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Abstract

Deep learning-based object detection methods, such as
YOLO, are promising for surveillance applications. How-
ever, detecting small objects in large-scale scenes with clut-
tered backgrounds and adverse weather remains challeng-
ing. Recent advancements leverage spatio-temporal infor-
mation to enhance small object detection, yet the impact of
(temporal) adverse weather conditions on such methods re-
mains largely unexplored due to the lack of comprehensive
evaluation datasets. This paper evaluates the performance
of spatio-temporal YOLOv8 (TYOLOv8) for detecting small
objects in real-world adverse weather conditions, compar-
ing it to spatial YOLOv8 and the 3FN moving object de-
tection method. Additionally, we propose haze augmenta-
tion to improve object detection performance in challeng-
ing hazy weather. Due to the lack of suitable datasets for
evaluation, this paper introduces a novel real-world video
dataset for small object detection, referred to as Nano-
VID-weather, with an average object size of 16.42 pixels,
consisting of a Tiny Objects subset and three challenging
weather subsets: Wind, Rain and Haze. Our findings reveal
that TYOLOv8 is resilient to real-world adversarial weather
conditions, like wind, rain, and haze. Notably, on aver-
age TYOLOv8 outperformed both 3FN and YOLOv8 with
+0.21mAP across all our subsets. These results demon-
strate that TYOLOv8 can enhance surveillance capabilities
for small object detection under real-world adverse weather
conditions.

1. Introduction

Object detection is a critical component in modern
surveillance systems, with deep learning CNN-based ob-
ject detection methods such as the YOLO-family [34],
[44], [72], [35] and transformer-based methods like DETR-
family [10], [89], [8], [88], showing remarkable success
across a range of surveillance applications. However, typi-

(a) Tiny Objects subset.

(b) Rain subset.

(c) Haze subset.

Figure 1. Impression of challenges in Nano-VID-weather dataset
including, detected objects from our spatio-temporal TYOLOv8.

cal object detection model are not optimized for small ob-
ject detection. Large-area monitoring with a single camera
or long-range object detection for early warnings can not be
performed reliably with these methods.

In small object detection, the reduced performance of
spatial object detectors, such as YOLO and DETR, is of-
ten attributed to limited pixel representation and a lack of
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distinctive features of small objects. Spatio-temporal ob-
ject detection methods address this challenge by leveraging
both spatial and temporal information, processing multiple
frames simultaneously [16, 24, 71, 73, 86].

Although these methods show promising results, it re-
mains unclear whether their reliance on temporal informa-
tion makes them more susceptible to the challenges posed
by real-world (temporal) adverse weather conditions. Con-
ditions such as wind, rain, and haze can obscure objects,
distort their appearance, and create apparent movement,
which may lead to higher rates of false positives or missed
object detections. However, the effect of such conditions on
spatio-temporal small object detectors remains unexplored
in the literature.

To address this gap, a dedicated video dataset that in-
cludes challenging weather conditions and carefully anno-
tated small (moving) objects with sizes below 20 by 20 pix-
els is needed. As such a dataset is unavailable, we con-
tribute a novel evaluation dataset Nano-VID-weather, de-
rived from real-world surveillance video footage. It features
small objects, including pedestrians, cyclists, vehicles, and
animals, with an average object size ranging from 11.98 by
11.98 up to 19.27 by 19.27 pixels. The Nano-VID-weather
includes three distinct weather conditions: wind, rain, and
haze, as well as a tiny objects baseline with clear weather.
This enables a comprehensive evaluation of detector per-
formance across various environmental scenarios on small
objects.

Our second contribution is the evaluation of the state-of-
the-art spatio-temporal object detector TYOLOv8 [71] on
our proposed Nano-VID-weather dataset. We compare its
object detection performance with that of YOLOv8 [35] and
3FN, a traditional frame-differencing method for moving
object detection.

While the 3FN and spatial YOLOv8 methods exhibit
highly unreliable performance across all adverse weather
conditions, TYOLOv8 consistently demonstrates robust
performance, even without weather-specific training data.
This highlights the model’s strong resilience to challeng-
ing real-world weather conditions and suggests that similar
spatio-temporal detectors are likely to exhibit comparable
robustness.

2. Related Works

2.1. Small object detection

Small object detection based on visual cues is chal-
lenging due to several factors, such as cluttered, high-
frequency and noisy backgrounds, limited pixel represen-
tation of small objects, and the scarcity of distinctive fea-
tures. As such, most traditional small object detection ap-
proaches rely on motion features rather than appearance
features to detect small objects. The motion features are

usually constructed from absolute differences between two
or more frames. Subsequently, morphological operations
can be applied to these difference maps to localize objects.
While frame-differencing techniques apply these maps di-
rectly, background subtraction aims to improve precision
in noisy environments by detecting backgrounds and em-
ploying these maps to attenuate detected motion at these
locations [54,70]. This paper will compare against a frame-
differencing technique known as 3FN. This technique uses
three frames to establish a noise map and a frame difference
map. By relating frame differences to the detected noise, it
becomes possible to reduce false positives, which are com-
mon for frame-differencing approaches.

With the advent of deep learning, numerous architec-
tures for object detection have been introduced, such as
R-CNN [26], YOLO [36, 61], DETR [9], GLIP [47], and
Grounding DINO [49]. While these architectures are typi-
cally intended for larger objects (for example 20 by 20 pix-
els or larger), they can also be employed for smaller ob-
jects. However, various challenges specific to small object
detection may limit their effectiveness [11]. For instance,
they do not consider motion as a feature, and they may use
IOU-based loss functions or fail to address the foreground-
to-background imbalance.

Recently, some methods have been proposed to address
some of these issues. For example, Centernet [18] resolves
the issue with the foreground-background imbalance and
IOU-loss functions by predicting the centres of bounding
boxes instead of using anchor boxes. With this adaptation,
strong object detection performance can be achieved for
small and densely packed objects. Alternatively, TYOLOv8
has been introduced as an adaptation of the YOLOv8 model
to further enhance the model’s capability for detecting small
moving objects [71]. Following the approach in [16], this
method exchanges the RGB channels of the model’s input
with grey-scale data from three separate input frames to pro-
vide temporal context. Additionally, it incorporates various
augmentation techniques to improve training for small ob-
jects. With these adaptations, combining the ease of use and
efficiency of the YOLOv8 network with strong small ob-
ject detection capabilities becomes possible. Due to these
practical considerations, we will evaluate TYOLOv8 and
YOLOv8 in this work and leave Centernet as future work.

2.1.1 Object detection in adverse weather

Most object detection models are optimized for general
conditions, often assuming high-quality images captured in
clear weather conditions. However, their object detection
performance significantly degrades in adverse weather con-
ditions such as rain, haze, or fog, which reduces visibility.
Various methods have been proposed to address this, which
can generally be categorized into three main strategies. The
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first category of approaches involves directly training object
detection models on images affected by real-world or simu-
lated adverse weather. While this can improve object detec-
tion performance under challenging conditions, it requires
generating datasets of diverse real-world adverse weather
scenarios or highly realistic weather simulations, which can
be both time-consuming and resource-intensive.

A second category of approaches adopts a two-stage pro-
cess: first, applying image restoration algorithms, such as
dehazing or deraining, followed by processing the restored
images using object detection models, as demonstrated in
methods like DCP [28], AOD-Net [42], GridDehazeNet
[50], MSBDN [17], AECR-Net [76], DehazeFormer [66],
and DH-YOLO [82]. Although these methods can improve
image clarity, they often yield sub-optimal results and fail to
outperform the first category. This is because restored im-
ages may lack essential latent features critical for accurate
object detection [14], particularly for small objects, while
the two-stage process suffers from sub-optimal optimiza-
tion.

The third category focuses on jointly training object de-
tection models with weather-specific image enhancement
techniques or leveraging domain adaptation to bridge the
gap between clear training images and those captured in ad-
verse weather conditions. Examples of these approaches
include D-YOLO [14], FriendNet [21], BAD-Net [45], IA-
Det [46], and R-YOLO [74]. While these approaches gen-
erally outperform those in the second category, their ob-
ject detection performance varies when compared to models
trained directly on adverse weather images, as demonstrated
by [14], [21], [45], [45], [46] and [74]. Since these methods
cannot provide a reliable solution for our application, we
explored spatio-temporal object detection with TYOLOv8.

2.2. Small objects datasets

Evaluation datasets provide a standardized basis for
comparing different solutions. The PASCAL VOC 2007
[19], 2012 [20], and MS COCO [48] datasets have become
widely adopted standards for evaluating object detectors.
While these datasets are diverse and cover multiple object
classes in various contexts, they have notable limitations.
Specifically, they lack sufficient representation of small ob-
jects (see Table 1), lack video sequences, and do not include
annotated weather conditions.

Several specialized datasets have been introduced to ad-
dress the gap in evaluating the performance of small ob-
ject detection. Notable examples include CityPerson [83],
WiderFace [79], TinyPerson [81], XS-VID [4], ShipRSIm-
ageNet [84], Airbus Ship Detection [31], COWC [56],
CARPK [29], EDAI, and DOTA [77]. These datasets
feature significantly smaller object sizes. However, de-
spite their emphasis on small objects, these datasets lack
video sequences required for spatio-temporal object detec-

tion evaluation.

While MSCOCO serves as a standard benchmark for
spatial object detection, ImageNetVID [63] has emerged
as a widely used dataset for video object detection. It
includes numerous object classes across various environ-
ments, but focuses mainly on larger objects. Video datasets,
such as UA-DETRAC [75], Marine Obstacle Detection
Dataset V1.0 [41], V2.0 [5], VisDrone [87], MOT15 [13],
MOT17 [68], Okutama-Action [2], MOR-UAV [52], DAC-
SDC [78], DroneSURF [37], and SODA-A, SODA-D [12],
SeaDronesSee [38], UAV123 [55], Stanford Drone Dataset
[62], include smaller objects compared to ImageNetVID,
but do not sufficiently emphasize small objects. Addi-
tionally, these datasets are not captured from a stationary
surveillance perspective, which limits their suitability for
evaluating TYOLOv8.

VIRAT [57] and Nano-VID [71] do include a diverse
set of stationary surveillance perspective video footage
with small objects. However, VIRAT [57] leaves some of
the smallest objects not annotated, leading to label noise.
Therefore, Nano-VID is selected as training data for our ex-
periments since it includes more complete annotations. Due
to the absence of annotated weather, an additional evalua-
tion dataset is required.

2.3. Adverse weather datasets

Numerous datasets include explicit annotations for
weather conditions, such as fog or haze RADIATE [65],
Foggy Driving [64], or rain in datasets like RainDS [60],
WCity [85], Raindrop [59], Raindrop Clarity [33], Boxy
[3], A*3D [58], aiMotive [53]. Some datasets, such as
MUAD [23], RaidaR [32], MUSES [6], Waymo OD [67],
nuScenes, Kitti-c [39], JAAD [40], BKD100K [80], RTTS
[69] Boreas [7], and SODA10M [27], offer a combination
of multiple weather conditions. Additionally, some datasets
are created by simulating weather. For instance Multifog
KITTI [51], FoggyCityscapes [64], RainCityscapes [30],
add simulated weather to clean weather datasets like KITTI
[25] or Cityscapes [15]. These datasets primarily target
automotive applications, presenting scenarios and perspec-
tives distinct from those of surveillance. They often place
less emphasis on small objects and do not include station-
ary video footage. To address this gap, we developed our
own real-world dataset with small objects called Nano-VID-
weather, that has been captured from a stationary surveil-
lance perspective and scenario. Nano-VID-weather in-
cludes annotated video footage under challenging adverse
weather conditions, offering a unique and valuable resource
for this domain and will be open sourced.
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3. Methods
3.1. Dataset

Unlike the datasets discussed in Sections 2.2 and 2.3,
Nano-VID-weather introduces annotated stationary video
data recorded from a surveillance perspective over an ex-
tended period in a surveillance scenario. ano-VID-weather
specifically targets small objects and incorporates corre-
sponding meteorological data. Several factors contribute
to the increased complexity of ano-VID-weather for small
object detection. First, objects often move against back-
grounds such as grass and sandy dunes, limiting the contrast
between them and their surroundings. Additionally, natural
vegetation frequently causes partial occlusions, while vary-
ing weather conditions introduce further challenges, includ-
ing reduced visibility, altered brightness and contrast, ob-
scured or distorted object appearances, and apparent back-
ground movement. ano-VID-weather is divided into four
subsets to evaluate object detection performance under spe-
cific weather conditions. The Tiny Objects subset focuses
on the smallest annotated objects under clear weather condi-
tions. The remaining subsets include weather-specific sce-
narios: wind, rain, and hazy weather. Figure 3 illustrates
the detailed distribution of absolute object sizes across these
subsets. In contrast, Table 1 compares the average absolute
and relative object sizes to those in other popular datasets.
This paper defines the absolute size of an object as

√
h · w,

where h and w represent the height and width of the object,
respectively. On the other hand, the relative size expresses
the object’s size as a proportion of the image size defined as√

h·w
H·W where H and W represent the height and width of

the image. Furthermore, persons, vehicles, cyclists, birds,
dogs, and horses are annotated in each frame. Since this
study focuses on object detection rather than classification,
all annotated objects are assigned to the same class.

3.1.1 Data collection

The three weather subsets and part of the Tiny Objects
subset are collected in a typical real-world surveillance
scenario from static cameras mounted at 30 meters eleva-
tion that have recorded video footage daily from March
to December in 2023, covering a large area and massive
foreground-background imbalance, as shown in Figure 1.
This extended recording period introduces significant di-
versity in the dataset, encompassing variations in light in-
tensity, background movement, changes in vegetation, con-
trast, and occlusions. The videos were captured using Tele-
dyne Adimec TMX-55 cameras [1], with a native resolu-
tion of 4K (4096×2176 pixels) at 15 frames per second. To
account for small enough objects, the frames were down-
scaled using bi-cubic interpolation to resolutions of 2K and
1K. This reduced the average pixel count per object while

preserving sufficient small relative object size to mimic the
large foreground-background imbalance.

Meteorological data, including rainfall (mm/h), wind
speed (m/s), and temperature (°C), were obtained from a
nearby weather station during the video recordings. This
information was used to categorize videos into weather-
specific subsets (Tiny Object, Rain, Wind, Haze) through an
initial automated pre-selection process, followed by manual
verification to finalize the categorization.

3.1.2 Tiny Objects subset

The Tiny Objects subset is a set of videos used to evalu-
ate the object detection performance of spatial and spatio-
temporal small object detection models in different surveil-
lance scenes and as a baseline with ”clear weather condi-
tions”. This subset differentiates itself in two main ways
from the three adverse weather subsets. First, the videos
selected for this subset does not contain severe rain, wind,
haze or other disturbing weather phenomena. Instead, it fo-
cuses on more common weather conditions, such as sunny
and lightly clouded. Second, the subset contains much more
variation in scenes, brightness and contrast, viewing an-
gles, object sizes and vegetation since additional proprietary
datasets are added to evaluate the generalization capability
of the small object detection models. 60.85% of the an-
notated objects originate from videos from the grassy dune
scene as described in Section 3.1, and 39.15% are annota-
tions extracted from two proprietary datasets. These two
datasets contain images taken at ground level, looking at an
open field with low bush vegetation and trees in the back-
ground. The Tiny Objects subset contains 2506 annotated
objects in 1046 frames with an average absolute object size
of 11.98 pixels. See Table 1.

3.2. Adverse weather subsets

The adverse weather subsets contain videos of the grassy
dune scene (3.1) in either wind, rain or haze conditions.

Wind subset: The Wind subset was created to evalu-
ate the object detection performance of spatial and spatio-
temporal small object detection models in wind and con-
tains wind speeds of over 35 km/h. This subset captures
a scenario characterized by significant environmental dis-
turbances, such as extensive moving vegetation due to high
winds. The large amount of background movement is ex-
pected to be a challenge for spatio-temporal detectors. Fig-
ure 2a provides an impression of the Wind subset, illustrat-
ing the background motion through a frame-difference over-
lay. The Wind subset contains 366 annotated objects in 99
frames. The average absolute object size is 15.24 pixels.
See Table 1.

Rain subset: The Rain subset was created to evalu-
ate the object detection performance of spatial and spatio-
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temporal small object detection models in rain, and features
rainfall rates of approximately 5 mm/h. The falling rain-
drops in the subset cause additional movement and noise in
the background while reducing the scene’s visibility, bright-
ness and contrast. However, the wind speed for this se-
quence was only measured at 17 km/h, so the precipitation
mainly generated additional background noise. Figure 1b
shows an impression, while Figure 2b highlights the addi-
tional background movement caused by the rain. The subset
contains 235 annotated objects in 79 frames, with an aver-
age absolute object size of 19.20 pixels. See Table 1.

Haze subset: The Haze subset was created to evalu-
ate the object detection performance of spatial and spatio-
temporal small object detection models in moderate to
heavy haze conditions. The degree of haze ranges from low
overhanging haze providing partial coverage to full opaque
coverage of the entire dune scene. Using the setup described
in Section 3.1, 245 frames have been annotated from mul-
tiple videos during heavy haze in November and December
2023, resulting in 867 annotated objects. Figure 1c shows
an impression. The average absolute object size is 19.27
pixels. See Table 1.

Datasets
Object size

Absolute (↓) Relative (↓)

Tiny Objects 11.987.37 0.0040.002

Wind 15.247.81 0.0070.003

Rain 19.2014.5 0.0090.006

Haze 19.278.3 0.0090.004

TinyPerson [81] 18.017.3 0.0120.010

Visdrone [87] 45.3744.90 0.0300.028

BKD100K [80] 51.0063.96 0.0530,067

Virat-Ground [57] 59.945.47 0.0520,033

KITTI [25] 72.362.23 0.1060.091

CityPerson [83] 79.80.67 0.0550.046

MSCOCO [48] 99.5108 0.1090.203

Table 1. Object sizes from Nano-VID-weather subsets compared
to popular datasets. The subscripts represent standard deviations
(STD) for the corresponding values.

3.3. Haze Augmentation

We propose haze augmentation to enhance the object de-
tection performance and robustness in hazy weather. As
outlined in Section 2.1.1, incorporating hazy weather im-
ages into the training process is expected to improve ob-
ject detection performance solely on clear-weather images.
Since a real-world training dataset meeting our conditions is
absent, as discussed in Section 2.3 and capturing and anno-
tating real-world images in all weather conditions is time-
intensive, our approach uses simulated haze to overcome

(a) Cropped still of a video in our Wind subset, with a heatmap overlay,
indicating the amount of motion due to wind.

(b) Cropped still of a video in our Rain subset, with a heatmap overlay,
indicating the amount of motion due to rain.

Figure 2. An impression of motion in our Wind and Rain subsets
using a motion overlay shows amplified movement. Both moving
trees and falling raindrops might be expected to affect the object
detection performance of a spatio-temporal models.
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Figure 3. Distribution of object’s sizes in Nano-VID-weather.

these limitations. Our haze augmentation is based on a sim-
plified atmospheric scattering model [43], which assumes
that the same amount of light that is scattered away from
the camera is scattered towards the camera from all other
locations. This can be expressed as follows:
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I(x, y) = J(x, y) · t(x, y) +A(1− t(x, y)) (1)

Where I(x, y) represents the pixel’s final intensity
(color) at position x, y. J(x, y) is the intensity (color) of
the pixel in the original image scene without atmospheric
effects (referred to as ”non-hazy image”), to which we want
to apply haze augmentation. A is a coefficient representing
the global atmospheric light. The global atmospheric light
A is randomly sampled within the [150, 255] range to simu-
late various intensities of airlight. t(x, y) is the transmission
in the direction of pixel x, y and represents how much of the
original light reaches the camera without being scattered by
the haze, which decreases with increasing distances. t(x, y)
can be expressed as follows:

t(x, y) = e−d(x,y)β (2)

Where d(x, y) is the distance to the observed scene of
J(x, y) for pixel x, y, and β is the scattering coefficient
of the atmosphere. The scattering coefficient β is gener-
ated using the diamond-square algorithm [22] to simulate
the real-world uneven, low-hanging haze. This algorithm
mimics the natural variability of haze, with the ”wibble de-
cay” (WD) parameter randomly selected within the range
[1.6, 1.8] to control the size and density of haze clouds.
Lower WD values produce smaller, thinner clouds, while
higher values generate larger, denser clouds. The haze in-
tensity is further varied by scaling β randomly within the
range [2, 8]. Figure 1c illustrates real-world haze from
Nano-VID-weather Haze subset, while Figure 4 shows ex-
amples of our simulated haze augmentation. We estimate
a single depth map for the entire dataset based on known
camera parameters, intrinsic properties, vertical FOV, and
camera height. Assuming a flat-earth model, we estimate
the scene distance for each horizontal pixel row y as fol-
lows:

d(y) =
hcam

cos (a+ (IFOV · y))
(3)

d(y) =


dhorizon if d(y) > dhorizon

or (a+ IFOV · y) < 0,

d(y) otherwise.
(4)

Where d(y) represents the depth at pixel row y, hcam
is the camera’s height above the ground (in meters), a is
the base angle, IFOV is the instantaneous FOV per pixel.
dhorizon is the distance to the horizon, calculated as follows:

dhorizon =
√
2 · hcam · 6.4 · 106 (5)

6.4 ·106 approximates the radius of the earth in meters. The
depth map is constructed so that distant objects have the
same depth, creating a realistic haze effect similar to natural
scenes. Varying haze conditions are simulated by randomly
reducing dhorizon.

(a) A = 220, β = 2, WD = 2 (b) A = 160, β = 1, WD = 0.5

Figure 4. Impression of our haze augmention applied to an clean
image from training set.

4. Experiments & Results
The following section outlines the setup for the evalu-

ation method, metrics, and model training configuration.
Followed by the experiments conducted to evaluate TY-
OLOv8 and the proposed haze augmentation on Nano-VID-
weather, along with the corresponding results and discus-
sion. For comparison, we include the frame-differencing
method, 3FN, and the spatial approach (using a single
frame) with YOLOv8 as baselines for these experiments.
These object detectors were selected to facilitate a compar-
ative evaluation of spatial and spatio-temporal approaches.

4.1. Evaluation & Metrics

Common metrics for evaluating object detectors include
recall, precision, and mean Average Precision (mAP), typ-
ically using an Intersection over Union (IoU) threshold of
at least 0.5 [20, 48]. We use various modifications to these
metrics to better assess small object detection performance,
as proposed in earlier work [71]. This includes scaling up
bounding boxes such that each dimension of the bounding
box dimension is at least 15 pixels and reducing the IOU
threshold to 0.25. Furthermore, multiple object detections
on the same annotation and multiple annotations using a
single object detection are both considered correct. This
approach enables us to measure the ability of the detectors
to localize a target rather than its ability to make a perfectly
fitting bounding box.

4.2. Model configuration

Our experiments use the pre-trained spatio-temporal TY-
OLOv8 model from [71]. Additionally, we use a spatial
YOLOv8 model, which has been trained using the same hy-
perparameters and techniques as proposed in the same paper
but takes a single RGB frame as input instead of multiple
grey-scale frames. The Nano-VID dataset [71] was used as
a training dataset for these models. Nano-VID focuses on
typical weather, such as sunny and lightly clouded weather,
and excludes severe rain, wind, or haze. A one-second in-
terval between input frames is used for the spatio-temporal
methods 3FN and TYOLOv8.

Haze augmentation: For the haze augmentation exper-
iment, the YOLOv8 and TYOLOv8 models are fine-tuned
for 20 epochs on Nano-VID, using the training techniques
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proposed in [71] but includes our haze augmentations as
proposed in Section 3.3. The haze augmentation is applied
to non-hazy image samples from Nano-VID with a proba-
bility of 50%. The models are trained and evaluated three
times with a random seed to account for random differences
between training runs. The PR (precision-recall) curves for
the haze experiments are based on the result from the first
run, while the reported mAP scores are averaged between
runs.

4.3. Results

The YOLOv8, TYOLOv8 and 3FN object detectors are
evaluated on our proposed Tiny Objects, Wind, Rain and
Haze subsets, to assess the impact of different (temporal)
weather conditions on their small object performance.

The object detection performance is summarized in Ta-
ble 2, providing the mAP@.25 score per object size range
and per weather condition. Depending on the subset, TY-
OLOv8 achieves mAP@.25 scores between 0.74 and 0.81
on all object sizes, which outperforms YOLOv8 with an
mAP@.25 score of 0.21 on average on Nano-VID-weather.
Depending on the subset, YOLOv8 model yields mAP@.25
scores between 0.41 and 0.61 on all object sizes. While
Nano-VID-weather is not as extensive as some established
benchmarks, the substantial differences in relative perfor-
mance across models enables us to draw robust conclusions.

4.3.1 Adverse weather conditions

The object detector’s PR curves, trained without hazy
weather and without haze augmentation, are presented in
Figure 5. Here, we observe curves with similar character-
istics for the TYOLOv8 model across all subsets. The op-
timal F1 score is around a recall of 0.75 and a precision
of 0.9 for each weather condition and subset. As expected,
the TYOLOv8 model achieves a strong mAP@.25 score of
0.78, and outperforms YOLOv8 with an mAP@.25 score
of 0.22 on the Tiny Objects subset. It can exploit motion
features without experiencing too much hinder from back-
ground noise. Additionally, TYOLOv8 also significantly
outperforms the other approaches, on subsets that feature
adverse weather conditions such as wind, rain on average
with an mAP@.25 score of 0.22. These conditions consid-
erably increase the background noise and reduce the vis-
ibility, as shown in Figure 1. Although the TYOLOv8
model was not trained on adverse weather data, it effec-
tively minimizes false positives, distinguishing viable tar-
gets from background elements such as moving vegetation
or rain. This ability is reflected in the model’s consistent
mAP scores and PR curves across adverse weather condi-
tions.

For the YOLOv8 object detection performance, more
substantial differences can be observed between subsets and
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Figure 5. PR curve results on Nano-VID-weather, featuring
YOLOv8 (blue), TYOLOv8 (green) and the 3FN (orange). Similar
to Figure 6, the dot represents the optimal F1 score.

weather conditions. However, despite the lack of temporal
information, the YOLOv8 model can still detect a portion of
the annotated objects. However, without motion, the model
depends on the limited visual features of small objects,
which may share many similarities to features found in the
background. Nano-VID-weather contain a low foreground-
to-background ratio, leading to low precision. While the
amount of background features that mimic the foreground
may be affected by the weather, it is also influenced by
many other parameters. For instance, the Wind subset ap-
pears to include more challenging background clutter, lead-
ing to increased false alarms for the YOLOv8 model. As
such, deducing a relationship between YOLOv8 object de-
tection performance and weather has not been possible.

The 3FN method achieves the lowest precision and thus
fails to yield competitive mAP scores, and are therefore not
reported. Even in good conditions, balancing sensitivity
to objects with rejection of background noise in a large-
scale background is challenging. Although most traditional
approaches are intended to be paired with tracking to re-
duce false positives, this is undesirable for applications con-
strained by latency.

4.3.2 Haze augmentation

The results in Figure 6 show the PR curves for YOLOv8
models trained without and with our proposed haze aug-
mentation. As expected, the PR curve improves when
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Subsets
mAP@25 per absolute object size range (↑)

(0, 10) [10, 15) [15, 20) [20, 30) [30, inf] All
Y/TY Y/TY Y/TY Y/TY Y/TY Y/TY

Tiny Objects 0.65/0.81 0.58/0.82 0.53/0.73 0.47/0.76 0.46/0.60 0.56/0.78
Wind 0.43/0.79 0.49/0.88 0.52/0.62 0.41/0.78 0.52/0.59 0.41/0.74
Rain 0.64/0.79 0.56/0.79 0.50/0.81 0.44/0.80 0.59/0.60 0.67/0.78
Haze 0.42/0.66 0.59/0.78 0.60/0.84 0.83/0.89 0.65/0.81 0.59/0.81
Haze + haze aug 0.39/0.77 0.67/0.79 0.65/0.87 0.80/0.80 0.69/0.74 0.64/0.80

Table 2. YOLOv8 (Y) / TYOLOv8 (TY) object detection performance in mAP on Nano-VID-weather subsets for five object size ranges.
Bold represents the best results. Haze + haze aug represents the results were our proposed haze augmentation was applied during training.

haze augmentation is incorporated during training, exhibit-
ing higher recall and precision.

The results in Table 2 reveal that the most significant im-
provement of the YOLOv8 models occurs in the object size
range [10, 20), where haze often compromises visibility.
However, there is no improvement for the smallest objects
in range (0, 10), likely due to insufficient spatial informa-
tion for object detection. In contrast, augmentation does
not contribute significantly to object detection performance
for larger objects in range [20-inf ), where the haze is less
dense or absent.

Similarly, Figure 6 displays the PR curves for TYOLOv8
models trained without and with our haze augmentation.
While the overall object detection performance is not in-
creasing for the TYOLOv8 model, Table 2 shows an im-
provement in the object range (0, 20), where dense haze
typically reduces visibility. This suggests that haze aug-
mentation can help the TYOLOv8 model better detect small
objects by leveraging spatio-temporal information in dense
haze.

When comparing the PR curves in (Figure 6) of
YOLOv8 with the TYOLOv8, as well as their respec-
tive mAP@0.25 scores (Table 2), TYOLOv8 consistently
achieve higher recall across all precision levels. It out-
performs both YOLOv8 models in hazy weather (trained
without and with our haze augmentation) on average with
0.19 mAP@0.25. This highlights the TYOLOv8 model’s
robustness in detecting objects under hazy conditions, even
when haze augmentation is not incorporated during train-
ing. In contrast, the YOLOv8 model shows improvement
when haze augmentation is incorporated during training,
which underscores the need for training data to adapt its
appearance-based features.

This advantage of the TYOLOv8 model is particularly
beneficial since acquiring real-world hazy training data can
be expensive and time-consuming. By effectively utiliz-
ing motion as an additional feature, TYOLOv8 enhances its
ability to detect small objects even in challenging real-world
hazy weather, offering a robust solution for object detection
in diverse and demanding real-world scenarios.
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Figure 6. PR curve results on Haze subset featuring YOLOv8 (left)
and TYOLOv8 (right) trained with our haze augmentation (green)
and without haze augmentation (blue).

5. Conclusion

This study investigated the effect of real-world ad-
verse weather conditions such as wind, rain and haze on
small object detection performance of spatial YOLOv8 and
spatio-temporal TYOLOv8 and 3FN moving object detec-
tors. Despite that adverse weather conditions reduce visi-
bility and introduce spatio-temporal background noise, TY-
OLOv8 consistently outperforms its spatial-only counter-
parts across all object size ranges and weather conditions,
achieving this without the need incorporating weather data
during the training phase. These results demonstrate that
TYOLOv8 is capable of combining spatio-temporal fea-
tures in such a way that it can discriminate between fore-
ground movement and background movement. While we
find that the object detection performance of YOLOv8 can
be improved substantially for hazy weather by applying
realistic haze augmentations, the object detection perfor-
mance for TYOLOv8 remains significantly higher. Thus,
the spatio-temporal detector delivers the highest quality ob-
ject detection’s across all evaluated scenarios, making it
highly suitable for a wide range of real-world surveillance
applications, without the need for incorporating real-world
or simulated weather during training, which can be both
costly and time-consuming.
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