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In a.o. manufacturing, care and construction, the FEuropean labour market is
tight [1]. To help new employees work independently quicker, quality instruc-
tions are essential. Digital work instructions can have advantages over paper
instructions [2], by dosing information in a clear step by step fashion, combining
short texts with visual representations, e.g., pictures with annotations, videos, or
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Abstract. Despite ongoing digitization in industry, many companies
still work with paper instructions or ‘paper-on-glass’ solutions (e.g.,
PDF files on screens). In recent years, various digital work instruc-
tion (DWI) technologies have become available that provide shop-floor
employees with information during their activities, e.g., sequences of
instructions for tasks at hand. Engineering new instructions in these
systems for new products or product variants is however expensive and
time-consuming. To scale up, there is a need for methods to generate
work instructions (semi) automatically. Recently, Generative Al models
and Large Language Models (LLMs) have taken center stage with their
abilities to interact fluently with humans, both in understanding user
questions/statements and in convincingly producing natural language
texts. These models however suffer from several problems, including hal-
lucinations where unsubstantiated content is presented as facts and lack
of domain-specific data about products and procedures. For instruction
generation however, we need verifiably correct statements about the task
at hand. To tackle both problems, we have created a pipeline that com-
bines the generative abilities of LLMs with explicit domain-specific data.
We deploy a variant of Retrieval Augmented Generation (RAG) and
incorporate an ontology that augments the instructions with additional
information (policies, warnings, tools). Our results show an increase in
correctness of output.
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even projections and AR [3]. Especially in a high mix low volume environment,
where workers have to stay informed about the details of the current product.
However, creating and keeping work-instructions up to date, requires substantial
effort [4].

Information for instructions may be visual (images, videos), or text-based
and stored in natural language sources (notes, manuals), or expressed in e.g.,
databases (parts list, available tools). This includes information on specific tools
for a task, specific safety policies, or warnings (‘connection is high voltage’).
This knowledge is essential for the worker, but processing and interpreting these
sources with often unstructured information can be difficult [5].

AT algorithms that analyze for example CAD models [4], written texts and
visual data, can find relations between information in these sources and improve
the quality of instructions. Large Language Models (LLMs), as a subset of Gen-
erative language models, provide the ability to interact with humans in fluent,
natural language [6]. They can be used to produce natural language output
upon request. By using these models as assistive technologies, instructions on
work order and processes of the planned work could be extracted.

In this paper, we perform instruction generation from text input and improve
correctness of the output of LLMs by using RAG and incorporating knowledge
from external sources. Our contribution is threefold: (1) we apply an LLM to
generate step-by-step instructions from unstructured instruction text, (2) we use
an ontology with the main concepts of the assembly process that provides context
information to generated instructions, (3) we use this ontology to augment the
instructions generated by the LLM. We have demonstrated our setup in a small-
scale demonstration scenario for a single assembly.

2 Related Work

Digital Instructions. Research has so far focused on reducing the time to adapt
to changing demands, or improved product designs by automating the creation of
manufacturing instructions [7]. To that end, information can be extracted from
e.g. CAD models [4,8,9] or e.g. from workload models [10] to create instructions
for an assembly sequence. Al algorithms can also be applied to generate digital,
interpretable instructions [11].

Large Language Models. Language modeling gained popularity recently, due
to the emergence of Large Language Models (LLMs) [12]. These are pre-trained
language models of a certain size (potentially billions of parameters), demon-
strating better performance than smaller-scale LMs and capabilities that emerge
from their size [12,13]. Thanks to their natural language generation capabilities,
their use in various fields of industry is increasing [12,14]. There are however
numerous challenges related to their application [15], such as: hallucinations
[16], lack of interpretability [17], lack of domain specific knowledge [12], high
training costs [15].
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Ontologies are structured models, that explicitly describe knowledge and gener-
ate interpretable results due to their symbolic reasoning capacity [18]. They can
be used to store schemas for instructions and/or instructions themselves [19].
Ontologies can easily be updated to include new concepts and data, whereas
LLMs require costly fine-tuning or retraining. Ontologies however, require much
more expertise on explicating domain knowledge than LLMs [20].

Integration of LLMs and Ontologies can leverage the advantages of both
because of their complementary nature and addresses some of the issues associ-
ated with LLMs as described above. Pan et al., [17] present a research overview
and a roadmap for integration of LLMs and Knowledge Graphs.

Retrieval Augmented Generation or (RAG) ([21]) is a technique for retriev-
ing information from an external database in order to ground the answers of
Large Language Models and to enhance their trustworthiness, accuracy, and reli-
ability [22]. This technique helps to solve some of the common issues regarding
LLMs, such as hallucinations, lack of domain specific knowledge and knowledge
cut offs.

3 Method

This section will provide a description of the pipeline created during our research
and an overview of the knowledge base that models the assembly process.

3.1 Pipeline Structure

In this work, we implement a variant of Retrieval Augmented Generation and
apply it to instruction generation. In a naive RAG architecture (Fig.1), the
documents that constitute the external knowledge are split into chunks, then a
numerical embedding of each chunk is created and stored in a vector database.
When the LLM is queried, the query embeddings are used to look up similar
documents in the vector database. The documents most similar to the query
are then used to augment the model’s answer. While this approach works well
with unstructured information, we observed that it does not have good results in
applications that require high retrieval accuracy. Therefore, we propose a pipeline
that uses structured data (i.e. an ontology) as external knowledge and inverts
the retrieval and the generation steps compared to the traditional RAG archi-
tecture. This has proven to work better than the traditional RAG architecture,
as mentioned in Sect. 4.

The pipeline, shown in Fig.2, is made up of two main components: the
Large Language Model, for instruction generation and the Knowledge Retriever,
responsible for retrieving the relevant context information.

The Large Language model is used to extract short step by step instruc-
tions from snippets of unstructured (spoken) instruction text. Every time it is
prompted, the language model is given an example of the expected structure of
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the output (the same example for every prompt) and is asked to generate short
step by step instructions using the provided text snippet.

After the instruction generation step, the instructions are passed to the
knowledge retriever. The function of the knowledge retriever is to identify the
action a specific instruction is referring to and retrieving all the relevant infor-
mation about it from the ontology. The current action is identified by querying
a vector database. By splitting the text into snippets that describe a single step,
we ensure that each vector in the database represents a step and holds infor-
mation about the action carried out in that step. Via a similarity search with
the instruction, the current action is returned, and used to retrieve the relevant
information from the ontology.

Finally, the knowledge retrieved from the ontology is added to the instruc-
tions generated by the large language model. This is done by simply ‘appending’
the additional information to the generated instruction text. In Sect.4 we show
and discuss examples of the input and output of the pipeline and its components.

3.2 Ontology Creation

The assembly process is represented in an ontology (knowledge base), which
contains some of the main concepts of the assembly process: steps, actions, com-
ponents and tools and the relationships between these concepts, e.g.: a step
consists of an action; an action requires a tool etc. The structure of the ontol-
ogy is inspired by and simplified from existing ontologies in the manufacturing
process domain [23,24] and can be seen in Fig.3. The ontology can be filled
with instances of each of the concepts, based on the specific application. In our
application, the component class contains different types of components, such as
a tire, a rivet, a bolt etc.
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Fig.1. Typical naive RAG architec- Fig. 2. Architecture of the pipeline.
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Fig. 3. Structure of the ontology (extracted from Protégé [25]).

4 Experiment

In this section, we will provide a description of the experiments that were carried
out, with snippets of input and output results.

4.1 Method

To test our pipeline, we have created an example implementation using the
TurtleBot Burger Robot [26] assembly instructions as our dataset. The input
data was created by writing an unstructured text that contains assembly instruc-
tions (simulating instructions that could be extracted from an instruction video).
The assembly process was then modelled using the ontology structure in Sect. 3.2.
An important requirement for this pipeline was the use of an open source LLM,
because it would allow the model to be run locally and it would not put any
private company data at risk. Therefore the model that was chosen was a fine-
tuned model based on Llama2 [27], called Xwin-LM [28]|. To minimize memory
consumption and inference time, a quantized [29] version of this model was used,
that is 7 times lighter than the not quantized version. The vector database was
created using Pinecone [30] and a sentence transformer [31] model was used to
create the vector embeddings. We expect that this pipeline to generate instruc-
tions will yield the following results:

1. It is expected that the LLM will generate brief and concise instructions by
paraphrasing the input text and by excluding the phrases present in spoken
text, but unrelated to the assembly process.

2. The external source of information (i.e., the ontology) is expected to improve
the instructions generated by the LLM, by augmenting the LLM’s answer
with knowledge that it would otherwise not have access to.

3. We expect that inverting the retrieval and generation steps will improve the
retrieval step.

4. We expect that an ontology will be a more advantageous way of represent-
ing background knowledge specific to this application (i.e., list of tools and
components required for an action, warnings etc.) rather than unstructured
text.
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The pipeline was tested using the Turtle Bot dataset. Snippets of the unstruc-
tured instruction text are used as input to the pipeline. First, the Large Lan-
guage model is prompted to generate brief step-by-step instructions based on
the input text. Then the generated instructions are passed to the knowledge
retriever. For each step, the retriever finds the action the instruction is refer-
ring to and retrieves all the information related to it from the ontology. In this
case the concepts related to an action are: required components, required tools
and warnings. Finally, each assembly instruction is combined with the related
information retrieved in the previous step and the final output is obtained.

4.2 Result

An example of the experiments described above can be seen in Fig.4. They
illustrate the input to the pipeline, the intermediate output of the LLM and
the final output, that incorporates the information from the ontology. After the
experiments, it was observed that:

1. Given the input text (Fig.4), the model outputs concise instructions, that
follow a stepwise format, therefore succeeding in reducing unnecessary text.

2. Compared to a scenario where the LLM is queried without an external source
of information, this pipeline allows to augment the output by adding any
amount of new information to the output. The ontology can be easily updated
to add new information about an assembly process (updated tools, warnings,
or protocols) as well as to remove any outdated knowledge without needing
to retrain the language model.

3. Inverting the traditional RAG structure proved to work well. The reason
for this is that the input is made up of short paragraphs of unstructured
text that do not contain a predefined number of assembly steps. This makes
it impossible to determine a priori how many steps are referred to in one
paragraph, therefore how much and what information should be retrieved.
Generating the instructions beforehand makes it easier to ‘separate’ the text
into steps and to query the ontology to obtain information about each step.

4. The ontology is better suited to represent this background information. The
background information used for our application consists of lists of compo-
nents or tools, making it better suited for a structured representation. Retriev-
ing all the components associated to an action becomes easier than extracting
this type of information from text.

5. The LLM still has the tendency to hallucinate. The hallucinations appear
when the model, after correctly generating the instructions, continues gen-
erating text until it reaches the token limit. The hallucinations were still
pertinent to the instructions but were not correct and were not generated
using the provided input. This most likely is due to the model size (as men-
tioned, the model is a quantized version of a 13 billion parameter model).
We have attempted to solve the hallucination problem using prompt engineer-
ing and parameter tuning. Few shot examples were used to show the model
the expected output. Giving a one-shot example to the model helped improve



230 L. Holvoet et al.

the results significantly and the model was able to adhere to the given for-
mat. However, providing more than one example in the prompt did not lead
to the expected improvement (i.e., that the model would learn when to stop
the generation).

Parameter tuning, i.e., lowering the temperature parameter or decreasing the
token limit, did not lead to significant improvements.

Finally, we attempted to use a different LLM for the task [32]. It showed
promising results, however due to time constraints, we were not able to thor-

oughly test it within the pipeline.

Example input snippet: Hello, in this video | will
explain how to assemble the Turtle Bot Burger robot.
First we will start with assembling the waffle plates. We
then pass to the assembly of the First Layer.

We assemble the ball caster from under the first layer.
Then we take the plate supports and we assemble
them like so. Afterwards, we take the right angle
brackets and we assemble them on the first layer

to hold the Li-Po battery. Then we assemble the tires on
the wheels.

LLM output:

1. Assemble waffle plates.

2. Assemble ball caster from under the first layer;

3. Assemble plate supports;

4. Assemble right angle brackets to hold Li-Po battery;
5. Assemble tires on wheels.

Information retrieved from the ontology:

Action: waffle plate assembly

Required Components: waffle_plate, Bolt:
PH_M3x8mm_K, Nut: Nut_M3

Required Tools: Wrench: turtle_wrench

Warnings: WARNING: When assembling Waffle
Plates for layer 1, 3, 4, insert bolts from the top. For
layer 2, insert bolts from the bottom.

Action: ball caster assembly
Required Components: Bolt: PH_T2x6mm_K
Required Tools: Wrench: turtle_wrench
Warnings: -

Action: plate support assembly

etc.

Final output:
1. Assemble waffle plates.

Required components: Nut M3, bolt PH_M3x8mm_K,
waffle plate

Required tools: turtle wrench

WARNING: When assembling Waffle Plates for layer 1, 3,
4, insert bolts from the top. For layer 2, insert bolts from
the bottom.

2. Assemble ball caster from under the first layer;
Required components: bolt PH_T2x6mm_K

Required tools: turtle wrench

3. Assemble plate supports;

Required components: plate support M3x35mm, bolt
PH_M3x8mm_K

4. Assemble right angle brackets to hold Li-Po battery
Required components: angle bracket, rivet

5. Assemble tires on wheels.

Required components: tire, wheel.

Fig. 4. Examples of the input and output of the pipeline components.

5 Conclusion

LLMs are a promising technology that can support in producing convincing nat-
ural language instruction texts and alleviate the burden of manual engineering.
In this paper, we have created a pipeline that mitigates some of the unwanted
hallucination effects of LLMs by applying RAG. We show how an ontology of
explicit domain-specific instruction data supports the LLM by providing infor-
mation the LLM does not possess. More specifically, we state that:

LLMs Improve over Manual Engineering Instructions: The pipeline only
requires some (spoken) text from a person that explains how to do the assembly
and the one-off cost of creating the ontology.

Advantages of Using the Ontology: An ontology adds structured, external
information that the LLM does not possess, thus improving the quality of the
generated instructions over using a simple text source;

Hallucinations Remain: The LLM still starts hallucinating after correctly
generating the instructions. Larger models could potentially reduce hallucina-
tions. In addition, a language model could be fine-tuned specifically for this
task.
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Manual Engineering in the Ontology Remains: The ontology and all the
steps, actions and tools need to be created and inserted manually, respecting the
original structure of the ontology. An automated approach to ontology creation
could further reduce the manual labor.

In order to evaluate the quality of answers generated by the LLM and its
ability to generate complete and comprehensible instructions, we propose to
obtain evaluations by utilizing both human evaluators and existing LLM based
validators as a future direction [33]. The work presented in this paper can also
be a solid foundation for other types of applications, such as a Q&A system for
instructions on specific procedures (e.g., for maintenance purposes). Our current,
limited setup is therefor a first step towards a more elaborate investigation of
our approach in a more dynamic, real-world manufacturing environment, with
a.o. challenges of far bigger datasets.
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