01 (near the rim of the Central
Graben) share a potassium and volatile-rich character. The
first constitutes a ca. 130 m thick lamprophyric intrusion
in salt of the Zechstein Group, the second a thin fine-
grained trachybasaltic layer in Upper Permian sandstone
and the third a >30 m thick potassic alkaline lamprophyre,
also intercalated in Zechstein salt. Typical phenocrysts in-
clude Ti-rich augite and amphibole (kaersutite), while mi-
nor olivine and biotite have been found as well.

The other offshore occurrences (L13-03 and those in
the P and Q quadrants further to the south) are mafic in-
trusions with a more nephelinitic character, composition-
ally and petrographically comparable to the rocks of the
West Netherlands Basin mentioned above. Tuffaceous
layers in late Jurassic sediments in the region of the Broad
Fourteens Basin may indicate that alkaline magmatism of
this episode was also accompanied by explosive eruptive
activity.

The large variation in radiometric ages available for this
period (Table 11.1, Fig. 11.8) underscores the uncertain-
ties inherent to the dating methods used. The ca. 50 Ma
age range obtained by different methods on virtually the
same rock sampled in F10-01 is an instructive example.
The plateau 4°Ar/39Ar age of 151+2 Ma, obtained on sep-
arated kaersutite, is considered to represent the most ro-
bust result (Latin, 1990). A within-errors identical whole-
rock K-Ar age of 152+7 Ma, obtained on fresh material
from the thick lamprophyre in K12-05-S1 (Krueger, 1982),
together with consistent results for the Zuidwal volcanic
centre below the Waddenzee and biostratigraphic age con-
straints for the Mulciber volcanic centre on the rim of the
Dutch Central Graben (see below) further limit the timing
of Mesozoic magmatism in the Netherlands to a relatively

short late Jurassic episode. The other reported ages (Table
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11.1), a few older but mostly considerably younger, are
ambiguous and may not represent magma emplacement
ages.

Buried volcanoes

Two prominent geomorphic structures have been inter-
preted as buried volcanoes in Mesozoic sedimentary ba-
sins offshore: the ‘Zuidwal volcano’ below the Wadden Sea,
southeast of the island of Vlieland, and ‘Mulciber volcano’
below the North Sea, some 100 km northwest of the island
of Terschelling. Their outlines correspond to gravity highs
and positive geomagnetic anomalies (Fig. 11.10). Con-
sidering the size of the geomagnetic anomalies and their
volumes based on 3D seismic reflection data, both systems
fall in the category of large (>5km3), composite shield and
caldera volcanoes (cf. Bischoff et al., 2021).

The Zuidwal volcanic centre
The ‘Zuidwal volcano), identified during petroleum explo-
ration below the Wadden Sea (Cottencon et al., 1975), is

located north of the Texel-IJsselmeer High in the Vlieland
Basin (Fig. 11.9). Cores from well Zuidwal-1 (ZDW-01)
revealed volcanic agglomerates between 1950 m and the
total depth of 3000 m (Fig. 11.4a, c). The volcanics are
unconformably overlain by gas-bearing Valanginian sand-
stone. Details on the geological setting, exploration geo-
physics, structural evolution and reservoir characteristics
are provided in Perrot & Van der Poel (1987) and Hern-
green et al. (1991). Magma may have reached the surface
along Permo-Carboniferous and Cimmerian faults that
were opened during the Late Jurassic. Based on geophys-
ical data the agglomerates represent a neck, which forms
part of a dome-like structure. This is illustrated by the
isopach map of ‘Upper Jurassic’ units (Delfland Subgroup
and Kimmeridge Clay Formation), which shows a divi-
sion of the Vlieland Basin into two sub-basins with thin-
ning around the dome (Fig. 11.11a). Perrot & Van der Poel
(1987) interpreted local aeromagnetic anomalies in terms
of a circular caldera-type body with a central volcanic con-
duit (Fig. 11.11c). They hypothesized that after a major

< Figure 11.6. Microphotographs of thin sections of representative igneous rocks from well cores in the Dutch onshore and
offshore, taken in plain polarized light (PPL) and in cross polarized light (XPL). Indicated ages are best estimates and in most
cases are not constrained by accurate radiometric dating (see Table 11.1 and Fig. 11.8). De Wijk-7, depth 2445 m: a-1) Gabbroic
intrusive rock (dolerite) largely consisting of ophitic intergrowths of plagioclase laths and large pyroxene crystals and containing
small opaque grains of Fe-Ti oxide (PPL); a-2) Same in XPL; a-3) Detail showing intergrown clinopyroxene and elongated plagi-
oclase (PPL); a-4) Same in XPL. Fo4-02-A, depth 4650 m: b-1) Porphyritic trachyte showing euhedral plagioclase phenocrysts

set in an altered fine-grained matrix (PPL); b-2) Same in XPL; b-3) Detail showing plagioclase cluster with Fe-Ti oxide (PPL); b-4)
Same in XPL; note the complex twinning in the plagioclase on the left. F10-01, depth 3451 m: c-1) Porphyritic basanite (referred
to as ‘lamprophyre’ by Latin, 1990) with phenocrysts of clinopyroxene with brown Ti-rich amphibole (e.g. in the upper right cor-
ner) and minor biotite in a crystalline matrix (PPL); c-2) Same in XPL; c-3) Magnified detail showing clinopyroxene phenocryst
(left) with somewhat darker outgrowths on its rim, as well as a brownish amphibole megacryst with concentric colour zoning

and smoothly curved outlines suggesting resorption (PPL); c-4) Same in XPL. Heinenoord-1, depth 2249.3 m: d-1) Porphyritic
rock with an alkali-basaltic composition, containing abundant phenocrysts of olivine and clinopyroxene, chromium spinel and
rhonite in a fine crystalline matrix (PPL); d-2) Same in XPL; d-3) Magnified detail (PPL) showing micro-phenocrysts of partly
serpentinized olivine (green rims and crack fringes); d-4) Same in XPL. Andel-2, depth 1367.8 m: e-1) Strongly altered porphyrit-
ic alkalibasalt with a fine-grained groundmass (PPL); white spots (black in e-2) represent former phenocrysts (probably clinopy-
roxene and or amphibole), which are now voids sometimes partly filled with carbonate; the F10-01 basanite (see c) may well be a
much fresher equivalent; e-2) Same in XPL; e-3) Detail showing the abundance of small feldspar laths in the groundmass and a
completely altered microphenocryst (PPL); e-4) Same in XPL. Loon op Zand-1, depth 2589.5 m: f-1) Strongly altered porphyritic
alkalibasaltic rock with ghosts of clinopyroxene and olivine phenocrysts set in a fine-grained groundmass (PPL); f-2) Same in XPL;
f-3) Detail showing carbonated phenocryst, presumably olivine (PPL); f-4) Same in XPL. Zuidwal-1, depth 1948.5 m: g-1) Altered
porphyritic trachyandesite with phenocrysts of elongated plagioclase and euhedral nepheline set in a crystal-rich groundmass
made up of the same minerals, (altered) biotite flakes and Fe-Ti oxides (PPL); g-2) Same in XPL; note the low birefringent to nearly
isotropic appearance and euhedral outlines of nepheline crystals (XPL); Zuidwal-1, depth 1957.9 m: g-3) Magnified detail with
plagioclase phenocrysts (PPL); g-4) Same in XPL; note the strong zoning in the plagioclase (XPL). Zuidwal-1, depths unknown:
h-1) Leucitophyre with abundant pseudomorphs after leucite, now consisting of a fine aggregate of brownish carbonate (sam-
ple ZU6); h-2) Cluster of brown titaniferous clinopyroxene (salite) and small greenish clinopyroxene (aegirine augite) in the
groundmass in leucite basanite (PPL) (sample ZU5); h-3) Phenocryst of brown titaniferous clinopyroxene (salite) rimmed by
green clinopyroxene (aegirine augite) (PPL) (sample ZU5). Images h are from Latin (1990). Approximate image widths: 16.5 mm
forpanels 1 and 2 of a, b, ¢, d and e; 9.5 mm for panels 1 and 2 of f and g; 3.3 mm for panels 3 and 4 of a, b, ¢, d, ¢, f; g; 1.5 mm for
panels h-1 and h-3; 3.6 mm for panel h-2.
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eruption, the magma chamber must have collapsed, and
that any volcanic islands were largely removed by Late Ju-
rassic and Cretaceous erosion. The Wadden Volcaniclastic
Member of the Delfland Subgroup, 78 m thick in Slenk-1
(SLK-01) and also found in Zuidwal-2 and Zuidwal-3
(ZDW-02, -03), consists of fine- to coarse-grained volcan-
iclasts in a tuffaceous matrix (Fig. 11.4a, c). Because of the
weathered appearance and proximity to the dome, these
sediments probably represent erosion products rather
than primary volcanic deposits (Herngreen et al.,, 1991).
Radiometric dating of Zuidwal-1 yielded inconsistent
results. Initial K-Ar ages obtained on four samples (3000-
1950 m) ranged between 119+2 Ma and g2+2. These are
probably only minimum ages, considering the extensive
alteration (Jeans et al., 1977; Harrison et al.,, 1979). An ex-
pected true age of >120 Ma was supported by a K-Ar date
of 145 Ma obtained on a sample of unknown origin (pers.
comm. G. Flaceliére, in Jeans et al., 1977). Subsequent
49Ar/39Ar dating yielded a virtually identical age of 144+1
Ma with a minor overprint between about 120 and go Ma,
suggesting that the younger K-Ar ages reflect argon loss
(Dixon et al., 1981). Finally, Perrot & Van der Poel (1987)
reported an age of 152+3 Ma, based on the 4°Ar/3°Ar-

49K /3°Ar method. These oldest ages (Late Jurassic) are pre-
sumably closest to the true emplacement age.

Documented petrographic descriptions of Zuidwal sam-
ples are not uniform. Dixon et al. (1981) inferred that the
eight altered rocks they examined originally were phono-
lite samples, biotite pyroxenites, a phonolitic basanite and
a rock rich in pseudomorphed leucite respectively (cf. Fig.
11.6g, h). The agglomerate matrix attached to one of the
phonolites contained leucite basanite and leucite tephrite
clasts. Rock types referred to as trachytes, phonolites and
leucitites from observations on 12 samples (Perrot & Van
der Poel, 1987) are consistent with this description. On the
other hand, Harrison et al. (1979) described finely crys-
talline to partly glassy trachyte as the most common rock
type, together with less abundant, heavily altered lava of
probably basic composition and pieces of originally glassy
vesicular pumice and minette. They noted that sphene is
relatively abundant and do not record the presence of pri-
mary feldspathoids or their pseudomorphs. According to
Dixon et al. (1981) it is conceivable that the Zuidwal vol-
canics represent one or more cycles of trachyte-phonolite
eruptions and that they included subordinate amounts
of more primitive lavas such as basanites and tephrites.
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Figure 11.7. Distribution of latest Carboniferous-early Permian (‘lower Rotliegend’) igneous rocks in northwest Europe and loca-
tions of wells in the Netherlands with intrusive and extrusive igneous rocks, volcaniclastics and tuffs from this period. Numbers
refer to radiometric ages in Ma obtained by U-Pb zircon, 39Ar/*° Ar and by other high-quality dating methods. Information on

the Whin Sill Complex: Hamilton and Pearson (201 1), Timmerman (2004); Midland Valley of Scotland: Monaghan and Pringle
(2004); Orkney: Lundmark et al. (2011); Mid North Sea High: Lundmark et al. (2012), Heeremans et al. (2004); Horn Graben:
Breitkreuz et al. (2007); northeast German Basin: Breitkreuz and Kennedy (1999); Oslo Rift: Pedersen et al. (1995), Corfu and
Dahlgren (2008), Corfie and Larsen (2020); late Paleozoic igneous rocks: Gast et al. (2010; Fig. 7.16); additional Permain igneous
rocks: Van Bergen & Sissingh (2007); East Groningen Massif: Bredewout (1989); Cornubian batolith (Cornwall): Searl et al.,

(2024); Watts et al., (2024).
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Taking effects of secondary alteration into account, the
available geochemical data (see below) indicate that the
Zuidwal volcanics originally represent a typical ultra-
potassic, silica-undersaturated rock series, including leu-
cite-bearing phonolitic members (Fig. 11.6g, h), which
probably originated during the residence of a more mafic,
mantle-derived, clinopyroxene-rich tephritic-basanitic
parent magma in a relatively shallow subvolcanic reser-

Voir.

The Mulciber volcanic centre

The existence of a buried igneous centre in the subsur-
face of the Dutch sector of the North Sea (block F16, Fig.
11.12) had been suspected for some time from the exist-
ence of a positive magnetic intensity anomaly around
Amoco exploration well F16-02 (Sissingh, 2004) and from
the presence of volcanic material in core samples (Lest-
er, 1985). An integrated regional sedimentary and strati-
graphic study in the area around the well (Bouroullec et
al,, 2018) ultimately led to the identification of the Mulci-
ber volcanic centre, made public by the Geological Survey
of the Netherlands in 2020. The volcano was named after
the Roman god of fire and volcanoes.

Sidewall core samples and borehole logs from well F16-
o2 (Fig. 11.12a) include tuff and tuffaceous claystone
grading into solid volcanic rock in the succession between
1702 and 1662.5 m depth, as well as tuffaceous claystone
interbedded with anhydrite, and volcaniclastics between
1983 and 1737 m (Lester, 1985). Petrographic informa-
tion provides insight into the mode of emplacement and
composition. Five pieces of igneous rock sampled between
1672 and 1662.5 m were interpreted as basaltic-andesitic
and andesitic lavas. This was based on their porphyritic,
vesicular nature and the mineral content, which includes
clinopyroxene, plagioclase, Fe-oxide, apatite and a ma-
trix of devitrified glass that hosts the same phases, often
together with biotite. Due to strong alteration, most of
the original assemblage has been replaced by secondary
minerals. The presence of biotite (and locally amphibole)
suggests an alkaline affinity of the rock suite. Although it
has been proposed that the igneous material of this in-
terval represents a continuation of the Zuidwal volcanics
into the Central North Sea Graben (Lester, 1985), it is now
clear that the Mulciber volcanic centre was the source.

The magnetic anomaly in block F16 is similar to that
of the Zuidwal volcano (Fig. 11.10b). A strongly reflective
interval with a high acoustic impedance contrast, mapped
on 3D seismic data a few kilometres to the west of well
F16-02 (Fig. 11.12b), indicates the presence of layers of
solid rock, as can be readily inferred from the sonic log
(Fig. 11.12a). Its spatial distribution coincides with that of
the magnetic anomaly (Fig. 11.12b), and its reflections can
be traced to the well (Fig. 11.12¢, d), so it probably repre-

sents the same lavas as found in the sidewall cores in F16-
02. The morphology of the uppermost seismic reflector
resembles that of a smoothed volcano, likely due to sub-
aerial weathering and erosion prior to burial by younger
sediments.

Biostratigraphic constraints indicate that the upper in-
terval of igneous rocks (1702-1662.5 m) is latest Jurassic
to Early Cretaceous in age, while the overlying claystone
(1662.5-1659 m) is Late Hauterivian to Early Barremian
(Lester, 1985; Bouroullec et al., 2018). Samples from the
sidewall cores were completely used for petrographic anal-
yses and igneous material is no longer available for radi-
ometric age determination.

The position of strong seismic reflectors at a consider-
ably deeper level (3300 m) west of well F16-02 relative to
that near the well and the volcanic interval (ca. 1660 m),
marks the effect of salt tectonics (Fig. 11.12d). The seismic
data suggest that faulting along the Dutch Central Graben
was active during magmatic activity and that, rock salt
(Zechstein) moved upward along the fault-related weak-
ness zones in the overburden, pushing the succession of
igneous rocks to higher levels at the well location (Fig.
11.12cC).

Below the igneous rocks of Jurassic age in well F16-02,
evaporites of the Zechstein Group host an interval with
felsic volcanics between 1985 and 1738 m. Considering
the stratigraphic position, these are probably of late Per-
mian age. Strongly altered material at 1975-1965 m repre-
sents a porphyritic extrusive rock with clinopyroxene, bio-
tite and glassy matter, presumably originally a dacitic lava.

Jurassic igneous rocks in adjacent areas

The triple junction between the Moray Firth, the Viking
Graben and the Central Graben (northern North Sea)
has been known as a centre of voluminous volcanism in
middle to late Jurassic times since its discovery in 1970
(Fig. 11.13). An over 3000 m thick succession of basal-
tic lavas (‘Forties Volcanics’) constitutes a volcanic field
that covers an area of about 12000 km?, extending east-
ward across the southernmost part of the Viking Graben
(Woodhall & Knox, 1979). The volcanics are also known
as the Forties Igneous Province and the Rattray Volcanics
amongst others. Based on well data and seismic reflec-
tion profiles, Smith and Ritchie (1993) proposed that at
least three major volcanic centres existed, whereas from
a recent re-interpretation using 3D-seismic data Quirie
et al. (2019) inferred that the volcanics were sourced in
fissure eruptions from linear vents. The rocks were em-
placed as subaerial lavas and volcaniclastics, subaqueous
basaltic hyaloclastics and reworked material and as sub-
ordinate intrusive units (Quirie et al., 2019). The basalts
are silica-undersaturated, belong to the alkaline series and

contain abundant phenocrysts of olivine and clinopyrox-
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Figure 11.9. Wells located in the Netherlands in which igneous rocks attributed to the Late Jurassic episode of magmatic activity
have been found. Wells with igneous material from other or unknown periods are shown for comparison. Structural elements are

those from Late Jurassic-Early Cretaceous times (Pharaoh et al., 2010; Kombrink et al,, 2012; Hopper et al,, 2014). Details on the

rocks in each well are listed in Table 11.1.
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Figure 11.10. a) Bouguer gravity map of the Netherlands;
b) Local variations in the Earth’s magnetic field. Both maps
were compiled by TNO-GDN from various surveys (data can
be found on NLOG.nl). Wells with igneous rocks (Table 11.1)
and locations of the Zuidwal and Mulciber volcanic centres
are shown for comparison.
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ene (Gibb & Kanaris-Sotiriou, 1976; Dixon et al., 1981;
Latin & Waters, 1992). Most are fairly primitive, whereas
more evolved hawaiites and mugearites have been found
as well. The precise age and duration of the effusive event
is still elusive as there is disagreement between radio-
metric and biostratigraphic age dates (see discussions in
Latin, 1990; Quirie et al, 2020). Stratigraphic evidence
based on palynology, suggests a middle Jurassic age (Bajo-
cian-Callovian), while scrutiny of available radiometric
dating results (Latin, 1990) favours an upper Jurassic age
(Kimmeridgian-Tithonian), based on ages of 1534 Ma
and 148+2 Ma obtained on a *°Ar/39Ar stepwise degassing
study of samples from well 21/03b-3 (Ritchie et al., 1988).

The Central North Sea igneous province on the western
margin of the UK Central Graben (Fig. 11.13) is made up
of mostly subaerial lava flows, tuffs and epiclastic rocks,
together with several intrusions in the Zechstein interval.
The rocks share a silica-undersaturated and potassium-
rich character and carry mineral assemblages that include
primary biotite and amphibole (Latin et al., 1990b). Fine-
grained extrusive rocks in well 30/16-A13Y (sample SH1),
labelled as kaersutite leucitite, contain Ti-rich clinopy-
roxene and amphibole as phenocrysts, whereas severely
altered, fine-grained and largely aphyric rocks in well g/
14b-1 (sample AH2) were tentatively classified as basanite
(Latin, 1990). Two intervals with intrusive varieties in well
29/25-1, referred to as mafic biotite phonolite (Dixon et
al,, 1981) or potassic lamprophyre (Latin, 1990), contain
phlogopite and pseudomorphs of clinopyroxene and oli-
vine phenocrysts. From an irregular 4°Ar/39Ar age plateau
of a phlogopite sample, the oldest age of 157 Ma is prob-
ably closest to that of the emplacement (Latin, 1990). All
of these ultrapotassic rocks belong to the same series and
share similar settings as those of the Dutch Central Gra-
ben and the Zuidwal volcanic centre.

On the western rim of the Egersund Basin in the
Norwegian sector of the North Sea, nephelinite lavas have
been found interbedded with Jurassic sediments, form-
ing a sequence several hundred metre thick (well 17/9-1;
Fig. 11.13). They are porphyritic vesicular rocks with large
clinopyroxenes and pseudomorphs after olivine, which
are set in a fine-grained or glassy groundmass. High con-
tents of incompatible trace elements confirm the alkaline
nature of these rocks (Dixon et al., 1981; Latin & Waters,
1992). A lower succession, cored in the same well, intrud-
ed into Lower Jurassic and/or Triassic sediments (Furnes
et al,, 1982; Latin et al., 1990b). These are strongly under-
saturated mafic potassic-alkaline rocks, similar to the
lamprophyres of the Central Graben area, with phlogo-
pite-rich mineral assemblages and textures that resemble
alngites (Latin, 1990). Conventional K-Ar ages obtained
on phlogopite in the intrusive rocks yielded 180-177 Ma
(Furnes et al,, 1982) and a 4°Ar/39Ar plateau age on phlo-

gopite a younger age of 170+2 Ma (Latin, 1990). Together
with the Bajocian-Bathonian age of the sedimentary rocks
intercalated with the lavas, this would make the Egersund
magmatic event somewhat older than the most reliable ra-
diometric ages of Jurassic magmatism in the Netherlands
and UK sectors of the North Sea.

Numerous volcanic necks and plugs, associated with
minor remnants of lava flows and pyroclastic deposits
represent Jurassic mafic alkaline magmatic rocks with
nephelinite-basanite composition in central Scania (south
Sweden, Fig. 11.13). Whole-rock determinations produced
a K-Ar age range between 171 and 79 Ma, and a 4°Ar/39Ar
range in three age groups between 191 and 110 Ma, but
the younger results are probably compromized by second-
ary Ar loss (Tappe et al,, 2016, and references therein).
However, two 4°Ar/39Ar plateau ages obtained on anortho-
clase feldspar megacrysts yielding a weighted average of
176.7+0.5 Ma (2-sigma), probably provide the current best
estimate for Jurassic magmatism along the southwestern
margin of the Baltic Shield. A Middle Jurassic olivine-bio-
tite gabbro with a K-Ar age of 166+4 Ma was encountered
in a borehole off the west coast of Cornwall (Harrison et
al,, 1979), while Jurassic smectitic clays in southern and
eastern England have been interpreted as alteration prod-
ucts of volcanic air-fall, part of which may originate from
volcanic centres in the North Sea (Bradshaw, 1975; Jeans

etal, 1977, 2000).

In summary, the extensive database on Mesozoic mag-
matism in the Netherlands encountered in wells (Table
11.1) discloses clear systematic patterns in the onshore
and offshore distribution, timing, composition and mode
of emplacement of the igneous rocks. Despite a usually
high degree of alteration, the available petrographic and
geochemical evidence indicates that all of the rocks sam-
pled have a silica-undersaturated alkaline signature. Most
of the occurrences solidified as sills or dykes from mafic
mantle-derived magmas, whereas a minority represents
lava flows or tuffaceous intervals indicative of explosive
eruptive activity. The buried volcanoes of Zuidwal and
Mulciber form complex igneous edifices. Petrographical-
ly the rocks are often porphyritic, carrying clinopyroxene
and olivine (or pseudomorphs) as dominant phenocrysts,
while assemblages of primary silicate phases may further
include amphibole, biotite, nepheline, leucite and pla-
gioclase. Parental magmas are tephritic/basanitic with a
more sodic affinity around the West Netherlands Basin
and a more potassic character in the areas of the Vlieland
Basin, Broad Fourteens Basin and Dutch Central Graben.
Tuff-bearing intervals are mostly reported in logs from
wells near the Broad Fourteens Basin. Available results
from conventional absolute age dating span a range from
Late Triassic to Late Cretaceous but in many cases relia-
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<« Figure 11.11. The Zuidwalvolcanic centre ( for location,
see Fig. 11.1): a) Isopach map (metres) of the ‘Upper Juras-
sic’ in the southern part of the Vlieland Basin (modified from
Herngreen etal,, 1991); b) Cross section showing the dome
structure of the Zuidwalvolcano (modified from Herngreen
etal, 1991) c) Aeromagnetic map (modified from Perrot &
Van der Poel, 1987; cf. Fig. 11.10b); d) and e) Tentative mod-
el for mantle melting below the Zuidwalvolcano in response
to stretching and thinning of the continental lithosphere,
illustrated by connecting a hypothetical temperature-depth
(pressure) phase diagram for mantle rock (d) to a simplified
cross section through the local crust (modified from Hern-

greenetal., 1991; see text for details).

bility is compromized by post-crystallization disturbance.
Considering the most robust age dates only, Mesozoic

magmatism is probably limited to a Late Jurassic interval.

Paleogene-Neogene

The lower Eocene marine tuffaceous clay of the De Wijk
Member (formerly Basal Dongen Tuffite Member) is
widely distributed in the subsurface of the Netherlands
(Table 11.2). Equivalent tephra deposits are widespread
in offshore and onshore stratigraphic records of the UK,
Germany and Denmark (Fig. 11.14), where locally tens to
hundreds of individual air fall layers have been identified.
This early Eocene ash interval has been recognized in large
parts of NW Europe and is the expression of an episode of
major explosive volcanism (Knox & Morton, 1988; Morton
& Knox, 1990; Larsen et al., 2003; Stokke et al., 2020). Giv-
en the regional distribution, the interval represents a con-
spicuous marker in the North Sea Basin, which is well de-
tectible in wire-line logs (Jacqué & Thouvenin, 1975; Knox
& Morton, 1988).

The ashfalls were initially bimodal (mixed basaltic to
rhyolitic) but subsequent main stage series were predom-
inantly basaltic, as inferred from key sections in northwest
Denmark (e.g. Larsen et al,, 2003; Stokke et al,, 2020).
Tephra deposits or their alteration products with largely
similar geochemical signatures, have also been described
from wells and clay pits in northern Germany (e.g. Obst et
al., 2015 and references therein) and from offshore wells
in the North Sea area (Morton & Knox, 1990). The ashes
probably originated from volcanic centres in the North
Atlantic Igneous Province (NAIP), formerly referred to as
the ‘Thulean igneous province, which comprises intru-
sive and extrusive rocks encountered in Greenland, Ice-
land, the Faroe Islands, the UK and Ireland as well as vast
submarine areas of the adjacent continental margin (A

Horni et al.,, 2017). Massive flood basalts and sill intru-

sions were emplaced between 63 and 52 Ma (maximum
activity between 56 and 54 Ma), accompanying the sepa-
ration of Greenland from Eurasia and the opening of the
North-East Atlantic Ocean (Storey et al, 2007). The ash
eruptions were particularly explosive and voluminous.
The most powerful single event in the succession (dated
at 54.04+0.14 Ma; Chambers et al., 2003) ejected ca. 1200
km3 of ash material with a fall-out distance up to some
1900 km from the source, i.e. as far south as the Austrian
Alps (Egger & Briickl, 2006). In the absence of evidence
from tephrochronology, it is assumed that the ash particles
in the De Wijk Member originate from this eruption (Table
11.2). The magnitude and explosivity of the NAIP erup-
tions are exceptional for basaltic systems and may have
been enhanced by hydromagmatic interaction in a shal-
low marine environment (Larsen et al., 2003; Stokke et al.,
2020). The intrusion of dykes in the North Sea area (see
below) may have further contributed to the widespread
deposition of tephra in the North Sea Basin through ex-
plosive interaction between rising magma and sea water
(Wall et al., 2010).

The large-scale igneous activity that marks the NAIP is
related to a plume of upwelling hot mantle material ar-
riving at the base of the lithosphere below Greenland,
the subsequent continental break-up and the initiation
of ocean floor spreading (Morgan, 1971; Saunders et al.,
1997; Torsvik et al.,, 2001). The postulated plume is cur-
rently centred below Iceland. Although the mantle plume
concept successfully explains the origin of the NAIP, there
is ongoing debate as to the shape, size and depth of the
mantle source, the location of first impingement, the areal
extent of the geological effects, and the stability of its po-
sition (see review of Meyer et al., 2007). Alternatives for a
classical hot-plume hypothesis have been proposed as well
(e.g. Foulger & Anderson, 2005; Hole & Natland, 2020).
This episode of intense volcanism had a global environ-
mental impact as it is thought to have triggered the onset
of the Paleocene-Eocene Thermal Maximum (PETM) at
ca. 56 Ma (e.g. Storey et al., 2007).

The NAIP encompasses the British-Irish Paleogene Ig-
neous Province (BIPIP), which consists of igneous centres
and dyke swarms in Scotland, England, (Northern-)Ireland
and the Irish Sea (Fig. 11.14; Wright et al.,, 1971). Dyke
swarms also extend into the Southern North Sea (Kirton &
Donato, 1985; Brown et al.,, 1994), as inferred from mag-
netic anomalies and seismic stratigraphy (see compila-
tion in Fig. 11.14). Since their discovery, several authors
have reported evidence for WNW-ESE striking dykes in
the Southern North Sea, reaching as far east as the Nether-
lands offshore (Gauer et al., 2004; Underhill, 2009; Wall et
al., 2010; Hernandez Casado & Underhill, 2013; Kortekaas
et al,, 2018; Carver et al,, 2023; Engie/Neptune Energy un-
published internal studies). The dyke swarms appear as

Geology of the Netherlands

421



422

salt dome F17

=
=
%%
- K 0>
16-02
L02
outline
"l - - magnetic
al
- i

10km

-z

A. F16-02 B.
0 GR(gAPI 200
depth (gAPI) g
MD (m) |200 ) I?T(uslft) 0|7
base KNNC—] 25
1660
E ) 24
solid -] p 23
volcatz‘i’cmck . ) 22
3 F16
1665 21
E 20
1670 19
E )18
5 p 17
1675
5 )16 Lo1
1680
base solid :
volcanic rock E
- tuff and tuffaceous
1685 il
E - ‘INZIMCD
3 siliciclastic
1690 volcaniclastic
h igneous

——base (K =

——intraKNreflectorforflattening

) basé KNS

£

L

igh-amplitude reflectors (blue over red]

- S—

CHAPTER 11 = MAGMATISM IN THE NETHERLANDS

§ (sw) dwn [aAes) Akem-omy s



< Figure 11.12. The Mulciber volcanic centre ( for location,
see Fig. 11.9): a) Volcanic rock, tuff and tuffaceous claystone
inwell F16-02, as inferred from geophysical borehole logging
and identified in sidewall cores (SWC). GR = gamma-ray

log, DT = sonic log, MD = Measured Depth, KNNC = Vlieland
Claystone Formation; b) The area around well F16-02 show-
ing the coincidence of the magnetic anomaly (also see Fig.
11.10b) and a seismic reflector representing layers of solid
(volcanic) rock with a high acoustic impedance; c) Seismic
line across well F16-02, penetrating an underlying salt dome
(3D survey Z3WIN2003B, inline 4856); d) Flattened version
of the seismic line to illustrate the correlation between the
volcanic deposits in well F16-02 and the seismic reflector
further to the west. NU = Upper North Sea Group, N = North
Sea Supergroup, CK = Chalk Group, KN = Rijnland Group.

noisy sub-vertical zones on seismic data but the deep roots
of the igneous bodies remain elusive.

The age of the dykes in the Southern North Sea is not
well established but can be inferred from their onshore
equivalents in Scotland and England. Interpretation of
conventional K-Ar dates of a large set of samples from
the Cleveland Dyke Echelon, which stretches from the
Mull intrusive complex in western Scotland to the north-
east coast of England, yielded an emplacement age of
59.3+2.0 Ma (Mitchell et al., 1989). Stratigraphic relation-
ships point to a consistent age of 58-54 Ma (Underhill,
2009; Wall et al., 2010) or 59-58 Ma (Carver et al., 2023),
i.e. near to the Paleocene-Eocene boundary for the South-
ern North Sea dykes that form the south-easterly contin-
uation of the Cleveland and associated dykes. Thoroughly
screened and recalibrated Ar-Ar and U-Pb dates of various
igneous rocks return an age cluster between 63 and 58 Ma
for the entire BIPIP (Wilkinson et al,, 2017).

Dyke swarms of similar age to those of the BIPIP and
Southern North Sea also occur on the north-American side
of the spreading zone, i.e. along the east coast of Green-
land (Kirton & Donato, 1985; Wilkinson et al.,, 2017). In
the Southern North Sea, the dykes may reflect the region-
al stress pattern in the Paleogene as they do not coincide
with prominent faults at sub-salt level (Underhill, 2009).
On the other hand, Wall et al. (2010) noted that dykes
have the same trend as regional basement lineaments. The
dykes occur preferentially in synclines where Zechstein
salt has flowed away (Brown et al., 1994; Underhill, 2009;
Wall et al., 2010). Based on seismic interpretation, Hernan-
dez Casado & Underhill (2013) suggested that Paleogene
igneous activity triggered mobility of the Zechstein salt
in the Southern North Sea, which played a major role in
shaping the structural configuration. Carver et al. (2023)
tentatively inferred a minimum of at least three intrusive
episodes spread over a period of about one million years.

Linear channel-like features, visible at the top of the Upper
Cretaceous Chalk (Brown et al.,, 1994; Carver et al., 2023),
may reflect catastrophic dewatering, compaction and con-
sequent extensional collapse as a thermal effect of dyke
intrusion. Based on 3D seismic imaging, Wall et al. (2010)
identified various types of craters at the top of the Chalk.

The dyke intrusions may have influenced petroleum
prospectivity in various ways. Some authors (e.g. Kirton &
Donato, 1985; Dewey & Windley, 1988) refer to the coin-
cidence of the NW-SE trending dyke systems in Scotland
and northern England with a broad zone of ‘devolatilized
Westphalian coals’ that crosses the North Sea and extends
to the Netherlands towards the Ruhr Graben. Fracturing
around and above the dykes could have permitted gas mi-
gration from the Carboniferous source rocks into Triassic
reservoirs, thus explaining the linear orientation of Trias-
sic gas fields in the Southern North Sea (Underhill, 2009;
Kortekaas et al., 2018). It has also been proposed that in-
trusion of the Paleogene dykes had an influence on the
composition of subsurface gas, such as a rise in CO, or N,
content (Verweij et al., 2016).

Volcanism also affected sediment composition in the
North Sea Basin during the early Oligocene (Rupelian), in
particular that of the Boom Member (‘Boom clay’), a 50 to
75-m-thick marine shelf sediment present over large parts
of the Netherlands subsurface (Table 11.2). According to
petrographic observations on samples from outcrops in
Belgium the sediment contains volcanic heavy minerals
and up to 10% of argillized volcaniclasts in a clayey ma-
trix that is thought to be the altered volcanic ash of tra-
chytic and basaltic composition (Zimmerle, 1993). Plausi-
ble sources are volcanic centres of the Siebengebirge and
Hocheifel that produced basaltic and evolved lavas and
pyroclastics with alkaline affinities (Wedepohl et al., 1994;
Jung et al,, 2006, 2012). They were active from ca. 30-22
and 44-35 Ma, respectively, according to 4°Ar/39Ar dating
(Fekiacova et al.,, 2007; Przybyla et al., 2018). Direct ash
falls and/or reworking of weathered volcanic soils were
possible modes of transport to the North Sea area. Ad-
mixture of ash from the BIPIP cannot be excluded, as the
main sea current along the British uplands at the time was
counterclockwise (Vandenberghe et al., 2014).

Several layers containing ash particles have been found
intercalated in shallow marine clay of the upper Oligo-
cene to lower Miocene Veldhoven Formation in boreholes
in the Winterswijk region (Table 11.2; Burger, 1979, 1992;
Van den Bosch, 2015). The presence of ‘Eifel titanite’ and
‘basaltic hornblende’ suggests a link with explosive vol-
canism in the Eifel. This volcanism around the Rhine-Ro-
er-Hessian graben triple junction in the Rhenish Massif
started in the Eocene and lasted well into the Quaternary,

with episodes of increased activity in the Late Oligocene
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Figure 11.13. Distribution of Jurassic igneous rocks in northwest Europe and wells in the Netherlands that penetrated intrusive
and extrusive rocks, volcaniclastics and tuffs from this period. Well names can be found in Fig. 11.9.

and Miocene (Sissingh, 2003; Ziegler & Dézes, 2005, and
references therein). It accompanied the development of
the Rhine rift system and has been associated with the
rise of a mantle plume and related thermal thinning of the
mantle-lithosphere (Ritter et al., 2001).

Quaternary

Tephra layers originating from volcanic centres in the Eifel
or Iceland are locally intercalated in Quaternary sedimen-

CHAPTER 11 - MAGMATISM IN THE NETHERLANDS

tary deposits, providing a rare opportunity for tephro-
stratigraphic correlations in the Netherlands.

Middle Pleistocene fluvial terrace sequences in the
Middle and Lower Rhine Basin in Germany record the
onset of volcanism in the eastern Eifel about 600 ky ago
through the appearance of volcanic heavy minerals that
were initially dominated by hornblende and later by clino-
pyroxene (Boenigk & Frechen, 2006). In the Netherlands,
a similar change in the heavy mineral spectrum is used to
separate fluviatile deposits of the Sterksel Formation from
the overlying Urk Formation (Preusser, 2008), in view of
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Figure 11.14. The North-East Atlantic Ocean at the onset of breakup (ca. 55 Ma, after Gaina et al,, 2014) and the distribution
of associated basaltic rocks (after A Horni et al., 201 7). Also shown are reconstructed isopach contours for primary ash fall

produced by explosive volcanism that accompanied the rifting process (based on Knox & Morton, 1988; Knox, 1997). In the
Netherlands, these ashes form a constituent of the De Wijk Member of the Dongen Formation. Geophysical evidence suggests that
rifting-related dykes extend as far as the Dutch offshore (see text). Compilation of dikes in the North Sea is based on: Underhill
(2009), Kirton & Donato (1985), Kortekaas et al. (2018), Youri Poslawski/Neptune Energy. BIPIP = British and Irish Paleogene

Igneous Province.

the fact that the Lingsfort Member, the lowermost mem-
ber of the Urk Formation, is thought to correlate with
the oldest Middle Terrace sediments (MT I) in the Lower
Rhine area (Zagwijn, 1985), where the increased influx
of volcanic material is also recorded (Boenigk & Frechen,
2006). This is a rare example of the use of magmatic prod-
ucts for stratigraphic purposes in the Netherlands.

The loess succession of the Middle Pleistocene-Lower
Holocene Boxtel Formation in South Limburg contains
several tephras with an origin in the Eifel region, taking
observations at locations in the immediate vicinity into
account: the Rocourt Tephra, the Eltville Tephra and the
Laacher Sea Tephra (Fig. 11.15, Table 11.2).

The Rocourt Tephra (Fig. 11.15b) was produced by
a basaltic alkaline volcano with an unknown location
presumably in the West Eifel. The tephra is marked by a
blocky shape of altered glass shards, suggesting a phreato-
magmatic character of the eruption, with a mineral as-
semblage comprising clinopyroxene, brown amphibole,

orthopyroxene (enstatite) and Cr-spinel in decreasing
order of abundance (Pouclet et al., 2008). The combina-
tion of high- to middle-pressure enstatite and aluminous
clinopyroxene with low-pressure fassaitic clinopyroxene
is rather unique and makes the tephra easy to recognize.
Stratigraphic dating points to an age between go.3 and 74
ka (Pouclet et al., 2008). Rocourt tephra has been found
across large parts of eastern Belgium, including in loess
sections near Kesselt, Vroenhoven en Veldwezelt, just west
of Maastricht (Mees & Meijs, 1984; Pouclet et al., 2008;
Meijs, 2011).

The Weichselian Eltville Tephra (Fig. 11.15¢) erupted
from an unidentified volcanic centre in the West or East
Eifel and has been recognized in loess regions of western
and central Germany, southern Netherlands and eastern
Belgium, where two to five individual ash layers are part
of an interval with a total thickness ranging between a
few mm to 20 cm (Meijs et al., 1983; Pouclet & Juvigne,
2009; Zens et al, 2017). The assemblage of mafic vol-
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< Figure 11.15. Cenozoic volcanic material in the Netherlands: a) Reworked Laacher See pumice dispersed along the (Late

Pleistocene) Rhine River and schematic distribution of air-fall tephra ejected from the Laacher See eruption centre (pumice

compilation: KM. Cohen (2015, 2022: various databases TNO-GDN, UU, literature); tephra and details: Schmincke et al. (1999),

Park & Schmincke (2009); Late Pleistocene channel modified from Cohen et al. (2012); b) Approximate distribution of air-fall

tephra from the Rocourt event (between 9o.3 and 74 ka) and locations where it has been found in sediments (tephra: Pouclet &

Juvigne (2009); locations are from: Mees & Meijs (1984), Meijs (2011), Juvigné (1999)); ¢) Approximate distribution of air-fall

tephra from the 25.6-23.2 ka Eltville event and locations where it has been found in sediments (see also Fig. 11.16a) (tephra: Zens

etal. (2017); locations are from: Meijs (1980), Juvigné & Semmel (19871), Meijs et al. (1983), Meijs (201 1), Juvigné & Semmel

(19871)); d) Approximate distribution of crypto-tephra from the 12.1 ka BP Vedde eruption and locations where crypto-tephra
from the Vedde and 1783-84 AD Laki eruptions has been found in sediments. The distribution of the De Wijk Member containing
Paleocene-Eocene tephra or tuff is indicated based on TNO-GDN (2023). (tephra: Davies et al. (2005); volcanic minerals: Burger

(1979, 1992); Laki: Cremer et al. (2010), Andronikov et al. (2016); Belvédére: Meijs (1985)).

canic minerals is dominated by clinopyroxene, olivine and
brown amphibole, whereas titanite, apatite and traces of
phlogopite, prehnite, haiiyne, tridimite, nepheline and
K-feldspars have been identified as well (Juvigné & Sem-
mel, 1981; Meijs et al., 1983; Pouclet & Juvigne, 2009). The
tephra is a prominent stratigraphic marker with an age of
25.6-23.2 ka obtained from luminescence dating (Zens
et al.,, 2017). Meijs (1980, 2011), Meijs et al. (1983) and
Pouclet & Juvigné (2009) reported its presence in quarries
and sections around Maastricht (Nagelbeek, 't Rooth (Fig.
11.16a), Biesland, Lixhe, Veldwezelt, wall of the Albert Ca-
nal near Vroenhove).

The Late Pleistocene Laacher See Tephra (Fig. 11.15a)
is a prominent stratigraphic marker in large parts of
Central Europe. Three main events of violent explosive
activity from a centre in the East Eifel Volcanic Field pro-
duced ash clouds fanning in different directions and fall-
out up to more than 1000 km from the source (Worner &
Schmincke, 1984; Van den Bogaard & Schmincke, 1990).
Owing to the phonolitic composition of glass shards, the
dominance of clinopyroxene, amphibole and sphene (ti-
tanite) as heavy minerals and sanidine and plagioclase as
light phases, the Laacher See Tephra is easily distinguish-
able from ashes with a similar age. The chemical and
mineralogical composition changed in the course of time
from highly differentiated to mafic phonolite. Recent high-
precision dendrochronological and '4C dating yielded an
eruption age of 13,006 + g calibrated years before present
(Reinig et al., 2021).

Blockage of the Rhine River by abundant pyroclastic
flows and rapid deposition of tephra fall near the crater,
followed by breaching of the pumice dam and catastroph-
ic flooding, discharged large amounts of tephra into the
lower Middle Rhine Valley (Schmincke et al., 1999). Fur-
ther reworking explains why Rhine sediments in the Neth-
erlands contain Laacher See pumice granules from the
Late Allered onwards (Busschers et al., 2007; Autin, 2008;
Fig. 11.16b). Layers with glassy pumice fragments contain-

ing phenocrysts of augite and ‘basaltic hornblende’ were

encountered in river sediments from several locations
near Arnhem (Crommelin, 1963; Erkens, 2009).

Airborne Laacher See tephra has been identified in
the form of volcanic heavy minerals (clinopyroxene
and brown amphibole) in the loess succession of the
Veldwezelt section that also contains the Rocourt and
Eltville tephras (Meijs, 2011). Trace-element signatures
of Late Pleistocene eolian cover sands (Lutterzand in the
easternmost part of the Netherlands and sites near Lom-
mel in NE Belgium) point to the presence of a volcanic
component that may also be derived from the Laacher See
Tephra (Andronikov et al,, 2016).

Layers with distal (crypto-)tephra have also been
identified in a Late Pleistocene peat and gyttja infill of a
pingo-remnant at Kostverloren, in the province of Drenthe
(Fig 11.15d; Davies et al.,, 2005). Geochemical fingerprint-
ing identified glass shards of one horizon as the rhyolitic
component of the bimodal (basaltic-rhyolitic) Vedde Ash
(mid-Younger Dryas), an important regional stratigraphic
marker in the North Atlantic, the Norwegian Sea, and the
adjacent land area, dated at 12 ka (e.g. Lohne et al,, 2013).
These Vedde Ash particles are fall-out from an ash cloud
thought to have originated from a major explosive erup-
tion in southern Iceland (probably from Katla Volcano),
which drifted in south-easterly directions over northern
Britain, southern Scandinavia and western Russia. Two
other tephras in the Kostverloren succession could not be
geochemically characterized but one has tentatively been
attributed to the Laacher See Tephra (Davies et al., 2005).

A Holocene micro-tephra has been preserved in the
form of glass shards in a sedimentary succession domi-
nated by gyttja, filling in a historic scour-hole lake near
Haarsteeg (Fig. 11.15d; Noord Brabant). From chrono-
stratigraphic evidence the tephra corresponds to the large
1783-1784 AD volcanic eruption of the Laki volcano in
Iceland (Cremer et al,, 2010). This event produced a dry
sulphuric fog across large parts of Europe (Thordarson &
Self, 1993) with a severe environmental impact. Brugmans

(1784) provided a remarkably detailed historic account on
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Table 11.2. Cenozoic tephra in the Dutch subsurface with sources and dated eruption events. Note that ages are mostly based on
dating of equivalent deposits outside the Netherlands (see references). Emplacement is based on available evidence.

Eruptive event/marker Location Well/sample depth (m) Age Dating method
Laki erupti Haarsteegse Wiel lake)  Northem basin (HA-07- 1783-1784 CE Age-depth relationships and interpolation
s fowsis 2.60-2.70 i between various historic events recorded in lake

sediments

Vedde - Kostverloren Veen N/A 12,066+42 calyrBP  Te (Kostverloren Veen) and

mxkn probably (peat bog) yr ephrochronology el
from Icelandic lake sediments hosting Vedde-ash

Laacher See eruption Rhine-Meuse delta N/A 13,006:9 calyrBP  'C and dendrochronology

Eltville Tephra South Limburg loess N/A 256-232ka Bayesian age-depth modelling of luminescence
ages of minerals above and below the tephra
in sequences between eastern
Belgium and central Germany

Rocourt Tephra South Limburg loess N/A 903-74 ka Stratigraphic bracketing with
dating of underlying limestone clasts and '*C
dating of an overlying peat layer

Tephra in Veldhoven Subsuface Winterswijk region  Beltrum ('100") B34D0232/ 28-16 Ma (7) estimate based on formation

F:"Iniiu\ (East Netherlands) 131.5-136.5 = e

Lievelde ('101") B41B0073/ 28-16 Ma (7) Age estimate based on formation age
925935

Tephra in Boom Member  Onshore and offshore (B51D0127, 44-35,30-22 Ma Inferred from *°Ar/*%Ar ages of centres in

of Rupel Formation subsurface Netherlands Veldeen-oHdmwple)a\doﬂwwels Siebengebirge andl-lod\eielm(m

North East Atlantic Onshore and offshore Holostratotype (BL020070, 54.04+0.14Ma “40Ar/39Ar age of ‘+19 ash’from the Fur Formation

Province tephra subsurface north Netherlands  L02-04) and other wells (Denmark), presumably equivalent to De Wijk ash

Figure 11.16. a) Thin layer of Eltville tephra in a loess suc-
cession in quarry ‘t Rooth (Province of Limburg). Lumines-
cence dating at locations in Germany and Belgium yielded
an age of 25.6-23.2 ka for the tephra (Zens et al., 2017). Dia-
meter of coin: 1.9 cm. Photograph courtesy of S.B. Kroonen-
berg; b) Pumice in fluvial deposits of the Rhine (Kreftenheye
Formation, ‘terrace X-deposits, location unknown). The
pumice particles represent reworked material from pyroclas-
tic-flow deposits of the Laacher See Volcano, which erupted
13,006+9 cal yr BP according to dendrochronological and
radiocarbon age dates obtained from subfossil trees buried
by pyroclastic deposits near the eruption centre (Reinig et al.,
2021). Photograph from Berendsen & Stouthamer (2001),
lacquer-peel made by J. van der Staay (Geological Survey of
the Netherlands). Frame size: ~100 x 60 cm.
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Source region Host formation Chronostratigraphy Emplacement

of host interval

Reference(s)

Deposit type/composition

Iceland Echteld Formation Holocene Airfall

Iceland Nieuwkoop Pleistocene Airfall
Formation

East Eifel Kreftenheye Pleistocene Reworked airfall
Formation

West or East Eifel Boxtel Formation  Pleistocene Airfall

volcanic field

Eifel (location Boxtel Formation  Pleistocene Airfall

unknown)

Eifel (?) Veldhoven Oligocene-Miocene Airfall?
Formation

Eifel (?) Veldhoven Oligocene-Miocene Airfall?
Formation

Siebengebirge and/ Rupel Formation Rupelian Airfall or reworked

or Hocheifel (?) airfall

NE Atlantic Dongen Formation Eocene Airfall

(De Wijk Member)

an array of adverse effects in the Netherlands. The 2010
eruption of Eyjafjallajokull volcano illustrates that explo-
sive eruptions on Iceland occasionally have produced fall-

out from ash clouds in the Netherlands in recent times.

Indirect evidence for other
magmatic intrusions

Apart from igneous rocks encountered in hydrocarbon
wells and seismic data and the evidence for Paleogene
dykes extending in the southern North Sea, the presence
of intrusive magmatic rocks in the Dutch subsurface has
also been inferred from geophysical anomalies and local-
ized heating effects on organic matter. The presence of
two sizeable intrusive bodies has been postulated along
the border with Germany (Fig. 11.1). A coalification
anomaly in upper Carboniferous sediments from wells in
the Ems estuary (northeastern Groningen) and the adja-
cent part of Germany defines the East Groningen Massif
(Kettel, 1983). A positive magnetic anomaly and structur-
al contours of the top of the Rotliegend, inferred for Ju-
rassic times, outline the shape of this anomaly (Fig. 11.7,
also visible in Fig. 11.10b). This, in combination with the
timing of the Zuidwal, Andel and Loon op Zand igneous
activity, led Kettel (1983) to assume that the East Gronin-
gen Massif represents an intrusive body emplaced around
the Jurassic-Cretaceous transition. It cannot be excluded,
however, that the inferred intrusion is older and could

have an early Permian age (Van Wijhe et al., 1980).

Micro-tephra (glass shards) Cremer et al. (2010)

Cryptotephra (rhyolitic glass Davies et al. (2005); Lohne et al. (2013)

shards)

Reworked felsic pumice particles  Verbraeck (1984); Autin (2008); Meijs

(2011); Reinig et al. (2021)

Tephra layer containing mafic Meijs et al. (1983); Zens et al. (2017)

volcanic minerals

Reworked tephra containing
altered glass shards and a
mineral assemblage including
orthopyroxene

Mees & Meijs (1984); Pouclet et al.
(2008); Meijs (2011)

Igneous minerals Burger (1992); Van den Bosch (2015)

Igneous minerals Burger (1979); Van den Bosch (2015)

Volcanic heavy minerals and
altered trachytic-basaltic volcanic
ash

Zimmerle (1993); Fekiacova et al. (2007);
Przybyla et al. (2018)

Distal ash Chambers et al. (2003)

The Erkelenz intrusion near the Peel Boundary Fault
Zone of the Roer Valley Graben in the province of Lim-
burg and neighbouring Germany has been identified from
geophysical surveys (Fig. 11.7). A pronounced positive
magnetic anomaly, in combination with a minor residual
gravity anomaly, favours a granitic body as interpretation
(Bredewout, 1989). The initial intrusion temperature was
800 + 100 °C, based on cooling modelling and vitrinite re-
flection data collected from local coal seams (Erren & Bre-
dewout, 1991). The timing of the intrusion is unknown,
but fission-track data and the degree of coalification in
overlying sediments point to a heat pulse between late
Carboniferous and mid-Cretaceous times (Teichmiiller &
Teichmiiller, 1971; Bredewout, 1989). Assuming a granitic
composition, a Permian age of the intrusion is plausible,
given the widespread manifestations of ‘Rotliegend’ acid-
ic magmatism in northwest Europe, particularly near the
Variscan front. In the Campine Basin, across the south-
western boundary fault of the Roer Valley Graben, a mag-
netic anomaly near Bilzen (Dusar & Langenaeker, 1992),
and a gravimetric anomaly near the city of Maastricht (see
Textbox) also hint at the possible presence of intrusive
bodies. A continuous positive pre-Permian residual gravi-
ty anomaly largely follows the Dutch onshore and offshore
rift pattern and could signal the presence of high-density
magmatic intrusions in the crust, but Moho shallowing
cannot be ruled out as an alternative explanation (Dirk-
zwager et al., 2000).

Indirect geophysical evidence points to the presence
of buried, mainly granitic intrusions in the domain of the
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Anglo-Brabant Massif below the Southern North Sea Basin
(e.g. Rijkers & Duin, 1994). They must be pre-Devonian
and are probably equivalent to igneous rocks encoun-
tered in onshore drill holes and outcrops in east England
and Belgium (e.g. Pharaoh et al., 1993; De Vos et al., 2010).
Similar geophysical interpretations in areas around the
Mid North Sea high (Donato et al., 1983; Kimbell & Wil-

liamson, 2015) also suggest that buried granites within
the Paleozoic basement may be more widespread than the
single occurrence in the A17-01 well. Structural highs such
as the Dogger High may well have a granite core. It is of
interest to note that the decay of uranium, thorium and
potassium isotopes in granitic rocks produces radioactive

heat that may drive hydrothermal circulation long after

A granite intrusion below Maastricht?

Nearly a hundred years ago, the front page of a newspaper from The Hague reported on a surprising discovery in a
330 m deep borehole in the city of Maastricht (De Avondpost, 1 February 1930). In a search for new drinking water
resources, subsurface water with a temperature of 18°C was sampled, about eight degrees higher than expected.
According to a laboratory in Berlin it had medicinal qualities and could be bottled similarly to what was then already
practiced in the nearby town of Spa. The well (Kastanjelaan-1) produced the local Trega mineral water until 1960.

In the 1980s two new boreholes were drilled in an attempt to identify a successor to this well: Kastanjelaan-2
and Heugem-1. They were cored over great lengths and investigated in detail under supervision of Martin Bless of
the Natural History Museum of Maastricht (Bless et al., 1981). Borehole Heugem-1 drew particular attention, as a
temperature of 20-21°C was recorded at 500 m depth. Even more striking was the high degree of coalification in
samples of the Dinantian limestone host rock. Measured vitrinite reflectance of 5-7% (and a >10% outlier) fall in
the (meta-)anthracite range, suggesting temperatures up to 300°C and burial down to 10 km. A sequence of strong
tectonic burial, followed by uplift, could have generated such a high coalification but does not fit with the regional
geodynamic history.

It is also conceivable that a granitic intrusion is responsible for the heat. A gravity low beneath Maastricht
suggests its presence (Mansy et al., 1999). Interestingly, a magnetic anomaly around Bilzen just west of the city
across the Belgian border (Dusar & Langenaeker, 1992) has characteristics similar to the Erkelenz anomaly, which
has been linked to a hidden granitic body (Bredewout, 1989), possibly related to a Permo-Carboniferous intrusion
(see main text). Unfortunately, drilling could not conclusively confirm this for Bilzen, as borehole Martenslinde
ended in Cambrian quartzite at only 300 m depth (Dusar & Langenaeker, 1992).

If a magma body intruded underneath Maastricht in,
say, Permo-Carboniferous times, it will have cooled
down and solidified long ago. This could explain the
anomalous coalification, but seemingly not the elevated
temperature of the subsurface water. However, ancient
granitic rock bodies often continue to produce heat
today, as they are rich in the radioactive isotopes 235U,
2381, 232Th and 4°K with half-lives between 700 and
14,000 million years. Upward flowing fluids could
transfer this heat to the surface through steep faults.
Since fault locations are poorly known in the Maastricht
region, could the warm water hint at a hidden fault? On
the other hand, how certain is the presence of a granite
body? Anomalous coalification ranks have also been
recorded in Dinantian shales and carbonates from the

Thermae-2000 and Thermae-2002 wells (Wolf & Bless, Mm".s"ndia“a je
1987) Maast|

10 km

« borehole

Bilzen
magnetic
anomaly

grav\iity low
: o f M ich
Obvously, further research is needed to test the validity o aastrlc ¢

of a Trega water-granite connection.
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the intrusion event. This may be sufficient to generate lo-
cal areas of anomalously high organic maturity, or remobi-
lization of Zechstein salts and carbonates (Parnell, 1988).

Geochemical signatures

The petrographic observations show that secondary altera-
tion is a ubiquitous feature in all the Paleozoic and Meso-
zoic igneous rocks listed in Table 11.1. Hence, many of the
reported geochemical compositions of bulk-rock samples
are expected to reflect modifications of original signatures
to a certain extent (Fig. 11.17). Alteration usually affects
mobile elements such as Si, Mg, Ca, K, Na, Sr, Rb, Ba, which
may either be added or removed. Standard classifications
and petrogenetic interpretations based on these elements
will therefore not always be unambiguous. Instead, infer-
ences from relatively immobile minor and trace elements
such as Ti, P, Zr, Nb, Y and the rare-earth elements (REE)
may be more trustworthy, as these are least sensitive to
alteration processes. Compositions of the igneous rocks
in the Dutch subsurface are compiled in Table 11.3. The
available data show a clear geochemical distinction be-
tween Paleozoic and Mesozoic occurrences, as is illustrat-
edinFigs 11.18 and 11.21.

Carboniferous-early Permian

Carboniferous-early Permian magmatic rocks (in Wanne-
perveen-1, De Wijk-7, Dwingelo-2, Corle-1, Gelria-3, Fog-
02-A) are subalkaline to mildly alkaline, showing compo-
sitional variability, both between different locations and
among samples from individual wells. In a TAS classifica-
tion diagram (wt.% SiO,, vs Na,0+K,0; Fig. 11.18a) they
tend to concentrate in the basalt and trachybasalt fields.
It should be noted that at least part of the scatter in this
diagram is attributable to effects of secondary alteration.
The few analysed samples with more evolved composi-
tions (trachyte-trachydacite) are from offshore well Fog-
02-A (rim of the Dutch Central Graben) and onshore well
De Wijk-7 (east of Texel-IJsselmeer High). The additional
presence of predominantly basaltic rocks in the latter
well signals a bimodal distribution, which is also seen in
the Horn Graben (Danish offshore) and in Carbonifer-
ous-early Permian sills and dykes in Scotland and south-
ern Sweden (Kirstein et al., 2006). Immobile elements
further constrain the geochemical affinity of the Dutch
Permo-carboniferous rocks. In a Nb/Y vs. Zr/Ti discrimina-
tion diagram (Fig. 11.18c¢) the mafic rocks straddle the ba-
salt-alkali basalt boundary, whereas the more felsic rocks
plot close to the trachyte-trachyandesite-rhyolite+dacite
junction. Samples from offshore wells in other sectors
of the North Sea show a similar distribution. In contrast,
the available data also indicate that the Dutch onshore
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Figure 11.17. Locations of wells with geochemical analyses
on core samples of igneous rocks(see Table 11.3).

occurrences are distinct, as they tend to have lower con-
centrations in TiO, and P,0. (Fig. 11.19c¢), as well as in
Zr, Nb, Y, LREE (light rare-earth elements) than Rotlieg-
end rocks from neighbouring North Sea areas if only the
relatively mafic samples (>4 wt.% MgO) are considered.
Rare-earth-element patterns display a modest LREE en-
richment and a relatively flat HREE (heavy rare-earth
elements) (Fig. 11.20a). These trends are comparable to
those of the subalkaline basalts in Central Graben UK well
39/2-4, but LREE/HREE ratios and total REE concentra-
tions tend to be lower than in the majority of equivalent
igneous rocks of northwestern Europe. A final point to
note is the significant variation in major and trace element
contents of the intrusive rocks from Wanneperveen-1
(Table 11.3a). Several Wanneperveen-1 samples, as well as
the Dwingelo-2 rock, are marked by very high MgO (>15
wt.%), presumably due to accumulation of olivine pheno-
crysts under magmatic conditions.

Abundant geochemical data on Carboniferous-early
Permian igneous occurrences encountered in drill cores
and outcrops in northwest Europe and available for com-
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A. Carboniferous-lower Permian B. Jurassic
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Figure 11.18. Major and trace-element classification diagrams showing Carboniferous-lower Permian and Jurassic igneous rocks
from Dutch exploration wells onshore and offshore, in comparison to rocks from neighbouring regions in northwestern Europe. See
Table 11.3 for data sources of the Dutch rocks. Data for neighbouring regions are from Latin (1990), Eckhardt (1979), Aghabawa
(1993), Kirstein et al. (2006). (a) and (b) TAS classification diagrams (Le Maitre et al., 2002) for relatively fresh (LOI<6 wt.%)
Carboniferous-lower Permian and Jurassic rocks, respectively; (¢) and (d) Nb/Y-Zr/Ti classification diagrams (Pearce, 1996);

note the subalkaline to mildly alkaline character and the bimodal distribution of the Carboniferous-lower Permian rocks and the

(ultra-)alkaline signatures of the Jurassic rocks. 1 = trachybasalt, 2 = basaltic trachyandesite, 3 = tephrite or basanite.

parison have been obtained from intrusive and extrusive surroundings, northern Germany, the Kattegat area, the
rocks from mainland England and Scotland, the region Oslo Graben and Scania in southern Sweden (Dixon et al.,
around the Mid North Sea High, Denmark and offshore 1981; Latin, 1990; Aghabawa, 1993; Benek et al., 1996;
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Figure 11.19. Major and minor element variation diagrams showing compositional differences between Carboniferous-lower Per-

mian and Jurassic igneous rocks from Dutch exploration wells onshore and offshore, in comparison with rocks from neighbouring

regions in northwestern Europe: a) and b) Si0,-K,0 diagram for Carboniferous-lower Permian and Jurassic rocks, respectively;

¢) and d) TiO,-P,0, diagrams illustrating variations of minor oxides relatively insensitive to the effects of secondary alteration.

For legend and data sources, see Fig. 11.18.

Heeremans et al,, 2004; Obst et al.,, 2004; Kirstein et al.,
2006). They are thus representative for the foreland of the
Variscan orogeny.

Mafic rocks from different geographic locations in the
North Sea area show significant compositional variation,
while diversity in geochemical affinity may also be seen in
lava flows, sills or dykes sampled in individual wells. The
Central Graben area is illustrative, as most of the lavas are
mildly alkaline trachybasalts-tephrites/basanites that are
associated with subordinate amounts of subalkaline and
highly alkaline basalts or transitional varieties. The ca.
299 Ma old samples from well 39/2-4 on the western flank
of the UK Central Graben are an example of subalkaline
(tholeiitic) basalts with low abundances of incompatible
trace elements, including the light rare-earth elements

(REE). They deviate from normal mid-ocean-ridge basalts

(N-MORB) in being more enriched in light REE and more
depleted in heavy REE (Heeremans et al., 2004).

Immobile-trace-element signatures confirm a ‘with-
in-plate’ tectonic affinity for virtually all the Carbonifer-
ous-early Permian magmatic rocks in the Variscan fore-
land region (Fig. 11.21). Basalts in the northeast German
Basin are an exception, as they show a wide diversity in
tectonic discrimination diagrams (Benek et al., 1996).

The trachytic lava in Fo4-02-A (Fig. 11.1) is most like-
ly the only ‘Rotliegend’ igneous rock analysed from the
Dutch subsurface, since compositional data on rocks from
the Emmen Volcanic Formation in onshore wells are lack-
ing and the studied intrusions in the eastern part of the
Netherlands presumably have a Carboniferous age. It is
reasonable to assume that the igneous rocks of the Em-

men Volcanic Formation are similar to (sub-)volcanics in
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Table 11.3. Geochemical compositions of igneous rocks in onshore and offshore wells in the Netherlands: a) Inventory of major
and trace element compositions; b) Rare-earth-element concentrations. Source of data and analytical techniques applied: 1 = Lat-
in (1990), major elements by XRF on glass disks, trace elements by XRF on pressed powder pellets, LOI represents weight loss after
ignition at 1100°C, all XRF results reported on anhydrous basis, REEs determined by ICP-AES (results reported on hydrous basis);
2 = Helmers (1991, internal report), major elements by XRF on glass disks, trace elements by XRF (no further information);

3 = Eigenfeld & Eigenfeld-Mende (1986), analytical method not reported; 4 = this work (VU Amsterdam), major elements by XRF
on glass disks, trace elements by XRF on pressed powder pellets, REEs determined by solution ICP-MS (Klaver et al., 2018), major
element totals based on subtracted LOL ") All Fe is expressed as FeO or Fe,0,, except when data for both oxides are given; n.a. =
not available; <d.l. = below detection limit. Well names for Carboniferous samples from Latin (1990) are inferred from Aghabawa

(1993); Latin (1990) listed these samples as ‘Permian’ Sample codes and rock types taken from the references.

Igneous episode

Well name F10-01 K14-FA-103 L13-03

Depth (m) na na. na. na na. 3451 3458 na. na. na. na. na. na.

Sample code PL1/5 PL1/6 PL1/10 PL1/11 PL1/12 F10-6 F10-7 DL1 DL2 DL2A 001-1A  001-1B  001-1C

g v g g ]
5 5 5 5 3 £ £ &8 & & ~ ~ ~

Reference 1 1 1 1 1 4 4 1 1 1 1 1 1

Major elements (wt.%)
SiO, 3947 4047 40.44 40.22 40.13 3937 39.34 3256 4278 51.11 39.95 39.88 39.05
Al,03 1441 1413 14.59 14.76 14.45 13.90 14.11 18.73 18.28 19.78 1515 14.82 1533
Fe,05) 14.04 13.92 14.65 14.50 14.64 13.89 13.85 36.90 27.23 16.46 13.22 1261 12.50
FeO') - - - - - - - - - - - - -
MgO 11.80 10.80 10.51 10.67 10.74 11.28 10.58 187 1.78 1.26 17.78 18.15 20.30
Ca0 911 944 7.20 7.55 8.78 867 7.23 161 165 0.90 383 433 1.28
Na,O 067 0.76 071 067 078 077 083 034 049 043 1.09 1.16 0.65
K,0 3.87 4.18 4.99 475 4.18 393 4.68 0.38 127 2.28 2.60 273 3.26
TiO, 433 4.26 4.06 411 430 422 413 349 348 3.64 3.80 3.69 3.93
MnO 0.28 027 024 0.24 024 028 0.22 135 096 0.64 012 0.12 0.12
P,0s 069 067 074 0.75 069 071 0.77 087 087 136 079 1.00 161
TOTAL 98.66 98.89 98.12 98.22 98.93 97.02 95.74 98.10 98.79 97.85 98.34 98.50 98.01
LOI 3.7 34 42 39 32 3.75 405 204 16.8 78 85 838 9.1
H,0* - - - - - - - - - - - - -
co, - - - - - - - - - - - - -

Trace elements (ppm)
Ni 43 44 34 39 46 38 31 39 56 36 139 138 123
Cr 27 23 19 22 32 24 17 270 264 252 378 361 379
\% 484 476 459 461 501 411 387 398 346 267 397 381 392
Sc 35 34 26 24 36 37 32 22 17 9 35 32 34
Cu 52 66 90 81 69 84 55 9 7 8 20 18 24
Zn 119 112 80 114 94 17 80 47 23 10 84 79 39
Sr 651 796 1174 895 883 613 880 1432 1180 6114 589 577 156
Rb 62 57 61 68 63 60 63 19 54 84 25 26 56
Zr 325 320 321 323 318 303 312 434 443 456 345 338 335
Nb 98 96 103 102 94 95 103 154 156 164 115 111 17
Ba 530 614 814 808 760 443 669 142 265 387 724 685 845
Pb 5 3 4 4 2 17 13 3 7 1 12 21 426
Th 7 6 5 7 6 13 15 6 1 - 8 8 15
La 87 81 81 83 67 102 101 117 108 333 113 99 96
Ce 177 176 182 173 160 154 162 217 198 674 201 180 160
Nd 67 71 69 70 67 67 69 76 65 260 76 69 55
Y 28 28 27 28 27 26 25 35 40 32 30 36 30
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Table 11.3 a) Continued

Zuidwal-1 (ZDW-01) o Loon-op-Zand-1 (LOZ-01)
na. na na. n.a. na. na na. na. 1958 2180 1950 na. na. na na. na. na. na. 2590 2590
NAM NAM NAM NAM LOZ- LOZ-
ZU1 ZUu2 Zu3 Zu4 ZU5 ZU6 ZU7 ZU8 ZDW-2 ZDW-4 ZDW-5 22 273 27 2/8 DL3 DL4 DL5 1 12
) > ) L Y] v
D 7] = w = =)
£ 2 £ £ 24 2 & 5 § = g g 2 g g g ¢ g 2z g
o o [¢) [e] o ‘= [e) = = > S, = = = = = =3 = = =
s 5 § 5§ 5§ 5 g & € & € s &8 & & & 5 3 §8:z¢
& & & & &8 & 5 s = < = 8 = E & & & 8 <5 <&
1 1 1 1 1 1 1 1 4 4 4 1 1 1 1 1 1 1 4 4

5278 5608 56,50 5674 5030 5575 2851 2875 5469 5595 4410 3904 4071 4060 3543 3805 3742 4344 3744 3631
2671 2545 2556 2433 1771 1894 1573 1676 2385 1341 2202 1713 1814 1832 1634 1635 1716 1868 1603 1627
777 439 4.77 449 838 414 1802 1754 4.20 772 1053 1240 1258 1326 1418 1214 1418 1406 1256 1223

067 066 0.80 078 478 572 961 974 090 557 1.08 6.05 6.16  6.60 718 641 7.03 774 626 581
065 063 0.62 0.62 643 169 1637 1649 046 3.65 151 1529 1236 1175 1724 1736 1434 927 1024 1075
114 249 1.89 331 567 499 0.62 041 251 132 075 1.70 219 1.70 140 1.73 1.57 1.83 1.81 1.59
714 786 8.25 733 317 7.28 3.69 384 750 430 581 093 075 077 0.74 071 068 081 075 0.71
1.52 1.39 138 134 206 033 315 3.15 129 1.28 1.89 361 394 404 348 348 362 391 331 356
037 002 0.03 0.02 0.17 0.12 049 047 0.03 0.12 0.55 020 017 0.16 0.22 0.21 018 012 0.14 0.15
027 022 0.24 0.23 045 0.03 037 041 0.22 0.24 042 0.96 1.01 102 0.88 0.89 0.92 1.00 0.87 092
9903 99.18 10004 99.18 99.14 9900 9656 9756 9565 9356 8866 9730 9802 9821 9710 9732 9711 10088 8941 8830
85 50 4.7 4.7 40 6.0 215 214 492 635 1080 146 13.0 125 154 154 13.0 9.8 1086 1222

21 50 44 59 40 39 267 254 50 112 34 142 147 148 188 181 181 151 161 119

4 3 5 4 9 120 1881 2098 58 313 50 274 303 303 271 294 302 312 211 238
157 218 203 200 135 238 480 484 166 159 236 377 406 421 363 375 396 439 290 341
= = = = = 13 30 28 04 18 54 27 36 37 35 29 31 38 34 38
802 11 294 12 143 5 182 446 11 14 26 53 56 55 46 49 54 58 47 56
137 145 175 164 137 92 213 200 165 131 841 112 79 85 103 64 119 79 94 74
2634 3086 2995 3043 2501 1992 650 377 2934 621 533 895 1027 930 826 949 852 823 704 727
201 176 191 165 150 64 170 176 167 161 186 27 20 21 19 20 19 24 23 21

459 522 511 450 423 329 282 287 457 206 440 293 316 323 265 293 291 311 249 256
331 319 307 302 464 157 63 63 302 83 248 113 116 17 99 103 109 109 98 96
1630 1982 1862 2162 3616 1469 3215 1488 2253 933 851 976 1013 1033 952 854 905 1064 871 727

26 21 20 18 13 15 = = 41 15 36 6 6 7 3 5 5 8 13 14
90 72 64 93 137 109 59 34 131 77 236 94 88 89 88 89 94 92 102 93
180 152 135 175 190 178 62 53 160 9 304 177 166 181 190 168 180 157 141 145
53 43 32 42 30 45 20 19 44 38 95 74 60 57 72 64 70 57 53 57
18 13 14 12 13 17 18 19 10 17 23 33 27 27 31 30 31 24 20 20
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Table 11.3 a) Continued

Igneous episode

Well name Andel-2 (AND-02) Andel-4 (AND-04) Heinenoord-1 (HEI-01)
Depth (m) na. na. 1368 na. na. 2236,5 22385 2237 2242 2249
Sample code DL6 DL7 AND-19 DL8 DL9 HEI-1 HEI-1 HEI-16 HEI-17 HEI-18
Rock type 8 g ] 2 s 2 3 3 3 g =
T8 T8 S 5 5 s 3 g 5 5
<& < 8 E & & < < & & &
Reference 1 1 4 1 1 2 2 4 4 4
Major elements (wt.%)
Sio, 4223 39.63 39.27 41.07 40.17 4118 41.74 4267 4278 4297
Al,04 19.85 20.70 15.50 19.73 17.82 12.34 12.79 12.69 12.86 13.29
Fe,03) 13.64 1434 1.7 1201 14.15 10.84 11.00 1.7 11.36 11.32
FeO') - - - - - - - - - -
MgO 566 540 5.40 443 7.14 1257 1222 12.94 1215 12.32
Ca0 7.99 9.01 7.2 1143 9.02 11.59 1212 12.24 12.06 11.85
Na,O 228 143 235 162 1.80 234 223 216 291 3.08
K,O 238 245 2.11 1.70 1.71 118 148 136 061 0.81
TiO, 3.61 3.74 2.84 477 428 248 2.55 259 265 2.73
MnO 0.21 0.23 0.17 0.18 0.17 017 0.17 0.17 0.18 0.17
P,0s 0.77 0.81 063 0.99 0.89 044 0.46 046 046 049
TOTAL 98.63 97.73 86.56 97.93 97.14 95.12 96.76 98.45 98.02 99.03
LOI 16.5 18.2 13.72 159 15.0 3.07 243 275 3.60 328
H,0* - - - - - - - - - -
Co, - - - - - - - - - -
Trace elements (ppm)
Ni 126 172 125 190 218 = = 243 247 220
Cr 236 283 178 645 517 = = 587 593 333
4 388 401 274 522 461 = = 248 253 250
Sc 36 34 31 53 43 = = 38 36 34
Cu 53 55 48 70 66 = = 61 91 77
Zn 157 132 9 71 135 = = 77 76 75
Sr 732 631 1165 1302 1430 1360 970 1595 692 722
Rb 56 52 51 51 44 30 40 39 1 13
yas 383 395 273 524 447 150 160 161 170 170
Nb 110 15 83 135 120 = = 56 57 60
Ba 587 702 621 1058 943 = = 592 573 698
Pb 8 11 0.5 5 4 <10 <10 <dl. 0.7 0.9
Th 9 9 16 7 5 <10 15 15 10 10
La 9 109 86 110 95 = = 62 60 62
Ce 177 193 142 214 184 = = 93 89 93
Nd 68 75 61 82 76 = = 39 39 40
Y 33 34 25 34 29 20 20 20 19 19
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Table 11.3 a) Continued

CARBONIFEROUS - EARLY PERMIAN

& = _
$§31538
F04-02-A Wanneperveen-1 (WAV-01) De Wijk-7 (WYK-07) 2 §' T°. g Eln]
TQ Vvuo TV
28
2030- 2030- 2030- 2030- 2030- 2030- 2440 2440- 2440 2440- 2440-
4650 4654 2070 2015 500 070 2070 2070 2070 2070 2990 D460 2460 2460 2460 2460 2445 2464 3797 970 1320
NAM NAM NAM NAM NAM NAM NAM NAM NAM NAM NAM WYK- WYK-
Fo4-8 FO4-9 WAV WAV "™ g 1pn3 a7 19 w21 WYK7 3 34 38 3m2 311 14 15 DWL COROGEL3
0 ¢ g g 9 o o 9
ie) = = = o) e} e} e}
jre) i) i) i) o) o) o) re) ) v
L g 5 ) ) ) S S 3 & ) o o o o T S <) 5 - = 2
£ £ & 5§ 5 3 5 £ & £ ¢ 5 5 § 3 35§ & ¢t ti%o¢
2 2 = 2 S e ) S 5 S = ) k) k) 5 © 2 =2 = Z | o 3
[= = o U [a} [a [a a a a o (=) a a a (a2 o o o o E i}
4 4 3 3 1 1 1 1 1 1 3 1 1 1 1 1 4 a4 3 3 3

6417 6592 4087 4515 5194 5682 4582 4508 4415 4386 4599 4795 4766 4888 4844 6560 4667 4844 4132 4638 3761
1667 1558 1045 1623 1742 1700 1692 1266 1167 1106 1614 1651 1621 1597 1625 1435 1562 1633 1107 1544 1895
709 624 721 379 835 794 1297 1361 1458 1522 481 1207 1225 1144 1190 439 1183 1195 370 469 382
- - 911 7.84 = = = = = = 6.52 - - - - - - - 879 803 969
029 027 1531 825 674 615 976 1622 1851 1900 811 748 702 864 862 202 775 847 1988 738 422
067 069 712 399 944 806 645 615 531 507 970 1151 1171 692 936 344 1081 1008 678 849 529
490 446 288 529 268 244 395 214 217 180 251 263 268 252 296 657 278 288 290 423 269
584 554 092 18 030 022 09 093 065 065 066 028 030 289 077 145 037 090 039 088 038
078 069 100 049 100 095 224 161 1.65 153 042 094 112 120 108 081 106 110 026 090 024
002 004 trace 012 010 018 014 015 015 014 016 033 018 010 016 020 - - -

024 022 018 019 010 010 034 020 022 023 014 008 012 012 010 016 010 010 024 011 0.08
10067 9965 9505 931 9810 9978 9952 9876 9906 9857 9500 9959 9923 9892 9967 9889 97.15 10045 9533 9653 8297

1.35 149 39 37 83 46 56 6.0 55 34 3.1 24 19 297 222 = - =
- - 277 294 = = = = = = 231 - - - - - - - 300 202 1303
- - 180 277 = = = = = = 0.94 - - - - - - - 156 070 390
64 6.2 = = 102 90 101 430 548 682 - 136 121 103 136 9 123 128 = - =
2.7 3 = = 344 334 228 611 675 804 - 309 267 209 264 0 220 216 = - =
17 94 = = 287 292 345 263 266 232 - 264 293 298 261 36 230 221 = - =
13 9.8 = = 38 43 33 22 20 13 - 34 35 30 27 10 29 28 = - =
44 6.8 = = = = = = = = - - - - - - 1 124 = - =
20 28 = = = = = = = = - - - - - - 75 71 = - =
78 61 = = 210 211 333 305 294 239 - 152 150 164 173 134 137 179 = - =
185 175 = = 8 6 27 32 21 22 - 7 7 30 16 25 93 17 = - =
434 432 = = 97 94 189 133 114 121 - 59 76 82 71 501 60 54 = - =
46 41 = = 7 6 17 20 15 15 - 5 7 7 7 36 44 43 - - =
496 517 = = 121 74 240 287 209 279 - 296 156 805 159 192 328 308 = - =
50 38 = = = = = = = = - - - - - - 16 1.1 = - =
15 14 = = = = = = = = - - - - - - 25 25 - - =
60 56 = = 0 0 10 8 10 9 - 4 6 14 4 39 10 1 = - =
102 84 = = 26 28 44 36 32 26 - 10 21 19 17 82 12 88 = - =
52 46 = = 12 11 28 15 15 11 - 10 8 10 n 37 9.0 8.1 = - =
51 47 = = 20 20 28 20 18 18 - 18 21 21 21 60 17 16 = - =
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Table 11.3 b) Rare-earth-element concentrations in igneous rocks from offshore and onshore wells in the Netherlands

5.5
wellname Howa N Aeon "y roeora fi s
; =3
Depth (m) na. na. 3451 3458 na. 2180 na. 00 1368 2237 2249 454 o0 SO a5 246
Sample code PLI/6 PL1/10  F10-6 F10-7  ZU5  ZDW-4 NAM2/8 LOZ-12 AND-19 HE-16 HE-18 F04-9 NAMI/1 NAM3/8 WYK-14 WYK-15
¢ ¢ £ = g g
Rock type Lé: LS: g L L 2 8 L é L L g o Y é‘ §‘
g g 2 2 &8 <6 8 <5 = 8 8 = 8 8 5 5
Reference 1 1 4 4 1 4 1 4 4 4 4 4 1 1 4 4
La 78 82 78 83 %3 69 59 77 84 46 48 30 10 53 86 79
Ce 159 157 159 168 159 13 121 143 161 88 93 71 23 13 19 18
Pr 18 16 18 19 16 " 14 15 18 10 1 90 238 19 26 24
Nd 70 63 69 71 50 39 51 54 66 40 41 37 13 10 12 il
sm n 10 12 12 77 6.1 85 87 1 73 76 83 25 21 31 29
Eu 33 30 35 34 22 17 24 26 34 23 24 21 082 084 11 11
b - - 13 13 - 0.70 - 097 14 091 0.94 13 - - 068 06
Gd 91 84 93 90 56 49 67 68 93 64 65 82 30 31 39 37
Dy 64 62 64 63 44 38 54 50 70 438 49 76 36 35 43 39
Ho 1] 1] 11 11 069 072 086 0.8 13 086 0.8 16 066 064 091 083
Er 29 27 27 28 15 20 21 22 33 21 22 46 19 18 26 23
Tm - - 037 038 - 030 - 029 0.44 029 029 072 - 038 034
Yb 21 21 22 23 15 19 178 18 27 17 18 47 19 18 24 21
Lu 031 030 031 032 021 029 025 025 039 024 025 071 028 026 035 031
the nearby northwest German Ems-Weser area, where a Late Jurassic

large number of ‘spilitized diabases’ show a dominance
of intermediate compositions and a wide range between
basaltic and rhyolitic rock types (Eckhardt, 1968, 1979).
The least altered rocks define a continuous subalkaline to
mildly alkaline series between basaltic and rhyolitic com-
positions, comparable to those of lower Rotliegend volcan-
ics from other locations in northern Germany (Benek et
al,, 1996).

Overall, the Dutch occurrences fit into the general char-
acteristics of Carboniferous-lower Permian igneous rocks
of northwestern Europe, which are marked by a domi-
nance of mafic compositions locally showing a bimodal
distribution with felsic rocks, variable alkali contents rang-
ing from subalkaline (tholeiitic) to highly alkaline, subtle
variations in incompatible trace-element contents and a
prominent within-plate signature. The geochemical sig-
natures are consistent with derivation of relatively small
magma volumes from variable low degrees of partial melt-
ing of heterogeneous mantle sources in local independent
systems, whereas crystal fractionation and contamination/
melting of crustal components may have further added to
the compositional diversity (e.g. Aghabawa, 1993; Benek
et al., 1996; Heeremans et al., 2004; Neumann et al., 2004;
Obst et al., 2004; Kirstein et al., 2006).
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In comparison to those of other periods, Late Jurassic ig-
neous rocks are geochemically well documented. Major
and trace-element compositions have been reported on
multiple samples from offshore wells F10-01 (sample PL-
1), K14-FA-103, L13-03, Zuidwal-1, and from onshore
wells Loon-op-Zand-1, Andel-2, Andel-4 and Heine-
noord-1 (Dixon et al.,, 1981; Eigenfeld & Eigenfeld-Mende,
1986; Latin, 1990; Helmers, 1991; this work). Taking the
effects of alteration into account, all of these rocks are
silica-undersaturated and are marked by high contents of
alkalis. With the exception of the samples from the Zuid-
wal volcano, which represent more evolved members of
an ultrapotassic suite, they are relatively mafic. The least
altered rocks (LOI <5 wt.%) of Heinenoord-1 (West Neth-
erlands Basin) and F10-01 (Rim Dutch Central Graben)
illustrate the compositional diversity of the late Jurassic
mantle-derived magmas. The analysed samples from both
locations plot in the tephrite-basanite field of the TAS clas-
sification diagram (Fig. 11.18b), but the Heinenoord-1
rock is more sodic (nephelinitic) and has a higher Na,O/
K,O ratio, higher CaO and lower TiO, and P,O, contents
than Fi10-o01, which has an ultrapotassic affinity. Mafic
samples from the other locations may well represent mag-

mas with similar compositions but strong alteration likely
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Figure 11.20. Chondrite-normalized REE patterns for Carboniferous-lower Permian (a) and Jurassic(b) igneous rocks from Dutch

exploration wells (data in Table 11.3b) in comparison with those for rocks from neighbouring regions in northwestern Europe.

All Dutch rocks are basaltic except for the trachytic Fo4-02-A sample. Note the relative flat trends of the subalkaline-alkaline

Carboniferous-lower Permian rocks and steep parallel trends of the ultra-alkaline Jurassic rocks. Data sources as in Fig. 11.18.

affects the accuracy of their TAS classification. In the Nb/Y
vs Zr/Ti diagram (Fig. 11.18d), all of the mafic rocks plot
near the foidite-alkali basalt boundary whereas the Zuid-
wal rock series trends towards the tephri-phonolite field.

The geochemical compositions of the Dutch onshore
and offshore occurrences mirror the differences between
the subalkaline-alkaline, predominantly mafic rocks of
the Forties Volcanics (or Rattray Volcanics) at the triple
junction of the North Sea continental rift system (Gibb &
Kanaris-Sotiriou, 1976; Woodhall & Knox, 1979; Dixon et
al., 1981; Fall et al., 1982; Ritchie et al., 1988; Latin, 1990;
Latin et al., 1990a; Latin & Waters, 1992; Quirie et al.,
2019, 2020), and the more alkaline mafic centres in the
west Central Graben (Latin, 1990; Latin et al., 1990a; Latin
& Waters, 1992) (Fig. 11.13). Typically, the Central Graben
tephrites-basanites are most enriched in alkalis and in-
compatible minor and trace elements (e.g. TiO,, P,0,, Nb,
Zr, REE) and contain lower amounts of Cr and Ni, which
compares well with the ultrapotassic signature of F10-01
and the Zuidwal volcano. The nephelinitic alkali-basaltic
rock of Heinenoord-1 has a closer affinity with the rela-
tively alkaline varieties of the Forties Volcanics.

This regional difference in geochemical affinity also
appears in REE patterns. In all cases they show almost
straight trends with no Eu anomalies and enrichment of
light REEs over heavy REEs (Fig. 11.20b), but the LREE/
HREE ratios tend to be higher in the Central Graben area
(including F10-01) than in the Forties region and Heine-
noord-1. Similar systematics in Zr/Nb and Ce/Y ratios (Fig.
11.21b) suggest that if a common mantle source is as-
sumed (Latin et al,, 1990b), the latter group was generated
by a higher degree of partial melting. Immobile-trace-ele-
ment signatures further confirm a ‘within-plate’ tectonic

affinity for all of the mafic rocks in these regions, as is il-
lustrated in the Nb/Y-Ti/Y tectonic discrimination diagram
of Fig. 11.21).

Magmagenesis and rifting

The inventory of igneous rocks in the Dutch subsurface
provides insight into the intimate link between mag-
magenesis and rifting that has existed throughout the
post-Devonian geological evolution of the (proto) North
Sea region. A returning point of discussion concerns the
geodynamic forces that controlled the rifting processes
and to what extent signals from associated magmatism dis-
criminate between different options. Possible involvement
of mantle plumes is a subject of ongoing debate for both
the Carboniferous-early Permian and the Jurassic episodes.
In this section, some key issues on the two main magmatic
episodes are summarized and briefly explained in a north-
west European context, with emphasis on a petrological/
geochemical perspective. The Cenozoic rifting period will
not be treated since Dutch territories only host airborne
products from volcanic activity outside the country.

Rifts can be distinguished into two main groups based
on models for their origin and evolution: ‘passive’ rifts,
developed as a result of lithospheric extension driven
by far-field stresses (e.g. McKenzie & Bickle, 1988), and
‘active’ rifts, originated from thermal upwelling of the as-
thenosphere (White & McKenzie, 1995). In either case,
volcanism accompanying rifting in continental settings
is marked by a sequence ideally comprising the initial
production of minor amounts of alkaline magma with a
lithospheric imprint, followed by more voluminous sub-
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alkaline magmas predominantly derived from upwelling
mantle rock as stretching and/or thinning of continental
lithosphere provides room for asthenosphere to rise. This
adiabatic melting of asthenospheric mantle occurs when
the accompanying perturbation of the local geotherm ad-
vances in such a way that it intersects the mantle solidus
(i.e. the melting point is reached at a given pressure) and
partial melting starts. The composition of the melt that ul-
timately escapes from a solid residue is a function of the
original chemical and mineral composition of the mantle
source, depth and degree of partial melting.

In a scenario where continental rifting is actively driv-
en by deep mantle processes, a plume of solid mantle rock
rises diapirically to the surface since it has a lower densi-
ty than surrounding mantle, being hotter and/or different
in composition. Impingement of a plume head from be-
low may heat up, uplift and erode the lithosphere, which
eventually can lead to tensional failure and continental
breakup (e.g. Courtillot et al., 1999). Melting of mantle
rock may occur in the centre of the rising plume by adi-
abatic decompression at higher potential temperature
and/or in adjacent domains through heat transfer when a
plume head cannot pass a physical barrier and spreads out
below it. If the amount of melt produced becomes large
enough it may escape to the surface and produce volumi-

nous basaltic volcanism.

Carboniferous-early Permian

Magmatic activity occurred throughout Carboniferous
and early Permian times over a wide region of the Var-
iscan foreland in northwest Europe (Figs 11.3 and 11.7).
The basement is a heterogeneous blend of relatively small
crustal domains with Neoarchean to Neoproterozoic ages
and low to high-grade metamorphic Caledonian belts,
presumably bounded by major zones of deep-reaching
faults. Hence, intrinsic variations in lithospheric thick-
nesses, thermal histories and other local controls explain
differences in timing and nature of magma-producing
events observed in individual areas. Decompression-in-
duced low-degree partial melting of predominantly asthe-
nospheric mantle rock is thought to have accompanied
lithospheric extension, thinning and basin formation (see
below for details on this mechanism). Magmatism was
mostly marked by within-plate geochemical signatures,

but locally with more arc-type imprints.

Early Carboniferous

Early Carboniferous (Dinantian) extension-related mag-
matism and basin formation from Ireland to Poland was
driven by geodynamic events such as closure of the Rhe-
nohercynian Ocean, accretion of a magmatic arc and
amalgamation of microcontinents. In Ireland and the UK,

where early Carboniferous magmatism peaked in the Vise-
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an, intrusive and extrusive rocks are mildly alkaline-tran-
sitional in composition (e.g. Smedley, 1986; Timmerman,
2004; Upton et al., 2004). Widespread manifestations of
Namurian-Westphalian magmatic activity in the UK, cen-
tred in the Midland Valley of Scotland, the English Mid-
lands and Derbyshire, includes alkaline and subalkaline
varieties as well (Timmerman, 2004).

Minor volumes of tholeiitic to alkaline basaltic Visean
volcanic rocks and Namurian-Westphalian dolerite sills
with a typical within-plate signature in Derbyshire are
thought to represent products of low-degree melting in
isolated pockets of a heterogeneous mantle magma. They
managed to reach the surface along fractures in attenuated
crust (Macdonald et al., 1984; Timmerman, 2004).

Late Carboniferous

A similar scenario is conceivable for the presumably (late)
Carboniferous dolerites found in Dutch onshore wells (e.g.
Wanneperveen-1, De Wijk-7). Their geochemical signa-
ture tends to be mostly subalkaline but does not provide
a uniform assessment of the tectonic setting. Discrimina-
tion diagrams suggest a within-plate signature for some
of the rocks and magma derivation from a mantle source
with possibly a modest subduction-related (‘volcanic-arc’)
chemical imprint for others (Fig. 11.21). This diversity
hints at small-scale heterogeneity of mantle sources that
may include an earlier (Devonian?) back-arc spreading
domain, perhaps related to the northward subduction of
Rheic ocean crust.

Latest Carboniferous - early Permian

A conspicuous feature of the latest Carboniferous-early
Permian period of voluminous magmatism is that it start-
ed almost simultaneously in different provinces over an
extensive region north of the Variscan front. Magmatism
coincided with a period of wrench-related lithospheric
deformation in response to a fundamental change in the
regional stress field that affected western and central Eu-
rope at the end of the Variscan orogenic activity (Ziegler,
1990) and is generally associated with lithospheric
stretching and rifting.

Dated volcanic and plutonic rocks from the Oslo Gra-
ben, Scania, the North Sea area, Scotland, northern Eng-
land and the northeast German Basin show that magmat-
ic activity peaked in a rather narrow time interval around
ca. 300 Ma, while centres in the internal Variscides as far
south as Iberia and Italy have comparable ages (Heere-
mans et al, 2004; Neumann et al, 2004; Timmerman,
2004; Wilson et al., 2004; and references in caption to Fig.
11.7).

Bulk-rock compositions, often showing a bimodal dis-
tribution, are much more diverse than in later periods. In

particular, the large abundance of intermediate and acid
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varieties is noticeable. Although there tends to be a region-
al north-south trend from strongly alkaline in the Oslo Rift
to mildly alkaline in the Variscan foredeep and calcalka-
line in the Rhenohercynian orogenic belt (e.g. references
in Ziegler, 1990), rock types vary widely both on regional
and local scales. For example, basalts encompass the en-
tire spectrum from highly alkaline to tholeiitic in the Oslo
Graben (Neumann et al., 2004), while tholeiitic as well as
alkali-rich basalts have also been found in North Sea wells
(Heeremans et al., 2004).

‘Rotliegend’ volcanic rocks in Danish offshore and on-
shore wells and in surrounding areas are dominated by ba-
saltic flows and pyroclastic ash flow deposits, while asso-
ciated intermediate and acidic volcanic rocks are present
in subordinate amounts (Aghabawa, 1993). There is a gen-
eral tendency towards increasing alkalinity and degree of
silica undersaturation from the Kattegat region in the east
to the Central Graben in the west. The Horn Graben region
is marked by a bimodal alkali/transitional basalt-rhyolite/
rhyodacite suite. The trachytes from the Dutch Central
Graben (well Fog-02-A) fit in this scheme. Petrological
modelling suggests that ‘Rotliegend’ basalts in the Danish
North Sea and surroundings originate from variable-de-
gree melting at different depths of a heterogeneous man-

tle or from separate mantle sources, including a depleted
asthenospheric domain and an enriched lithospheric do-
main (Aghabawa, 1993).

Based on trace-element and isotopic signatures, Neu-
mann et al. (2004) suggested that the main mantle source
of magmatism in the Oslo Rift, Scania and possibly also
the North Sea was similar to a Prevalent Mantle-type
(PREMA) component residing in the lithospheric mantle.
Melting was probably induced by local decompression and
thinning of lithosphere in response to regional stretching
north of the Variscan front, although the PREMA affinity
implies that involvement of a mantle plume cannot be dis-
carded.

Similar scenarios have been proposed for the northeast
German Basin (e.g. Breitkreuz & Kennedy, 1999), where
different structural domains and a heterogeneous base-
ment added to geochemical diversity on a relatively small
scale (Benek et al., 1996). Crustal thinning and block fault-
ing facilitated the production of large volumes of intrusive
and extrusive rocks. Magmas with a calcalkaline character
could have been derived from a pre-existing subduction-
influenced basaltic magma source (cf. Benek et al., 1996).

Locally, the thermal perturbation associated with Car-
boniferous-Permian magmatism may have been more pro-
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nounced than in Jurassic times, as supported by the higher
degrees of melting (~10%) inferred from trace-element
signatures of the North Sea samples studied by Latin et
al. (1990b). According to the data in Eckhardt (1979),
particularly the Zr/Nb and Ce/Y ratios, a similar melting
regime probably affected the Ems-Weser basalts in north-
west Germany (and perhaps also the Dutch Permian vol-
canics) (Fig. 11.21b). A stronger thermal anomaly is also
consistent with the widespread generation of the acidic
magmas, which can be explained as the products of ana-
texis of the lower crust, possibly provoked by heat input
from underplated basalt (Breitkreuz & Kennedy, 1999).

Ernst & Buchan (1997) noticed that the dyke swarms in
the Oslo Rift, Scania, northeast England and Scotland ra-
diate from a common triple junction in Denmark, which
would localize the axis of a deep-mantle plume. From the
large areal extent, volume, brevity of the activity interval
and the convergent dyke swarms, Torsvik et al. (2008) con-
nected the ~300 Ma igneous episode to that of a typical
Large Igneous Province (LIP), sourced by a deep-sourced
mantle plume below the Skagerrak. They proposed that
mantle-derived basaltic magma originated at this cen-
tre and propagated over some 1000 km to Scotland and
Northern England, where it formed the voluminous dike
swarms and sills of the Midland Valley Rift, the Great
Whin Sill and surrounding areas.

However, geochemical and tectonic evidence for a
plume model is weak. In a geochemical study on dyke
and sill intrusions across northern Europe, Kirstein et
al. (2006) discussed a relationship between the depth of
melting and lithosphere thickness, which strongly varies
between the different areas and is difficult to reconcile
with a region-wide plume control. Furthermore, radio-
genic-isotope and trace-element signatures are not incon-
sistent with lithospheric mantle as a major source of the
basaltic magma prior to decompression melting of the un-
derlying asthenosphere, which would also be more in line
with a local lithospheric extension rather than a single ma-
jor plume as principal control (e.g. Neumann et al., 2004).
Kirstein et al. (2006) suggested that the apparent dyke
orientation is a relic of larger tectonic features (emplaced
sub-parallel to the Caledonian trend, terrane bounda-
ries in the Pre-Cambrian basement, or coeval extensional
structures), and concluded that there is no evidence for
a thermally anomalous mantle plume during Carbonifer-

ous-Permian magmatism in northern Europe.

Late Jurassic

The relation between late Jurassic magmatism and rifting
in the Netherlands is best illustrated in conjunction with
the igneous manifestations in other parts of the North
Sea Basin (Fig. 11.13). Variations in timing, location, vol-

ume and composition allow the construction of a coher-
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ent magmagenetic framework for the entire region (Latin
et al., 1990a, b; Latin & Waters, 1992). The Forties basaltic
province (or Rattray Volcanic Province), situated at the tri-
ple junction between the Viking Graben, Central Graben
and Moray Firth rift basins, can be seen as the focal point
of the magmatic activity within the main rift system. Two
phases of activity, possibly in a series of fissure eruptions
from linear vents, produced an up to 1.5 km thick succes-
sion of subaerial basaltic lavas and hyaloclastites in a ter-
restrial-lacustrine environment over an area of ca. 7400
km?, and ended with a minor intrusive suite (Quirie et al.,
2019, 2020).

The occurrences in the Dutch Central Graben and
Egersund Basin are much less voluminous, are located on
the flanks of the main rift system or in minor sub-basins
and are more silica-undersaturated and alkaline (ultra-
potassic of nephelinitic) than the Forties basalts. All of
these magmas were produced during the syn-rift phase
of basin development, but none were derived from an
asthenospheric mantle source similar to that producing
mid-ocean-ridge basalts. Instead, the mantle sources were
variably enriched in incompatible elements and have of-
ten been referred to as OIB-type (Oceanic Island Basalt)
or E-MORB-type (Enriched Mid Ocean Rich Basalt) man-
tle without, however, necessarily implying a similar set-
ting. The Forties basalts (mildly alkaline and mildly silica-
undersaturated) represent the largest-degree melts of the
entire sedimentary rock succession in the North Sea Basin.
They did originate from asthenospheric mantle, but their
trace-element and isotope signatures indicate that an en-
riched component is involved as well, either as heteroge-
neities in the asthenosphere or in the form of mixed-in
lithospheric melt. The other magmas (highly alkaline and
strongly silica-undersaturated), including those of the
Netherlands, must have formed by lower-degree melting
of a volatile- and incompatible-trace-element-enriched
region of the mantle, which had remained isolated from
the asthenosphere for hundreds of millions of years.
Therefore, these magmas originated in a separate source,
of which continental lithosphere is the most plausible do-
main (Latin & Waters, 1992).

The Zuidwal volcano likely represents a case of exten-
sion-driven melt generation in the continental litho-
sphere, as is illustrated in the generalized model of Fig.
11.11d, e (cf. Herngreen et al,, 1991), wherein a schemat-
ic cross section of the magma system and a hypothetical
P-T diagram visualize the potential controls. Given the
small size of the Vlieland pull-apart basin, it is improba-
ble that decompression was sufficient to cause melting of
dry asthenosphere. Therefore, a more realistic scenario is
that magma formed mainly at the base of the lithosphere,
which must have been enriched in volatiles (H,0 and



C0,) and incompatible elements in order to shift its soli-
dus to sufficiently lower temperature for melting to occur.
The nature and timing of this enrichment are unknown
but may be related to an older melt-infiltration event on
a regional scale. Localized stretching of the lithosphere,
controlling the development of this basin, may have led
to uplift of the asthenosphere-lithosphere boundary to
a point where the geotherm crossed the solidus. The in-
ferred limited degree of melting would be in line with the
small size of the basin. The evolved compositions of the
Zuidwal volcanics (Fig. 11.18b) and indications for a cal-
dera structure (Perrot & Van der Poel, 1987) suggest that
mantle-derived melt accumulated and fractionated in a
crustal magma reservoir at relatively shallow depth before
and during the period of eruptive activity.

Magmagenetic interpretations are consistent with the
rift setting. The Forties basalts (Fig. 11.13) occur in a re-
gion that experienced the maximum lithospheric stretch-
ing at the rift triple junction. Major zones of weakness in
the lithosphere may have further facilitated their rise to
the surface. This would explain the only scattered volcan-
ic occurrences in the adjacent Viking and North Sea Cen-
tral grabens, where the degree of extension was slightly
smaller. It is conceivable that asthenospheric melts were
produced here as well, but that these solidified at depth
and were not able to reach the surface. Melt generation in
the Netherlands and on the flanks of the Central Graben,
where the amount of stretching was much smaller, may
have been facilitated by special conditions connected to
the intersection of the graben with pre-existing and long-
lived stable highs such as the Texel-IJsselmeer High and
the Mid North Sea High (Fig. 11.13). At these locations,
enriched continental lithosphere could have been partially
molten in contact with small amounts of asthenospheric
melts to create magma batches sufficiently voluminous to
reach the surface.

Stratigraphic information from well data (e.g., detection
of unconformities, absence of syn-rift sediments, erosion
of pre-rift sediments), has been used to argue for a region-
al thermally driven doming event in Jurassic times, with
the Forties basaltic province as focal point (Ziegler, 1990;
Underhill & Partington, 1993). If valid for Zuidwal and
the other Jurassic alkaline occurrences of the Netherlands,
such a scenario would imply that localized low-degree par-
tial melts originated in response to this regional heat pulse
and/or uplift, and that ascent to shallow crustal levels was
facilitated by crustal-scale faulting.

A model of active rifting driven by impingement of a
mantle plume predicts that doming will be followed by
volcanism and subsequent or simultaneous rift formation
(e.g. Courtillot et al., 1999). Based on chronostratigraphic
data and assuming a middle Jurassic age for North Sea vol-
canism, it has been contended that the sequence of events

follows this scheme and supports a scenario of doming
and deflation of a transient, warm plume head or ‘blob’
(Underhill & Partington, 1993). However, from a detailed
paleogeographic study in the area of the Forties basaltic
province, Quirie et al. (2020) suggested that subsidence
already started before the onset of volcanism. Also, the
amount and areal extent of regional uplift associated with
a plume control have been contested and, if radiometric
ages are taken into account, there are other uncertainties
as to the chronology of magmatism relative to the main
phase of faulting (Latin, 1990).

The entire set of available radiometric ages might sug-
gest a southward migration of magmatism from the Forties
basaltic province towards the Netherlands in the course
of time, possibly connected to propagation of the rift sys-
tem in the same direction. It may also point to northwards
motion of the European plate over a fixed hot-spot (Latin
et al., 1990a,b), which would be consistent with a plume
model. However, if only the most reliable 4°Ar/39Ar age
dates on fresh samples are considered (see Fig. 11.8), the
apparent geographic systematics of a hot-spot trail disap-
pears, as ages tend to cluster around 160-150 Ma in the
igneous provinces from the Forties triple junction to the
Netherlands (Latin, 1990). This crude absolute age brack-
et places the timing of North Sea magmatism in the late
Jurassic instead of the middle Jurassic inferred from strati-
graphic interpretations. Consequently, magmatic activi-
ty would not precede but largely coincide with the main
phases of extension and subsidence, which seems to dis-
card a key argument against the passive rifting model (cf.
Latin, 1990).

Also, the observed volume of basalts produced at the
triple junction is much lower than modelling of decom-
pression melting of a hot mantle plume, rising beneath
stretched and thinned lithosphere in a rift setting, predicts
(White & Latin, 1993; White & McKenzie, 1995). Signifi-
cant uncertainty, inherent to some of the assumptions and
input parameters on which this modelling approach relies,
makes outcomes not always conclusive. In particular, the
amount of stretching and associated vertical movements
in the North Sea area have been subject of considerable
debate (White & Latin, 1993 and references therein).
Finally, available Sr-Nd-Pb isotope data are not sufficient-
ly diagnostic (see discussion in Latin, 1990). The isotope
ratios point to a source that experienced time-integrated
enrichment relative to MORB, but candidate mantle com-
ponents could have been tapped from a deep mantle do-
main by a rising plume or could have resided in the sub-

continental lithospheric mantle.
In summary, there is no compelling evidence from geo-

chemical signatures, petrological constraints and radio-

metric age dating that Jurassic magmatism in the North
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Figure 11.22. Linear distribution of known magmatic manifestations in the Jurassic of the North Sea Basin (a) compared with the
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East African Rift Zone: Natural Environment Research Council, BGS Dataset ID: 13607585 and Global Volcanism Program (2023).

Sea region was controlled by the arrival of a major, deeply
sourced mantle plume. A passive-rifting model adequately
explains most of the observations, although minor effects
from a modest, short-lived hot spot cannot be excluded,
since the largest magma volume, degrees of partial melt-
ing and contributions of asthenospheric mantle material
have all been inferred for the basalts in the triple-junction
region. For the onshore and offshore subsurface occur-
rences in Dutch territory (Dutch Central Graben, Broad
Fourteens Basin, West Netherlands Basin, Vlieland Basin),
the subcontinental mantle lithosphere is the most like-
ly source of the magmas. Melting can be explained in the
context of passive stretching, thinning and rifting in the
continental setting. If a distant mantle plume played a role
in melt generation at all, it may only have acted as source
of heat or as propagator of additional uplift.

CHAPTER 11 - MAGMATISM IN THE NETHERLANDS

Continental rifting and magmatism in East Africa:
present-day analogue of the Jurassic North Sea
region?

The magmatic manifestations from the Jurassic of the
North Sea region show conspicuous similarities to those
in the currently active rift zone of East Africa, both in dis-
tribution and in composition (Fig. 11.22). Parallels in fault
patterns, volcanism and geological dimensions between
the North Sea Graben system and the Kenyan-North Tan-
zanian segment of the East African Rift were already no-
ticed by Dixon et al. (1981).

A row of (recently) active volcanoes in East Africa, all
situated on continental basement, generally follow the
branched rift structure from north to south. The north-
ern termination in the Afar region and surrounding areas
represents a triple junction (Fig. 11.22b) and can be seen
as an evolution between continental rifting and sea floor



1000 LI T LI LI T LI T

100

Rock / Primitive mantle

.4 NL Central Graben K-basanite (F10)

_Ar— Karisimbi K-basanite (high-Ti group)
(Rogers et al., 1992)

1 Lo I Lo Lo I Lo I

Figure 11.23. Primordial-mantle

normalized incompatible trace-element

patterns illustrating similarity between

the Jurassic alkaline rocks in Dutch
onshore and offshore wells with Quater-

nary to Recent volcanics in the Virunga

Volcanic Province and the Toro Ankole

area, situated in the western arm of the
East African Rift. Overlapping trends

for K-basanites from the F10 well in the
Dutch Central Graben (Table 11.3) and
Karisimbi Volcano (Rogers et al., 1992)

Cs RoBaTh UNbTa K La CePb Pr St P Nd ZrSmEu Gd Ti Dy Y Yb Lu

spreading in the Red Sea and Gulf of Aden. Magmatism in
the East African Rift System (EARS) is generally marked by
a systematic compositional evolution in space and time.
While volcanics in a given sector tend to become less al-
kaline and more silica-saturated with time, there is also a
gradual increase in alkalinity and silica under-saturation
towards the south (Rooney, 2020 and references therein).
This can be explained by differences in magma-contribut-
ing mantle sources: initial highly alkaline and silica-under-
saturated magmas are derived from lithospheric subcon-
tinental mantle, whereas continued lithospheric thinning
ultimately allows melting of convecting upper mantle and
the production of more silica-saturated, transitional to
subalkaline magmas.

In this framework, the Forties volcanic field of the North
Sea area, situated at the Moray Firth-Central North Sea
Graben-Viking Graben triple junction (Fig. 11.22a) would
have its counterpart in the Afar region. The tectonic set-
ting, relatively high magma volumes and compositional
affinity suggest a contribution from asthenospheric man-
tle. It is of interest to note that there is wide geochemical
and geophysical support to regard magmatism in the Afar
region (and possibly along the entire EARS) as a manifes-
tation of mantle plume activity (e.g. Marty et al., 1996;
Chang et al., 2020).

Quaternary to Recent volcanism of the Virunga Vol-
canic Province (Uganda-Rwanda-Congo border) in the
western branch of the East African Rift system and the
Toro Ankole Volcanic Province (west Uganda) produced
alkali-rich rocks with compositions (Rogers et al., 1998;
Pitcavage et al., 2021) very similar to the basanites, nephe-
linites and more evolved products of the Central Graben,
Zuidwal and Dutch onshore occurrences, as is illustrated
by incompatible trace-element patterns (Fig. 11.23). The
parental magmas are thought to have originated from the
subcontinental lithospheric mantle that had been variably
modified by metasomatic agents and thus acquired a min-

may indicate common petrogenetic
controls.

eralogical composition that deviates substantially from
common lherzolitic assemblages. Phlogopite is usually a
prominent source component responsible for the (ultra)
potassic nature of the volcanics. Results of melting exper-
iments on phlogopite-clinopyroxenite rock (Lloyd et al.,
1985) have shown that such a source can produce magma
with compositions very close to those of the Central Gra-
ben (Latin, 1990). Also, metasomatically induced variabili-
ty in the source mineralogy, inferred for the Ugandan rocks
(Pitcavage et al., 2021), compares well with the composi-
tional differences seen in the rocks from the Dutch wells
on a similar spatial scale (e.g. Heinenoord-1, Zuidwal-1,
F10-01). The volcanic setting of the western branch of the
East African Rift system thus provides an attractive ana-
logue for the manifestations of Jurassic volcanism in the
Dutch subsurface. It is conceivable that Karisimbi or any
other volcano in the Virunga area is a present-day equiva-
lent of Zuidwal and Mulciber.

Concluding remarks

The igneous rocks encountered in ca. 100 wells in the
Dutch subsurface represent a sequence of intermittent
magmatic activity that fits well in the region-wide pattern
of post-Caledonian melting events recorded in northwest
Europe. There is no doubt about the relationship between
magmatism and periods of extension and rifting since late
Paleozoic times, but evidence for an accompanying role of
mantle-plume activity as a driving force remains contro-
versial, partly due to insufficient constraints from absolute
age dating. This episodic magmatism in northwest Europe
tends to be related to specific periods in the opening his-
tory of the North-East Atlantic Ocean (e.g. Woodhall &
Knox, 1979; Ziegler, 1988). Since stretching, thinning and
rifting did not lead to a full breakup and transition to sea-
floor spreading and MORB-type magmatism, the North
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Sea region is a perfect example of a failed continental rift
system (Ziegler, 1992).

The geographically widespread Carboniferous-Permian
magmatism was voluminous and compositionally diverse,
presumably because melting and assimilation of crustal
components was promoted by the mobilization of large
amounts of hot mantle-derived magma. In contrast, Juras-
sic magmatism was much less abundant, is predominantly
basaltic in composition, and is typically confined to the
Mesozoic rift system with the Forties (Rattray) triple junc-
tion as focal point. The preceding Triassic rifting was prob-
ably not accompanied by magmatic activity. The Cenozoic
dyke swarms inferred to be present in the Southern North
Sea are likely related to the final stages in the opening of
the Northeast Atlantic.
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