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 A B S T R A C T

Industrial heat pumps (HPs) are a sustainable alternative to fossil-fueled boilers for process heat generation, 
particularly when powered by green electricity. However, their wider adoption is hindered by a limited 
understanding of HP performance under diverse operating conditions. Traditional methods for studying 
HP performance, such as high-fidelity numerical simulations or experimental testing, are often costly and 
impractical. To address this, we propose a digital-twin framework that unites machine learning, specifically 
Gaussian Process Regression (GPR), to efficiently model an industrial HP for energy recovery from (industrial) 
waste heat using experimental data. This approach is novel, as few data-driven models have been developed for 
designing industrial HPs employed for this purpose, thereby contributing to achieving a sustainable processing 
industry. This digital twin was developed for a 1 MWth industrial HP, using n-Pentane as the working 
medium and recovering waste heat from hot water to produce steam for industrial processes, and trained 
by experimental data collected from 55 steady-state operating points in a state-of-the-art test facility. The 
digital twin accurately predicts both relevant process variables (e.g. outlet pressures and temperatures) for 
each HP component and key performance indicators, including the Coefficient of Performance (COP) and 
heating duty, with prediction errors within 7% as a function of process parameters such as flow properties 
of the hot-water source, compressor rotational speed, and steam pressure. The digital twin is furthermore 
applied for an economic and environmental analysis, demonstrating a payback period of 3.8–4.2 years and 
reductions in CO2 emission of 250–1000 tons annually compared to a propane-fueled boiler. The HP achieved 
a COP equal to 44% of the Carnot COP based on condenser/evaporator saturation temperatures and enabled 
significant energy savings, exceeding 3000 MWh annually when operated at steam pressures of 1.9–2.4 bar. 
This study hereby demonstrates the potential of data-driven models to enhance the design and operation of 
industrial HPs and thus provides an efficient and scalable framework for developing and advancing sustainable 
energy systems in industry.
1. Introduction

Industrial processes in the European Union account for approxi-
mately 26% of final energy consumption [1] and nearly 20% of total 
greenhouse gas (GHG) emissions [2]. Currently, industries such as food 
processing, paper production, and refineries primarily rely on fossil-
fuel-powered boilers for their heat supply. Industrial heat pumps (HPs) 
offer a promising alternative for reducing GHG emissions in processes 
requiring low-temperature heat (<200 ◦C), resulting in an increase in 
market interest [3]. Unlike boilers, HPs can recycle and amplify energy 
in a potentially sustainable manner: by utilizing waste-heat from the 
processes and consuming one unit of (renewable) electricity, HP can 
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produce three to four units of heat at the desired temperature for an in-
dustrial process. The prevalent HP technology involves the closed-cycle 
vapor compression cycle, initially developed for refrigeration and now 
adapted to heating [3]. Despite their potential, significant challenges 
impede the widespread adoption of industrial HPs. A major barrier is 
end-user uncertainty about adding new equipment (e.g. an HP) that 
could disturb their production process [3]. A potential solution to over-
come such end-user uncertainty is to demonstrate the HP performance 
across a wide range of operating conditions typical in industrial settings 
via accurate predictions. Traditional methods, such as high-fidelity 
numerical and experimental analyses, are prohibitively expensive and 
impractical [4]. Conversely, low-fidelity approaches such as reduced-
order modeling often fail to estimate a HP system performance due 
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 Nomenclature
 Acronyms
 𝐶𝑂𝐷 Coefficient of Determination  
 𝐶𝑂𝑃 Coefficient of Performance  
 𝐺𝑃𝑅 Gaussian Process Regression  
 𝐻𝑃 Heat pump  
 𝑀𝐿 Machine learning  
 𝑀𝑉𝑁 Multi-variate normal  
 Variables
 A Area [m2]  
 𝐸 Energy [MW]  
 ℎ Specific enthalpy [kJ∕kg]  
 𝑚̇ Mass flow rate [ton∕h]  
 𝐷 Multi-variate normal (MVN) distribution  
 𝑃 Pressure [bar]  
 𝑃𝐵𝑇 Payback time [year]  
 𝑄 Heat exchange [kW]  
 𝑅2 Coefficient of Determination (COD)  
 𝑡 Duration [h∕year]  
 𝑇 Temperature [◦C]  
 𝑉̇ Volumetric flow rate [m3∕h]  
 𝑊 Compressor electric power consumption [kW] 
 𝑥 Independent variable/data point  
 𝑥∗ Interpolation point  
 𝑦 Dependent variable  
 𝛥𝑃 Pressure drop [bar]  
 𝜂 Efficiency  
 𝜆 Price [e]  
 𝜎 Standard deviation  
 𝛴 Covariance matrix  
 𝜙 Conversation factor  
 𝜔 Compressor rotational speed [r/min]  
 Subscripts
 𝑁𝐿 Related to the Netherlands  

to the complexity of HP geometry and physical processes. To fill the 
gap between such low-fidelity and high-fidelity approaches, several 
studies have focused on developing suitable digital twins to estimate 
and predict HP performance under design and off-design operational 
conditions. The present study aims to contribute to these efforts.

An increasingly popular approach for developing digital twins for 
energy systems and HPs involves data-driven models using machine 
learning (ML) methodologies based on operational data [5,6]. Evens 
and Arteconi [7] developed a digital twin for a water/water heat 
pump of a residential single-family building using long short-term 
memory (LSTM) neural networks trained by experimental data. This 
achieved accurate prediction of HP behavior such as electrical power 
consumption (±10% for 79.70% of the time), condenser outlet temper-
ature (±1% for 83.89% of the time) and flow rate (±10% for 89.81% 
of the time). This study found LSTM neural networks essential for 
reliable multi-step ahead predictions. The modeling approach was also 
evaluated for different heating configurations and revealed potential 
for a broad range of applications. Vering et al. [8] introduced the 
ReCaMo (repeated calibration or on-line recalibration of simulation 
models) framework, specifically designed for the continuous calibration 
of digital twins for HP systems. The framework employs IoT-based 
communication to update the digital twin with real-time data, en-
hancing its accuracy over time. The ReCaMo framework, using one 
month of field data, achieved a prediction error of less than 1 K for 
the HP supply temperature, demonstrating its potential for operational 
optimization and predictive maintenance. Butean et al. [9] integrated 
a digital-twinning approach into a high-temperature HP system that 
2 
recuperates heat from a waste-heat source in industrial renewable 
energy systems. Their method involves analyzing a large amount of 
real-time HP data and generating digital twins to gain insights into 
the process using artificial intelligence algorithms. Seifert et al. [10] 
proposed a digital-twinning framework for HPs, including numerical 
cycle modeling, utilizing grey-box models for each component, includ-
ing the control unit, and validated with an experimental setup. Shin and 
Cho [11] evaluated several ML algorithms to predict the Coefficient of 
Performance (COP) of an air-to-air HP system under varying sink and 
source temperatures. They found that artificial neural networks (ANNs) 
performed the best by establishing accurate relationships between inde-
pendent and dependent variables with a mean bias error of 3.6%. Wang 
et al. [12] proposed an ML-based digital twin for an HP in electric vehi-
cles, integrating support vector regression (SVR) with an experimental 
database of an HP using R134a as the working medium. This digital 
twin predicted the COP based on indoor and outdoor temperatures, 
indoor air mass flow rate, compressor speed and expansion valve 
position, achieving a relative error of 8.5%. Zhang et al. [13] assessed 
three similar ML-based digital twins to predict the COP of ground-
source HPs using various input parameters such as heat-exchanger inlet 
and outlet temperatures, mass-flow rates, relative humidity, and indoor 
temperature. They found that, among the considered ML approaches, 
the Extreme Learning Machine algorithm performed the best. The 
recent study on predicting the COP in refrigeration systems by Zhou 
and Zhu [14] developed a digital twin that combines convolutional 
neural networks (CNN), multilayer perceptrons (MLP), and LSTM net-
works. This included real-time optimization of the model parameters by 
Particle Swarm Optimization to minimize the difference between the 
physical and predicted COP. Their digital-twinning approach outper-
formed individual methods such as CNN. Aguilera et al. [15] proposed 
a digital twin of a two-stage HP system based on real-time HP oper-
ational data for determining optimal intermediate pressure set points 
at different levels of fouling. The digital twin enabled estimating the 
optimal intermediate pressure, improving the COP up to 3%, as well 
as quantifying the effects of fouling by the thermal resistance and 
pressure drop in the HP components. Lv et al. [16] introduced a digital-
twinning approach for an air-conditioning system in a train station in 
Xichang, China by combining fuzzy (c + p) means clustering (FCPM) 
with the stacked broad learning system (SBLS) algorithm (FCPM-SBLS) 
algorithm. This resulted in accurate COP predictions.

The aforementioned efforts significantly contributed to data-driven 
ML-based HP modeling. However, similar studies focusing on HPs used 
for waste-heat recovery and heat recuperation in industrial applications 
(especially operating with natural working media) are scarce to date 
due to the limited availability of experimental data suitable for ML-
based digital twinning. Our study therefore concentrates on developing 
digital twins for such HP applications from experimental data.

Developing data-driven HP models typically relies on databases 
built from experimental measurements or high-fidelity numerical sim-
ulations. Experimental testing of high-temperature HPs is generally 
scarce. Jian et al. [17] reviewed 15 experimental studies of prototype 
or small-scale HPs that deliver heat above 130 ◦C and highlighted 
the most relevant ones for this application area. Marina et al. [18] 
tested a two-stage steam-producing industrial HP using pentane, with 
a thermal capacity of 150 kWth, generating 4.8 barA steam with a 
temperature lift of 90 ◦C. Liu et al. [19] investigated a 70 kWth 
compression–absorption HP prototype using ammonia-water and pro-
ducing high-temperature steam at 150 ◦C. Pan et al. [20] tested a 
water-to-water HP below 100 ◦C for various working medium, in-
cluding mixtures. Navarro et al. [21] examined a high-temperature 
HP operating on R-1336mzz(Z), delivering heat at 155 ◦C with a 
heating capacity of around 10 kW using a scroll compressor. Verdnik 
et al. [22] tested an n-butane HP capable of producing around 30 kWth 
of heat at 110 ◦C in subcritical and 160 ◦C in transcritical operation. 
Ramirez et al. [23], both experimentally and numerically, investigated 
a high-temperature steam-producing HP running on R1233zd(E); this 
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prototype includes an external sub-cooler to separate sensible and 
latent heat production, delivering steam up to 150 ◦C at 40 kWth. 
However, none of these high-temperature HPs were experimentally 
tested at an industrial scale or modeled by a digital twin, both of 
which are crucial for validating their performance and reliability in 
real-world applications and for reducing end-user uncertainties about 
the technology. This is an important motivation for our study.

The present study proposes a data-driven, ML-based digital twin of 
a 1 MWth steam-producing HP using n-pentane (R601) as the working 
medium. Gaussian Process Regression (GPR), successfully employed 
to process HP data before [24,25], is applied to HP data obtained 
from a full-scale experimental setup at the Carnot Laboratory of the 
Netherlands Organisation for Applied Scientific Research Center (TNO). 
The HP is designed to recover waste-heat from hot water at 90 ◦C to 
produce steam above 140 ◦C for industrial processes such as paper 
and food production. The system includes a screw-type compressor, 
a condenser (transferring the heat for steam generation), an internal 
heat exchanger, twin evaporators (identified as evaporators A and B) 
consuming the (process’) waste heat, and an economizer. The behavior 
and performance of the HP are measured at 55 steady-state operating 
points, considering various input conditions such as water inlet tem-
perature, volumetric flow rate of the hot water compressor rotational 
speed, and steam pressure. GPR is applied to these measurement data 
to create a digital twin that predicts relevant process variables such 
as e.g. outlet pressures and temperatures, compressor outlet flow con-
ditions and electrical power consumption. These predictions are then 
used to calculate key performance indicators such as the COP and 
heating duty (i.e., heat production for steam generation). The digital 
twin is employed to create performance maps showing the COP, heating 
duty, and compressor electric power consumption as a function of the 
process inputs. Furthermore, an economic and CO2 emission analysis is 
carried out to compare the HP with a boiler for a potential industrial 
application in the Netherlands.

The structure of this paper is as follows. Section 2 presents the 
methodology including the performance indicators, the experimen-
tal setup, the digital-twinning approach, and the economic and envi-
ronmental assessment. Section 3 discusses the experimental analysis, 
the validation of the HP digital twin, and finally, the application of 
the digital twin to an industrial scenario. Concluding remarks are in 
Section 4.

2. Methodology

2.1. Performance indicators

The performance of the HP is assessed by the COP, defined as 

𝐶𝑂𝑃 =
𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔

𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
, (1)

with 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 the electric power consumption of the compressor and 

𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 ⋅ (ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑖𝑛 − ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡) ⋅
1000
3600

, (2)

the heating duty, i.e., the heat transferred within the condenser from 
the working medium (condenser hot side) to an external stream (con-
denser cold side). In this study the heating duty is employed for 
steam generation and the external stream therefore consists of water 
that enters the condenser as a saturated liquid and leaves as super-
heated steam. The inputs for calculating 𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 include the mass 
flow rate (𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡) of the working medium, the compressor outlet 
pressure (𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡), and the compressor outlet temperature (𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡). 
The enthalpy ℎ𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 = ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑖𝑛 is determined from 𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡
and 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 assuming a superheated state that the compressor outlet. 
Furthermore assuming negligible pressure drop on the condenser hot 
side (𝑃 = 𝑃 ) and saturated liquid conditions 
𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑖𝑛 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡
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at its outlet, the enthalpy ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡 is determined entirely by 
𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 = 𝑃𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑖𝑛.

The actual COP (1) is bounded by theoretical limits following 
𝐶𝑂𝑃 ≤ 𝐶𝑂𝑃𝑖𝑛𝑡 ≤ 𝐶𝑂𝑃𝑒𝑥𝑡, (3)

with 

𝐶𝑂𝑃𝑖𝑛𝑡 =
𝑇ℎ,𝑖𝑛𝑡

𝑇ℎ,𝑖𝑛𝑡 − 𝑇𝑐,𝑖𝑛𝑡
, 𝐶𝑂𝑃𝑒𝑥𝑡 =

𝑇ℎ,𝑒𝑥𝑡
𝑇ℎ,𝑒𝑥𝑡 − 𝑇𝑐,𝑒𝑥𝑡

, (4)

the Carnot COPs based on the internal temperature levels 𝑇ℎ,𝑖𝑛𝑡 (con-
denser saturation temperature) and 𝑇𝑐,𝑖𝑛𝑡 (evaporator saturation tem-
perature) and the external temperature levels 𝑇ℎ,𝑒𝑥𝑡 (inlet temperature 
of the external stream in the condenser) and 𝑇𝑐,𝑒𝑥𝑡 (inlet temperature of 
the hot water in the evaporator). Defining the Carnot COPs (3) enables 
evaluation of the actual performance according to COP (1) relative to 
ideal thermodynamic conditions in terms of the fractions 

𝐶𝑂𝑃 ∗
𝑖𝑛𝑡 =

𝐶𝑂𝑃
𝐶𝑂𝑃𝑖𝑛𝑡

× 100%, 𝐶𝑂𝑃 ∗
𝑒𝑥𝑡 =

𝐶𝑂𝑃
𝐶𝑂𝑃𝑒𝑥𝑡

× 100%. (5)

representing the degree to which the HP achieves the Carnot COPs 
(4). Fraction 𝐶𝑂𝑃 ∗

𝑖𝑛𝑡 ≤ 100% reflects to what extent the performance 
of the HP itself approaches ideal conditions; fraction 𝐶𝑂𝑃 ∗

𝑒𝑥𝑡 ≤ 100%
reflects to what extent the total performance, i.e., internal performance 
and thermal interaction with heat source (here: hot water) and heat 
sink (here: external stream for steam generation) combined, approaches 
ideal conditions. Note that (3) implies 𝐶𝑂𝑃 ∗

𝑒𝑥𝑡 ≤ 𝐶𝑂𝑃 ∗
𝑖𝑛𝑡 ≤ 100%.

2.2. Experimental setup

2.2.1. System description
The industrial HP considered in this study is part of the TNO 

FUSE project [26] and was designed and constructed by Mayekawa 
Europe [27]. It is a 1 MWth pentane HP, designed to upgrade hot 
water at 90 ◦C to produce steam at 140 ◦C. The HP operates on a 
closed-cycle vapor compression system, specifically a Reverse Rankine 
(RR) cycle with an economizer, as depicted in Fig.  1. According to 
the conceptual design, the working medium (pentane) evaporates at 
80 ◦C and condenses at 145 ◦C. The heat pump was tested in the 
dedicated test rig in the TNO Carnot Laboratory [28], which is capable 
of simulating waste-heat supply and process-heat delivery through a 
hot-water stream and low-pressure steam generation, respectively.

The HP features a Mayekawa 250MFC screw compressor, custom-
made by Mayekawa Japan [29], with a swept volume of 2010 m3/h at 
3000 RPM and an L-port configuration (fixed Vi of 2.63). It is powered 
by a Siemens SIMOTICS motor with a capacity of 500 kW at 400 V. 
An internal heat exchanger (subcooler/superheater), as shown in Fig. 
1, ensures that pentane enters the compressor as superheated vapor, 
preventing droplet formation during compression.

The economizer – an Alfa Laval heat exchanger with a heat transfer 
area of 12.8 m2 – creates three pressure levels in the compressor 
(suction, intermediate, and discharge) enhancing overall performance 
by reducing the compressor’s workload. This is achieved by splitting 
the pentane flow post-condenser into two streams: one stream expands 
to intermediate pressure and evaporates in the economizer heat ex-
changer, using sub-cooled heat from the other stream, which expands 
to evaporating (low) pressure. This reduces the amount of working 
medium compressed from low to high pressure, improving efficiency 
while maintaining the heating duty.

The condenser of the HP, which serves as a steam generator, is a 
Caloperm plate-and-shell heat exchanger with a heat transfer area of 
78.75 m2. On the shell side, water serves as the heat sink, while pentane 
condenses between the plates. Steam is generated by maintaining a 
constant water level on the shell side; the water level is maintained 
using a feedwater pump. Heat transfer occurs as pentane condenses 
between the plates, transferring heat to the water. Once the water 
reaches its boiling point, steam is produced. The pressure in the steam 
generator is regulated by a control valve located in the line leading to 
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Fig. 1. Simplified schematic overview of TNO HP and test infrastructure (black arrows: pentane flow; blue arrows: condensate/steam flow). The sensor symbols denote F for flow, 
𝑇  for temperature, p for pressure and SH to indicate a calculated superheat based on a combined pressure and temperature measurement.
the buffer vessel of the test rig. Excess heat from the system is rejected 
to the ambient via a dry cooler.

The system also includes two Alfa Laval brazed plate evaporators, 
each with a heat transfer area of 67.36 m2, operating with direct 
expansion of pentane. Additional components a Fisher ED DN50 main 
expansion valve and a Fisher EZ DN25 economizer expansion valve. 
A Danfoss FC-102 variable frequency drive, rated at 500 kW, provides 
control and power to the system.

As mentioned, the test rig at the TNO Carnot Laboratory [28] 
was used to simulate waste heat supply and process heat delivery. 
This facility supports testing of HP units ranging from 100 kW to 2 
MW under various temperature and load conditions. The waste heat 
temperature ran between 40 ◦C to 120 ◦C, with a maximum flow rate of 
100 m3/h per evaporator circuit. Steam production reached up to 2570 
m3/h, measured using a Krohne OPTISWIRL 4200 C DN150 flowmeter, 
at pressures ranging from 0.2 bar(g) to 15 bar(g), and a maximum 
superheated steam temperature of 200 ◦C. Feedwater temperature was 
maintained at the saturation temperature of the buffer vessel, and 
dry cooling was achieved with a 600 kW system at 25 ◦C ambient 
temperature. The test rig is equipped with two 40 kW electrical heaters 
in the buffer vessel to bring the system up to temperature. Finally, the 
TNO Carnot Laboratory is able to provide an electrical connection of 
1 MW at 400 V (1440 A). Fig.  2 shows the Carnot Lab, featuring the 
tested industrial HP (front) and the test rig (back).

2.2.2. Experimental workflow
After startup, the heat pump and test infrastructure were allowed 

to stabilize before measurements commenced. This stabilization phase 
ensured that all components of the system achieved thermal and opera-
tional equilibrium. Specifically, the buffer vessel was heated to 105 ◦C, 
and the control loops for key parameters – such as evaporator water 
feed temperature, flow rate, and suction superheat – were engaged to 
maintain steady conditions. Each measurement represented the average 
of a 20-min or longer period, during which key operating parameters 
were closely monitored. In cases of any system instability or upsets, the 
affected data was discarded, and the system was reset to restore stable 
operating conditions. This rigorous approach ensured the reliability 
and repeatability of the experimental data. The buffer vessel held 
approximately 8 m3 of water, electrically heated to 105 ◦C before 
starting the HP. On the waste-heat side, a pump maintained flow by 
replacing a fraction of cold water returning from the evaporator with 
hot condensate from the buffer vessel via a three-way valve.
4 
Control loops, as depicted by the dashed lines in Fig.  1, main-
tained stability throughout the experimental campaign. Key control 
parameters included:

• Evaporator water feed temperature: Adjusted according to the test 
point, representing waste heat temperature.

• Water feed flow rate: Maintained at approximately 68 m3/h per 
evaporator.

• Evaporator pentane pressure: Set to a saturation temperature 
about 10 K below the water feed temperature to ensure complete 
evaporation.

• Suction superheat: Maintained at 35 K to prevent wet compres-
sion.

• Steam pressure and compressor speed: Varied based on test point 
requirements.

The economizer could be activated or deactivated, and the portion 
of the working medium entering the compressor’s super-feed port was 
regulated by an expansion valve. The adopted control strategy ensured 
full evaporation by maintaining a 10 ◦C temperature difference but may 
not be feasible in practical applications where waste heat temperature 
fluctuates.

2.2.3. Instrumentation
The performance data obtained for the heat pump is indicative 

in nature, with a best effort made to ensure validity. For example, 
condenser duty was cross-verified using two independent methods: the 
measured pentane mass flow and the steam mass flow. Good agreement 
was observed between these calculations, demonstrating reliability for 
the purposes of digital twin development. The key instruments used in 
the experimental setup (heat pump and test rig) are detailed below and 
can be visualized in Fig.  1:

Heat pump system:

• Pentane mass flow meter located in the main loop between the 
economizer and the main expansion valve where the pentane is 
in liquid state. Specifications: Endress & Hauser Proline Promass 
F 300 Coriolis flowmeter DN80

• Pentane mass flow meter location in the economizer feed line, 
between the internal heat exchanger and the economizer expan-
sion valve. Specifications: Endress & Hauser Proline Promass F 
300 Coriolis flowmeter DN15

• Pentane mass flow over the condenser is the sum of the two mass 
flow meters (in steady state)



A.C. Ispir et al. Applied Thermal Engineering 269 (2025) 125921 
Fig. 2. TNO Carnot Laboratory including the pentane HP in the front and the test rig in the back.
• Pressure sensor: Danfoss AKS 33
• Temperature sensor: Pt100 resistance temperature detectors (not 
further specified by Mayekawa)

Test rig:

• Steam volume flow located after the expansion valve such that the 
steam is dry/superheated. Specifications: Krohne vortex flowme-
ter OPTISWIRL 4200 C DN150

• Pressure sensors: Endress & Hauser Cerabar M PMC51
• Temperature sensors: Endress & Hauser RTD Thermometer TR10 
with Pt100 element installed in a thermowell

• Waste heat volume flow: Krohne ultrasonic flowmeter OPTISONIC 
3400 F DN125

As the TNO Carnot Laboratory operates as a field laboratory for 
industrial-scale prototypes, it emphasizes replicating real-world oper-
ational conditions over rigorous laboratory-grade calibration. Conse-
quently, calibration of all instruments was not prioritized, considering 
the cost and effort relative to the goals of this study. Uncertainty in 
indirect measurements such as heat output and COP is acknowledged 
but was not rigorously quantified. The experimental data is intended to 
provide a solid foundation for the validation and development of the 
digital twin rather than for certifying the precise performance of the 
heat pump prototype.

2.2.4. Experimental testing of the heat pump
The intended nature of the TNO FUSE project was to demonstrate 

a steam producing heat pump at an industrially relevant size (1 MWth 
heat duty); troubleshoot the prototype HP and finetune the control pa-
rameters before going to an industrial site. Therefore, the primary goal 
of the experimental campaign was to determine the HP’s operational 
stability under varying external conditions and loads. The compressor 
speed served as an indicator of HP load. Each combination of source, 
sink, and speed defined an HP operating point, maintained stable for 
about 30 min. For most operating points, the economizer was disabled, 
as its impact on performance was not the primary focus of this study. 
A total of 55 steady-state operating points were tested, with a subset 
presented in Table  1 including comparison of the actual COP (1) to 
its theoretical limit 𝐶𝑂𝑃  following (3) via fraction 𝐶𝑂𝑃 ∗  defined 
𝑒𝑥𝑡 𝑒𝑥𝑡

5 
in (5). These conditions include variable source temperature, pentane 
evaporation pressure, steam pressure, and compressor speed. The rest 
of input parameters of the system are maintained constant: water 
feed flow rate (68 m3/h per evaporator), evaporator pentane pressure 
(pentane saturation 10 K below source temperature), and compressor 
suction superheat (35 K).

While a simplified energy balance comparison is often used to vali-
date heat pump systems, it is not applicable here due to the presence of 
significant and unquantified heat losses from the ventilated enclosure 
and known oil cooling requirements. The heat pump setup prioritizes 
operational safety and prototype development under industrially rel-
evant conditions, where precise energy balance validation was not a 
primary goal.

2.3. Digital-twin development

This section outlines our methodology for developing a digital 
twin of the HP using measurement data from the experimental setup 
discussed in the previous section. The workflow for creating the digital 
twin of the HP investigated in this study is schematically shown in 
Fig.  3. As previously detailed, 55 measurements were conducted across 
both operating stages, with and without the economizer, by varying 
the water inlet temperature, volumetric flow rate on the waste-heat 
source side, compressor rotational speed, and steam pressure. These 
parameters varied within the ranges of 65 ◦C to 97 ◦C for water 
inlet temperature, 68 m3/h to 70 m3/h for volumetric flow rate, 1500 
RPM to 3000 RPM for compressor speed, and 1.5 bar to 3.5 bar 
for steam pressure, respectively. A full-order model of the HP based 
on these measurements was developed. The data from the full-order 
model were categorized into two groups: independent parameters (wa-
ter temperature, volumetric flow rate, compressor rotational speed, and 
steam pressure) and objective functions (mass flow rate, temperature, 
pressure at the components’ boundaries, and compressor electric power 
consumption). GPR was applied to the reduced data set, enabling the 
prediction of the objective functions, the calculation of performance 
metrics such as COP and heating duty. This framework outlines the 
digital twinning methodology for the FUSE HP.
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Table 1
Subset of experimental results of TNO HP. Design reference condition in bold. Tests 1–10: economizer disabled; test 11 is test 10 with economizer enabled. Fraction of Carnot 
COP concerns 𝐶𝑂𝑃 ∗

𝑒𝑥𝑡 following (5).
 Test Source temperature Sink temperature Compressor speed Heating duty COP Fraction of Carnot COP 
 [◦C] [◦C] [RPM] [kW] [–] [%]  
 1 91 142 1500 435 2.3 28  
 2 63 144 2700 420 1.3 24  
 3 97 140 2700 905 2.7 28  
 4 91 140 2700 823 2.4 29  
 5 91 135 2700 840 2.7 29  
 6 91 130 2700 836 2.9 28  
 7 96 135 2700 900 2.8 27  
 8 64 105 2700 584 3.2 34  
 9 65 123 2700 522 2.1 31  
 10 77 140 3000 642 1.7 26  
 11* 77 140 3000 788 1.9 29  
2.3.1. Gaussian process regression
The objective is to create a model of a physical process by regressing 

a function 𝑦 = 𝑓 (𝑥) to data 
𝑥⃗ = {𝑥1, 𝑥2,… , 𝑥𝑀}, 𝑦 = {𝑦1, 𝑦2,… , 𝑦𝑀}, (6)

on dependent (𝑦) versus independent (𝑥) process variables. Tradi-
tionally, this is done by fitting a polynomial expansion using the 
least-squares method. However, a significant limitation of this approach 
is its dependence on a predefined and possibly suboptimal functional 
form.

Gaussian Process Regression (GPR) offers a non-parametric alterna-
tive by fitting the mean of a distribution of functions to data (6). This 
involves two steps. First, the definition of a set of candidate functions 
(‘‘prior distribution’’) and, second, isolation of the subset of functions 
that run through data (6) (posterior distribution). The essence of GPR 
is elaborated below and based on [30,31].

The prior distribution consists of a Gaussian distribution of possible 
function values 𝑓 (𝑋𝑖) on a grid 𝑋⃗ = {𝑋1,… , 𝑋𝐷} = 𝑥⃗∪𝑥⃗∗ of 𝐷 positions 
𝑋𝑖 comprising of data points (6) and 𝑁 = 𝐷 − 𝑀 ≥ 1 positions 𝑥⃗∗ =
{𝑥∗1 ,… , 𝑥∗𝑁} on which to determine the GPR model. Each candidate 
function 𝑓 = {𝑓 (𝑋1),… , 𝑓 (𝑋𝐷)} is a realization of the 𝐷-dimensional 
multi-variate normal (MVN) distribution 𝐷(

̄⃗𝑓 , 𝛴𝐷) around mean ̄⃗𝑓 . 
Covariance matrix 𝛴𝐷 = 𝛴†

𝐷 correlates the function values 𝑓 (𝑋𝑖,𝑗 ) via 
the independent variables 𝑋𝑖,𝑗 through 

𝛴𝑖𝑗 = 𝐾(𝑋𝑖, 𝑋𝑗 ), 𝐾(𝑋𝑖, 𝑋𝑗 ) = 𝜎2𝐾 exp

[

−1
2

(𝑋𝑖 −𝑋𝑗

𝐿

)2]

, (7)

with 𝐾(𝑋𝑖, 𝑋𝑗 ) the kernel († indicates transpose). The kernel plays a 
critical role in determining the smoothness of functions 𝑓 (𝑋𝑖) such that 
they are suitable for interpolation purposes and are here defined by the 
Radial Basis Function (RBF) kernel, specified by the hyperparameters 
𝜎𝐾 and 𝐿. Fig.  4(a) shows sample candidate functions (colored curves) 
of the prior distribution on grid 𝑋⃗ = 𝑥⃗ ∪ 𝑥⃗∗ comprising of 𝑀 = 10 and 
𝑁 = 500 equidistantly-placed data (𝑥𝑖) and interpolation (𝑥∗𝑖 ) points, 
respectively, using zero mean ̄⃗𝑓 = 0⃗ (gray line) and kernel (7) for 
𝜎𝐾 = 1 and 𝐿 = 0.15.

The posterior distribution consists of the subset of functions in 
the prior distribution that runs through the data. Fig.  4(a) includes 
artificial data 𝑦 (black dots) generated on 𝑥⃗ by the function 𝑓 (𝑥) =
sin 2𝜋𝑥 and shows that most candidate functions violate this require-
ment and must be eliminated from the prior distribution. This can 
be achieved by Bayesian inference, yielding the posterior distribution 
𝑓∗ = {𝑓 (𝑥∗1),… , 𝑓 (𝑥∗𝑁 )} ∈ 𝑁 (𝑓∗,𝛱) on 𝑥⃗∗, with 
̄⃗𝑓∗ = 𝛴†

∗𝛴
−1𝑦, 𝛱 = 𝛴∗∗ − 𝛴†

∗𝛴
−1𝛴∗, (8)

as mean and covariance, respectively, and 𝛴𝑖,𝑗 = 𝐾(𝑥𝑖, 𝑥𝑗 ), 𝛴∗,𝑖,𝑗 =
𝐾(𝑥𝑖, 𝑥∗𝑗 ) and 𝛴∗∗,𝑖,𝑗 = 𝐾(𝑥∗𝑖 , 𝑥

∗
𝑗 ) covariances between/within subgrids 

𝑥⃗ and 𝑥⃗∗. Fig.  4(b) shows mean 𝑓∗ and two realizations 𝑓1,2 on subgrid 
𝑥⃗  for the beforementioned artificial data 𝑦 including the uncertainty 
∗

6 
bound demarcated by standard deviation 𝜎(𝑥∗𝑖 ) = 𝛱1∕2
𝑖𝑖 ∼ (0.02)

(shaded region).
The mean of posterior distribution (8) defines the GPR process 

model, viz. 𝑦(𝑥) = 𝑓∗(𝑥), and its prediction quality is quantified by the 
Coefficient of Determination (COD) 𝑅2, i.e., 

𝑅2 = 1 −
∑𝑁

𝑖=1
(

𝑦𝑜,𝑖 − 𝑦𝑝,𝑖
)2

∑𝑁
𝑖=1

(

𝑦𝑜,𝑖 −mean(𝑦𝑜)
)2

, (9)

with 𝑦𝑜,𝑖 and 𝑦𝑝,𝑖 = 𝑓∗(𝑥∗𝑖 ) the observed and predicted function values, 
respectively, on 𝑥⃗∗ (𝑅2 closer to unity signifies better prediction) [32].

The above describes the basic approach behind GPR and generalizes 
to problems with multiple independent variables 𝑦 = 𝑓 (𝑥1, 𝑥2,…) and 
data subject to noise. Moreover, the hyperparameters (𝜎𝐾 , 𝐿) for kernel 
(7) have been chosen manually for the example in Fig.  4 yet optimal 
settings can be systematically obtained by hyperparameter optimization 
[30,31].

2.3.2. Process models
The digital twin of the HP will consist of process models for each 

relevant process variable, derived from datasets (6) using Gaussian Pro-
cess Regression (GPR) as described in Section 2.3.1. The independent 
variables 𝑥 include user-defined inputs such as the waste-water tem-
perature 𝑇𝑤𝑎𝑡𝑒𝑟, the waste-water volumetric flow rate 𝑉̇𝑤𝑎𝑡𝑒𝑟, compressor 
rotational speed 𝜔𝑐𝑜𝑚𝑝, and the boiling pressure of water 𝑃𝑠𝑡𝑒𝑎𝑚 in the 
condenser. The corresponding dependent variables 𝑦 include measured 
outputs like compressor outlet pressure and temperature.

The aim of this study is to predict the HP’s performance in terms 
of the indicators 𝐶𝑂𝑃  and 𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 as introduced in Section 2.1 as 
well as monitor thermodynamic state variables at the boundaries of 
each HP component. To achieve the digital twin of the HP for esti-
mating the system performance, we first need process models for the 
working-medium mass flow rate 𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, compressor electric power 
consumption 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 , and compressor outlet temperature 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, 
and pressure, 𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡. The mass flow rate, power consumption, and 
outlet temperature vary with all independent parameters, while the 
outlet pressure depends only on the steam inlet pressure on the con-
denser’s cold side. Fig.  5 depicts the GPR modeling of each component 
for estimating flow variables and parameters necessary for performance 
prediction.

The GPR process models are derived from datasets obtained from 
55 steady-state operating points (Section 2.2). As schemed in Fig. 
5, the compressor data models are used for estimating the param-
eters (𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, 𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡, and 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) required for the 
system performance calculations. Thermodynamic properties derived 
from the dependent variables, specifically the enthalpies ℎ𝑐𝑜𝑚𝑝,𝑜𝑢𝑡𝑙𝑒𝑡
(ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑖𝑛𝑙𝑒𝑡) and ℎ𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 in Eq. (2), are evaluated using 
the open-source CoolProp libraries [33], assuming the conditions given 
in Section 2.1. The condenser data model determines the flow variables 
under the assumption that the outlet conditions are those of a saturated 
liquid. The data models of the other components are developed to 
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Fig. 3. Schematic illustration of the digital twining methodology for the FUSE HP.

predict flow variables at the components’ boundaries, such as the 
temperature at the superheater’s cold side outlet.

It is worth noting that the pressure drops along the internal heat 
exchanger and economizer hot sides are negligible. Therefore, we 
assumed that the inlet pressure at the hot side is equal to the outlet 
pressure in the modeling of these components. The internal heat ex-
changer cold inlet conditions are the same as those at the evaporator 
outlet. Similarly, the economizer cold outlet temperature is found by 
the heat balance equation written between the hot and cold sides 
of the component. An isenthalpic expansion process determines the 
flow conditions at the evaporator’s inlet through the expansion valve. 
Depending on the operating mode (stage with or without economizer), 
7 
the isenthalpic expansion calculations are conducted between the dis-
tributor (expansion valve) data model and either the superheater or 
economizer data models to compute the evaporator inlet quality (see 
Fig.  5).

Some of the objective functions’ data models were created using 
separate data sets for operating stage with economizer (39 observa-
tions) and without economizer (16 observations) in order to enhance 
prediction accuracy. The models derived for operating stages with and 
without economizer are employed to predict objective functions based 
on the user-specified operation type. In the validation section of the 
digital twin model, we will discuss the prediction accuracy of the data 
models by presenting the 𝑅2 (COD) values for the objective functions 
and showing their parity plots.

Monitoring the flow variables, along with calculating and analyzing 
system performance as a function of independent parameters, con-
stitutes the digital twin of the studied HP. The system performance 
parameters – heating duty and compressor electric power consumption 
– provided by the digital twin for a given set of independent parameters 
are used as inputs for the economic and environmental evaluation 
of the HP. In the next section, we will provide the details of this 
evaluation.

2.4. Economic and environmental assessment of the heat pump

Relevant for determining the practical usefulness of the HP is an as-
sessment of its economic and environmental performance. This assess-
ment will be done in terms of energy savings (𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠), CO2 reductions 
(CO2,𝑠𝑎𝑣𝑖𝑛𝑔𝑠), and payback time (𝑃𝐵𝑇 ) for various operational scenarios, 
comparing to a steam boiler using propane as fuel and based on a case 
study in the Netherlands.

The required parameters for this analysis include the unit price 
of electricity consumed in industry (𝜆𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,𝑁𝐿), the primary energy 
conversion factor (indicating electricity production efficiency) (𝜙𝑒𝑛𝑒𝑟𝑔𝑦), 
annual operating hours 𝑡, annual inflation and interest rates, the lower 
heating value (LHV) of propane, propane boiler efficiency (𝜂𝑏𝑜𝑖𝑙𝑒𝑟), total 
costs of the heat pump (HP) (𝛬𝐻𝑃 )—which encompass installation costs 
(given in euros per kWh) and integration costs (assumed to be half 
of the installation cost)—propane price (𝜆𝑝𝑟𝑜𝑝𝑎𝑛𝑒), the conversion factor 
for CO2 emissions per kilogram of propane combustion, CO2 taxes on 
propane, and CO2 taxes on emissions. These parameters are shown in 
Table  2 with the references, where in several cases we must resort to 
assumptions for their values. Additionally, the heating duty, compres-
sor electric power consumption 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 , and mechanical efficiency 
of the electric motor 𝜂𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙, which are provided by the digital twin 
for specific independent parameter features, are also necessary for this 
analysis.

Several resources were referenced for the assumed values presented 
in Table  2. For the boiler efficiency, a high-efficiency heating system 
is considered one in which the boiler can convert chemical energy into 
thermal output with a minimum efficiency of 90%, as specified by the 
U.S. Department of Energy [34]. The electricity in the Netherlands is 
generated from various sources, including renewable energy, natural 
gas, coal, and oil. The energy conversion factor, reflecting the efficiency 
of electricity production, can vary depending on the type of installation 
and the energy source used. We assume that mechanical losses during 
the conversion process, attributed to generator efficiency [35], result 
in an overall conversion factor of 90%. The assumed installation and 
integration costs for industrial heat pumps was set at 700 e/kWth. 
These values are consistent with those reported in the literature [36,
37]. The integration cost is highly dependent on the type of industrial 
process and the specific application of the project (e.g., Brownfield or 
Greenfield). For the purposes of this study, it was guessed to be half 
the cost of the installation.

One of the main outputs of this work is the 𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠, achieved by 
using a HP instead of a propane boiler. These savings are calculated 
via 
𝐸 = 𝑄̇ − 𝐸 [MWh/year] (10)
𝑠𝑎𝑣𝑖𝑛𝑔𝑠 𝑝𝑟𝑜𝑝𝑎𝑛𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟
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Fig. 4. GPR model 𝑦 = 𝑓∗(𝑥) defined by mean 𝑓∗ of posterior (right) determined by restricting prior (left) to training data 𝑦 (black dots). Curves other than 𝑓∗: realizations of 
prior/posterior distributions; shaded region: uncertainty bound 𝑓∗(𝑥) ± 𝜎(𝑥) (amplitude exaggerated for visibility).
Fig. 5. Process models of each component and objective function estimated via GPR for given independent parameters.
Table 2
Parameters needed for the economic and environmental assessment.
 Parameter Explanation Value References  
 𝜆CO2 𝑡𝑎𝑥𝑒𝑠,𝑁𝐿 CO2 taxes in the Netherlands 74.17 e/tonCO2 [38]  
 𝜆𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,𝑁𝐿 Electricity price in the Netherlands 0.13 e/kWh [39]  
 𝜆𝑝𝑟𝑜𝑝𝑎𝑛𝑒 Propane price Euro/kWh 0.11 e/kWh [40]  
 𝜆𝐻𝑃 HP installation and integration costs per kWth 700 e/kWh & 350 e/kWh Assumption 
 𝜙CO2,𝑝𝑟𝑜𝑝𝑎𝑛𝑒

Conversion factor of CO2 production per burnt propane 2.933 [41]  
 𝜂𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 Electric motor efficiency Data-driven model –  
 𝜙𝑒𝑛𝑒𝑟𝑔𝑦 Energy conversion factor regarding electric production efficiency 0.9 Assumption 
 t Operating hours per year 3600 hr/year Assumption 
 𝜂𝑏𝑜𝑖𝑙𝑒𝑟 Boiler efficiency 0.9 Assumption 
where the annual heating by the boiler, 𝑄̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒, is computed via 

𝑄̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒 =
𝑄̇𝑠𝑦𝑠𝑡𝑒𝑚 ⋅ 𝑡

1000 ⋅ 𝜂𝑏𝑜𝑖𝑙𝑒𝑟
[MWh/year] (11)

with 𝑄̇𝑠𝑦𝑠𝑡𝑒𝑚 the required heating duty by the industrial process. The 
annual electricity consumption by the HP compressor to provide 𝑄̇𝑠𝑦𝑠𝑡𝑒𝑚
instead of the propane boiler is calculated from 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 =

𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 ⋅𝑡
1000⋅𝜂𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

𝜙𝑒𝑛𝑒𝑟𝑔𝑦
[MWh/year] (12)

where in both (11) and (12) we assume that the system operates 18 h 
per day and 200 days per year for calculating time 𝑡 ([hr∕year]).
8 
Quantifying energy savings is crucial to assess how much energy 
can be conserved by using the heat pump (HP) in place of the propane 
boiler system. From an environmental standpoint, reducing emissions 
(one of the major concerns with fossil-fueled systems) is just as im-
portant as achieving energy savings. Therefore, another significant 
outcome of this work is the reduction in CO2 emissions achieved by 
using an HP instead of a propane boiler, denoted as CO2,𝑠𝑎𝑣𝑖𝑛𝑔𝑠, which 
is calculated by 

CO2,𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑝𝑟𝑜𝑝𝑎𝑛𝑒 − CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 [ton/year]

(13)
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𝑃𝐵𝑇 =
𝛬𝐻𝑃

𝛬𝑝𝑟𝑜𝑝𝑎𝑛𝑒 + 𝛬CO2−𝑡𝑎𝑥𝑒𝑠,𝑝𝑟𝑜𝑝𝑎𝑛𝑒 − 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ⋅ 𝜆𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,𝑁𝐿 − 𝛬CO2−𝑡𝑎𝑥𝑒𝑠,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦
, [year] (17)

Box I. 
where the emissions produced by the propane combustion in the boiler 
follow from 
CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑝𝑟𝑜𝑝𝑎𝑛𝑒 = 𝑚̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒 ⋅ 𝜙co2,𝑝𝑟𝑜𝑝𝑎𝑛𝑒 , [ton/year] (14)

using 

𝑚̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒 =
𝑡

1000
⋅ 3600 ⋅

𝑄̇𝑠𝑦𝑠𝑡𝑒𝑚

𝐿𝐻𝑉 ⋅ 𝜂𝐵𝑜𝑖𝑙𝑒𝑟
, [ton/year] (15)

to compute the propane mass flow rate 𝑚̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒.
The emissions CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 produced by the HP result from 

the electricity consumption by its compressor and can be evaluated as 
follows. Renewable sources provide a large part of the annual electricity 
production (≈ 44%) in the Netherlands [42] in 2022. The remaining 
portion is generated from fossil fuels, including natural gas (39.3% 
of overall production with 0.198 kg of CO2 emissions per kWh [43]), 
oil (1.3% of overall production with 0.238 kg of CO2 emissions per 
kWh [41]), and coal (14.3% of overall production with 0.4 kg of CO2
emissions per kWh [43]). This yields 

CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ⋅ (14.3% ⋅ 0.4

+1.3% ⋅ 0.238 + 39.3% ⋅ 0.198),
[ton/year]

(16)

as a portion of the annual CO2 emissions caused by the total elec-
tricity production that results from the power consumption by the HP 
compressor.

Implementing the HP in place of the propane boiler for industrial 
applications in the Netherlands can lead to significant energy savings 
and reductions in CO2 emissions. These savings allow the HP system to 
recover its costs within a few years, depending on the specific industrial 
conditions, such as heating duty and steam pressure. As a result, 
another key outcome of this analysis is the simple payback time (𝑃𝐵𝑇 ), 
which is defined as (see the Eq.  (17) in Box  I), which indicates the 
time it takes for the HP investment to be amortized without considering 
inflation or interest rates. Here, the total cost of the HP, 𝛬𝐻𝑃 , follows 
from the heating duty of the HP and the unit total cost of the HP, 𝜆𝐻𝑃 , 
via 

𝛬𝐻𝑃 =
𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ⋅ 𝜆𝐻𝑃

1000
[ke]. (18)

The annual price for propane consumption if heating by the boiler 
instead of the HP is given by 
𝛬𝑝𝑟𝑜𝑝𝑎𝑛𝑒 = 𝜆𝑝𝑟𝑜𝑝𝑎𝑛𝑒 ⋅ 𝑄̇𝑝𝑟𝑜𝑝𝑎𝑛𝑒 [ke] (19)

and the corresponding CO2 taxes on the propane consumption are 
determined from 

𝛬CO2−𝑡𝑎𝑥𝑒𝑠,𝑝𝑟𝑜𝑝𝑎𝑛𝑒 =
CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑝𝑟𝑜𝑝𝑎𝑛𝑒 ⋅ 𝜆CO2𝑡𝑎𝑥𝑒𝑠,𝑁𝐿

1000
[ke] (20)

where 𝜆CO2𝑡𝑎𝑥𝑒𝑠,𝑁𝐿 represents the applied CO2 taxes in the Netherlands. 
Additionally, CO2 emissions resulting from electricity production need 
to be considered when calculating payback time and are determined 
using: 

𝛬CO2−𝑡𝑎𝑥𝑒𝑠,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
CO2,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑−𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 ⋅ 𝜆CO2𝑡𝑎𝑥𝑒𝑠,𝑁𝐿

1000
[ke] (21)

The performance outputs from the digital twin, such as heating 
duty and compressor electric power consumption, are used as inputs to 
calculate 𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠, CO2,𝑠𝑎𝑣𝑖𝑛𝑔𝑠, and 𝑃𝐵𝑇  based on the equations provided 
above. The results will be analyzed in the following section using 
economic assessment maps.
9 
3. Results

This section summarizes the steady-state HP performance through-
out 55 measurement points obtained with varying water properties on 
the waste-heat source, compressor rotational speed, and steam pres-
sure. It outlines the validation of the digital twin model established in 
this work. In addition, operating maps of the HP obtained by the digital 
twin approach in terms of COP and heating duty, and an economic 
and environmental assessment of employing the system in an industrial 
application in the Netherlands instead of using a fossil-fueled boiler are 
presented.

3.1. Experimental analysis

This sub-section of the report discusses the experimental results 
from running the industrial heat pump with the test rig at the TNO 
Carnot Laboratory. In Fig.  6, the heating duty and COP are plotted 
as functions of temperature lift. The vertical scattering of the heating 
duty at low-temperature lifts results from the varying sink and source 
temperature combinations. Notably, cases with very low source temper-
atures exhibit low heat sink duties despite moderate temperature lifts. 
As anticipated, the COP demonstrates a linearly decreasing relationship 
with temperature lift.

Overall, there is good agreement between the duties measured on 
the pentane and water sides. A source temperature of approximately 
90 ◦C and a sink temperature of around 140 ◦C align well with the 
HP design and use pentane as the working medium. Butane may be 
better suited as a working medium for lower source temperatures due 
to its higher density at the compressor suction port, resulting in a higher 
heating duty. For extreme temperature lifts, a two-stage cascade system 
with suitable working medium could be considered as an alternative.

The resulting fraction of the Carnot COP, defined as 𝐶𝑂𝑃 ∗
𝑒𝑥𝑡 follow-

ing (5), for each test is shown in Table  1 and ranges from 24% to 34%. 
This is significantly lower than the 50% typically applied to determine 
practical efficiency. Possible reasons for this include:

1. Tailored Compressor Rotors: The current rotors yield reduced 
volumetric efficiency, which measures the volume transported 
from suction to discharge compared to the swept volume of the 
compressor. This is a consequence of being the first time such 
rotors were used for high-temperature conditions. Additional 
tests are planned with a redesigned rotor set optimized based 
on the presented test data.

2. Low Intrinsic Volume Ratio of the Compressor: Significant 
under-compression occurs, especially at higher temperature lifts, 
leading to lost work and reduced efficiency. The upcoming tests 
will include an improved compressor volume ratio to better 
match the process conditions.

3. Large Approach Temperatures in Heat Exchangers: On the 
source side, suboptimal flow distribution of pentane in the evap-
orator section may cause inefficient use of the available heat 
transfer area. Fine-tuning the HP control system is expected to 
enhance internal heat reuse and reduce the need for evaporator 
superheat. A large portion of the required superheat at the 
compressor inlet will be provided by the internal heat exchanger. 
On the sink side, evidence suggests non-condensable gases are 
affecting the vapor–liquid equilibrium of the pentane, as ap-
proach temperatures near 10 K have been measured. This is 
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Fig. 6. Performance (heating duty on the left and COP on the right) of the industrial HP tested as a function of the temperature lift (𝛥𝑇𝑙𝑖𝑓 𝑡 = 𝑇𝑠𝑖𝑛𝑘 − 𝑇𝑠𝑜𝑢𝑟𝑐𝑒).
excessively high for a well-designed heat exchanger with phase 
changes on both sides. These non-condensable gases result from 
piping modifications and extended vacuum periods during sys-
tem downtime, making their removal challenging. While large 
approach temperatures do not necessarily impact the HP inter-
nal performance, they significantly reduce the fraction of the 
Carnot COP based on the external temperature lift, i.e., 𝐶𝑂𝑃 ∗

𝑒𝑥𝑡
following (5). For instance, at the design condition, the internal 
fraction of the Carnot COP, i.e., 𝐶𝑂𝑃 ∗

𝑖𝑛𝑡 following (5), is 44%, 
compared to 29% for the external fraction 𝐶𝑂𝑃 ∗

𝑒𝑥𝑡.

The experimental campaign of a high-temperature HP in a laboratory 
environment was a success. The HP manufactured by Mayekawa Europe 
was successfully integrated and tested at the TNO Carnot Laboratory. 
We have demonstrated an industrial HP for a full range of operating 
conditions both at the source and sink, and we have identified potential 
areas of improvement. Moreover, the screw compressor designed by 
Mayekawa Japan was capable of running at higher temperatures using 
pentane as a working medium.

3.2. Validation of the digital twin

Process models for the dependent variables shown in Fig.  5 were 
developed as the functions of independent variables (𝜔𝑐𝑜𝑚𝑝, 𝑇𝑤𝑎𝑡𝑒𝑟, 
𝑉̇𝑤𝑎𝑡𝑒𝑟, 𝑃𝑠𝑡𝑒𝑎𝑚) using Gaussian Process Regression (GPR) as described in 
Section 2.3.2. For achieving this, 80% of the experimental data was 
randomly selected for training (𝑥⃗, 𝑦) as per Eq. (6). The remaining 20% 
was used as test data 𝑦𝑜 on interpolation points 𝑥⃗∗ (see Section 2.3.1) 
to evaluate the models’ prediction accuracy. This was done using the 
COD 𝑅2 following Eq. (9) and parity plots that compare the observed 
values 𝑦𝑜,𝑖 with the predicted values 𝑦𝑝,𝑖 = 𝑓 (𝑋𝑖) on 𝑥⃗ ∪ 𝑥⃗∗.

Table  3 provides the COD (𝑅2) for the dependent variables, showing 
values very close to unity (i.e., 𝑅2 > 0.98 in most of the cases), 
indicating a high overall prediction quality of the process models. 
The corresponding parity plots are shown in Figs.  7 and 8, further 
substantiating this finding by revealing that the pairs (𝑦𝑝,𝑖, 𝑦𝑜,𝑖) are 
concentrated closely around the line 𝑦𝑝,𝑖 = 𝑦𝑜,𝑖, indicating error-free pre-
diction. However, while the compressor outlet pressure (𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡) and 
mass flow rate (𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡) were predicted very accurately, discrepancies 
of up to 10% occur between the predicted and observed compressor 
outlet temperature (𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡), evaporator A cold side outlet temperature 
(𝑇𝑒𝑣𝑎𝑝𝐴,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡), and power consumption (𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) in the higher 
ranges. This is perfectly acceptable in typical practical applications, 
demonstrating that the process models enable reliable prediction of the 
dependent variables.
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Table 3
COD 𝑅2 indicating prediction quality for dependent process variables. (The COD 
values of the process models built based on two datasets are given separately in 
the operating stage without economizer (second) and operating stage with economizer 
(third) columns. The COD values of the models built using the entire 55 observations 
are shown in a single combined column.)
 Dependent variables Overall 𝑅2 (W/O econ. and With econ.)
 Stage w/o econ. Stage with econ. 
 𝑚̇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 0.99
 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 0.98
 𝑃𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 0.99
 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 0.98
 𝑃𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑃𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑧𝑒𝑟,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 N/A 0.99  
 𝑚̇𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑧𝑒𝑟,𝑠𝑢𝑝𝑒𝑟𝑓𝑒𝑒𝑑 N/A 0.99  
 𝑇𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑧𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 N/A 0.95  
 𝑇𝑒𝑣𝑎𝑝𝐴,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 0.83 0.96  
 𝑃𝑒𝑣𝑎𝑝𝐴,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑇𝑒𝑣𝑎𝑝𝐴,ℎ𝑜𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑇𝑒𝑣𝑎𝑝𝐵,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑃𝑒𝑣𝑎𝑝𝐵,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑇𝑒𝑣𝑎𝑝𝐵,ℎ𝑜𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 0.99
 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑟,𝑐𝑜𝑙𝑑,𝑜𝑢𝑡𝑙𝑒𝑡 0.93
 𝛥𝑃𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑟,𝑐𝑜𝑙𝑑 0.97
 𝑇𝑠𝑢𝑝𝑒𝑟ℎ𝑒𝑎𝑡𝑒𝑟,ℎ𝑜𝑡,𝑜𝑢𝑡𝑙𝑒𝑡 0.97 0.93  

One of the primary reasons for the discrepancy between the mea-
sured and predicted data for evaporator A’s cold-side temperature (see 
Table  3) could be attributed to experimental uncertainties. Although 
evaporators A and B are identical, their heat transfer rates differ due 
to variations in the mass flow rates of the working medium. These 
differences result in the working medium exiting the heat exchangers 
at different outlet temperatures. Consequently, variations in outlet tem-
perature data, along with non-linearities introduced by measurement 
uncertainties, hindered the accuracy of the chosen regression model. 
As a result, the GPR model struggles to accurately capture the non-
linearity in evaporator A’s cold-side outlet temperature dataset across 
the 39 observations. Additionally, a few points can be noted concerning 
the predictions of the compressor discharge temperature (𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡) and 
power consumption (𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐). The variations were mainly caused 
by experimental uncertainties, particularly related to oil losses within 
the system.

A vital aspect of this study is that the digital twin reliably predicts 
flow variables at the boundaries of the components and also, more 
importantly, performance indicators, such as 𝐶𝑂𝑃  and 𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 (see 
Section 2.1). Fig.  9 presents the parity plots for 𝐶𝑂𝑃  and 𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 , de-
rived from Eqs. (1) and (2) using observed versus predicted dependent 
variables. Similar to Figs.  7 and 8, these plots show a tight clustering 
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Fig. 7. Parity plots of the objective functions for which the entire dataset was used to generate the process models.
of points around the line 𝑦𝑝,𝑖 = 𝑦𝑜,𝑖, indicating accurate predictions. 
The discrepancies for 𝐶𝑂𝑃  and 𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 remain within 7%, suggesting 
that the more significant errors observed for 𝑇𝑐𝑜𝑚𝑝,𝑜𝑢𝑡 and 𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
at higher ranges (Fig.  7) have only a minor impact. In conclusion, 
our digital twin accurately predicts HP performance within a 7% error 
margin.

3.3. Predicted performance of the heat pump

The digital twin of the HP enables us to determine system perfor-
mance and changes in flow variables in response to variations in the 
independent parameters (𝜔𝑐𝑜𝑚𝑝, 𝑇𝑤𝑎𝑡𝑒𝑟, 𝑉̇𝑤𝑎𝑡𝑒𝑟, and 𝑃𝑠𝑡𝑒𝑎𝑚). This section 
is devoted to analyzing the HP performance with variations in these 
independent variables. Fig.  10 shows the variation in HP performance, 
where the COP is color-coded, and the heating duty (𝑄̇ℎ𝑒𝑎𝑡𝑖𝑛𝑔) and 
compressor electric power consumption (𝑊̇𝑐𝑜𝑚𝑝,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐) are depicted with 
solid and dashed lines, respectively.
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An industrial process (using steam for its heat demand) is designed 
for a specific steam pressure and heating duty [44]. The HP perfor-
mance is evaluated in this section by considering possible scenarios 
where the HP is employed to produce a certain steam pressure and 
a heating duty. Therefore, we have color-coded the COP for different 
steam pressures and plotted the heating duties with solid lines to 
demonstrate the design band of an industrial process (see Fig.  10).

As mentioned above, the water volumetric flow rate range is be-
tween 68 m3∕h and 70 m3∕h. Our observations indicate that this narrow 
range does not significantly affect the system performance trend across 
varying independent parameters. Therefore, the performance maps are 
displayed only for the water volumetric flow rate of 70 m3∕h.

It is important to note that the structure of the data models de-
pends on the amount and range of data used for training and varies 
based on the type of operation, whether it is operating stage with 
or without economizer. Specifically, the valid compressor speed range 
for predicting operating stage without economizer performance with 
the digital twin is between 1500 and 3000 RPM, while it narrows to 
between 2700 and 3000 RPM for operating stage with economizer. 
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Fig. 8. Parity plots of the objective functions for which separate datasets were used based on the operating mode to generate the process models.
Fig. 9. Parity plots displaying prediction quality for performance indicators.
Another limitation regarding operating stage with economizer pertains 
to the steam pressure. All experimental measurements with economizer 
operation were carried out at a steam pressure of 3.5 bar absolute. 
Although these limit our ability to observe system performance over a 
broader range of independent parameters, particularly for compressor 
speed and steam pressure, the performance maps within the valid 
boundaries, as shown in Fig.  10, provide valuable insights into the 
system performance.

The white gaps in the performance maps indicate areas where 
the digital twin failed to produce physical solutions. Just as the data 
model’s valid range restricted our ability to evaluate HP performance, 
the black-box model created in this study is only valid within the 
boundaries of physical solutions, as shown with colored zones in Fig. 
10.

As anticipated, a higher water (source) inlet temperature and a 
reduction in steam pressure significantly improve the COP for both 
operating stages with and without economizer. The increase in source 
temperature and the reduction of steam temperature both result in 
a smaller temperature lift that the HP must overcome, reducing the 
required compressor power. The impact of steam pressure is less effec-
tive than that of water inlet temperature, which is the key parameter 
for calculating the heating duty of the system. Water temperature 
and compressor rotational speed also positively influence heating duty, 
although the effect of compressor speed is less strong than that of water 
temperature. Fig.  10 demonstrates that in operating stage without 
economizer, the maximum heating duty, approximately 1050 kW, can 
be obtained for all investigated boiler pressure values but with different 
COP values.
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In the maps of operating stage without economizer, up to approxi-
mately 2600 RPM of compressor speed, compressor power consumption 
follows a curve, indicating that the required work decreases with 
increasing water temperature. Beyond 2600 RPM, it becomes insen-
sitive to further changes in the water inlet temperature. This leads 
to achieving the optimum COP at around this rotational speed; this 
is the designed speed of the HP under investigation for producing 
2.4 bar, 3.2 bar, or 3.5 bar steam pressure and providing around 1 
MW heating duty to an industrial setting. The change in compressor 
power consumption with water inlet temperature diminishes for com-
pressor speeds above approximately 2700 RPM, as observed across 
all steam pressures. This optimal rotational speed of the compres-
sor was found to achieve a higher COP compared to other types of 
industrial high-temperature heat pumps operating with R601, under 
similar evaporation and condensation pressures [45]. According to the 
data provided for the compared heat pump in the reference, the COP 
was calculated to be 3.27. However, the analysis presented in this 
paper demonstrates that the COP can be further enhanced, exceeding 
3.5, by optimizing the independent parameters for waste-heat water 
temperatures above 85 ◦C.

Due to the limited experimental data, the operating stage with econ-
omizer maps cover a narrower range of compressor speeds compared to 
the operating stage without economizer maps. Additionally, the digital 
twin was obtained for operating stage with economizer only at a steam 
pressure of 3.5 bar. The performance parameters – COP, heating duty, 
and compressor power consumption – show similar trends to those 
observed in operating stages without economizer. However, COP’s 
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Fig. 10. Operating maps of the HP obtained by the digital twin (Maps for 1.9 bar (a), 2.4 bar (b), 3.2 bar (c), and 3.5 bar (d) steam pressures in the stage without economizer, 
a map for 3.5 bar (e) steam pressure in the stage with economizer).
dependence on compressor speed is notably smaller in operating stages 
with economizer. This is likely because we are examining a narrower 
range of the independent parameter. The highest efficiency zones were 
achieved at the highest heating duty with compressor speeds of 2700 
RPM for a steam pressure of 3.5 bar in operating stage with economizer. 
In these zones, COP is computed to be approximately 3, which is higher 
than that of operating stage without economizer at the same steam 
pressure of 3.5 bar. This means that the economizer does provide a 
performance improvement to the HP as theoretically expected.

3.4. Economic and environmental assessment of the heat pump

This subsection focuses on the economic evaluation of the HP 
system when used within an industrial process in the Netherlands. 
As mentioned, any industrial application is designed to operate at a 
specific steam pressure and heating duty. Therefore, our analysis in-
cludes an economic investigation of the HP system for various possible 
operations designed at a certain steam pressure and heating duty. This 
is done like the performance analysis carried out in Section 3.3.

The details of the calculations for the economic assessment and 
quantifying environmental benefits of the system in terms of CO2 sav-
ings are given in Section 2.4. We integrated the required calculations 
for this assessment to the digital twin, and this enabled us to visualize 
energy savings as displayed in Fig.  11, in case of employing the HP 
instead of a regular propane-fueled boiler in industrial applications. 
13 
This figure also depicts the heating duty and CO2 savings with solid 
and dashed lines respectively.

In almost all HP operating scenarios, the system is expected to 
recover the investment within 3.8 to 4.2 years (single payback time, 
𝑃𝐵𝑇 ) by recuperating waste heat, based on the economic inputs and 
assumptions from Table  2. Overall, employing the heat pump instead 
of the propane-fueled boiler results in energy savings. However, when 
the water temperature is below approximately 75 ◦C, depending on 
the compressor speed in some operating scenarios, no energy savings 
with the HP are achieved, and using the boiler appears slightly more 
advantageous due to the assumed energy conversion factor (𝜙𝑒𝑛𝑒𝑟𝑔𝑦). 
The COP in the no-energy-savings region varies between 1.1 and 1.6. 
Nonetheless, even in this limited operating region, due to the taxes 
on CO2 emissions associated with the propane-fueled boiler, the heat 
pump system could still pay for itself when used in place of the propane 
boiler.

The trends of energy savings and COP are quite similar to each 
other, as shown in Figs.  10 and 11. The highest energy savings, similar 
to the best COP performance, were achieved when the system was 
designed to operate at either 1.9 bar or 2.4 bar steam pressure and 
had maximum heating duty of approximately 1000 kW. This design 
can yield more 3000 MWh energy savings per year. If the application 
requires greater steam pressure, this results in the compressor consum-
ing more power at a similar heating duty and reducing yearly energy 
savings.
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Fig. 11. Economic assessment maps of the HP obtained by the digital twin (Maps for 1.9 bar (a), 2.4 bar (b), 3.2 bar (c), and 3.5 bar (d) steam pressures in the stage without 
economizer, a map for 3.5 bar (e) steam pressure in the stage with economizer).
Although the adoption of the studied HP is challenged by limita-
tions in water temperature on the waste-heat source and, to a lesser 
extent, compressor speed, for an industrial application replacing a 
fossil-fueled boiler, the system proves to be a more environmentally 
friendly solution by significantly reducing CO2 emissions in all opera-
tional scenarios. The reduction rate naturally depends on the heating 
duty (𝑄̇𝑠𝑦𝑠𝑡𝑒𝑚) for which the industrial system is designed, following 
the same trend as the calculated heating duty shown in Fig.  11. The 
compressor power consumption also plays an important role in the 
CO2 savings of the system since a significant portion of electricity 
production in the Netherlands is from sources where CO2 is emitted. 
Therefore, it is possible to observe better savings in regions with less 
power consumption, such as the operating map drawn for 1.9 bar of 
steam pressure in Fig.  11.

The results of this study provided above reveal several opportunities 
for optimizing the industrial heat pump system, such as improving con-
trol strategies to enhance the COP and improve environmental impact 
under varying operational conditions such as compressor speed. These 
findings are particularly relevant to industries seeking to recover waste 
heat systems for process heating or district heating [46,47], where 
such optimizations can lead to significant energy savings and reduced 
carbon emissions. In real-world applications such as in process or 
petrochemical industries, this digital twin model can support predictive 
maintenance and operational decisions, ensuring the system operates 
at maximum efficiency over time. Future research could explore the 
14 
integration of machine learning algorithms for real-time optimization 
and expanding the model to include additional system variables for 
broader applications in energy-intensive industries.

4. Conclusions

This study introduces a novel method for developing a digital twin 
of an industrial heat pump (HP) utilizing n-Pentane as the working 
fluid. The system is designed to produce steam at 140 ◦C for industrial 
processes by heating an external water stream via the HP condenser 
(heating duty 1 MWth) through recovery of waste heat from a hot-water 
stream via the HP evaporator. Development of (digital twins of) HPs for 
waste-heat recovery and heat recuperation in industrial applications 
(especially operating with natural working media) are scarce to date 
and our study thereby represents a unique contribution to the literature.

The full-scale HP was successfully integrated and tested in a ded-
icated laboratory facility at TNO though the evaluation of 55 steady-
state operating points. The HP achieved a Coefficient of Performance 
(COP) equal to 44% of the Carnot COP based on condenser/evaporator 
saturation temperatures, which can be further improved through com-
pressor design changes and optimization of the control algorithm. A 
tailor-made digital twin as developed and calibrated in our study using 
the HP data from the laboratory facility enables this in a systematic and 
efficient way.

The digital twin consists of process models for each HP compo-
nent developed using Gaussian Process Regression (GPR). It accurately 
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predicted key performance indicators like COP and heating duty from 
input variables such as compressor outlet pressure, temperature, mass 
flow rate, and electric power consumption, yielding prediction errors 
within 7%. The digital twin also reliably predicted relevant process 
variables for each HP component (e.g. outlet pressures and tempera-
tures), with only minor errors that can be attributed to experimental 
uncertainties in the training data employed to develop the GPR process 
models.

An economic and environmental assessment demonstrated that the 
HP, when deployed in an industrial application in the Netherlands to 
replace a conventional propane boiler, could amortize its investment 
within 3.8 to 4.2 years. The system significantly reduces CO2 emissions, 
ranging from 250 to 1000 tons per year, depending on operating 
conditions. Energy savings of over 3000 MWh annually are achievable 
when operating at steam pressures of 1.9 bar and 2.4 bar and a 
heating duty of 1 MWth during the steam generation. The HP overall 
achieves energy savings compared to a propane boiler (apart from a 
small operating region without an economizer). The temperature of 
the hot-water stream from which to recover waste heat is a critical 
parameter for energy savings: these savings become insignificant when 
this temperature falls below 75 ◦C.

The data-driven nature of the adopted modeling approach enables 
straightforward application for the digital twinning of other types of 
industrial HPs, provided sufficient experimental data are available. 
However, the most significant benefit lies in the potential to inte-
grate HP digital twins thus developed into (digital twins of) broader 
industrial systems, enabling its utilization for enhancing system-wide 
efficiency and sustainability (i.e., beyond that of the HP itself). The 
potential impact of the digital twinning could be further expanded by 
exploring its use for real-time monitoring and predictive maintenance 
for the purpose of achieving long-term operational efficiency.
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