Applied Thermal Engineering 269 (2025) 125921

Contents lists available at ScienceDirect : e

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/ate

Research Paper ' ,.)

Check for

Digital twin development of a full-scale industrial heat pump | updaed

Ali Can Ispir *®>", Gustavo Otero Rodriguez °, Wouter de Vries”, Michel Speetjens ®

2 Eindhoven University of Technology (TU/e), Department of Mechanical Engineering, PO Box 513, 5600 MB, Eindhoven, The Netherlands
b Netherlands Organisation for Applied Scientific Research (TNO), Sustainable Technologies for Industrial Processes, Energy & Materials Transition Unit, P.O. Box
15 1755 ZG Petten, The Netherlands

ARTICLE INFO ABSTRACT

MSC: Industrial heat pumps (HPs) are a sustainable alternative to fossil-fueled boilers for process heat generation,
00-01 particularly when powered by green electricity. However, their wider adoption is hindered by a limited
99-00 understanding of HP performance under diverse operating conditions. Traditional methods for studying
Keywords: HP performance, such as high-fidelity numerical simulations or experimental testing, are often costly and
Digital twin impractical. To address this, we propose a digital-twin framework that unites machine learning, specifically

Waste-heat recovery
Heat pump

Natural refrigerant
Machine learning
Experimental study

Gaussian Process Regression (GPR), to efficiently model an industrial HP for energy recovery from (industrial)
waste heat using experimental data. This approach is novel, as few data-driven models have been developed for
designing industrial HPs employed for this purpose, thereby contributing to achieving a sustainable processing
industry. This digital twin was developed for a 1 MWth industrial HP, using n-Pentane as the working
medium and recovering waste heat from hot water to produce steam for industrial processes, and trained
by experimental data collected from 55 steady-state operating points in a state-of-the-art test facility. The
digital twin accurately predicts both relevant process variables (e.g. outlet pressures and temperatures) for
each HP component and key performance indicators, including the Coefficient of Performance (COP) and
heating duty, with prediction errors within 7% as a function of process parameters such as flow properties
of the hot-water source, compressor rotational speed, and steam pressure. The digital twin is furthermore
applied for an economic and environmental analysis, demonstrating a payback period of 3.8-4.2 years and
reductions in CO, emission of 250-1000 tons annually compared to a propane-fueled boiler. The HP achieved
a COP equal to 44% of the Carnot COP based on condenser/evaporator saturation temperatures and enabled
significant energy savings, exceeding 3000 MWh annually when operated at steam pressures of 1.9-2.4 bar.
This study hereby demonstrates the potential of data-driven models to enhance the design and operation of
industrial HPs and thus provides an efficient and scalable framework for developing and advancing sustainable
energy systems in industry.

1. Introduction produce three to four units of heat at the desired temperature for an in-
dustrial process. The prevalent HP technology involves the closed-cycle
vapor compression cycle, initially developed for refrigeration and now
adapted to heating [3]. Despite their potential, significant challenges
impede the widespread adoption of industrial HPs. A major barrier is
end-user uncertainty about adding new equipment (e.g. an HP) that
could disturb their production process [3]. A potential solution to over-

Industrial processes in the European Union account for approxi-
mately 26% of final energy consumption [1] and nearly 20% of total
greenhouse gas (GHG) emissions [2]. Currently, industries such as food
processing, paper production, and refineries primarily rely on fossil-

fuel-powered boilers for their heat supply. Industrial heat pumps (HPs) come such end-user uncertainty is to demonstrate the HP performance
offer a promising alternative for reducing GHG emissions in processes across a wide range of operating conditions typical in industrial settings
requiring low-temperature heat (<200 °C), resulting in an increase in via accurate predictions. Traditional methods, such as high-fidelity
market interest [3]. Unlike boilers, HPs can recycle and amplify energy numerical and experimental analyses, are prohibitively expensive and
in a potentially sustainable manner: by utilizing waste-heat from the impractical [4]. Conversely, low-fidelity approaches such as reduced-
processes and consuming one unit of (renewable) electricity, HP can order modeling often fail to estimate a HP system performance due
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Nomenclature

Acronyms

CcOD Coefficient of Determination

copP Coefficient of Performance

GPR Gaussian Process Regression

HP Heat pump

ML Machine learning

MV N Multi-variate normal

Variables

A Area [m?]

E Energy [MW]

h Specific enthalpy [kJ/kg]

m Mass flow rate [ton/h]

Np Multi-variate normal (MVN) distribution
P Pressure [bar]

PBT Payback time [year]

(0] Heat exchange [kW]

R? Coefficient of Determination (COD)
t Duration [h/year]

T Temperature [°C]

Vv Volumetric flow rate [m3/h]

w Compressor electric power consumption [kW]
X Independent variable/data point

X, Interpolation point

y Dependent variable

AP Pressure drop [bar]

n Efficiency

A Price [€]

c Standard deviation

X Covariance matrix

) Conversation factor

w Compressor rotational speed [r/min]
Subscripts

NL Related to the Netherlands

to the complexity of HP geometry and physical processes. To fill the
gap between such low-fidelity and high-fidelity approaches, several
studies have focused on developing suitable digital twins to estimate
and predict HP performance under design and off-design operational
conditions. The present study aims to contribute to these efforts.

An increasingly popular approach for developing digital twins for
energy systems and HPs involves data-driven models using machine
learning (ML) methodologies based on operational data [5,6]. Evens
and Arteconi [7] developed a digital twin for a water/water heat
pump of a residential single-family building using long short-term
memory (LSTM) neural networks trained by experimental data. This
achieved accurate prediction of HP behavior such as electrical power
consumption (+10% for 79.70% of the time), condenser outlet temper-
ature (+1% for 83.89% of the time) and flow rate (+10% for 89.81%
of the time). This study found LSTM neural networks essential for
reliable multi-step ahead predictions. The modeling approach was also
evaluated for different heating configurations and revealed potential
for a broad range of applications. Vering et al. [8] introduced the
ReCaMo (repeated calibration or on-line recalibration of simulation
models) framework, specifically designed for the continuous calibration
of digital twins for HP systems. The framework employs IoT-based
communication to update the digital twin with real-time data, en-
hancing its accuracy over time. The ReCaMo framework, using one
month of field data, achieved a prediction error of less than 1 K for
the HP supply temperature, demonstrating its potential for operational
optimization and predictive maintenance. Butean et al. [9] integrated
a digital-twinning approach into a high-temperature HP system that
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recuperates heat from a waste-heat source in industrial renewable
energy systems. Their method involves analyzing a large amount of
real-time HP data and generating digital twins to gain insights into
the process using artificial intelligence algorithms. Seifert et al. [10]
proposed a digital-twinning framework for HPs, including numerical
cycle modeling, utilizing grey-box models for each component, includ-
ing the control unit, and validated with an experimental setup. Shin and
Cho [11] evaluated several ML algorithms to predict the Coefficient of
Performance (COP) of an air-to-air HP system under varying sink and
source temperatures. They found that artificial neural networks (ANNs)
performed the best by establishing accurate relationships between inde-
pendent and dependent variables with a mean bias error of 3.6%. Wang
et al. [12] proposed an ML-based digital twin for an HP in electric vehi-
cles, integrating support vector regression (SVR) with an experimental
database of an HP using R134a as the working medium. This digital
twin predicted the COP based on indoor and outdoor temperatures,
indoor air mass flow rate, compressor speed and expansion valve
position, achieving a relative error of 8.5%. Zhang et al. [13] assessed
three similar ML-based digital twins to predict the COP of ground-
source HPs using various input parameters such as heat-exchanger inlet
and outlet temperatures, mass-flow rates, relative humidity, and indoor
temperature. They found that, among the considered ML approaches,
the Extreme Learning Machine algorithm performed the best. The
recent study on predicting the COP in refrigeration systems by Zhou
and Zhu [14] developed a digital twin that combines convolutional
neural networks (CNN), multilayer perceptrons (MLP), and LSTM net-
works. This included real-time optimization of the model parameters by
Particle Swarm Optimization to minimize the difference between the
physical and predicted COP. Their digital-twinning approach outper-
formed individual methods such as CNN. Aguilera et al. [15] proposed
a digital twin of a two-stage HP system based on real-time HP oper-
ational data for determining optimal intermediate pressure set points
at different levels of fouling. The digital twin enabled estimating the
optimal intermediate pressure, improving the COP up to 3%, as well
as quantifying the effects of fouling by the thermal resistance and
pressure drop in the HP components. Lv et al. [16] introduced a digital-
twinning approach for an air-conditioning system in a train station in
Xichang, China by combining fuzzy (c + p) means clustering (FCPM)
with the stacked broad learning system (SBLS) algorithm (FCPM-SBLS)
algorithm. This resulted in accurate COP predictions.

The aforementioned efforts significantly contributed to data-driven
ML-based HP modeling. However, similar studies focusing on HPs used
for waste-heat recovery and heat recuperation in industrial applications
(especially operating with natural working media) are scarce to date
due to the limited availability of experimental data suitable for ML-
based digital twinning. Our study therefore concentrates on developing
digital twins for such HP applications from experimental data.

Developing data-driven HP models typically relies on databases
built from experimental measurements or high-fidelity numerical sim-
ulations. Experimental testing of high-temperature HPs is generally
scarce. Jian et al. [17] reviewed 15 experimental studies of prototype
or small-scale HPs that deliver heat above 130 °C and highlighted
the most relevant ones for this application area. Marina et al. [18]
tested a two-stage steam-producing industrial HP using pentane, with
a thermal capacity of 150 kWth, generating 4.8 barA steam with a
temperature lift of 90 °C. Liu et al. [19] investigated a 70 kWth
compression—absorption HP prototype using ammonia-water and pro-
ducing high-temperature steam at 150 °C. Pan et al. [20] tested a
water-to-water HP below 100 °C for various working medium, in-
cluding mixtures. Navarro et al. [21] examined a high-temperature
HP operating on R-1336mzz(Z), delivering heat at 155 °C with a
heating capacity of around 10 kW using a scroll compressor. Verdnik
et al. [22] tested an n-butane HP capable of producing around 30 kWth
of heat at 110 °C in subcritical and 160 °C in transcritical operation.
Ramirez et al. [23], both experimentally and numerically, investigated
a high-temperature steam-producing HP running on R1233zd(E); this
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prototype includes an external sub-cooler to separate sensible and
latent heat production, delivering steam up to 150 °C at 40 kWth.
However, none of these high-temperature HPs were experimentally
tested at an industrial scale or modeled by a digital twin, both of
which are crucial for validating their performance and reliability in
real-world applications and for reducing end-user uncertainties about
the technology. This is an important motivation for our study.

The present study proposes a data-driven, ML-based digital twin of
a 1 MWth steam-producing HP using n-pentane (R601) as the working
medium. Gaussian Process Regression (GPR), successfully employed
to process HP data before [24,25], is applied to HP data obtained
from a full-scale experimental setup at the Carnot Laboratory of the
Netherlands Organisation for Applied Scientific Research Center (TNO).
The HP is designed to recover waste-heat from hot water at 90 °C to
produce steam above 140 °C for industrial processes such as paper
and food production. The system includes a screw-type compressor,
a condenser (transferring the heat for steam generation), an internal
heat exchanger, twin evaporators (identified as evaporators A and B)
consuming the (process’) waste heat, and an economizer. The behavior
and performance of the HP are measured at 55 steady-state operating
points, considering various input conditions such as water inlet tem-
perature, volumetric flow rate of the hot water compressor rotational
speed, and steam pressure. GPR is applied to these measurement data
to create a digital twin that predicts relevant process variables such
as e.g. outlet pressures and temperatures, compressor outlet flow con-
ditions and electrical power consumption. These predictions are then
used to calculate key performance indicators such as the COP and
heating duty (i.e., heat production for steam generation). The digital
twin is employed to create performance maps showing the COP, heating
duty, and compressor electric power consumption as a function of the
process inputs. Furthermore, an economic and CO, emission analysis is
carried out to compare the HP with a boiler for a potential industrial
application in the Netherlands.

The structure of this paper is as follows. Section 2 presents the
methodology including the performance indicators, the experimen-
tal setup, the digital-twinning approach, and the economic and envi-
ronmental assessment. Section 3 discusses the experimental analysis,
the validation of the HP digital twin, and finally, the application of
the digital twin to an industrial scenario. Concluding remarks are in
Section 4.

2. Methodology
2.1. Performance indicators

The performance of the HP is assessed by the COP, defined as
O
cop = —neating 16}

comp,electric

with W,

omp.electric the electric power consumption of the compressor and

Qhearing = mcomp,om . (hcr)ndenser,hol,in - h’condenser,hor,out) . %’ (2)
the heating duty, i.e., the heat transferred within the condenser from
the working medium (condenser hot side) to an external stream (con-
denser cold side). In this study the heating duty is employed for
steam generation and the external stream therefore consists of water
that enters the condenser as a saturated liquid and leaves as super-
heated steam. The inputs for calculating Oy, include the mass
flow rate (st q,) Of the working medium, the compressor outlet
pressure (P, ), and the compressor outlet temperature (T, ou)-
The enthalpy 2.4, our Rcondenser.horin 1S determined from P, ou
and T, assuming a superheated state that the compressor outlet.
Furthermore assuming negligible pressure drop on the condenser hot

side (P.pgenserhorin = Prondenser.hor.ow) and saturated liquid conditions
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at its outlet, the enthalpy A.,iensernorons 1S determined entirely by

Pcomp,our = Pcandenser,hat,in'

The actual COP (1) is bounded by theoretical limits following
CoP < COP, < COP,, 3)
with

T, ; T,
COP,»M — h,int ) COPexg — h,ext . (4)
Th,im - Tc,int Th,ext - Tc,ext

the Carnot COPs based on the internal temperature levels 7}, ;,, (con-
denser saturation temperature) and T, ;, (evaporator saturation tem-
perature) and the external temperature levels T}, ,,, (inlet temperature
of the external stream in the condenser) and T, ,,, (inlet temperature of
the hot water in the evaporator). Defining the Carnot COPs (3) enables
evaluation of the actual performance according to COP (1) relative to
ideal thermodynamic conditions in terms of the fractions

COP " COP
COP}, = —— x 100%, COP;, = ——— x 100%. 5
= cop,, ¢ et COP,, ‘ ®

representing the degree to which the HP achieves the Carnot COPs
(4). Fraction COP} < 100% reflects to what extent the performance
of the HP itself approaches ideal conditions; fraction COP}, < 100%
reflects to what extent the total performance, i.e., internal performance
and thermal interaction with heat source (here: hot water) and heat
sink (here: external stream for steam generation) combined, approaches
ideal conditions. Note that (3) implies COP};, < COP; < 100%.

2.2. Experimental setup

2.2.1. System description

The industrial HP considered in this study is part of the TNO
FUSE project [26] and was designed and constructed by Mayekawa
Europe [27]. It is a 1 MWth pentane HP, designed to upgrade hot
water at 90 °C to produce steam at 140 °C. The HP operates on a
closed-cycle vapor compression system, specifically a Reverse Rankine
(RR) cycle with an economizer, as depicted in Fig. 1. According to
the conceptual design, the working medium (pentane) evaporates at
80 °C and condenses at 145 °C. The heat pump was tested in the
dedicated test rig in the TNO Carnot Laboratory [28], which is capable
of simulating waste-heat supply and process-heat delivery through a
hot-water stream and low-pressure steam generation, respectively.

The HP features a Mayekawa 250MFC screw compressor, custom-
made by Mayekawa Japan [29], with a swept volume of 2010 m?/h at
3000 RPM and an L-port configuration (fixed Vi of 2.63). It is powered
by a Siemens SIMOTICS motor with a capacity of 500 kW at 400 V.
An internal heat exchanger (subcooler/superheater), as shown in Fig.
1, ensures that pentane enters the compressor as superheated vapor,
preventing droplet formation during compression.

The economizer — an Alfa Laval heat exchanger with a heat transfer
area of 12.8 m? — creates three pressure levels in the compressor
(suction, intermediate, and discharge) enhancing overall performance
by reducing the compressor’s workload. This is achieved by splitting
the pentane flow post-condenser into two streams: one stream expands
to intermediate pressure and evaporates in the economizer heat ex-
changer, using sub-cooled heat from the other stream, which expands
to evaporating (low) pressure. This reduces the amount of working
medium compressed from low to high pressure, improving efficiency
while maintaining the heating duty.

The condenser of the HP, which serves as a steam generator, is a
Caloperm plate-and-shell heat exchanger with a heat transfer area of
78.75 m2. On the shell side, water serves as the heat sink, while pentane
condenses between the plates. Steam is generated by maintaining a
constant water level on the shell side; the water level is maintained
using a feedwater pump. Heat transfer occurs as pentane condenses
between the plates, transferring heat to the water. Once the water
reaches its boiling point, steam is produced. The pressure in the steam
generator is regulated by a control valve located in the line leading to
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Fig. 1. Simplified schematic overview of TNO HP and test infrastructure (black arrows: pentane flow; blue arrows: condensate/steam flow). The sensor symbols denote F for flow,
T for temperature, p for pressure and SH to indicate a calculated superheat based on a combined pressure and temperature measurement.

the buffer vessel of the test rig. Excess heat from the system is rejected
to the ambient via a dry cooler.

The system also includes two Alfa Laval brazed plate evaporators,
each with a heat transfer area of 67.36 m?, operating with direct
expansion of pentane. Additional components a Fisher ED DN50 main
expansion valve and a Fisher EZ DN25 economizer expansion valve.
A Danfoss FC-102 variable frequency drive, rated at 500 kW, provides
control and power to the system.

As mentioned, the test rig at the TNO Carnot Laboratory [28]
was used to simulate waste heat supply and process heat delivery.
This facility supports testing of HP units ranging from 100 kW to 2
MW under various temperature and load conditions. The waste heat
temperature ran between 40 °C to 120 °C, with a maximum flow rate of
100 m3/h per evaporator circuit. Steam production reached up to 2570
m?/h, measured using a Krohne OPTISWIRL 4200 C DN150 flowmeter,
at pressures ranging from 0.2 bar(g) to 15 bar(g), and a maximum
superheated steam temperature of 200 °C. Feedwater temperature was
maintained at the saturation temperature of the buffer vessel, and
dry cooling was achieved with a 600 kW system at 25 °C ambient
temperature. The test rig is equipped with two 40 kW electrical heaters
in the buffer vessel to bring the system up to temperature. Finally, the
TNO Carnot Laboratory is able to provide an electrical connection of
1 MW at 400 V (1440 A). Fig. 2 shows the Carnot Lab, featuring the
tested industrial HP (front) and the test rig (back).

2.2.2. Experimental workflow

After startup, the heat pump and test infrastructure were allowed
to stabilize before measurements commenced. This stabilization phase
ensured that all components of the system achieved thermal and opera-
tional equilibrium. Specifically, the buffer vessel was heated to 105 °C,
and the control loops for key parameters — such as evaporator water
feed temperature, flow rate, and suction superheat — were engaged to
maintain steady conditions. Each measurement represented the average
of a 20-min or longer period, during which key operating parameters
were closely monitored. In cases of any system instability or upsets, the
affected data was discarded, and the system was reset to restore stable
operating conditions. This rigorous approach ensured the reliability
and repeatability of the experimental data. The buffer vessel held
approximately 8 m® of water, electrically heated to 105 °C before
starting the HP. On the waste-heat side, a pump maintained flow by
replacing a fraction of cold water returning from the evaporator with
hot condensate from the buffer vessel via a three-way valve.

Control loops, as depicted by the dashed lines in Fig. 1, main-
tained stability throughout the experimental campaign. Key control
parameters included:

Evaporator water feed temperature: Adjusted according to the test
point, representing waste heat temperature.

Water feed flow rate: Maintained at approximately 68 m?3/h per
evaporator.

Evaporator pentane pressure: Set to a saturation temperature
about 10 K below the water feed temperature to ensure complete
evaporation.

Suction superheat: Maintained at 35 K to prevent wet compres-
sion.

Steam pressure and compressor speed: Varied based on test point
requirements.

The economizer could be activated or deactivated, and the portion
of the working medium entering the compressor’s super-feed port was
regulated by an expansion valve. The adopted control strategy ensured
full evaporation by maintaining a 10 °C temperature difference but may
not be feasible in practical applications where waste heat temperature
fluctuates.

2.2.3. Instrumentation

The performance data obtained for the heat pump is indicative
in nature, with a best effort made to ensure validity. For example,
condenser duty was cross-verified using two independent methods: the
measured pentane mass flow and the steam mass flow. Good agreement
was observed between these calculations, demonstrating reliability for
the purposes of digital twin development. The key instruments used in
the experimental setup (heat pump and test rig) are detailed below and
can be visualized in Fig. 1:

Heat pump system:

» Pentane mass flow meter located in the main loop between the
economizer and the main expansion valve where the pentane is
in liquid state. Specifications: Endress & Hauser Proline Promass
F 300 Coriolis flowmeter DN80

« Pentane mass flow meter location in the economizer feed line,
between the internal heat exchanger and the economizer expan-
sion valve. Specifications: Endress & Hauser Proline Promass F
300 Coriolis flowmeter DN15

+ Pentane mass flow over the condenser is the sum of the two mass
flow meters (in steady state)
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Fig. 2. TNO Carnot Laboratory including the pentane HP in the front and the test rig in the back.

+ Pressure sensor: Danfoss AKS 33
» Temperature sensor: Pt100 resistance temperature detectors (not
further specified by Mayekawa)

Test rig:

Steam volume flow located after the expansion valve such that the
steam is dry/superheated. Specifications: Krohne vortex flowme-
ter OPTISWIRL 4200 C DN150

Pressure sensors: Endress & Hauser Cerabar M PMC51
Temperature sensors: Endress & Hauser RTD Thermometer TR10
with Pt100 element installed in a thermowell

Waste heat volume flow: Krohne ultrasonic flowmeter OPTISONIC
3400 F DN125

As the TNO Carnot Laboratory operates as a field laboratory for
industrial-scale prototypes, it emphasizes replicating real-world oper-
ational conditions over rigorous laboratory-grade calibration. Conse-
quently, calibration of all instruments was not prioritized, considering
the cost and effort relative to the goals of this study. Uncertainty in
indirect measurements such as heat output and COP is acknowledged
but was not rigorously quantified. The experimental data is intended to
provide a solid foundation for the validation and development of the
digital twin rather than for certifying the precise performance of the
heat pump prototype.

2.2.4. Experimental testing of the heat pump

The intended nature of the TNO FUSE project was to demonstrate
a steam producing heat pump at an industrially relevant size (1 MWth
heat duty); troubleshoot the prototype HP and finetune the control pa-
rameters before going to an industrial site. Therefore, the primary goal
of the experimental campaign was to determine the HP’s operational
stability under varying external conditions and loads. The compressor
speed served as an indicator of HP load. Each combination of source,
sink, and speed defined an HP operating point, maintained stable for
about 30 min. For most operating points, the economizer was disabled,
as its impact on performance was not the primary focus of this study.
A total of 55 steady-state operating points were tested, with a subset
presented in Table 1 including comparison of the actual COP (1) to
its theoretical limit COP,,, following (3) via fraction COP?  defined

ext ext

in (5). These conditions include variable source temperature, pentane
evaporation pressure, steam pressure, and compressor speed. The rest
of input parameters of the system are maintained constant: water
feed flow rate (68 m>/h per evaporator), evaporator pentane pressure
(pentane saturation 10 K below source temperature), and compressor
suction superheat (35 K).

While a simplified energy balance comparison is often used to vali-
date heat pump systems, it is not applicable here due to the presence of
significant and unquantified heat losses from the ventilated enclosure
and known oil cooling requirements. The heat pump setup prioritizes
operational safety and prototype development under industrially rel-
evant conditions, where precise energy balance validation was not a
primary goal.

2.3. Digital-twin development

This section outlines our methodology for developing a digital
twin of the HP using measurement data from the experimental setup
discussed in the previous section. The workflow for creating the digital
twin of the HP investigated in this study is schematically shown in
Fig. 3. As previously detailed, 55 measurements were conducted across
both operating stages, with and without the economizer, by varying
the water inlet temperature, volumetric flow rate on the waste-heat
source side, compressor rotational speed, and steam pressure. These
parameters varied within the ranges of 65 °C to 97 °C for water
inlet temperature, 68 m?/h to 70 m3/h for volumetric flow rate, 1500
RPM to 3000 RPM for compressor speed, and 1.5 bar to 3.5 bar
for steam pressure, respectively. A full-order model of the HP based
on these measurements was developed. The data from the full-order
model were categorized into two groups: independent parameters (wa-
ter temperature, volumetric flow rate, compressor rotational speed, and
steam pressure) and objective functions (mass flow rate, temperature,
pressure at the components’ boundaries, and compressor electric power
consumption). GPR was applied to the reduced data set, enabling the
prediction of the objective functions, the calculation of performance
metrics such as COP and heating duty. This framework outlines the
digital twinning methodology for the FUSE HP.
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Subset of experimental results of TNO HP. Design reference condition in bold. Tests 1-10: economizer disabled; test 11 is test 10 with economizer enabled. Fraction of Carnot

COP concerns COP? following (5).

ext

Test Source temperature Sink temperature Compressor speed Heating duty Ccop Fraction of Carnot COP
[°Cl [°C] [RPM] [kw] [-] [%]

1 91 142 1500 435 2.3 28

2 63 144 2700 420 1.3 24

3 97 140 2700 905 2.7 28

4 91 140 2700 823 2.4 29

5 91 135 2700 840 2.7 29

6 91 130 2700 836 2.9 28

7 96 135 2700 900 2.8 27

8 64 105 2700 584 3.2 34

9 65 123 2700 522 2.1 31

10 77 140 3000 642 1.7 26

11* 77 140 3000 788 1.9 29

2.3.1. Gaussian process regression bound demarcated by standard deviation o(x}) = Hl.li/ 2. ©(0.02)

The objective is to create a model of a physical process by regressing
a function y = f(x) to data

,yM}, (6)

on dependent (y) versus independent (x) process variables. Tradi-
tionally, this is done by fitting a polynomial expansion using the
least-squares method. However, a significant limitation of this approach
is its dependence on a predefined and possibly suboptimal functional
form.

Gaussian Process Regression (GPR) offers a non-parametric alterna-
tive by fitting the mean of a distribution of functions to data (6). This
involves two steps. First, the definition of a set of candidate functions
(“prior distribution”) and, second, isolation of the subset of functions
that run through data (6) (posterior distribution). The essence of GPR
is elaborated below and based on [30,31].

The prior distribution consists of a Gaussian distribution of possible
function values f(X;) on a grid X = {X,,....Xp} = XuX, of D positions
X; comprising of data points (6) and N = D — M > 1 positions X, =
{x’l*, ,x*N} on which to determine the GPR model. Each candidate
function f = {f(X)),..., f(Xp)} is a realization of the D-dimensional
multi-variate normal (MVN) distribution N p( f ,Xp) around mean f .
Covariance matrix X, = ZL correlates the function values f(X, ;) via
the independent variables X, ; through

}={x1,x2,...,xM}, 5;={y17y2’---

5 1/ Xi—X\?

% = K(X;, X)), K(X;, X;) = o} exp |:_§ (T) :| ’ @
with K(X;, X ) the kernel (f indicates transpose). The kernel plays a
critical role in determining the smoothness of functions f(X;) such that
they are suitable for interpolation purposes and are here defined by the
Radial Basis Function (RBF) kernel, specified by the hyperparameters
ok and L. Fig. 4(a) shows sample candidate functions (colored curves)
of the prior distribution on grid X = ¥ U ¥, comprising of M = 10 and
N = 500 equidistantly-placed data (x;) and interpolation (x}) points,
respectively, using zero mean f = 0 (gray line) and kernel (7) for
ox =1and L =0.15.

The posterior distribution consists of the subset of functions in
the prior distribution that runs through the data. Fig. 4(a) includes
artificial data y (black dots) generated on X by the function f(x) =
sin2zx and shows that most candidate functions violate this require-
ment and must be eliminated from the prior distribution. This can
be achieved by Bayesian inference, yielding the posterior distribution
fo= (). . f(X5)) € Ny (/.. IT) on %,, with

fo=2Iz715, n=x,-3s"'3, (8)

as mean and covariance, respectively, and X;; = K(x;,x;), X,;; =
K(x,-,x;) and X, ; ;= K(xf,x;) covariances between/within subgrids
X and X,. Fig. 4(b) shows mean f, and two realizations f; , on subgrid

X, for the beforementioned artificial data y including the uncertainty

(shaded region).

The mean of posterior distribution (8) defines the GPR process
model, viz. y(x) = f,(x), and its prediction quality is quantified by the
Coefficient of Determination (COD) R?, i.e.,

Zi]il (yO.i - yw’)2

R =1-— 5
Zi:l (yoyi - mean(fo))

)]

with y,; and y,; = f*(xl’.‘) the observed and predicted function values,
respectively, on %, (R? closer to unity signifies better prediction) [32].

The above describes the basic approach behind GPR and generalizes
to problems with multiple independent variables y = f(x;,x,,...) and
data subject to noise. Moreover, the hyperparameters (o, L) for kernel
(7) have been chosen manually for the example in Fig. 4 yet optimal
settings can be systematically obtained by hyperparameter optimization
[30,31].

2.3.2. Process models

The digital twin of the HP will consist of process models for each
relevant process variable, derived from datasets (6) using Gaussian Pro-
cess Regression (GPR) as described in Section 2.3.1. The independent
variables x include user-defined inputs such as the waste-water tem-
perature T),,,,, the waste-water volumetric flow rate V,,,,,, compressor
rotational speed @,,,,, and the boiling pressure of water P, in the
condenser. The corresponding dependent variables y include measured
outputs like compressor outlet pressure and temperature.

The aim of this study is to predict the HP’s performance in terms
of the indicators COP and Oj,u, as introduced in Section 2.1 as
well as monitor thermodynamic state variables at the boundaries of
each HP component. To achieve the digital twin of the HP for esti-
mating the system performance, we first need process models for the
working-medium mass flow rate i, ,,, compressor electric power
consumption W, ., rectric» and compressor outlet temperature T,,,,, our»
and pressure, P,,,,,, The mass flow rate, power consumption, and
outlet temperature vary with all independent parameters, while the
outlet pressure depends only on the steam inlet pressure on the con-
denser’s cold side. Fig. 5 depicts the GPR modeling of each component
for estimating flow variables and parameters necessary for performance
prediction.

The GPR process models are derived from datasets obtained from
55 steady-state operating points (Section 2.2). As schemed in Fig.
5, the compressor data models are used for estimating the param-
eters (Pcvmp,aut’ Tcomp,aut’ mcomp,ourr and I/I./camp,elecfric) required for the
system performance calculations. Thermodynamic properties derived
from the dependent variables, specifically the enthalpies /g ouier
(hcvndenser,hor,inlet) and hcondenser,hot,outlet in Eq (2)’ are evaluated using
the open-source CoolProp libraries [33], assuming the conditions given
in Section 2.1. The condenser data model determines the flow variables
under the assumption that the outlet conditions are those of a saturated
liquid. The data models of the other components are developed to
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Fig. 3. Schematic illustration of the digital twining methodology for the FUSE HP.

predict flow variables at the components’ boundaries, such as the
temperature at the superheater’s cold side outlet.

It is worth noting that the pressure drops along the internal heat
exchanger and economizer hot sides are negligible. Therefore, we
assumed that the inlet pressure at the hot side is equal to the outlet
pressure in the modeling of these components. The internal heat ex-
changer cold inlet conditions are the same as those at the evaporator
outlet. Similarly, the economizer cold outlet temperature is found by
the heat balance equation written between the hot and cold sides
of the component. An isenthalpic expansion process determines the
flow conditions at the evaporator’s inlet through the expansion valve.
Depending on the operating mode (stage with or without economizer),
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the isenthalpic expansion calculations are conducted between the dis-
tributor (expansion valve) data model and either the superheater or
economizer data models to compute the evaporator inlet quality (see
Fig. 5).

Some of the objective functions’ data models were created using
separate data sets for operating stage with economizer (39 observa-
tions) and without economizer (16 observations) in order to enhance
prediction accuracy. The models derived for operating stages with and
without economizer are employed to predict objective functions based
on the user-specified operation type. In the validation section of the
digital twin model, we will discuss the prediction accuracy of the data
models by presenting the R? (COD) values for the objective functions
and showing their parity plots.

Monitoring the flow variables, along with calculating and analyzing
system performance as a function of independent parameters, con-
stitutes the digital twin of the studied HP. The system performance
parameters — heating duty and compressor electric power consumption
- provided by the digital twin for a given set of independent parameters
are used as inputs for the economic and environmental evaluation
of the HP. In the next section, we will provide the details of this
evaluation.

2.4. Economic and environmental assessment of the heat pump

Relevant for determining the practical usefulness of the HP is an as-
sessment of its economic and environmental performance. This assess-
ment will be done in terms of energy savings (E,,,,), CO, reductions
(CO; 4pings)» and payback time (P BT) for various operational scenarios,
comparing to a steam boiler using propane as fuel and based on a case
study in the Netherlands.

The required parameters for this analysis include the unit price
of electricity consumed in industry (Ay/ecsriciry,n1)> the primary energy
conversion factor (indicating electricity production efficiency) (¢ e qy)s
annual operating hours ¢, annual inflation and interest rates, the lower
heating value (LHV) of propane, propane boiler efficiency (#,,;,,), total
costs of the heat pump (HP) (A p)—which encompass installation costs
(given in euros per kWh) and integration costs (assumed to be half
of the installation cost)—propane price (4,,9pq.), the conversion factor
for CO, emissions per kilogram of propane combustion, CO, taxes on
propane, and CO, taxes on emissions. These parameters are shown in
Table 2 with the references, where in several cases we must resort to
assumptions for their values. Additionally, the heating duty, compres-
sor electric power consumption mepye,ec,ric, and mechanical efficiency
of the electric motor #,,,,.hanicai» Which are provided by the digital twin
for specific independent parameter features, are also necessary for this
analysis.

Several resources were referenced for the assumed values presented
in Table 2. For the boiler efficiency, a high-efficiency heating system
is considered one in which the boiler can convert chemical energy into
thermal output with a minimum efficiency of 90%, as specified by the
U.S. Department of Energy [34]. The electricity in the Netherlands is
generated from various sources, including renewable energy, natural
gas, coal, and oil. The energy conversion factor, reflecting the efficiency
of electricity production, can vary depending on the type of installation
and the energy source used. We assume that mechanical losses during
the conversion process, attributed to generator efficiency [35], result
in an overall conversion factor of 90%. The assumed installation and
integration costs for industrial heat pumps was set at 700 €/kWth.
These values are consistent with those reported in the literature [36,
37]. The integration cost is highly dependent on the type of industrial
process and the specific application of the project (e.g., Brownfield or
Greenfield). For the purposes of this study, it was guessed to be half
the cost of the installation.

One of the main outputs of this work is the E,,,,,, achieved by
using a HP instead of a propane boiler. These savings are calculated
via

Esauings = Qpropane - Eelectric,compressor [MWh/year] (10)
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Fig. 5. Process models of each component and objective function estimated via GPR for given independent parameters.

Table 2
Parameters needed for the economic and environmental assessment.
Parameter Explanation Value References
AcO,taxes.N L CO, taxes in the Netherlands 74.17 €/tonCO, [38]
Actectricity,N T Electricity price in the Netherlands 0.13 €/kWh [39]
Apropane Propane price Euro/kWh 0.11 €/kWh [40]
Aup HP installation and integration costs per kWth 700 €/kWh & 350 €/kWh Assumption
Beo, Conversion factor of CO, production per burnt propane 2.933 [41]
mechanical Electric motor efficiency Data-driven model -
energy Energy conversion factor regarding electric production efficiency 0.9 Assumption
t Operating hours per year 3600 hr/year Assumption
Mhoiter Boiler efficiency 0.9 Assumption
where the annual heating by the boiler, O propanes 1S computed via Quantifying energy savings is crucial to assess how much energy
0 ot can be conserved by using the heat pump (HP) in place of the propane
5 sysiem . . . . P
Opropane = 1000 -7, [MWh/year] 11 boiler system. From an environmental standpoint, reducing emissions
“ Mpoiler

. (one of the major concerns with fossil-fueled systems) is just as im-
with QO ., the required heating duty by the industrial process. The

. . o portant as achieving energy savings. Therefore, another significant
annual electricity consumption by the HP compressor to provide O

instead of the propane boiler is calculated from system outcome of this work is the reduction in CO, emissions achieved by
) using an HP instead of a propane boiler, denoted as CO, ;5> Which
Weomp.electric't i s
10()0‘,725,1,1,,,,[“, is calculated by
Eelectric,compressor = ¢— [MWh/yearJ (12)
energy
where in both (11) and (12) we assume that the system operates 18 h COx,500ings = CO2,produced—propane = CO2produced—etecricity [ton/year]
per day and 200 days per year for calculating time ¢ ([hr/year]). 13)
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A
PBT = HP

A

propane + ACOZ—taxes,propune -

Eelectrie,compressor : Aelectricity,NL - ACOZ—ruxex,electricity

, [year] a7

Box I.

where the emissions produced by the propane combustion in the boiler
follow from

COZ,praduced—propane = mpropane : d’cozvpmpa,w’ [ton/year] (14)
using
. t Qxystem

= ——.3600 . ——, ton/year 15
Moropane = 7000 LHV Ngorer (ton/year] 1>

to compute the propane mass flow rate i,

The emissions CO, ,oquced—eleciriciy Produced by the HP result from
the electricity consumption by its compressor and can be evaluated as
follows. Renewable sources provide a large part of the annual electricity
production (x~ 44%) in the Netherlands [42] in 2022. The remaining
portion is generated from fossil fuels, including natural gas (39.3%
of overall production with 0.198 kg of CO, emissions per kWh [43]),
oil (1.3% of overall production with 0.238 kg of CO, emissions per
kWh [41]), and coal (14.3% of overall production with 0.4 kg of CO,
emissions per kWh [43]). This yields

— 9
C02,pr0duced—electricity = Loelectric,compressor * (14-3/6 -04

[ton/year]
+1.3% - 0.238 + 39.3% - 0.198),

(16)

as a portion of the annual CO, emissions caused by the total elec-
tricity production that results from the power consumption by the HP
compressor.

Implementing the HP in place of the propane boiler for industrial
applications in the Netherlands can lead to significant energy savings
and reductions in CO, emissions. These savings allow the HP system to
recover its costs within a few years, depending on the specific industrial
conditions, such as heating duty and steam pressure. As a result,
another key outcome of this analysis is the simple payback time (PBT),
which is defined as (see the Eq. (17) in Box I), which indicates the
time it takes for the HP investment to be amortized without considering
inflation or interest rates. Here, the total cost of the HP, Ay p, follows
from the heating duty of the HP and the unit total cost of the HP, Ay p,
via

A _ Qheating : AHP
HP = 1000

The annual price for propane consumption if heating by the boiler
instead of the HP is given by

[k€]. (18)

=1 [k€] (19)

propane propane Qpropane

and the corresponding CO, taxes on the propane consumption are
determined from

CO2,produced7pr0pane : ACOzraxes,NL

ACOZ—mxes,propane = 1000 [k€] (20)

where Aco,axes, v TEPresents the applied CO, taxes in the Netherlands.
Additionally, CO, emissions resulting from electricity production need
to be considered when calculating payback time and are determined
using:

CO2,produced—electricity : }“COZIaxeS,NL
Acozftaxes,electricity = 1000

k€] (21)

The performance outputs from the digital twin, such as heating
duty and compressor electric power consumption, are used as inputs to
calculate E, 05, CO3 gpings> and PBT based on the equations provided
above. The results will be analyzed in the following section using
economic assessment maps.

3. Results

This section summarizes the steady-state HP performance through-
out 55 measurement points obtained with varying water properties on
the waste-heat source, compressor rotational speed, and steam pres-
sure. It outlines the validation of the digital twin model established in
this work. In addition, operating maps of the HP obtained by the digital
twin approach in terms of COP and heating duty, and an economic
and environmental assessment of employing the system in an industrial
application in the Netherlands instead of using a fossil-fueled boiler are
presented.

3.1. Experimental analysis

This sub-section of the report discusses the experimental results
from running the industrial heat pump with the test rig at the TNO
Carnot Laboratory. In Fig. 6, the heating duty and COP are plotted
as functions of temperature lift. The vertical scattering of the heating
duty at low-temperature lifts results from the varying sink and source
temperature combinations. Notably, cases with very low source temper-
atures exhibit low heat sink duties despite moderate temperature lifts.
As anticipated, the COP demonstrates a linearly decreasing relationship
with temperature lift.

Overall, there is good agreement between the duties measured on
the pentane and water sides. A source temperature of approximately
90 °C and a sink temperature of around 140 °C align well with the
HP design and use pentane as the working medium. Butane may be
better suited as a working medium for lower source temperatures due
to its higher density at the compressor suction port, resulting in a higher
heating duty. For extreme temperature lifts, a two-stage cascade system
with suitable working medium could be considered as an alternative.

The resulting fraction of the Carnot COP, defined as COP};, follow-
ing (5), for each test is shown in Table 1 and ranges from 24% to 34%.
This is significantly lower than the 50% typically applied to determine
practical efficiency. Possible reasons for this include:

1. Tailored Compressor Rotors: The current rotors yield reduced
volumetric efficiency, which measures the volume transported
from suction to discharge compared to the swept volume of the
compressor. This is a consequence of being the first time such
rotors were used for high-temperature conditions. Additional
tests are planned with a redesigned rotor set optimized based
on the presented test data.

2. Low Intrinsic Volume Ratio of the Compressor: Significant
under-compression occurs, especially at higher temperature lifts,
leading to lost work and reduced efficiency. The upcoming tests
will include an improved compressor volume ratio to better
match the process conditions.

3. Large Approach Temperatures in Heat Exchangers: On the
source side, suboptimal flow distribution of pentane in the evap-
orator section may cause inefficient use of the available heat
transfer area. Fine-tuning the HP control system is expected to
enhance internal heat reuse and reduce the need for evaporator
superheat. A large portion of the required superheat at the
compressor inlet will be provided by the internal heat exchanger.
On the sink side, evidence suggests non-condensable gases are
affecting the vapor-liquid equilibrium of the pentane, as ap-
proach temperatures near 10 K have been measured. This is
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Fig. 6. Performance (heating duty on the left and COP on the right) of the industrial HP tested as a function of the temperature lift (AT};;, = Ty = Tipurce)-
Table 3

excessively high for a well-designed heat exchanger with phase
changes on both sides. These non-condensable gases result from
piping modifications and extended vacuum periods during sys-
tem downtime, making their removal challenging. While large
approach temperatures do not necessarily impact the HP inter-
nal performance, they significantly reduce the fraction of the
Carnot COP based on the external temperature lift, i.e., COP},
following (5). For instance, at the design condition, the internal
fraction of the Carnot COP, i.e., COP?, following (5), is 44%,
compared to 29% for the external fraction COP;,.

The experimental campaign of a high-temperature HP in a laboratory
environment was a success. The HP manufactured by Mayekawa Europe
was successfully integrated and tested at the TNO Carnot Laboratory.
We have demonstrated an industrial HP for a full range of operating
conditions both at the source and sink, and we have identified potential
areas of improvement. Moreover, the screw compressor designed by
Mayekawa Japan was capable of running at higher temperatures using
pentane as a working medium.

3.2. Validation of the digital twin

Process models for the dependent variables shown in Fig. 5 were
developed as the functions of independent variables (o T

| comp? water>

Viwaters Psieam) Using Gaussian Process Regression (GPR) as described in
Section 2.3.2. For achieving this, 80% of the experimental data was
randomly selected for training (X, ¥) as per Eq. (6). The remaining 20%
was used as test data y, on interpolation points X, (see Section 2.3.1)
to evaluate the models’ prediction accuracy. This was done using the
COD R? following Eq. (9) and parity plots that compare the observed
values y,; with the predicted values y,; = f(X;) on X UX,.

Table 3 provides the COD (R?) for the dependent variables, showing
values very close to unity (i.e., R> > 0098 in most of the cases),
indicating a high overall prediction quality of the process models.
The corresponding parity plots are shown in Figs. 7 and 8, further
substantiating this finding by revealing that the pairs (y,;,,;) are
concentrated closely around the line y,; = y,;, indicating error-free pre-
diction. However, while the compressor outlet pressure (P,,,,, ) and
mass flow rate (i, ,,,) Were predicted very accurately, discrepancies
of up to 10% occur between the predicted and observed compressor
outlet temperature (T, ,.,), €vaporator A cold side outlet temperature
(Tovapa cold,outter)s @nd power consumption (W,y, erecrric) in the higher
ranges. This is perfectly acceptable in typical practical applications,
demonstrating that the process models enable reliable prediction of the

dependent variables.

COD R? indicating prediction quality for dependent process variables. (The COD
values of the process models built based on two datasets are given separately in
the operating stage without economizer (second) and operating stage with economizer
(third) columns. The COD values of the models built using the entire 55 observations
are shown in a single combined column.)

Overall R? (W/O econ. and With econ.)

Dependent variables

Stage w/o econ. Stage with econ.

Meompout 0.99
Teompou 0.98
Peompou 0.99
Weompetectric 0.98
Pistrivutor.outter 0.99
Peconomizer.cotd outter N/A 0.99
Meconomizer.super feed N/A 0.99
Toconomizerhot.outlet N/A 0.95
Tovapa.cold outter 0.83 0.96
Povapa.cotd.outter 0.99

evapA hot.outlet 0.99
TovapB.cotd outter 0.99
ProvapB.cotd.outtet 0.99
TevapB horoutter 0.99
Tiuperheater.cold,utlet 0.93
APsuperheaier‘coId 0.97
T, 0.97 0.93

superheater,hot,outlet

One of the primary reasons for the discrepancy between the mea-
sured and predicted data for evaporator A’s cold-side temperature (see
Table 3) could be attributed to experimental uncertainties. Although
evaporators A and B are identical, their heat transfer rates differ due
to variations in the mass flow rates of the working medium. These
differences result in the working medium exiting the heat exchangers
at different outlet temperatures. Consequently, variations in outlet tem-
perature data, along with non-linearities introduced by measurement
uncertainties, hindered the accuracy of the chosen regression model.
As a result, the GPR model struggles to accurately capture the non-
linearity in evaporator A’s cold-side outlet temperature dataset across
the 39 observations. Additionally, a few points can be noted concerning
the predictions of the compressor discharge temperature (T, ,,,) and
power consumption (W, crecrric)- The variations were mainly caused
by experimental uncertainties, particularly related to oil losses within
the system.

A vital aspect of this study is that the digital twin reliably predicts
flow variables at the boundaries of the components and also, more
importantly, performance indicators, such as COP and Qpeyng (see
Section 2.1). Fig. 9 presents the parity plots for COP and Q .y, de-
rived from Egs. (1) and (2) using observed versus predicted dependent
variables. Similar to Figs. 7 and 8, these plots show a tight clustering
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Fig. 7. Parity plots of the objective functions for which the entire dataset was used to generate the process models.
of points around the line y,; = y,;, indicating accurate predictions. An industrial process (using steam for its heat demand) is designed

The discrepancies for COP and Q,,,, remain within 7%, suggesting
that the more significant errors observed for T, a0d W ercerric
at higher ranges (Fig. 7) have only a minor impact. In conclusion,
our digital twin accurately predicts HP performance within a 7% error
margin.

3.3. Predicted performance of the heat pump

The digital twin of the HP enables us to determine system perfor-
mance and changes in flow variables in response to variations in the
independent parameters (®,onp> Tipaters Vivater> A0 Pyyon). This section
is devoted to analyzing the HP performance with variations in these
independent variables. Fig. 10 shows the variation in HP performance,
where the COP is color-coded, and the heating duty (Qpeun,) and
compressor electric power consumption (W, crecrric) are depicted with
solid and dashed lines, respectively.

for a specific steam pressure and heating duty [44]. The HP perfor-
mance is evaluated in this section by considering possible scenarios
where the HP is employed to produce a certain steam pressure and
a heating duty. Therefore, we have color-coded the COP for different
steam pressures and plotted the heating duties with solid lines to
demonstrate the design band of an industrial process (see Fig. 10).

As mentioned above, the water volumetric flow rate range is be-
tween 68 m3 /h and 70 m? /h. Our observations indicate that this narrow
range does not significantly affect the system performance trend across
varying independent parameters. Therefore, the performance maps are
displayed only for the water volumetric flow rate of 70 m3/h.

It is important to note that the structure of the data models de-
pends on the amount and range of data used for training and varies
based on the type of operation, whether it is operating stage with
or without economizer. Specifically, the valid compressor speed range
for predicting operating stage without economizer performance with
the digital twin is between 1500 and 3000 RPM, while it narrows to
between 2700 and 3000 RPM for operating stage with economizer.

11
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Fig. 9. Parity plots displaying prediction quality for performance indicators.

Another limitation regarding operating stage with economizer pertains
to the steam pressure. All experimental measurements with economizer
operation were carried out at a steam pressure of 3.5 bar absolute.
Although these limit our ability to observe system performance over a
broader range of independent parameters, particularly for compressor
speed and steam pressure, the performance maps within the valid
boundaries, as shown in Fig. 10, provide valuable insights into the
system performance.

The white gaps in the performance maps indicate areas where
the digital twin failed to produce physical solutions. Just as the data
model’s valid range restricted our ability to evaluate HP performance,
the black-box model created in this study is only valid within the
boundaries of physical solutions, as shown with colored zones in Fig.
10.

As anticipated, a higher water (source) inlet temperature and a
reduction in steam pressure significantly improve the COP for both
operating stages with and without economizer. The increase in source
temperature and the reduction of steam temperature both result in
a smaller temperature lift that the HP must overcome, reducing the
required compressor power. The impact of steam pressure is less effec-
tive than that of water inlet temperature, which is the key parameter
for calculating the heating duty of the system. Water temperature
and compressor rotational speed also positively influence heating duty,
although the effect of compressor speed is less strong than that of water
temperature. Fig. 10 demonstrates that in operating stage without
economizer, the maximum heating duty, approximately 1050 kW, can
be obtained for all investigated boiler pressure values but with different
COP values.
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In the maps of operating stage without economizer, up to approxi-
mately 2600 RPM of compressor speed, compressor power consumption
follows a curve, indicating that the required work decreases with
increasing water temperature. Beyond 2600 RPM, it becomes insen-
sitive to further changes in the water inlet temperature. This leads
to achieving the optimum COP at around this rotational speed; this
is the designed speed of the HP under investigation for producing
2.4 bar, 3.2 bar, or 3.5 bar steam pressure and providing around 1
MW heating duty to an industrial setting. The change in compressor
power consumption with water inlet temperature diminishes for com-
pressor speeds above approximately 2700 RPM, as observed across
all steam pressures. This optimal rotational speed of the compres-
sor was found to achieve a higher COP compared to other types of
industrial high-temperature heat pumps operating with R601, under
similar evaporation and condensation pressures [45]. According to the
data provided for the compared heat pump in the reference, the COP
was calculated to be 3.27. However, the analysis presented in this
paper demonstrates that the COP can be further enhanced, exceeding
3.5, by optimizing the independent parameters for waste-heat water
temperatures above 85 °C.

Due to the limited experimental data, the operating stage with econ-
omizer maps cover a narrower range of compressor speeds compared to
the operating stage without economizer maps. Additionally, the digital
twin was obtained for operating stage with economizer only at a steam
pressure of 3.5 bar. The performance parameters — COP, heating duty,
and compressor power consumption — show similar trends to those
observed in operating stages without economizer. However, COP’s
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a map for 3.5 bar (e) steam pressure in the stage with economizer).

dependence on compressor speed is notably smaller in operating stages
with economizer. This is likely because we are examining a narrower
range of the independent parameter. The highest efficiency zones were
achieved at the highest heating duty with compressor speeds of 2700
RPM for a steam pressure of 3.5 bar in operating stage with economizer.
In these zones, COP is computed to be approximately 3, which is higher
than that of operating stage without economizer at the same steam
pressure of 3.5 bar. This means that the economizer does provide a
performance improvement to the HP as theoretically expected.

3.4. Economic and environmental assessment of the heat pump

This subsection focuses on the economic evaluation of the HP
system when used within an industrial process in the Netherlands.
As mentioned, any industrial application is designed to operate at a
specific steam pressure and heating duty. Therefore, our analysis in-
cludes an economic investigation of the HP system for various possible
operations designed at a certain steam pressure and heating duty. This
is done like the performance analysis carried out in Section 3.3.

The details of the calculations for the economic assessment and
quantifying environmental benefits of the system in terms of CO, sav-
ings are given in Section 2.4. We integrated the required calculations
for this assessment to the digital twin, and this enabled us to visualize
energy savings as displayed in Fig. 11, in case of employing the HP
instead of a regular propane-fueled boiler in industrial applications.
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This figure also depicts the heating duty and CO, savings with solid
and dashed lines respectively.

In almost all HP operating scenarios, the system is expected to
recover the investment within 3.8 to 4.2 years (single payback time,
PBT) by recuperating waste heat, based on the economic inputs and
assumptions from Table 2. Overall, employing the heat pump instead
of the propane-fueled boiler results in energy savings. However, when
the water temperature is below approximately 75 °C, depending on
the compressor speed in some operating scenarios, no energy savings
with the HP are achieved, and using the boiler appears slightly more
advantageous due to the assumed energy conversion factor (@e,g,)-
The COP in the no-energy-savings region varies between 1.1 and 1.6.
Nonetheless, even in this limited operating region, due to the taxes
on CO, emissions associated with the propane-fueled boiler, the heat
pump system could still pay for itself when used in place of the propane
boiler.

The trends of energy savings and COP are quite similar to each
other, as shown in Figs. 10 and 11. The highest energy savings, similar
to the best COP performance, were achieved when the system was
designed to operate at either 1.9 bar or 2.4 bar steam pressure and
had maximum heating duty of approximately 1000 kW. This design
can yield more 3000 MWh energy savings per year. If the application
requires greater steam pressure, this results in the compressor consum-
ing more power at a similar heating duty and reducing yearly energy
savings.
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economizer, a map for 3.5 bar (e) steam pressure in the stage with economizer).

Although the adoption of the studied HP is challenged by limita-
tions in water temperature on the waste-heat source and, to a lesser
extent, compressor speed, for an industrial application replacing a
fossil-fueled boiler, the system proves to be a more environmentally
friendly solution by significantly reducing CO, emissions in all opera-
tional scenarios. The reduction rate naturally depends on the heating
duty (Qj;n) for which the industrial system is designed, following
the same trend as the calculated heating duty shown in Fig. 11. The
compressor power consumption also plays an important role in the
CO, savings of the system since a significant portion of electricity
production in the Netherlands is from sources where CO, is emitted.
Therefore, it is possible to observe better savings in regions with less
power consumption, such as the operating map drawn for 1.9 bar of
steam pressure in Fig. 11.

The results of this study provided above reveal several opportunities
for optimizing the industrial heat pump system, such as improving con-
trol strategies to enhance the COP and improve environmental impact
under varying operational conditions such as compressor speed. These
findings are particularly relevant to industries seeking to recover waste
heat systems for process heating or district heating [46,47], where
such optimizations can lead to significant energy savings and reduced
carbon emissions. In real-world applications such as in process or
petrochemical industries, this digital twin model can support predictive
maintenance and operational decisions, ensuring the system operates
at maximum efficiency over time. Future research could explore the
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integration of machine learning algorithms for real-time optimization
and expanding the model to include additional system variables for
broader applications in energy-intensive industries.

4. Conclusions

This study introduces a novel method for developing a digital twin
of an industrial heat pump (HP) utilizing n-Pentane as the working
fluid. The system is designed to produce steam at 140 °C for industrial
processes by heating an external water stream via the HP condenser
(heating duty 1 MWth) through recovery of waste heat from a hot-water
stream via the HP evaporator. Development of (digital twins of) HPs for
waste-heat recovery and heat recuperation in industrial applications
(especially operating with natural working media) are scarce to date
and our study thereby represents a unique contribution to the literature.

The full-scale HP was successfully integrated and tested in a ded-
icated laboratory facility at TNO though the evaluation of 55 steady-
state operating points. The HP achieved a Coefficient of Performance
(COP) equal to 44% of the Carnot COP based on condenser/evaporator
saturation temperatures, which can be further improved through com-
pressor design changes and optimization of the control algorithm. A
tailor-made digital twin as developed and calibrated in our study using
the HP data from the laboratory facility enables this in a systematic and
efficient way.

The digital twin consists of process models for each HP compo-
nent developed using Gaussian Process Regression (GPR). It accurately
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predicted key performance indicators like COP and heating duty from
input variables such as compressor outlet pressure, temperature, mass
flow rate, and electric power consumption, yielding prediction errors
within 7%. The digital twin also reliably predicted relevant process
variables for each HP component (e.g. outlet pressures and tempera-
tures), with only minor errors that can be attributed to experimental
uncertainties in the training data employed to develop the GPR process
models.

An economic and environmental assessment demonstrated that the
HP, when deployed in an industrial application in the Netherlands to
replace a conventional propane boiler, could amortize its investment
within 3.8 to 4.2 years. The system significantly reduces CO, emissions,
ranging from 250 to 1000 tons per year, depending on operating
conditions. Energy savings of over 3000 MWh annually are achievable
when operating at steam pressures of 1.9 bar and 2.4 bar and a
heating duty of 1 MWth during the steam generation. The HP overall
achieves energy savings compared to a propane boiler (apart from a
small operating region without an economizer). The temperature of
the hot-water stream from which to recover waste heat is a critical
parameter for energy savings: these savings become insignificant when
this temperature falls below 75 °C.

The data-driven nature of the adopted modeling approach enables
straightforward application for the digital twinning of other types of
industrial HPs, provided sufficient experimental data are available.
However, the most significant benefit lies in the potential to inte-
grate HP digital twins thus developed into (digital twins of) broader
industrial systems, enabling its utilization for enhancing system-wide
efficiency and sustainability (i.e., beyond that of the HP itself). The
potential impact of the digital twinning could be further expanded by
exploring its use for real-time monitoring and predictive maintenance
for the purpose of achieving long-term operational efficiency.
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