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 A B S T R A C T

Double-covered shear joints with hot rivets or with snug tight bolts subjected to cyclic load may fail in the 
ply or in the fastener. Tests with the latter failure mode are sparse and scattered. This paper combines these 
data and attempts to provide a unified theory on the fatigue driving force for this failure mode. Using the 
finite element method, we demonstrate that the nominal shear stress in the fastener is not a good indicator of 
its fatigue performance, because it ignores frictional force transfer and assumes an equal load share between 
fasteners. We provide an analytical model for the actual shear stress range. We derive S–N curves for this shear 
stress range, either using straightforward regression of test data or using Bayesian inference of the decisive 
failure type (ply or fastener). Finally, we derive the geometries and loads for which fastener failure is decisive 
over ply failure.
1. Introduction

Almost all bridges constructed before 1950, and many bridges be-
tween 1950 and 1970, contain hot-riveted joints. Many of these bridges 
are still in service to date. The current numbers of freight trans-
ports were not foreseen in the design of these bridges, which makes 
the fatigue performance of riveted shear joints a subject of ongoing 
study [1–3]. Contraction during cooling of the rivets after driving 
causes a certain clamping stress in the rivet [4], but the clamping stress 
is often too small for full force transfer through friction. Hence, part of 
the force is transferred through bearing.

Inspections of fatigue-loaded bolted joints, in which the bolts are 
intended to be prestressed, occasionally reveal loose bolts. In addition, 
snug-tight (non-prestressed) bolts are applied in light structures such 
as racks. These structures can also be subject to fatigue loads [5].

The load transfer and fatigue performance of shear joints with 
partially or non-prestressed fasteners (bearing-type joints) differs from 
that of fully prestressed fasteners (slip-resistant joints) [6,7]. Bearing-
type double-covered shear joints subjected to cyclic load, Fig.  1, can 
show three types of failure, namely (Fig.  2):

1. Failure in the net section of the ply loaded in cyclic tension (or 
tension–compression) — Failure Type 1 (FT1);

2. Failure in the net section of the strap loaded in cyclic tension (or 
tension–compression) — FT2;

3. Failure of the fastener in cyclic shear — FT3.

∗ Corresponding author at: Eindhoven University and Technology, Groene Loper 3, Eindhoven, 5612 AE, The Netherlands.
E-mail address: johan.maljaars@tno.nl (J. Maljaars).

We have developed an analytical model and derived an S–N curve 
for FT1 in [8]. This model estimates the stress range in the ply at the 
edge of the hole, which we call the hoop stress range Δ𝜎ℎ. The fatigue 
resistance correlates much better with the hoop stress range than with 
the net section stress range used by others [9–12]. FT2 rarely occurs 
for joint strap thickness equal to or larger than the ply thickness [8] 
(2𝑡𝑠 ≥ 2𝑡𝑝, see Fig.  1 for the symbols) and we therefore do not consider 
it.

FT3 remains to be studied. For rivets, DiBaptista et al. [10] conclude 
that most fatigue failures occur in the connected plates and not in 
the rivet. However, [13–15] occasionally report FT3 in their tests. 
Wilson [16] reports test series on relatively thick plates aimed at FT3. 
Based on these and similar tests, [11,17] provide S–N curves using the 
following nominal rivet shear stress range as the fatigue driving force: 

Δ𝜏𝑛 =
Δ𝐹

𝑛𝑠𝑛𝑟𝑜𝑤𝑛𝑝𝑟𝜋𝑟2𝑟
(1)

where 𝐹  is the load applied to the joint, 𝑛𝑠 is the number of shear planes 
(equal to two in double-covered shear joints), 𝑛𝑟𝑜𝑤 is the number of 
rivet rows perpendicular to the direction of applied load (Fig.  1), 𝑛𝑝𝑟
is the number of rivets per row in line with the applied force (Fig.  1), 
and 𝑟𝑟, depending on the literature source, is usually the nominal rivet 
shaft radius 𝑟𝑠, and sometimes the hole radius 𝑟.

With respect to bolts, the thread can extend beyond the shear plane, 
or it can stop before the shear plane, see Fig.  3(a) and (b), respectively. 
In the former case, FT3 occurs in the threaded section, resulting in low 
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Nomenclature

Symbols

𝛽1 Bearing ratio of first fastener row
𝜒𝑘,𝜏 , 𝜒𝑘,𝜎 Relative distance of test 𝑘 to the centroid of 

the data (for fastener failure, for ply failure)
Δ𝑋 Range of cycle 𝑋
𝑋̂ Estimate or expectation of 𝑋
𝜅 Normalization parameter
𝜇 Friction coefficient
𝜈 Poisson ratio
𝜎ℎ Stress in the ply at the fastener hole (‘hoop 

stress’)
𝜎𝑐𝑙, 𝜎𝑐𝑙,0 Rivet clamping stress (before load applica-

tion)
𝜎𝑐𝑥 Contact stress in direction of applied load
𝜎𝑛𝑒𝑡 Net section stress
𝜏, 𝜏𝐶 𝜏𝐹𝐸 , 𝜏ℎ, 𝜏𝑛 Fastener shear stress (characteristic value, 

according to the FE method, the analytical 
model, nominal)

𝜁 Curvature parameter for unloading curve
𝑎 Hutchinson’s factor
𝐴𝑐 Contact area
𝐶𝜏 , 𝐶𝜎 Ordinate intercept of the Basquin equation 

(for fastener failure, for ply failure)
𝐸 Young’s modulus
𝑒 End distance
𝐹 Applied load
𝑓1 Force fraction transferred at first fastener 

row
𝑓𝑃 (𝑌 ) Prior of 𝑌
𝐹𝑠 Shear force per shear plane
𝑓𝑋 (𝑋) Probability density of 𝑋
𝐹𝑠𝑙𝑖𝑝 Slip force per fastener
𝐺 Shear modulus
ℎ Semi grip
𝐾 Hoop stress correction factor
𝑘𝑝, 𝑘𝑟, 𝑘𝑠 Spring stiffness (of the ply, fastener, strap)
𝑚𝜏 , 𝑚𝜎 , 𝑚𝛼 Inverse slope of the Basquin equation (for 

fastener failure, for ply failure, or with 
exceedance probability 𝛼)

𝑁𝜏 , 𝑁𝜎 Number of cycles to failure (for fastener 
failure, for ply failure)

𝑛𝜏 , 𝑛𝜎 , 𝑛𝑟, 𝑛𝑡𝑜𝑡 Number of tests (with shear failure, with ply 
failure, run-outs, total)

𝑛𝑝𝑟 Number of fasteners per row
𝑛𝑟𝑜𝑤 Number of fastener rows

fatigue resistance [7]. Therefore, most modern standards and guide-
lines [18–20] require non-threaded shaft in the shear planes. Our study 
considers this condition. The nominal shear stress is as in Eq. (1), where 
𝑟𝑟 is the radius of the bolt shaft.

Opposed to Eq. (1), the force transfer is usually not equally dis-
tributed over the fastener rows [16]. Depending on the geometry, the 
first fastener row transfers a larger fraction of force than the adjacent 
rows. In addition, a certain fraction of force is transferred through 
friction between the plates, depending on the fastener prestress 𝜎𝑐𝑙,0
and the friction coefficient 𝜇. As a result, a higher fatigue resistance 
is observed for a higher prestress [21]. Eq. (1) therefore represents a 
2 
𝑛𝑠 Number of shear planes
𝑝 Pitch
𝑃𝑖 Probability of fastener failure of test 𝑖
𝑅 Load ratio
𝑟 Hole radius
𝑅ℎ Ratio of the hoop stress
𝑟𝑜 Cone outer radius
𝑟𝑟 Hole or fastener radius
𝑅𝑠𝑞 Coefficient of determination
𝑠𝜏 , 𝑠𝜎 Standard deviation of the Basquin equation 

(for fastener failure, for ply failure)
𝑇 (𝛼,DOF) Cumulative probability of the student 𝑇  dis-

tribution with exceedance probability 𝛼 and 
DOF degree of freedom

𝑡𝑝 Semi ply thickness
𝑡𝑠 Thickness of one strap or lap plate
𝑡(𝛼,DOF) Inverse of the student 𝑇  distribution with 

exceedance probability 𝛼 and DOF degree of 
freedom

𝑢𝑗,𝑝, 𝑢𝑗,𝑠 Deformation of node 𝑗 (of the ply, strap)
𝑤 Semi gauge for center rivets, or average 

between edge distance and semi gauge for 
rivets at plate edge

𝑥𝑖, 𝑥𝐶 10-base logarithm of the stress range [MPa] 
(of test 𝑖, characteristic value)

𝑦𝑖, 𝑦𝑖,𝛼 10-base logarithm of the number of cy-
cles to failure of test 𝑖 (with exceedance 
probability 𝛼)

Superscripts
∗ Using a predefined (‘fixed’) slope parameter
𝑚𝑎𝑥 At maximum load of the cycle
𝑚𝑖𝑛 At minimum load of the cycle

rough approximation of the actual (average) shear stress per fastener 
shear plane.

The purpose of this paper is two-fold. First, we derive S–N curves 
for FT3 using the actual (average) shear force transferred per fastener. 
Second, we derive the joint dimensions at which FT3 dominates over 
FT1. This study is limited to double-covered shear joints. Fasteners 
may skew in single lap joints, causing a different load on the fastener 
that is not covered in this study. Section 2 describes the methods, 
including the finite element (FE) method to evaluate the shear force 
transferred per shear plane, the derivation of the analytical model to 
estimate this shear force, the regression analysis of fatigue test data, 
and the equations to distinguish between FT1 and FT3. The description 
of the fatigue tests, collected from the literature, forms the subject of 
Section 3. Section 4 gives the results, including lessons learned from 
the FE method, a comparison between the shear stress according to the 
analytical model and the FE method, the derivation of the S–N curves 
for FT3 and the joint geometries for which FT3 is decisive over FT1. 
Section 5 provides the conclusions.

2. Models and methods

2.1. Finite element models

The FE models that we employ to estimate the shear force are the 
same models as elaborated in [8] and they are inspired on work of 
others [22–30]. All models, analyzed with the commercial FE software 
Abaqus version 2020 HF2, represent double-covered shear joints (𝑛 =
𝑠
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Fig. 1. Lay-out of a double-covered shear joint with 3 rows per side (𝑛𝑟𝑜𝑤 = 3) and 2 fasteners per row (𝑛𝑝𝑟 = 2).
Fig. 2. Three failure types of bearing-type double-covered shear joints: net section of 
the ply in tension (FT1), net section of the strap in tension (FT2), or fastener in shear 
(FT3).

Fig. 3. Extent of thread in a bolt: (a) Beyond the shear plane, not considered in this 
study; (b) Before the shear plane, subject of this study.

2). The rivets are modeled as hole-filling after driving (𝑟𝑟 = 𝑟), following 
experimental observations in [13,16,31]. The models represent 1/8 
of the complete geometry and consist of hexahedral elements of type 
C3D20R (quadratic shape function and reduced integration scheme) for 
plates and fasteners, Fig.  4(a). These components have linear elastic 
material with Young’s modulus 𝐸 = 210 GPa and Poisson ratio 𝜈 = 0.3. 
Contact interactions with a Lagrange penalty model in the normal 
direction and a Coulomb friction model in the tangential direction 
represent the interfaces between the components. The friction coeffi-
cient varies per simulation, see Section 3.3. The interactions cause the 
model to behave non-linear despite the linear elastic material of the 
steel components. The simulations consist of three load stages, each 
consisting of multiple increments:

1. The clamping stress of the fastener is applied by assigning a 
temperature change to the fastener shaft, which has a prede-
fined thermal expansion coefficient. The temperature change 
is determined by trial so that the desired clamping stress is 
obtained. The applied clamping stress varies per simulation, see 
Section 3.3.
3 
2. The maximum external load is applied to the ply.
3. The minimum external load is applied to the ply.

We evaluate the average shear stress range in the shear plane: 

Δ𝜏𝐹𝐸 =
Δ𝐹𝑠

𝜋𝑟2𝑟
(2)

𝐹𝑠 = ∫𝐴𝑐

𝜎𝑐𝑥𝑑𝐴 (3)

where 𝐹𝑠 is the shear force per shear plane, obtained from the integral 
of the contact stress between fastener and ply, see Fig.  4(b), 𝐴𝑐 is the 
contact area and 𝜎𝑐𝑥 is the contact stress in the direction of the applied 
load (𝑥-direction). Simulations with Stages 2 and 3 repeated multiple 
times show that the stress distribution does not change after the first 
unloading cycle (second half cycle), as explained in Fig.  4(c). The 
shear force range Δ𝐹𝑠 is therefore equal to the arithmetical difference 
between the shear forces in analysis Stages 2 and 3.

2.2. Analytical model for fastener shear force

Using mechanical principles, the average shear stress range in the 
fastener can be estimated through a number of closed-form equations, 
hereafter called analytical model. This model accounts for the effects of 
frictional force transfer (for rivets and for semi-prestressed bolts) and 
non-uniform force transfer between the different rows of fasteners. Fig. 
5(a) explains two terms used in the model: The fraction 𝑓1 denotes the 
force share transferred by the first (outer) row of fasteners (see Fig. 
1), which is the decisive row [16]. The slip force 𝐹𝑠𝑙𝑖𝑝 is the maximum 
force transferred through friction per fastener. The part of the force 
exceeding 𝐹𝑠𝑙𝑖𝑝 is transferred through bearing and this part causes shear 
stress in the fastener.

The shear stress range used here is the average shear stress per shear 
plane at maximum applied load minus that at minimum applied load: 

Δ𝜏ℎ =
𝐹𝑚𝑎𝑥
𝑠 − 𝐹𝑚𝑖𝑛

𝑠

𝜋𝑟2𝑟
(4)

where subscripts 𝑚𝑎𝑥 and 𝑚𝑖𝑛 refer to maximum and minimum applied 
load, respectively. We use the hole radius 𝑟𝑟 = 𝑟 for rivets in Eq. (4) 
because driven rivets after cooling are almost hole-filling. Upon first 
loading (Stage 2), a fastener shear force builds up if the applied load 
exceeds the slip force, see the red dashed curve in Fig.  5(c). The shear 
force in this stage follows from: 

𝐹𝑚𝑎𝑥
𝑠 = 𝐹𝑚𝑎𝑥

𝑓1𝛽𝑚𝑎𝑥1 (5)

𝑛𝑠𝑛𝑝𝑟
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Fig. 4. Finite element method employed to evaluate the rivet shear stress: (a) Lay-out of the model; (b) Contact area used to determine the shear force; (c) Schematic of the 
fastener force versus the applied load.
Fig. 5. Explanation of the analytical model: (a) Terminology 𝑓1 and 𝐹𝑠𝑙𝑖𝑝; (b) Compression cone around fastener; (c) Shear force per fastener 𝐹𝑠 as a function of the applied load 
𝐹 .
where 𝛽1 is the ratio between the bearing force and the total force 
per fastener in the first row. It ranges between 0 and 1 for loads fully 
transferred by friction and by bearing, respectively. For a given applied 
maximum load in between these two extremes [8]: 

𝛽𝑚𝑎𝑥1 = max

(

0,
|𝑓1𝐹𝑚𝑎𝑥

| − 𝑛𝑝𝑟𝐹𝑚𝑎𝑥
𝑠𝑙𝑖𝑝

|𝑓1𝐹𝑚𝑎𝑥
|

)

(6)

The slip force per fastener is approximated by: 

𝐹𝑚𝑎𝑥
𝑠𝑙𝑖𝑝 = 𝑛𝑠𝜇𝜎

𝑚𝑎𝑥
𝑐𝑙 𝜋𝑟2𝑟 (7)

where 𝜇 is the friction coefficient between the plates and 𝜎𝑐𝑙 is the 
fastener clamping stress. The latter depends on the applied load because 
of lateral contraction of the plates. It is estimated with [8]: 

𝜎𝑚𝑎𝑥𝑐𝑙 = max

(

0, 𝜎𝑐𝑙,0 − 𝜈𝜎𝑚𝑎𝑥𝑛𝑒𝑡

𝑡𝑝
ℎ
𝑟2𝑜 − 𝑟2

𝑟2𝑜

)

(8)

where 𝑡𝑝 is the semi ply thickness, ℎ is the semi grip (see Fig.  1), 𝑟𝑜 is 
the radius of the cone that transfers the compression stress in the plates, 
𝜎𝑐𝑙,0 is the initial clamping stress of the fastener (without applied load 
on the joint) and 𝜎𝑛𝑒𝑡 is the net section stress in the ply: 

𝜎𝑚𝑎𝑥𝑛𝑒𝑡 = 𝐹𝑚𝑎𝑥

𝑛𝑝𝑟(2𝑤 − 2𝑟)2𝑡𝑝
(9)

where 𝑤 is the semi gauge distance for center fasteners, or the average 
between semi gauge distance and edge distance for the fasteners closest 
4 
to the plate edge (see Fig.  1). The fastener cone radius is approximated 
with, see Fig.  5(b): 
𝑟𝑜 = 1.1𝑟 + ℎ∕3 (10)

where the factor of 3 is a load spread factor [32] and 1.1𝑟 is an estimate 
of the load carrying radius of the rivet head [8].

Force fraction 𝑓1 in Eqs. (5)–(6) can be estimated with a linear 
spring model [8]: 
𝑓1 = 2𝑘𝑟(𝑢1,𝑝 − 𝑢1,𝑠)𝑛𝑝𝑟∕𝐹𝑚𝑎𝑥 (11)

where 𝑘𝑟 is the fastener stiffness and 𝑢1,𝑝 − 𝑢1,𝑠 is the relative displace-
ment between the ply and strap at the first row. For an example joint 
with 𝑛𝑟𝑜𝑤 = 2 and 𝑛𝑝𝑟 = 1, these relative displacements follow from 
solving the following matrix, Fig.  6: 
⎡

⎢

⎢

⎢

⎢

⎣

𝐹𝑚𝑎𝑥∕2
0
0

−𝐹𝑚𝑎𝑥∕2

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑝 + 𝑘𝑟 −𝑘𝑝 −𝑘𝑟 0
−𝑘𝑝 𝑘𝑝 + 𝑘𝑟 0 −𝑘𝑟
−𝑘𝑟 0 𝑘𝑠 + 𝑘𝑟 −𝑘𝑠
0 −𝑘𝑟 −𝑘𝑠 𝑘𝑠 + 𝑘𝑟

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑢1,𝑝
𝑢2,𝑝
𝑢1,𝑠
0

⎤

⎥

⎥

⎥

⎥

⎦

(12)

with the following compliances of the ply, the strap, and the fas-
tener [8]: 
1
𝑘𝑝

=
𝑝 − 2𝑟
2𝑤𝑡𝑝𝐸

+ 2𝑟
2(𝑤 − 𝑟)𝑡𝑝𝐸

(13)

1 =
𝑝 − 2𝑟

+ 2𝑟 (14)

𝑘𝑠 2𝑤𝑡𝑠𝐸 2(𝑤 − 𝑟)𝑡𝑠𝐸
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Fig. 6. Explanation of the spring model in Eq. (12): (a) Joint considered; (b) Spring components.
1
𝑘𝑟

=
9𝑡3𝑠 + 48𝑡2𝑠 𝑡𝑝 + 64𝑡𝑠𝑡2𝑝 + 16𝑡3𝑝

96𝐸𝜋𝑟4
+

4𝑡𝑝 + 3𝑡𝑠
8𝑎𝐺𝜋𝑟2

+ 1
𝑡𝑝𝐸

+ 1
𝑡𝑠𝐸

+ 1
2𝑡𝑝𝐸

(15)

𝑎 =
6(𝜈 + 1)2

4𝜈2 + 12𝜈 + 7
where 𝐺 = 𝐸∕(2[1+𝜈]) is the shear modulus, 𝑝 is the pitch, and 𝑡𝑠 is the 
full thickness of one strap. Similar matrices can be derived for different 
joint configurations.

Upon unloading, the shear force reduces to zero if the applied 
load just causes slip in compression. The built-up slip force in tension 
gradually releases during unloading, and it again builds up gradually if 
loaded in compression. Hence, the shear force reduces approximately 
linearly between its maximum and zero for a decreasing applied load 
between the maximum applied load and the slip force in compression; 
see the blue solid curve in Fig.  5(c). For an applied compressive load 
that is lower than the slip force in compression, a similar equation as 
Eq. (5) applies; see the purple dash-dotted curve in Fig.  5(c). The shear 
force in the unloading stage hence follows from: 

𝐹𝑚𝑖𝑛
𝑠 =

⎧

⎪

⎨

⎪

⎩

𝐹𝑚𝑎𝑥
𝑠

(

𝐹𝑚𝑖𝑛𝑓1+𝑛𝑝𝑟𝐹𝑚𝑖𝑛
𝑠𝑙𝑖𝑝

𝐹𝑚𝑎𝑥𝑓1+𝑛𝑝𝑟𝐹𝑚𝑖𝑛
𝑠𝑙𝑖𝑝

)𝜁
 if 𝐹𝑚𝑖𝑛 ≥ −𝑛𝑝𝑟𝐹𝑚𝑖𝑛

𝑠𝑙𝑖𝑝 ∕𝑓1

𝐹𝑚𝑖𝑛 𝑓1𝛽𝑚𝑖𝑛1
𝑛𝑠𝑛𝑝𝑟

 if 𝐹𝑚𝑖𝑛 < −𝑛𝑝𝑟𝐹𝑚𝑖𝑛
𝑠𝑙𝑖𝑝 ∕𝑓1

(16)

where 𝜁 is a calibration parameter introduced because the FE simula-
tions with 𝜇 > 0 show a slight non-linear unloading path. Based on the 
FE simulations: 
𝜁 ≈ 1 − 𝜇∕3 (17)

Quantities 𝛽𝑚𝑖𝑛1  and 𝐹𝑚𝑖𝑛
𝑠𝑙𝑖𝑝  follow from similar equations as for the 

loading stage, Eqs. (6)–(9).
For convenience, we implemented all equations in a MS Excel sheet, 

which readers can download from Appendix A of the online version of 
this paper.

2.3. Evaluation method of fatigue test data

We use the well-known Basquin equation as the S–N curve: 

log10(𝑁𝜏 ) = 𝐶𝜏 + 𝑚𝜏 log10
( Δ𝜏
MPa

)

(18)

where 𝑁𝜏 is the number of cycles at which the fastener failed and 
parameters 𝐶𝜏 and 𝑚𝜏 follow from the regression of the test data. 
Two frequentist methods are often applied for the regression, namely, 
least squares and maximum likelihood. Although maximum likelihood 
offers some advantages [33–35], the least squares method is more 
often used for deriving S–N curves in standards [36,37]. We therefore 
used the latter method, of which the regression procedure is described 
extensively in [38,39]. Using notations 𝑦 = log10(𝑁𝜏 ), 𝑥 = log10(

Δ𝜏
MPa ), 

and the hat symbol ̂ as estimator, the life estimator of a future test 𝑘 in 
case of a limited number of available fatigue test data is: 
𝑦̂𝑘 = 𝐶̂𝜏 + 𝑚̂𝜏𝑥𝑘 (19)

𝑚̂𝜏 =
𝑛𝜏

∑

𝑖 (𝑥𝑖𝑦𝑖) −
∑

𝑖 (𝑥𝑖)
∑

𝑖 (𝑦𝑖)

𝑛𝜏
∑

𝑖 (𝑥𝑖)2 −
[
∑

𝑖 (𝑥𝑖)
]2

(20)

𝐶̂𝜏 =
∑

𝑖(𝑦𝑖)
𝑛𝜏

−
𝑚̂𝜏

∑

𝑖 (𝑥𝑖)
𝑛𝜏

(21)

where 𝑖 ∈ (1..𝑛𝜏 ) is the 𝑖th conducted test that failed in FT3 (fastener 
failing in shear). This procedure ignores tests terminated before failure, 
5 
so-called run-outs. Assuming a normal distribution for the difference 
between the actual life and the predictor with the Basquin equation, 
the 5% and 95% prediction bounds of the life of a future test 𝑘 follow 
from: 

𝑦𝑘,0.05; 𝑦𝑘,0.95 = 𝑦̂𝑘 ± 𝑡(0.95,𝑛𝜏−2)𝑠𝜏

√

1 + 1
𝑛𝜏

+ 𝜒𝑘,𝜏 (22)

where 𝑡(0.95,𝑛𝜏−2) is the inverse of the student’s t distribution for 𝑛𝜏 − 2
degrees of freedom evaluated at a fraction of 95%, 𝑠𝜏 is the standard 
deviation of the number of cycles to failure: 

𝑠𝜏 =

√

∑

𝑖(𝑦𝑖 − 𝑦𝑖)2

𝑛𝜏 − 2
(23)

and 𝜒𝑘,𝜏 is the relative distance between the shear stress range of future 
test 𝑘 and the centroid of the test data: 

𝜒𝑘,𝜏 =

[

𝑥𝑘 −
∑

𝑖(𝑥𝑖)∕𝑛𝜏
]2

∑

𝑖
[

𝑥𝑖 −
∑

𝑖(𝑥𝑖)∕𝑛𝜏
]2

(24)

Contrary to the prediction bounds for the future test 𝑘, we use 
confidence bounds to show the scatter of other variables. The 5% and 
the 95% confidence bounds of the reciprocal slope parameter follow 
from: 

𝑚0.05;𝑚0.95 = 𝑚𝜏 ±
𝑡(0.95,𝑛𝜏−2)𝑠𝜏

√

∑

𝑖
[

𝑥𝑖 −
∑

𝑖(𝑥𝑖)∕𝑛𝜏
]2

(25)

S–N curves for design purposes usually have a predefined slope 
parameter, with a value of e.g. 𝑚∗ = −3 or −5. The corresponding 
characteristic reference fatigue resistance Δ𝜏𝐶 , defined as the 95% 
prediction bound at 𝑁 = 2 ⋅ 106 cycles, follows from the procedure 
in [37]. It uses a Bayesian estimate of the variables under limited 
available data [40]: 
Δ𝜏𝐶 = 10𝑥𝐶  MPa (26)

𝑥𝐶 =
log10(2 ⋅ 106) − 𝐶̂∗

𝜏 + 𝑠∗𝜏 𝑡(0.95,𝑛𝜏−1)
√

1 + 1∕𝑛𝜏
𝑚∗
𝜏

(27)

𝐶̂∗
𝜏 =

∑

𝑖(𝑦𝑖)
𝑛𝜏

−
𝑚∗
𝜏
∑

𝑖 (𝑥𝑖)
𝑛𝜏

(28)

𝑠∗𝜏 =

√

∑

𝑖(𝑦𝑖 − 𝐶̂∗
𝜏 − 𝑚∗

𝜏𝑥𝑖)2

𝑛𝜏 − 1
(29)

2.4. Evaluation method for decisive failure type

The evaluation of the decisive failure type of a given joint (either 
FT1 — ply failure or FT3 — fastener failure) requires the S–N curves of 
both failure types. Ref. [8] contains a model to estimate the maximum 
stress range at the hole edge in the ply, 𝜎ℎ. The MS Excel sheet that 
can be downloaded from Appendix A has the corresponding equations 
implemented. The associated S–N curve for FT1 is: 

log10(𝑁𝜎 ) = 𝐶𝜎 + 𝑚𝜎 log10

(

Δ𝜎ℎ∕𝐾
MPa

)

(30)

𝐾 = 3.16
1 − 𝑅ℎ

1 − 0.9𝑅ℎ
(31)

where 𝑁𝜎 is the number of cycles to failure in FT1 and 𝑅ℎ is the stress 
ratio of the hoop stress at the hole edge. The value of 3.16 in Eq. (31) 
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is a scale factor, taken equal to the mean of the stress concentration 
factor of all tests in [8].

Using the S–N curves of the two failure types, we can estimate the 
probability that FT3 governs over FT1 of a joint with a given lay-out. A 
closed-form solution of this probability exists if the number of available 
tests with FT1 equals that of FT3, so that the Degrees Of Freedom (DOF) 
are equal for both failure types: 
𝑃𝑘

(

𝑁𝜏 < 𝑁𝜎
)

= 𝑇 (−𝑧𝑘,DOF) (32)

where 𝑇  is the cumulative distribution function of the Student 𝑇
distribution and 

𝑧𝑘 =
𝐶̂𝜏 + 𝑚̂𝜏 log10

(

Δ𝜏
MPa

)

− 𝐶̂𝜎 − 𝑚̂𝜎 log10
(

Δ𝜎∕𝐾
MPa

)

√

𝑠2𝜏 (1 + 𝜒𝑘,𝜏 ) + 𝑠2𝜎 (1 + 𝜒𝑘,𝜎 )
(33)

where 𝑠𝜎 and 𝜒𝜎 are similar as their shear stress counterparts of 
Eqs. (23)–(24). For the general case that the number of tests of the two 
failure types are not equal, a conservative estimate of the confidence 
interval results by taking DOF in Eq. (32) equal to the minimum of 𝑛𝜏−2
and 𝑛𝜎 − 2.

Using Eq. (32) as a basis, the failure types of the fatigue tests 
conducted allow us to estimate the Basquin curve of one failure type, 
given the Basquin curve of the other failure type. This is a different 
strategy from the standard regression mentioned above to derive an S–
N curve, although it partially relies on the same test data. Based on the 
many test data collected in [8], the parameters of the Basquin curve of 
FT1 are relatively certain. Using a predefined slope parameter 𝑚∗

𝜏 , we 
employ Bayesian inference to estimate the Basquin curve of FT3: 

𝑓𝐶∗
𝜏
(𝐶∗

𝜏 |failure types of tests) =
𝐿(failure types of tests|𝐶∗

𝜏 )𝑓𝑃 (𝐶
∗
𝜏 )

𝑓𝑓𝑡(failure types of tests)
(34)

where 𝑓𝐶𝜏
(𝐶𝜏 |failure types of tests) is the posterior distribution of 𝐶𝜏

given the failure type of all tests, 𝐿(failure types of tests|𝐶𝜏 ) is the 
likelihood of the failure type of the tests given 𝐶𝜏 , 𝑓𝑃 (𝐶𝜏 ) is the prior 
or initial belief of 𝐶𝜏 , and 𝑓𝑓𝑡(failure types of tests) is the probability 
of observing the failure types of the tests. Here, we make use of an 
uninformed prior for 𝐶𝜏 , i.e., 𝑓𝑃  has a uniform distribution without 
bounds (note that we use a fully informative prior for the slope pa-
rameter). Further, we use the natural logarithm of the likelihood to 
prevent inaccuracy in case of low probabilities. The posterior can then 
be determined with: 
𝑓𝐶∗

𝜏
(𝐶∗

𝜏 |failure types of tests)
= exp

(

ln
[

𝐿(failure types of tests|𝐶∗
𝜏 )
]

+ 𝜅
)

(35)

where 𝜅 is a normalization parameter so that the cumulative distribu-
tion of the posterior sums up to unity. The log-likelihood function is: 

ln
[

𝐿(failure types of tests|𝐶∗
𝜏 )
]

=
𝑛𝑡𝑜𝑡
∑

𝑖=1
𝑍𝑖 ln(𝑃 ∗

𝑖 ) + (1 −𝑍𝑖) ln(1 − 𝑃 ∗
𝑖 ) (36)

𝑃 ∗
𝑖 = 𝑇 (−𝑧∗𝑖 ,DOF) (37)

𝑧∗𝑖 =
𝐶̂𝜏 + 𝑚̂𝜏 log10

(

Δ𝜏
MPa

)

− 𝐶̂𝜎 − 𝑚̂𝜎 log10
(

Δ𝜎∕𝐾
MPa

)

√

𝑠2𝜏 (1 + 1∕𝑛𝜏 ) + 𝑠2𝜎 (1 + 1∕𝑛𝜎 )
(38)

where 𝑍𝑖 = 1 or 0 if the test failed in FT3 (fastener shear) or FT1 
(ply), respectively, and DOF in Eq. (37) is conservatively taken as the 
minimum of 𝑛𝜏 − 1 and 𝑛𝜃 − 1.

3. Collected test data

3.1. Fatigue tests of bolts in shear

As mentioned in the introduction, we disregard test series with bolts 
that failed in FT3, but that had thread in the shear plane [41–43]. 
6 
Obviously, only tests with snug-tight or semi-prestressed bolts may fail 
in FT3. Oversized holes may lead to excessive clamping loss during a 
test [21]. For this reason, we limit our database to tests on fitted bolts 
and bolts in holes with normal clearance, with the unthreaded shaft in 
the shear plane, and that failed in FT3. We found only a few tests that 
satisfied these conditions, since most bearing-type joints and also most 
pin-lug joints appear to fail in the net section of a plate.

Wichtowski [44] reports a series of 15 specimens with fitted bolts 
of FT3, tested with a load ratio 𝑅 = 0.1. Fig.  7(a) shows the geometry 
of the specimens. The M16 bolts were of grade 5.8, with a measured 
tensile strength of 606 MPa and a minimum yield stress of 420 MPa. 
They were torqued to 100 N m.

Wilson [16] conducted two test series with bearing-type bolted 
joints of FT3, one with a load ratio of 𝑅 = −1 and a geometry according 
to Fig.  7(b), and one with 𝑅 = 0 and a geometry according to Fig.  7(c). 
The measured tensile strength and yield stress of the bolts were 834 
MPa and 755 MPa, respectively. The specimens according to Fig.  7(b) 
contained two rivets and two bolts. They were designed such that only 
the bolts should transfer the shear force. We constructed an FE model of 
this joint type, which confirmed this hypothesis. Hence, we considered 
one bolt row in the analytical model; 𝑛𝑟𝑜𝑤 = 1.

The total database on bolts contains 27 tests, of which 8 are run-
outs or tests that failed in FT1, see Table  1. All specimens contain a 
single (loaded) bolt row. The plate material in all series was tested 
with mill scale, i.e., without applying a surface treatment to control 
or enhance the friction coefficient. We do not consider self-loosening of 
the bolts, i.e., reduction of pretension during the tests [45–47], because 
the difference in measured prestress at the start and end of Wilson’s 
tests is limited and self-loosening is not reported and also not likely 
given the test conditions of Wichtowski’s tests (fitted bolts, in double 
covered joints, subjected to pulsating loads, with long lives, hence small 
displacements).

3.2. Fatigue tests of rivets in shear

Brühwiler [48,49] and Wilson [16] report fatigue test series aimed 
at rivet shear failure. Wilson [16] reports excessive slip deformations in 
four of the sixteen tests conducted. Pipinato et al. [17,50] provide four 
FT3 tests. The systematic study on the influence of joint geometry and 
stress ratio on fatigue resistance in Graf [13,51] resulted in five FT3 
specimens, originating from two series of which two other specimens 
failed in FT1. Baron and Larson [15], Wilson and Munse [52], and 
Parola et al. [14] also report test series where some specimens failed in 
the ply and others in the rivet. Parola’s specimens contain rivets with 
reduced clamping, either by milling off part of the rivet head or by 
pressing the rivet.

The tests in [51] were conducted in steel grade St37 for the plates 
and St34 for the rivet material. The Brinell hardnesses of the rivets 
before and after driving were 128 and 145 kg/mm2, respectively, 
corresponding to approximate ultimate tensile strength of 430 MPa and 
480 MPa. Wilson [16] did not report the steel grade, but performed 
tensile tests on the plates and rivets. The average yield stress and 
ultimate tensile strength of the steel plates were 242 and 436 MPa, 
respectively, typical for mild steels around the date of study (1938). 
The average yield stress and ultimate tensile strength of the carbon 
steel rivets after driving were 317 and 460 MPa, respectively. These 
values were 21 and 16% higher than before driving. Parola et al. [14] 
carried out tests on plates of grade A7-55T with average measured 
yield stress and ultimate tensile strength values of 289 MPa and 455 
MPa, respectively. The rivet yield stress and ultimate tensile strength 
before driving, according to the mill report, were 204 MPa and 403 
MPa, respectively. The tests in Graf [13] were conducted on steel 
grades equivalent to St52 for the plates and St44 for the rivets, the 
latter having ultimate tensile strength values between 470 and 520 
MPa based on the Brinell hardness. It is unknown whether these data 
apply before or after driving. The ultimate tensile strength of the ply 
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Fig. 7. Lay-out and dimensions (in mm) of bolted joints where bolts failed in FT3: (a) Wichtowski [44], 𝑅 = 0.1; (b) Wilson [16], 𝑅 = −1; (c) Wilson [16], 𝑅 = 0.
Table 1
Test data on bolts of FT3 (without thread in shear plane).
 Source Figure Holes 𝑛𝑟𝑜𝑤 𝑛𝑝𝑟 𝑟 𝑤 𝑡𝑝 𝑡𝑠 𝑒a 𝑅 𝑛𝜏 𝑛𝑟 
 [mm] [mm] [mm] [mm] [mm]  
 [44] 7(a) Fitted 1 1 8 45 6 12 80 0.1 13 2  
 [16] 7(b) Normal 1b 2 12.7–13.1 57.3 28.6 28.6 44.4 −1 1 2  
 [16] 7(c) Normal 1 1 13.1 152 152 19.1 12.7 0 5 4  
a 𝑒 = end distance, see Fig.  1.
b Only the bolts transfer the force.
Table 2
Test data on rivets of FT3 with full geometric information.
 Source L,Sa 𝑛𝑟𝑜𝑤 𝑛𝑝𝑟 𝑟 𝑤 𝑡𝑝 𝑡𝑠 𝑝, 𝑒b 𝑅 𝑛𝜏 𝑛𝑟 
 [mm] [mm] [mm] [mm] [mm]  
 [13] S 2 2 10 48 8.5 13 70 −1 2 1  
 [14] L 2 2 11.9 52.5 7.2 9.5 105 −1 1 0  
 [14] L 2 2 11.9 42.5 9.6 12.2 85 −1 2 0  
 [15] L 2 2 10.3 45.2 10.3 13 89 0 2 0  
 [16] L 2 2 14.3 57.2 19.1 19.1 101.6 −1 3 0  
 [16] S 2 1 14.3 95.3 12.7 15.9 101.6 −1 6 0  
 [16] L 1 2 14.3 57.2 9.5 47.6 101.6 −1 0 1  
 [16] L 1 2 14.3 57.2 19.1 19.1 101.6 −1 3 0  
 [16] L 1c 1d 14.3 57.2 28.6 28.6 101.6 −1 3 0  
 [51] S 1 1 10 35 8 10 50 0.02 3 2  
 [52] L 1 3 9.5 38.1 12.7 15.9 76 0 2 1  
a L = double lap joint, S = double strap joint.
b Column gives pitch 𝑝 if 𝑛𝑟𝑜𝑤 > 1, or end distance 𝑒 (see Fig.  1) if 𝑛𝑟𝑜𝑤 = 1.
c Same geometry as Fig.  7(b), but with bolts replaced by rivets.
d Only the bolt-replacing rivets transfer the force.
in [15,52] was 436 MPa and 466 MPa, respectively. These sources do 
not report on the rivet material strength but given the ply strength 
values, the rivet strength should be similar as in [14,16] and lower 
than in [51].

The collected database consists of 63 riveted tests, of which 29 
riveted double-covered shear joints with full geometric and load infor-
mation, and 34 riveted tests with incomplete information, some of these 
conducted on specimens different from double-covered shear joints. 
Each subset contains five run-outs. Table  2 gives the dimensions of the 
first subset, where the symbols refer to Fig.  1, 𝑛𝜏 is the total number of 
failed tests loaded with the indicated ratio 𝑅, and 𝑛𝑟 is the number of 
run-outs, including tests of FT1. Appendix A of the online version of this 
paper provides a link through which the database can be downloaded.

3.3. Clamping stress and friction condition

Application of the analytical model to the test database requires in-
formation on the initial clamping stress 𝜎𝑐𝑙,0 and the friction coefficient 
𝜇 of the plate faces. Both variables are uncertain. The initial clamping 
stress of rivets depends on the riveting process [13] and appears to be 
correlated with the grip [53]. A curve fit of collected experimental data 
7 
in [8] provides the following expectation of the clamping stress 𝜎𝑐𝑙,0: 

𝜎̂𝑐𝑙,0 =
265 MPa

exp
(

12 mm
ℎ

) (39)

The standard deviation of the clamping stress is 35 MPa [53]. We 
used an expectation of 𝜎̂𝑐𝑙,0 = 0 for Parola’s [14] specimens with 
reduced clamping. This assumption follows from the observation of slip 
deformations from the onset of load application in [14].

For Wichtowski’s [44] bolted joints, assuming an equivalent
torquing friction coefficient of 0.15 and using the method in [32], the 
applied torque of 100 Nm gives an expectation of 𝜎̂𝑐𝑙,0 = 160 MPa.

The expectation of the friction coefficient for mill-scale contact 
between plates is 𝜇̂ = 0.33 and the coefficient of variation is 0.06 [54]. 
Unless explicitly mentioned, the following sections use the expectations 
of 𝜎𝑐𝑙,0 and 𝜇.

4. Results and discussion

4.1. Stress distribution in the finite element models

We performed more than 200 simulations with the FE method, most 
of them utilizing a friction coefficient 𝜇 = 0.3 and a few additional 
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Fig. 8. Shear stress distribution and shear failure location: (a) Prediction of the FE model with maximum absolute shear stress (blue and red contours) at the transition between 
head and shaft (Section AA) and maximum shear stress range at the shear plane (Section BB — contours re-scaled); (b) Comparison with failures in tests in [13], with cracks 
initiated at the transition and close to the shear plane (photos copied from [13]).
Table 3
Geometry and load of the simulations of Fig.  9.
 Subfigure 𝑛𝑟𝑜𝑤 𝑟∕𝑤 𝑡𝑝∕ℎ 𝑡𝑠∕𝑡𝑝 𝜎𝑐𝑙,0 [MPa] 𝜎𝑚𝑎𝑥

𝑛𝑒𝑡  [MPa] 𝑅  
 (a) 1 0.24 0.71 1.33 100 66 0  
 (b) 5 0.24 0.71 1.33 100 198 0  
 (c) 2 0.16 0.40 1.35 79 119 −1 
 (d) 2 0.23 0.60 1.33 93 91 −1 

simulations to check the results with 𝜇 = 0. The simulations reveal 
two locations of high stress, namely, at the transition between the 
fastener head and the fastener shaft and in the shear plane; see Fig. 
8(a). The former location gives a higher absolute shear stress, whereas 
the latter location gives a higher shear stress range. These two locations 
correspond to the fracture locations observed in fatigue tests; see 8(b). 
However, the shear plane appears to be the dominant failure location 
— more than 90% of the specimens collected in Section 3 failed at this 
location, and our analytical model of Section 2.2 therefore considers 
the shear stress at this location. The shear stress distribution in the 
shear plane is not uniform. Its maximum is located close to the fastener 
perimeter; see cross section BB in Fig.  8(a).

Fig.  9 shows some exemplary simulation results with the nominal 
shear stress according to Eq. (1) in dashed black and the shear stress 
evaluated with the FE method according to Eq. (2) in solid black as 
a function of the simulation stages. (The dotted red curves in the 
figure will be introduced later.) Table  3 provides the geometry and 
the load condition of the four subfigures. The figure shows discrepan-
cies between the shear stress evaluated with the two equations. The 
difference increases for a larger number of fastener rows, for which 
Eq. (1) underestimates the actual shear stress (Fig.  9(b)), and for a 
larger ratio between the slip force and the applied force, for which 
Eq. (1) overestimates the actual shear stress, as it does not consider 
friction (Fig.  9(a)).

4.2. Comparison between finite element and analytical models

The dotted red curves in Fig.  9 present the average shear stress 
range Δ𝜏  obtained with the analytical model of Section 2.2. The figure 
ℎ
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shows that the model better resembles the average shear stress range 
derived from the FE method compared to the nominal shear stress 
range Δ𝜏𝑛 of Eq. (1). Fig.  10 compares the shear stress range of all FE 
simulations with the nominal shear stress and the analytical model, in 
subfigures (a) and (b), respectively. The coefficient of determination 
of the analytical model Δ𝜏ℎ versus Δ𝜏𝐹𝐸 is equal to 𝑅𝑠𝑞 = 0.99 — an 
improvement over 𝑅𝑠𝑞 = 0.94 for the nominal shear stress Δ𝜏𝑛 of Eq. (1). 
The ratio Δ𝜏ℎ∕Δ𝜏𝐹𝐸 has a mean of 0.94 and the standard deviation is 
0.08. For reference, the mean and standard deviation of Δ𝜏𝑛∕Δ𝜏𝐹𝐸 are 
1.41 and 0.37, respectively.

4.3. S-N curves for bolts in shear

Fig.  11(a) shows the fatigue test data of the bolts with FT3 using 
the nominal shear stress of Eq. (1). The series colors match those of the 
specimen geometries in Fig.  7. The estimates of the slope parameters 
of the S–N curve of the black and red series (𝑅 ≈ 0 for both series) 
differ significantly: 𝑚̂𝜏 = −8.0 and 𝑚̂𝜏 = −1.4, respectively. The run-
outs of the blue series (𝑅 = −1) are in disagreement with the failed 
specimen, suggesting an extremely large scatter if the nominal shear 
stress is considered as the fatigue driving force. The red series shows 
similar disagreement between run-outs and failed specimens with the 
lowest applied stress range.

Fig.  11(b) shows the same data, but using the average shear stress 
range according to the analytical model, Eq. (4). The standard deviation 
of the S–N curve, 𝑠𝜏 — Eq. (23), reduces from 0.35 for Δ𝜏𝑛 to 0.29 
for Δ𝜏ℎ. The shear stress ranges of the specimens resulting in run-outs 
are now lower than those of the failed specimens for the individual 
series, in line with expectations. The slope parameters of the S–N 
curves of the black and red series are also better aligned, although the 
difference remains significant: 𝑚̂𝜏 = −5.4 and 𝑚̂𝜏 = −1.9, respectively. 
The fatigue resistance of the red series is higher than that of the black 
series. The difference in tensile strength is an unlikely reason for this 
difference, because the bolts are subjected to a high notch effect due to 
the concentrated load application in the shear plane. This concentrated 
load is also responsible for the stress concentration in the bolt, see 
Fig.  9(a) cross-section BB. It is known that the influence of tensile 
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Fig. 9. Exemplary simulations of the average shear stress per shear plane with 𝜇 = 0.3 (geometry and load according to Table  3). The nominal shear stress range of Eq. (1) does 
not match the FE result. The analytical model of Section 2.2 (Eq. (4)) gives a better estimate.
Fig. 10. Comparison between the average shear stress of the FE simulations and analytically derived estimates: (a) Δ𝜏𝑛, Eq. (1); (b) Δ𝜏ℎ, Eq. (4). The estimate of Eq. (4) agrees 
better with the FE simulations than that of Eq. (1).
Fig. 11. Fatigue test data of bolts failing in shear: (a) Using the nominal shear stress Δ𝜏𝑛 (Eq. (1)), showing large scatter; (b) Using the average shear stress Δ𝜏ℎ (Eq. (4)), showing 
reduced scatter;.
strength is small for severely notched components [55]. We also do 
not expect the difference in hole filling between fitted bolts (black 
series) and normal clearance holes (red series) to be the cause of the 
difference in fatigue performance. Parola et al. [14] expect a lower 
stress concentration and therefore a better fatigue performance for 
fitted fasteners, but White [56] shows a higher fatigue resistance of 
the lug for both clearance fit pins (red series) and interference fit pins 
(black series) compared to pins with a radius equal to the radius of the 
lug. An alternative explanation is as follows. The distance between the 
bolt head or nut and the shear planes is large relative to the bolt radius 
for the red series (see Fig.  7). These bolts are therefore subject to a 
9 
significant bending moment if the joint is loaded. A FE model made of 
this joint reveals that the bending moment developed at the load levels 
applied in the tests results in a compression stress at the location of 
maximum shear stress in the shear plane, despite of the bolt prestress. 
A compression stress in combination with a cyclic shear stress post-
pones fatigue crack initiation [57] and reduces the crack propagation 
rate [58] compared to the case without compression. This may explain 
the higher fatigue resistance. Because of their unusual configuration, 
we have disregarded the red series and have only considered the black 
series in the regression analysis of the tests with pulsating load (𝑅 ≈ 0).
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Fig. 12. Fatigue test data of hot rivets failed in shear, using the nominal shear stress. The data show a very large scatter.
The standard deviation of the black series is relatively small: 𝑠𝜏 =
0.14. The 90% confidence interval of 𝑚𝜏 resulting from Eq. (25) is 
−4.6 < 𝑚𝜏 < −6.3 and the estimate is 𝑚𝜏 = −5.4. Specifying a predefined 
slope of 𝑚∗

𝜏 = −5 for design purposes, the characteristic reference 
fatigue resistance for the shear stress according to the analytical model 
is Δ𝜏𝐶 = 96 MPa. To date, the standards EN 1992-1-9 [18] and BS 
7608 [19] and the guideline DNV-RP-C203 [20] use the nominal shear 
stress of Eq. (1) for evaluating the fatigue resistance. For the special 
case of a joint with one bolt row without prestress, the nominal shear 
stress equals the average shear stress according to the analytical model. 
For this case, the standards provide a characteristic reference fatigue 
resistance of Δ𝜏𝐶 = 100 MPa, i.e., in line with the regression applied 
here.

Fatigue tests on plain material loaded in shear or torsion show only 
a small influence of the mean shear stress on the fatigue resistance [59]. 
However, the blue series, conducted with a fully reversed load, provides 
a larger resistance compared to the black series, conducted with a 
pulsating load. A similar influence of the load ratio will be shown below 
for rivets. This influence is probably related to the fact that the stress 
concentration in the shear plane at the advancing side of the bolt is 
higher than that at the retreating side. The advancing and retreating 
sides change between tension and compression in reversed loading, 
implying that the stress concentration during the first semi cycle is 
different from that during the second semi cycle. Note that Δ𝜏ℎ depends 
on the mean stress.

Consideration of the slip force in the tests was necessary to derive 
the S–N curves. For applying the curves, care should be taken to prevent 
the bolt from loosing if relying on slip force; it is safe-sided to ignore a 
slip force.

4.4. S-N curves for rivets in shear

Fig.  12 presents the fatigue test data of the riveted joints of FT3 
as a function of the nominal shear stress Δ𝜏𝑛. The standard deviation, 
𝑠𝜏 = 0.76, is extremely large compared to other structural details with 
mechanical fasteners [7,60]. This standard deviation ignores run-outs. 
Similarly to bolts, the run-outs and the failed data disagree, resulting 
in an even larger standard deviation, had this been accounted for.

Fig.  13(a) presents the rivet data of which the geometry is known 
(allowing for application of the analytical model) using the average 
shear stress range of the analytical model, Δ𝜏ℎ. The standard deviation, 
𝑠𝜏 = 0.65, has slightly reduced compared to the nominal shear stress 
range (Fig.  12, 𝑠𝜏 = 0.69 for the same data), but it is still excessively 
large. Four tests stand out in Fig.  13(a) with a very low resistance. 
Wilson [16] reports large slip deformations for exactly these four tests. 
Large slip implies ineffective clamping. Moreover, the friction coeffi-
cient changes when slip occurs [61–63]. For these reasons, we also 
evaluated these four tests with zero slip force (𝜎𝑐𝑙,0 = 0), resulting in the 
arrow tips in Fig.  13(b). The arrow tips are within the 90% confidence 
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interval of the other tests. It should also be mentioned that the provided 
shear stress of three out of these four tests in [16] — shown in blue in 
Fig.  13(b) – does not agree with the net section stress reported in the 
same source. Hence, these data are uncertain. In addition, three of the 
tests in [16] failed at or before 𝑁𝜏 < 104, often considered the division 
between low and high cycle fatigue. The standard deviation reduces to 
𝑠𝜏 = 0.26 using Δ𝜏ℎ if all data from Wilson [16] are excluded.

To demonstrate the influence of the uncertainty in clamping stress 
and friction coefficient, the whiskers in Fig.  13(b) represent the 50% 
confidence interval of the shear stress range per test. We determined 
these intervals by performing Monte Carlo simulations with the model 
of Section 2.2, using the expectations and standard deviations of 𝜎𝑐𝑙,0
and 𝜇 mentioned in Section 3.3. The figure shows a significant, test-
dependent, effect of the slip force uncertainty on the average shear 
stress Δ𝜏ℎ. The uncertainty in the S–N curve can be reduced by per-
forming fatigue tests on geometries with red lead paint on the plate 
faces, which significantly reduces the friction coefficient 𝜇 [54]. We 
have not found such tests with FT3 in the literature.

Fig.  14(a) provides the FT3 test data of rivets subjected to a fully 
reversed load (𝑅 = −1), excluding Wilson’s data [16]. This subset has 
a low standard deviation of 𝑠𝜏 = 0.09. The 90% confidence interval of 
the slope parameter is −8.6 < 𝑚𝜏 < −4.0, with an expectation of 𝑚̂𝜏 =
−6.3. Therefore, a predefined slope of 𝑚∗

𝜏 = −5 seems reasonable. The 
corresponding characteristic fatigue resistance is 99 MPa. However, the 
S–N curve is based on no more than 𝑛𝜏 = 5 test data. Therefore, we 
compare the 90% prediction interval with that of the bolts of Fig.  11(b) 
(𝑅 = 0.1), see the blue-hatched areas in Fig.  14(a). The prediction 
interval of the rivets is slightly wider than that of the bolts, which 
is caused by the limited number of tests available in the subset of 
rivets with 𝑅 = −1. Ignoring this, the prediction intervals agree well 
— slightly higher for the rivets, which is in line with the difference in 
stress ratio.

Fig.  14(b) provides similar data, but for a pulsating load. These 
fatigue test data are in disagreement with the other subsets (rivets with 
𝑅 = −1 and bolts); the S–N curve is lower and has a steeper slope. A 
certain deviation between subsets is possible regarding the differences 
in stress concentration and material, but the difference is larger than 
expected. A possible reason is the relatively high stress to which the 
rivets are exposed in this subset. The combination of shear stress due 
to external load and normal stress due to clamping causes a von Mises 
stress that is on average 324 MPa for failed tests in the subset, whereas 
the reported yield stress of rivets of similar grades is between 204 MPa 
and 317 MPa (Section 3). Thus, the rivets have yielded. Evaluations 
with most of the common mean stress correction factors for tension, 
summarized in [64], and the collected data for shear in [59], show 
that only a small effect of yielding is expected on the fatigue resistance 
for pulsating load, provided that the maximum stress remains well 
below the tensile strength. However, yielding of the rivet can relax 
the clamping stress, resulting in a reduced or negligible slip force. For 
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Fig. 13. Fatigue test data of hot rivets that failed in shear, using the modified shear stress: (a) Highlighting the four outliers of Wilson [16], for which large slip was reported 
from the onset of the tests; (b) Analysis with 𝜎𝑐𝑙,0 = 0 for the four tests in [16] and the 50% confidence interval for other tests.
Fig. 14. S–N curves for hot rivets that failed in shear, using Δ𝜏ℎ: (a) Fully reversed load (𝑅 = −1), S–N curve in good agreement with bolts with 𝑅 = 0.1; (b) Pulsating load 
(𝑅 ≈ 0), S–N curve much lower than bolts with 𝑅 = 0.1; (c) Pulsating load assuming no clamping due to rivet yielding, S–N curve in good agreement with bolts with 𝑅 = 0.1.
this reason, Fig.  14(c) provides the same data, but assuming absence 
of clamping for the failed tests. The test results using this assumption 
agree well with that of the rivets with 𝑅 = −1 and the bolts with 
𝑅 = 0.1. The standard deviation is 𝑠𝜏 = 0.16, the expectation of the 
slope parameter is 𝑚̂𝜏 = −5.0, and the characteristic reference fatigue 
resistance is Δ𝜏𝐶 = 95 MPa. The prediction interval is relatively wide, 
due to the limited number of tests and the limited difference in the 
average shear stress range between the tests.

Note that three of the tests with 𝑅 = −1 in Fig.  14(a) were carried 
out with reduced clamping, where the slip force was assumed absent, 
and the other two tests had a lower von Mises stress in the rivets (209 
MPa) and a higher steel grade of the rivets (St44). This is the reason 
why we did not adjust the clamping stress for these tests. Similarly, 
the Von Mises stress remained below the yield stress in Wichtowski’s 
bolts [44].

Because of the small number of available tests and the uncertainty 
in slip force, the next section evaluates the S–N curves for FT3 with the 
test data of FT1.

4.5. Updated S-N curves for rivets using ply failure data of riveted joints

The number of available fatigue test data of rivets in FT3 is limited. 
Many more data are available on riveted joints in FT1. Eq. (32) allows 
us to evaluate if the S–N curves derived in the previous section, together 
with the S–N curves for FT1, can correctly predict the failure type.
11 
The number of tests on carbon steel specimens with FT1 collected 
in [8] with 𝑅 = −1 is 58. The estimators of the S–N curve are 𝑚𝜎 =
−4.24, 𝐶̂𝜎 = 15.112, and 𝑠𝜎 = 0.235. Fig.  15(a) presents the ratio 
between the average shear stress range and the hoop stress range for 
the tests with 𝑅 = −1. The solid black curve represents the expectation 
of the division between FT1 and FT3, obtained using Eq. (32) with 
𝑃 = 0.5 and the S–N curves mentioned above. The different slopes of 
the S–N curves cause the division to curve. We expect specimens with 
𝐾Δ𝜏ℎ∕Δ𝜎ℎ smaller and larger than this division to fail in FT1 and FT3, 
respectively. The hashed area represents the 90% confidence interval of 
the division. Blue ○ and red ⊗ symbols represent tests that failed in FT1 
and FT3, respectively. For reference, the figure also displays the rivet 
test data of Wilson [16] with orange ⊕ symbols. All tests except for one 
show a failure type in agreement with the division. The exception test 
was one of a twin with exactly the same geometry and applied load. 
One of the twin specimens failed in the rivet (in agreement with the 
division) and the other failed in the ply (in disagreement). None of the 
other tests failed in a type different from predicted.

The number of tests on carbon steel specimens with FT1 collected 
in [8] with pulsating load, for which we considered tests with 0 ≤
𝑅 ≤ 0.2, is 379. The estimators of the S–N curve are 𝑚𝜎 = −3.76, 
𝐶̂𝜎 = 14.206, and 𝑠𝜎 = 0.327. Fig.  15(b) presents the test data and 
the division assuming rivet clamping, i.e., the S–N curve of Fig.  14(b) 
that disregards yielding of the rivets. The figure shows that many tests 
failing in FT1 are predicted to fail in FT3. Given the high level of 



J. Maljaars et al. International Journal of Fatigue 197 (2025) 108929 
Fig. 15. Expectation of the failure type based on the S–N curves, Eq. (32), and actual test data: (a) Fully reversed (𝑅 = −1), tested failure types in agreement with prediction; (b) 
Pulsating (0 ≤ 𝑅 ≤ 0.2) disregarding rivet yielding, tested failure types in disagreement with prediction; (c) Pulsating (0 ≤ 𝑅 ≤ 0.2) assuming 𝜎𝑐𝑙,0 = 0 for rivets that have yielded, 
tested failure types in agreement with prediction.
confidence in the S–N curve for FT1, as it is based on many test data, 
this result indicates that the S–N curve for FT3 and pulsating load, 
as obtained with Fig.  14(b), is too low. Fig.  15(c) uses the same data 
(𝑅 ≈ 0) but assuming absence of clamping because of rivet yielding 
(S–N curve of Fig.  14(c)). With this assumption, all test data failed 
according to the prediction. This provides additional confidence in the 
S–N curve of Fig.  14(c).

4.6. Summary of S-N curves

Fig.  16 combines all FT3 test data in one S–N plot, but excluding 
Wilson’s [16] data on bolts, because of the non-standard dimensions 
(Section 4.3) and on rivets, as we have reason to question the reliability 
of these data (Section 4.4). The plot uses the shear stress according to 
the analytical model. In line with the prediction of the failure type, the 
tests in which yielding of the rivets is expected are evaluated without 
clamping. A small scatter results, with a standard deviation 𝑠𝜏 = 0.15. 
The characteristic reference fatigue resistance is Δ𝜏𝐶 = 97 MPa.

Fig.  17 provides the distribution of 𝐶∗
𝜏  as determined from Bayesian 

inference using the failure types, Eq. (35), and the shear stress ac-
cording to the analytical model. The expectation of 𝐶∗

𝜏  according to 
this analysis is slightly higher for the subset of rivets with 𝑅 = −1
compared to the subset of rivets with 𝑅 ≈ 0, the latter considered 
without clamping. A similar observation of slightly higher resistance 
for fully reversed load applies to bolts, see Section 4.3, which we 
explained by a change in location of the maximum stress concentration 
between tension and compression. The standard deviations of 𝐶∗

𝜏  of 
these two subsets are similar. The standard deviation is lower if all 
data (excluding Wilson’s [16]) are combined, mainly because of the 
larger number of data. The expectation is also slightly lower if all 
data are combined, mainly because of the lower ratio 𝐾Δ𝜏ℎ∕Δ𝜎ℎ of 
Wichtowski’s bolt data compared to the rivet data. The 95% exceedance 
fraction of 𝐶∗

𝜏  follows from the cumulative distribution 𝐹𝐶𝜏
, see the 

insert in Fig.  17(b), which also gives the resulting values of Δ𝜏𝐶 . 𝐶∗
𝜏  is 

Gaussian distributed, allowing us to determine 𝐶̂∗
𝜏  and 𝑠∗𝜏 from a least 

squares fit of the curves.
Tables  4 and 5 provide the resulting parameters of the S–N curve for 

all subsets using a free slope and a predefined slope, respectively. The 
latter tables use the regression analyses of the FT3 tests, as well as the 
Bayesian inference procedure of the failure types. The final column of 
each table provides the log-likelihood according to Eq. (36). The gray 
rows provide the rivets with 𝑅 = 0 assuming full clamping, i.e., without 
considering yielding of the rivets. In line with the observations above, 
this analysis gives a much lower log-likelihood than for the assumption 
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without clamping, and the characteristic reference fatigue resistance 
is also unexpectedly low and out of range of the other test data. For 
the other analyses, the log-likelihoods of the regression are similar to 
those of the Bayesian inference. The characteristic reference fatigue 
resistance values are also similar. These are slightly below 100 MPa 
for the regression analyses (95 MPa ≤ Δ𝜏𝐶 ≤ 99 MPa) and slightly 
above 100 MPa for the Bayesian inference (108 MPa ≤ Δ𝜏𝐶 ≤ 118 
MPa). A characteristic reference fatigue resistance of Δ𝜏𝐶 = 100 MPa
seems therefore a reasonable choice for assessments.

4.7. Geometries sensitive for fastener failure

Eq. (32) and the S–N curves of the previous section allow studying 
geometries and load conditions of double covered riveted joints for 
which FT3 is decisive. We consider the expectations of the fatigue 
resistance of both types of failure, where we assume S–N curves with a 
predefined slope of 𝑚∗

𝜏 = −5 and 𝑚∗
𝜎 = −5. The corresponding expecta-

tions of the intercept parameter are 𝐶∗
𝜏 = 16.49 and 𝐶∗

𝜎 = 16.96. Fig.  18 
provides the results, where the axes provide the geometry parameters 
(see Fig.  1 for the symbol explanation) and the curves provide the 
division between FT1, decisive for geometries below the curve, and 
FT3 decisive above the curves. The curves should be considered as 
indicative, because the parameters of the S–N curve are expectations, 
with the remaining uncertainty for FT3, and we made a choice for the 
predefined slope. Hence, joints with geometries relatively close to the 
division curves may fail in a mode different from predicted. The curves 
with zero slip force apply if clamping cannot be guaranteed or if the 
friction coefficient might be low. Examples of the former are loose 
rivets detected in inspections or rivets that may have yielded under 
service loads. An example of the latter is a joint in which (red lead) 
paint is applied on the plate faces, because other studies consistently 
report a low friction coefficient between plates shortly after application 
of red lead paint, with 𝜇̂ = 0.06 [54], whereas it is uncertain in the 
long term, reported between similar to shortly after application [65] 
up to 𝜇̂ = 0.27 [66]. The applied load relative to the clamping stress 
has a moderate influence on the results for a non-zero slip force. The 
results in Fig.  18 apply for 𝜎𝑛𝑒𝑡 = 150 MPa and the expectation of 
the clamping stress with a rivet grip equal to twice the ply thickness, 
i.e., 𝑡𝑝 = 𝑡𝑠. As an indication, for the cases with clamping and friction, 
the division curves are on average 5% higher than displayed for 𝑡𝑠 = 2𝑡𝑝
and 8% lower than displayed for Δ𝜎𝑛𝑒𝑡 = 200 MPa. The figure applies to 
riveted double-covered shear joints, where the fasteners are hole filling. 
However, we expect similar trends for double-covered shear joints with 
snug-tight bolts in normal clearance holes.
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Fig. 16. S–N curves of all tests of FT3, excluding Wilson’s tests [16], and assuming no clamping if the fastener could have yielded.
Fig. 17. Parameter 𝐶∗
𝜏  determined from the Bayesian inference (Eq. (35)) using the failure types of all tests, and assuming no clamping if the fastener could have yielded: (a) 

Probability density; (b) Cumulative distribution.
Table 4
S–N curve parameters for FT3 using a free slope, excluding Wilson’s [16] tests on bolts and rivets, based on Δ𝜏ℎ.
 Detail & load ratio Basis S–N curve 𝑚̂𝜏 𝐶𝜏 𝑠𝜏 ln(𝐿) Eq. (36) 
 Bolts 𝑅 ≈ 0 Fig.  11(b) −5.45 17.43 0.14 —  
 Rivets 𝑅 = −1 Fig.  14(a) −6.32 19.59 0.09 −9  
 Rivets 𝑅 = 0

Fig.  14(b)a −2.35 9.87 0.19 −445  
 Fig.  14(c)b −5.01 16.55 0.16 −26  
 All datab Figs.  11(b) & 14(a&c) −4.91 16.29 0.15 −34  
 & all load ratios  
a Assuming clamping.
b Assuming no clamping for rivets with 𝑅 = 0 (series where rivets have yielded).
Table 5
S–N curve parameters for FT3 using a predefined slope 𝑚∗

𝜏 = −5, excluding Wilson’s [16] tests on bolts and rivets, based on Δ𝜏ℎ.
 Detail & load ratio Basis S–N curve 𝐶∗

𝜏 𝑠∗𝜏 Δ𝜏𝐶 [MPa] ln(𝐿) Eq. (36) 
 Bolts 𝑅 ≈ 0 Regression, Fig.  11(b) 16.45 0.15 95 —  
 Rivets 𝑅 = −1 Regression, Fig.  14(a) 16.54 0.11 99 −11  
 Bayesian, Eq. (35) 16.85 0.12 118 −7  
 Regression, Fig.  14(b)a 15.44 0.27 52 −174  
 Rivets 𝑅 = 0 Regression, Fig.  14(c)b 16.52 0.16 95 −29  
 Bayesian, Eq. (35)b 16.67 0.12 108 −15  
 All datab Regr. Figs.  11(b) & 14(a&c) 16.49 0.15 97 −31  
 & all load ratios Bayesian Eq. (35) 16.57 0.06 108 −30  
a Assuming clamping.
b Assuming no clamping for rivets with 𝑅 = 0 (series where rivets have yielded).
Fig.  18 shows that the joints are more prone to FT3 instead of FT1 
for:

• Smaller number of rivet rows.
• Larger plate widths per rivet, relative to the hole radius.
13 
• Thicker plates, relative to the plate width.
• Lower slip force.
• Lower mean stress.
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Fig. 18. Geometric division between FT1 and FT3. FT3 is expected for geometries above the curves: (a) Fully reversed load 𝑅 = −1; (b) Pulsating load 𝑅 = 0.
The first three items imply that joints with few rivets having relatively 
small shaft radii are sensitive to FT3. In such joints, both the hoop 
stress range in the ply Δ𝜎ℎ, and the shear stress range in the fastener 
Δ𝜏ℎ, are high compared to the net section stress range, Δ𝜎𝑛𝑒𝑡, but Δ𝜏ℎ
is more sensitive to these geometric variations. With respect to mean 
stress, we expect that FT3 is decisive for all joints subjected to cyclic 
compression, because the plates are not prone to fatigue failure in that 
case. For cyclic tension loads with 𝑅 > 0, both Δ𝜎ℎ and Δ𝜏ℎ increase 
compared to 𝑅 = 0, but Δ𝜎ℎ is more dependent on the mean stress.

Joints with geometries above the curves in Fig.  18, for which FT3 
is expected, are not the most common. This partially explains why 
more than 90% of the collected fatigue test data failed in FT1 instead 
of FT3. However, this is also due to practical test conditions, because 
the specimens and the load need to be relatively large to induce FT3 
(small 𝑟∕𝑤, small 𝑟∕𝑡𝑝, implies a large ply cross section for a given 
rivet radius). The tests collected and the evaluations in this paper 
demonstrate that FT3 cannot be excluded for all double-covered joints. 
In addition, the tests in [17,49] show that FT3 can be decisive in other 
types of riveted joints, such as in truss girders or beams composed of 
plates and angle sections.

To evaluate whether the nominal shear stress range Δ𝜏𝑛 according 
to Eq. (1) can be applied to assess fatigue resistance, despite its short-
comings, we evaluate the ratio between Δ𝜏𝑛 and Δ𝜏ℎ for geometries on 
the curves, i.e., for which FT3 is equally likely than FT1. This ratio is 
0.90 ≤ Δ𝜏𝑛∕Δ𝜏ℎ ≤ 1.1 for zero slip force and 1.1 ≤ Δ𝜏𝑛∕Δ𝜏ℎ ≤ 2.3 for 
nonzero slip force. Slightly higher ratios result for geometries above the 
curves. The large difference between the two shear stress ranges, and 
the large scatter of the test data if evaluated with Δ𝜏𝑛, demonstrate 
that the nominal shear stress range is not a good indicator of its fa-
tigue performance. A lower bound fatigue resistance for double-covered 
joints based on Δ𝜏𝑛, which can be excessively conservative, results by 
multiplying Δ𝜏𝐶 = 100 MPa as derived for Δ𝜏ℎ with the lowest value of 
Δ𝜏𝑛∕Δ𝜏ℎ. This gives a characteristic reference fatigue resistance of 100 
MPa ⋅ 0.90 = 90 MPa. We conclude that the characteristic reference 
fatigue resistance of 140 MPa for Δ𝜏𝑛 as proposed by [11], and based 
on the tests in [49], see [67], could suffice for specific geometries, but 
is too high for the general case.

5. Conclusions

This paper concerns fatigue failure of fasteners in double-covered 
shear joints with rivets or with snug tight bolts. Using the finite element 
method and available test data, we demonstrate that the nominal shear 
stress in the fastener is not a good indicator of fatigue performance. We 
derive a set of equations that approximate the average shear stress per 
shear plane, which we call the analytical model. The model agrees well 
with 200 finite element simulations; the coefficient of determination 
between the analytical model and the finite element simulations is 0.99.
14 
The application of the analytical model requires an S–N curve 
derived from tests. We found a limited number of tests that failed in the 
fastener in the literature. This limited number, together with the scatter 
of the fastener clamping stress and the friction coefficient, causes the 
derived S–N curve to be uncertain. However, the selected S–N curve 
appears to be consistent with the prediction of the failure mode, which 
enhances confidence in the S–N curve. Using a predefined slope param-
eter of 𝑚∗

𝜏 = −5, the characteristic reference fatigue resistance for the 
shear stress range according to the analytical model is approximately 
𝜏𝐶 = 100 MPa, that is, slightly lower for the regression of the fastener 
failure test data, and slightly higher for the Bayesian inference using 
the failure types of the test.

The evaluations in this paper show that double-covered shear joints 
are more sensitive to fatigue failure of the fasteners in shear, instead 
of net section failure of the ply, if the number of fasteners and the 
dimensions of the fasteners are relatively small (small number of fas-
tener rows, large ratio of plate width over fastener radius, and large 
ratio of plate thickness over fastener radius), if the mean load of the 
cycle is low, and/or if the force transferred through friction is low 
(low clamping stress or paint on the plate faces). Fig.  18 provides the 
failure mode division for the combination of parameters. Most practical 
joints have dimensions for which failure of the ply is decisive. However, 
failure of a fastener is expected to be the only (and hence dominant) 
fatigue failure type for a joint subjected to cyclic compression.

Yielding of the fasteners under service loads should be checked, 
because the evaluation of the fatigue tests suggests that a slip force 
cannot be relied on in such a case. However, more tests are required to 
confirm this hypothesis.
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