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Abstract: Coastal resilience and vulnerability, to marine erosion and flooding, are strongly influenced by geology,
geomorphology and the presence or absence of engineering structures. Many studies, using a range of methodologies, have
been conducted around the coastline of Europe to assess both resilience and vulnerability. A new EMODnet Geology data
product provides a pan-European map visualization, at a range of scales, indicating lower, intermediate and higher levels of
coastline vulnerability to erosion and flooding. The shorelines of the Mediterranean and Baltic Seas appear to be less resilient
than those of the Atlantic Ocean, Greater North Sea and Black Sea. Estuarine, deltaic and other lowland shorelines with coastal
barriers show lower resilience, except where they are managed through nourishments. The map, and associated metadata,
provides a tool for users who are interested not only in the pan-European distribution of coastal resilience and vulnerability, but
also in the wide range of methodological approaches used in their assessment.

Supplementary material: Guidance for accessing the new EMODnet Geology coastal resilience and vulnerability data tool is
available at https://doi.org/10.6084/m9.figshare.c.7646833

Thematic collection: This article is part of the Mapping the Geology and Topography of the European Seas (EMODnet)
collection available at: https://www.lyellcollection.org/topic/collections/mapping-the-geology-and-topography-of-the-
european-seas
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EMODnet Geology data products

The European Marine Observation and Data Network (EMODnet)
provides a single-entry point for accessing and retrieving marine data
and information derived from direct observations and remote sensing.
Its portal hosts numerical and categorical results from field
experiments and surveys, descriptions and laboratory analyses of
physical samples, database analyses, and measurements made by
various types of passive and active sensors from the hundreds of
public databases maintained on behalf of agencies, national to local
authorities, research institutions and universities throughout the EU.
Across seven discipline-based themes – geology, bathymetry, seabed
habitats, chemistry, biology, physics and human activities – digital
map layers of harmonized or integrated data are delivered for entire sea
basins around and even beyond Europe (https://www.emodnet.eu/).

EMODnet Geology delivers integrated geological map products,
at various resolutions, for seabed-substrate composition, sedimen-
tation rates, pre-Quaternary and Quaternary geology, geomorph-
ology, coastal behaviour, submerged landscapes of the European
continental shelf, geological events such as submarine landslides
and earthquakes, and marine mineral occurrences (Moses and
Vallius 2021; Asch et al. 2022; Hollis et al. 2022, 2024). It is
important to note that the EMODnet Geology project does not create
new data but, by implementing the Shared Environmental
Information System (SEIS) approach, makes available existing
data and information, enabling end-users to make comparisons at a
range of geographical scales. Data integration, harmonization,
interoperability and public access facilitate direct benefits, reducing
operational costs of data acquisition and delivering a better

information base for policy development and implementation (EC
2013; Meiner and Reker 2013; Hollis et al. 2022, 2024).

This Case study reports the development of a new data product on
coastal resilience and vulnerability, delivered to the EMODnet
Central Portal (www.emodnetgeology.eu/) and also accessible
through the portal of the European Geological Data Infrastructure
(EGDI: www.europe-geology.eu/). It is complementary to existing
EMODnet Geology data products on coastline migration and coastal
type, each underpinned by data on rates of landward or seaward
coastal change, geology and geomorphology.

Coastal resilience and vulnerability

The resilience of a system is defined as its ability to withstand, and
recover from, a major disruption. It is an indication of the robustness
of the system and its sensitivity to change (Aven 2011). In coastal
environments major disruptions, or changes, to the system are often
associated with external drivers such as wave impact and marine
flooding, usually linked with storms and sea-level rise. But internal
drivers, including the strength properties of coastal materials
(geology) and the shape or morphology of the coastal ribbon
(geomorphology), also determine the sensitivity of the coastline to
change, thus influencing its resilience. Coastal resilience can be
considered as the ability of a coastline to absorb and recover from
erosion before a critical state is reached.

Vulnerability is a measure of the susceptibility of a system to
change. Higher resilience reduces susceptibility and thus vulner-
ability to change. Coastal resilience is typically considered in the
context of the vulnerability of the coastline to the potential erosion
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and flooding events associated with climate change (e.g. Gornitz
et al. 1994; Klein and Nicholls 1999; McLaughlin et al. 2002;
Abuodha and Woodroffe 2006; Hinkel and Klein 2009;
McLaughlin and Cooper 2010; Ramieri et al. 2011; Schultz et al.
2012; Bridges et al. 2015; Torresan et al. 2016; Roukounis and
Tsihrintzis 2022). Coastal vulnerability is a function of the
geological characteristics of resilience and susceptibility together
with the magnitude of coastal forcing and of socio-economic
factors. It is generally expressed as an equation in which individual
factors are parameterized: Coastal Vulnerability Index (CVI) =
ƒ(coastal characteristics(resilience and susceptibility) + coastal
forcing + socio-economic factors) (McLaughlin and Cooper
2010). CVIs can be mapped at a range of scales. Resilience, and
especially its recovery component, is more strongly linked to the
timeframe considered than vulnerability. Coastlines with long-term
natural resilience may still be highly susceptible to short-term
impact of extreme events, especially from an economic point of
view. Their return to an earlier state over years or decades does not
compensate for any damage suffered during erosion and flooding
events in the intervening period.

Method

With input from all EMODnet Geology partners, we have
developed the most complete inventory to date of case studies on
coastal vulnerability, including studies that focus on related issues:
coastal hazard, risk and resilience. Throughout the development of
the data product, the methodological approach and progress have
been shared with user groups for feedback and input (Moses et al.
2022, 2023; Van Heteren et al. 2024). The literature database
includes scientific journal articles as well as national databases and
reports for the EMODnet Geology coastline. Many studies place
emphasis on physical and marine characteristics, others also
incorporate socio-economic factors (Table 1). The literature
database is continually updated as new studies are published,
made available by EMODnet Geology partners or found in new
internet queries. From a total of 919 sources, those that made direct
reference in the title to coastal vulnerability (179), erosion (122),
sea-level rise (98), risk (78), hazard (53), flood (40) and resilience
(8) were scrutinized for data suitable for collation into a single GIS
database.

The aim was to create a GIS base map from which data would be
integrated into a common legend indicating lower, intermediate and
higher levels of coastal resilience/vulnerability. This step involved
geolocating suitable maps from the literature to the standardized
EMODnet coastline (the coastline used across EMODnet Geology
data products is the Mean Sea Level line available from EMODnet
Bathymetry). In total, 565 maps were geolocated. To aid the data-
integration process, two GIS layers were produced: one containing

only geolocated maps for which a CVI was calculated and
visualized, and the other containing geolocated maps that did not
fit the standard CVI. Non-CVI indicators included levels of erosion/
flood risk, hazard or resilience. Because multiple studies were used
this meant that some stretches of coastline had more than one
geolocated map. Where this was the case, either the most recently
produced map or the map from the most thoroughly peer-reviewed
article was selected for data integration, ensuring that the most up-
to-date and highest-quality sources were used. The next step
assessed the geolocated maps for geographical coverage. Maps for
individual beaches or short sections of coastline, judged not to be
representative of regional trends, were not used and only those
covering several kilometres or more were retained. In total 56
geolocated maps formed the CVI base-map layer and 37 provided
information for other vulnerability-related types. Following this
quality-assurance process, the two layers, incorporating 93
geolocated maps derived from 59 different studies, were combined
for data integration.

From the two base layers, a single map was produced indicating
lower, intermediate and higher levels of coastal resilience/
vulnerability. Three levels were used so that the data product is
informative while still reflecting uncertainties associated with the
diversity of the individual source maps. This involved several steps
because these maps were produced using a range of methodologies.
Using three levels along with zoom functionality ensured clarity in
the final data product. Although the majority of studies indicated
three levels, some included two additional categories of ‘very low’
and ‘very high’. Where this was the case, these two categories were
included in ‘lower’ and ‘higher’, respectively, to retain three levels
for the final visualization product. Using this approach, vulnerability
levels were traced from the geo-referencedmaps in ArcGIS Pro using
the Line Notes tool. A legend was devised showing higher levels of
resilience/lower levels of vulnerability in light blue, intermediate
levels in mid-blue and lower levels of resilience/higher levels of
vulnerability in dark blue, following good practice guidance (Martini
and Loat 2007; Fig. 1). For CVI studies, lower, intermediate and
higher vulnerability levels were recorded as such. For non-CVI
maps: higher levels of erosion, flood risk or hazard were recorded as
higher vulnerability and vice versa; higher levels of resilience were
recorded as lower vulnerability and vice versa. After tracing,
metadata were added to the vulnerability lines through the attribute
table. In the final product, users are able to view the metadata,
including source information and key parameters/criteria used to
derive CVI or resilience for corresponding parts of the classified
coastline, simply by clicking on the line. For more detailed
information, e.g. on spatial scale, coordinate systems and vertical
datums used in individual studies, the metadata provide sufficient
information for users to access the original source study. Areas for
which data have not been found in internet searches, are

Table 1. Typical physical and socio-economic parameters used to measure coastal resilience/vulnerability in the studies underpinning the EMODnet Geology
coastal resilience/vulnerability data product

Parameters Studies used to create base map

Physical: geomorphology, coastal
slope, regional elevation, rate of
sea-level rise, rates of shoreline
erosion/accretion, tidal range,
significant wave height

Aitali et al. (2020), Anfuso and Del Pozo (2009), Berre et al. (2022), Corbau et al. (2022), Djouder and Boutiba, (2017),
Furlan et al. (2021), Harik et al. (2017), Hinkel et al. (2015), Hzami et al. (2021), Idllaneǹe andVan Cauwenbergh (2016),
Kont et al. (2003), Kovaleva et al. (2022), Lincke et al. (2020), Maanan et al. (2018), Martínez-Graña et al. (2016),
Martins et al. (2012), McLaughlin et al. (2002), Mihoubi et al. (2014), O’Brien et al. (2004), Oxford Analytica (2021),
Paprotny and Terefenko (2017), Pruszak and Zawadzka (2005), Rizzo et al. (2020), Robin (2002), Ros Montaña (2014),
Ružic ́ et al. (2019), Satta (2014), Satta et al. (2017), Snoussi et al. (2008), Stancheva (2010), Valchev et al. (2016).

Combined physical (as above) and
socio-economic: settlement,
cultural heritage, roads,
railways, land use, conservation
designation

Aernouts and Héquette (2006), Alexandrakis and Poulos (2014), Alexandrakis et al. (2010), Bagdanavičiūte ̇ et al. (2015),
Balounin et al. (2013), British Geological Survey (2022), Caloca-Casado (2018), Davies (2012), De Leo et al. (2019),
Eberhards et al. (2006), Farrugia (2008), Fitton et al. (2016), Hirschhäuser and Hofstede (2020), Jaskólski et al. (2018),
Kantamaneni et al. (2017, 2018, 2022), Mateescu et al. (2018), Mavromatidi et al. (2018), Narra et al. (2019), Ng et al.
(2019), Pantusa et al. (2022), Poklar and Valentina (2023), Šegina et al. (2012), Simav et al. (2014), Sterr (2008), Tano
et al. (2018), Vergouwe (2016), Zújar and Francoso (2009).

2 C. Moses et al.

Downloaded from https://www.lyellcollection.org by Guest on Apr 24, 2025



demonstrably not available or are under development are indicated
by a grey line. The associatedmetadata indicatewhere this is the case.

The final step in producing the data product was to visualize the
data at different zoom levels (Fig. 2), enabling the user to view and
download the map and metadata at a range of scales. Current
EMODnet coastal data products consist of a zoomed-in base map
(polylines for coastal type and coastline migration derived from
field data, points for coastline migration based on satellite data) and
a series of clearly identifiable points at different zoom levels. These
summarize the underlying data by averaging attribute characteristics
over increasingly long stretches of shoreline. The wish for the new
data product was to portray zoomed-out data as a line rather than
separate points. This has been achieved by increasing the point
density, minimizing gaps between points and optimzing point
density to create the impression of a line.

The zoom levels are correlated to those of the OpenStreetMap
viewer basemaps. OpenStreetMap has set zoom levels with
accompanying scales (https://wiki.openstreetmap.org/wiki/Zoom_
levels). Following visual inspection of those scales, its zoom levels
5 to 12 were selected to create the new data product. At the minimum
scale of each zoom level, the density was calculated to be the zoom
level divided by 100 million. The tolerance of each point in decimal
degrees, established in this step (Table 2), was used to determine the
distance between the created points along the original lines.

The original line was processed for each tolerance level using a
Feature Manipulation Engine (FME) workbench. FME statistically
derived the most common resilience/vulnerability category along
the base-level polyline in the tolerance area around the created point,
assigning that category to the point. The final step assigned a
summary of metadata to each point, via a spatial join to the closest

coastline location. Although this creates mismatches between the
metadata of the point and those of the underlying base-level data in
some places, correspondence of visualized metadata to the colour of
associated zoomed-out points took precedence.

Trends identified

Pan-European trends show best at the fully zoomed-out level
(Fig. 2a). Keeping in mind the large stretches of non-classified
coastline, the shores of the Mediterranean and Baltic Seas appear to
be less resilient than those of the Atlantic Ocean, Greater North Sea
and Black Sea. When zooming in, estuarine, deltaic and other
lowland shorelines with coastal barriers show lower resilience,
except where they are managed through nourishments. More
detailed trends and causes, made possible with this new data
product, need to be derived from future analyses.

Discussion and conclusion

The new EMODnet Geology data product on coastal resilience/
vulnerability provides a pan-European visualization indicating
lower, intermediate and higher levels of coastline vulnerability to
erosion and flooding. It also indicates where there are gaps in
knowledge for areas of the coastlinewhere vulnerability data are still
lacking or have not been found. The underpinning literature
database is regularly reviewed and updated. In time, this will enable
many of these gaps to be filled.

It is important to note that the downloadable maps represent
integrated data from many studies, covering a wide geographical
area and using a range of methodological approaches (Table 1). The

Fig. 1. The final data product, showing higher resilience/lower vulnerability (light blue), intermediate vulnerability/resilience (mid-blue) and lower
resilience/higher vulnerability (dark blue) levels, integrates data from a large number of studies. (a) The map is underpinned by georeferenced maps from
individual studies. Detailed examples of line tracing are shown for (b) Ireland, (c) northwestern France and (d) southern Portugal. The georeferenced maps
are not visible on the data product in light of copyright. Source:(b) upper map McLaughlin et al. (2002), lower map Caloca-Casado (2018); (c) Berre et al.
(2022); (d) Martínez-Graña et al. (2016).
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data product is a tool that provides an overview visualization and
enables users to access more detailed information by directing them,
via the metadata, to the original studies. It is not produced from the
uniform application of a single methodology for calculating coastal
vulnerability as is the case with some other large-scale assessments
(e.g. Bridges et al. 2015 for America; Abuodha and Woodroffe
2006 for Australia; Hinkel and Klein 2009 for the world). It also
differs from the EUROSION’s (2004) ‘risk of coastal erosion map’,
which rates exposure to coastal erosion and continues to inform
policy development for building coastal resilience in Europe
(Villasante et al. 2023). Rather, it achieves uniformity of legend
and balance in representation of the three defined levels of coastal
resilience/vulnerability.

This new EMODnet product is intended to be a complementary
and up-to-date visualization of coastal resilience and vulnerability,
developed from a large number of individual studies conducted at
regional and national level. The downloadable product lends itself

to overarching analyses of resilience/vulnerability in function of
both geology and other aspects. As such, it provides a useful
resource for users who are interested not only in the pan-European
distribution of coastal resilience and vulnerability, but also in the
wide range of methodological approaches used in their assessment.

Scientific editing by Colin Serridge
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