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industry. With advancements in artificial intelligence, sen-
sor technology, and connectivity, AVs are rapidly evolving 
towards greater autonomy and reliability. Potential ben-
efits of large-scale adoption of AVs include improving road 
safety, alleviating congestion, decreasing pollution, and 
reducing energy consumption [1]. Major automotive manu-
facturers, technology companies, and startups are investing 
heavily in research and development to bring automated 
vehicles to the market. However, challenges such as regu-
latory frameworks, safety concerns, and public acceptance 
need to be addressed alongside technological advancements. 
Recently, concerns have been raised about robotaxis caus-
ing accidents that human drivers would not have caused, 
such as driving into wet concrete in work zones or not mak-
ing room for emergency vehicles [2].

There are 5 levels of vehicle automation as defined by 
SAE J3016 [3]. Level 1 introduces driver assistance sys-
tems such as adaptive cruise control, where the vehicle 
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Abstract
In the realm of automated vehicles (AVs), the focus is predominantly on the potential of sub-symbolic deep-learning-based 
artificial intelligence (AI) systems. Our study questions the suitability of this data-driven approach for AVs, particularly 
in embodying societal values in their behaviour. Through a systematic examination of sub-symbolic and symbolic AI, we 
identify key issues for AVs, including adaptability, safety, reliability, trust, fairness, transparency, and control. Deep learn-
ing systems’ lack of adaptability and inherent complexities pose significant safety concerns and hinder meaningful human 
control. This limitation prevents humans from effectively updating AI decision-making processes to better reflect ethical 
values. Furthermore, deep learning systems are prone to biases and unfairness, leading to incidents that are difficult to 
explain and rectify. In contrast, symbolic, model-based approaches offer a structured framework for encoding ethical goals 
and principles within AV systems, thus enabling meaningful human control. However, they also face challenges, such as 
inefficiencies in handling large amounts of unstructured data for low-level tasks and maintaining explicit knowledge bases. 
Therefore, we advocate for hybrid AI, combining symbolic and sub-symbolic models with symbolic goal functions. We 
propose Augmented Utilitarianism (AU) as an ethical framework for developing these goal functions, aiming to minimise 
harm by integrating principles from consequentialism, deontology, and virtue ethics, while incorporating the perspective 
of the experiencer. Our methodology for eliciting moral attributes to construct an explicit ethical goal function engages 
collective societal values through iterative refinement, contributing to the development of safer, more reliable, and ethi-
cally aligned automated driving systems.
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can control one aspect (e.g. longitudinal control) of driv-
ing while the human manages others. Level 2 automation 
involves partial automation, where advanced driver assis-
tance systems (ADAS) manage both steering and accelera-
tion under specific conditions. However, a human driver 
remains responsible for the overall driving task, requiring 
constant vigilance, road monitoring, and typically main-
taining hands on the wheel. Level 3 marks a significant 
technological and human-centred leap, where vehicles can 
temporarily perform the entire dynamic driving task while 
being in predefined conditions, defined as the Operational 
Design Domain. This means that the driver can temporarily 
be out of the loop and perform non-driving related tasks and 
only needs to take back control if warned by the vehicle.

Moving to Level 4, vehicles are included that can per-
form a minimum-risk manoeuvre if a driver does not 
respond to a take-over request. However, it also includes 
automated shuttles and robotaxis that are capable of self-
driving within limited areas, such as urban environments or 
predefined locations, and the person inside is not required to 
have any active role in driving or taking over control. Level 
5 vehicles represent the pinnacle of automation, as they sug-
gest being able to handle any situation a human driver could 
handle in any environment.

Since levels 1 and 2 still require the driver to monitor the 
driving task and are formally responsible for all parts of the 
driving task, in this paper we focus particularly on levels 
3 to 5, where the automated system can act upon the driv-
ing environment without the need for active human input or 
monitoring while driving. From this level 3 and above, the 
AV will need to decide how to act upon any situation within 
the operational design domain.

1.2  The role of AI in AVs

AI technology has emerged as a cornerstone in the devel-
opment of AVs, revolutionising the way vehicles perceive, 
interpret, and navigate the world around them. AI is integral 
to the operation of AVs, contributing to various aspects of 
their functionality. AI algorithms process data from sensors 
such as cameras, LiDAR, radar, and GPS to perceive the 
vehicle’s surroundings and to create a world model. Such 
a world model allows a cognitive system to better predict 
future sensory observations and optimise its actions based 
on those predictions. It encompasses not only the dynamics 
of the external environment but also bodily dynamics and 
social interactions [4].

Based on this world model, AI algorithms enable AVs to 
make real-time decisions. AVs analyse sensor data to predict 
the behaviour of surrounding objects and choose appropri-
ate actions to determine the optimal paths and trajectories 

for AVs to reach their destinations safely and efficiently. 
This is referred to as path planning.

In addition, AI algorithms control the vehicle’s actuators, 
such as steering, throttle, and brakes, to execute the planned 
trajectory. These algorithms strive to achieve smooth and 
precise control of the vehicle’s movements, adjusting in 
real-time to changes in the environment, though this is not 
always guaranteed. AI is also used for simultaneous locali-
sation and mapping (SLAM), allowing AVs to accurately 
determine their position and create maps of their surround-
ings in real-time. SLAM algorithms fuse data from sensors 
and use probabilistic techniques to estimate the vehicle’s 
pose and map the environment.

Finally, AI algorithms can assist AVs in decision-mak-
ing during unavoidable collisions by evaluating potential 
damages across various scenarios. For example, in their 
2021 article, Perumal et al. highlight the critical role Crash 
Avoidance and Overtaking Advice (CAOA) systems within 
Advanced Driver Assistance Systems (ADAS) systems play 
in improving road safety by tackling challenges such as 
obstacle avoidance, overtaking, and lane changes [5]. Addi-
tionally, in their 2016 paper, Wiseman and Grinberg describe 
a real-time assessment method using computational geome-
try, which involves constructing intelligent simulation mod-
els of vehicles as simple polygons [6]. Finally, in 2022, Li et 
al. introduced an innovative integrated approach to enhance 
collision avoidance during emergencies [7]. Their strategy 
combines steering and braking mechanisms through a two-
layer framework: an upper-level decision-making layer and 
a lower-level control layer.

In summary, AI technology is central to the evolution 
of automated vehicles, enabling them to perceive their sur-
roundings, make real-time decisions, and navigate safely. 
By processing sensor data and creating detailed world mod-
els, AI facilitates precise path planning, control of vehicle 
actuators, and accurate localization and mapping. Recent 
advancements underscore AI’s critical role in enhancing 
safety and optimizing collision avoidance strategies, reflect-
ing its transformative impact on automated driving.

2  Deep-learning-based AI systems

Typically, common-day AVs use deep learning based-AIs, 
meaning that their world model is primarily based on sub-
symbolic neural networks. Deep learning techniques involve 
training artificial neural networks with large amounts of data 
to recognise patterns and make decisions. This approach 
allows AVs to learn complex patterns and behaviours from 
sensor data without explicitly programmed rules. However, 
while deep learning excels in tasks like object recogni-
tion and classification, it may struggle with understanding 
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abstract concepts or adapting to novel situations. Deep learn-
ing can be described as a data-driven approach, also called a 
bottom-up approach or sub-symbolic approach. This means 
that the model does not develop explicit symbolic reasoning 
or understand the knowledge behind specific decisions, as 
it learns through examples without being given an explicit 
symbolic world model to optimise.

It is important to note that while sub-symbolic AI sys-
tems primarily learn through examples, they still require 
symbolic goal functions. A “goal function” is a comprehen-
sive term encompassing all types of loss functions, objec-
tive functions, multi-objective functions, or utility functions 
used in various fields, especially in machine learning and 
artificial intelligence. It serves as a mathematical criterion 
that quantifies the performance or desirability of different 
outcomes or actions. For instance, in supervised learning, 
the loss function measures the difference between the pre-
dicted values and the actual values, guiding the optimisation 
process to minimise this difference and improve the model’s 
accuracy. In multi-objective optimisation, the goal function 
involves balancing several objectives, often competing, to 
find an optimal trade-off solution. Utility functions assign 
values to different outcomes to reflect their relative prefer-
ence or worth, driving the decision-making process towards 
maximising expected utility [8]. Thus, the goal function 
provides a formalised way to direct the learning or optimisa-
tion process toward achieving desired results, incorporating 
various constraints and priorities inherent to the problem at 
hand.

In deep-learning-based AI systems, goal functions are 
used beforehand to select relevant training data. Imagine 
an AV system designed to prioritise pedestrian safety. Goal 
functions based on symbolic rules can help choose train-
ing data that includes diverse pedestrian scenarios, such as 
crosswalks, school zones, and crowded city streets. This 
ensures the system learns from a wide range of critical situ-
ations. Additionally, symbolic evaluation criteria allow for 
systematic performance assessment. For example, after 
training, the AV’s behaviour can be evaluated against pre-
defined ethical guidelines, such as stopping for pedestri-
ans at crosswalks or maintaining safe distances from other 
vehicles. If the AV fails to stop at a crosswalk during a test, 
this symbolic evaluation helps identify specific issues in the 
algorithm.

2.1  Case study: Wayve’s gaia

Wayve is a software development company that uses AI 
to pioneer a next-generation approach to self-driving [9]. 
Wayve’s autonomous driving technology, known as Gaia, 
operates on an approach called end-to-end learning. Unlike 
traditional methods that rely on handcrafted rules and 

mapping techniques, Gaia learns to drive directly from 
raw sensor data, such as camera images, using deep learn-
ing algorithms. This approach enables Gaia to perceive and 
understand the environment in a manner similar to how 
humans learn to drive, without extensive manual interven-
tion or hand-crafted rules.

The GAIA-1 model utilises specialised encoders for vari-
ous input modalities, including video, text, and action, to 
create a shared representation. These encoders project input 
data into a coherent timeline, ensuring alignment across 
different modalities. The core component of the model is 
the sub-symbolic world model, an autoregressive trans-
former trained to predict the next set of image tokens in a 
sequence by considering past image tokens, textual context, 
and action-based guidance. With 6.5 billion parameters, the 
world model generates visually coherent images aligned 
with textual and action-based input. Subsequently, a video 
decoder, employing a video diffusion model with 2.6  bil-
lion parameters, translates predicted image tokens into pixel 
space, enhancing the semantic meaning, visual accuracy, 
and temporal consistency of generated videos. GAIA-1 
boasts over 9  billion parameters and was trained for 15 
days on 64 NVIDIA A100s, utilising a dataset of 4,700 h of 
proprietary driving data collected in London, UK, between 
2019 and 2023.

Wayve’s Gaia represents a state-of-the-art example of 
modern automated vehicles that are solely based on deep 
learning and sub-symbolic AI. The formulation of the world 
modelling task in GAIA-1 is streamlined to focus on pre-
dicting the next token. This method underscores the reli-
ance on sub-symbolic processes, highlighting the potential 
and current applications of deep learning in creating highly 
advanced automated driving systems.

Although models like Wayve’s Gaia are at the forefront 
of automated driving technology, their reliance on deep 
learning proves inadequate for addressing the ethical chal-
lenges inherent in automated driving because of a lack of 
symbolic reasoning, explainability and therefore meaning-
ful human control. We will elaborate on these shortcomings 
in the following section.

2.2  Ethical challenges

The advent of deep learning AI systems, characterised by 
approaches like end-to-end learning and deep reinforcement 
learning, has heralded remarkable advancements in various 
domains, including automated driving. However, along-
side their potential benefits, these methods introduce pro-
found ethical challenges. In most cases, challenges of deep 
learning-based AI systems highlighted in literature include 
technical challenges, but more attention is now also given 
to ethical issues such as unbiased data availability, limited 
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This stems from the inability of AI systems to explicitly 
update their world models due to a lack of understanding. 
Unlike humans, who can adapt their mental models of the 
world based on new information and experiences, deep 
learning systems operate within predefined frameworks and 
struggle to incorporate novel or unexpected situations into 
their existing models. This limitation comes from the inher-
ent inability of deep learning algorithms to understand and 
create explanatory knowledge, which is needed in order to 
update their world model. As Roli et al. show in their 2022 
paper, true general intelligence entails situational reasoning, 
perspective-taking, goal selection, and handling ambiguous 
information, all of which rely on identifying and exploit-
ing new affordances—opportunities or impediments for 
goal attainment. However, as it is not possible to predefine 
a complete list of such uses, they cannot be treated purely 
algorithmically. Unlike organisms, deep learning agents do 
not possess the capacity to leverage new affordances [14]. 
As a result, AI systems may struggle to update their world 
models in real-time, leading to inaccuracies or errors in their 
perception and decision-making.

The lack of true understanding of deep learning AI sys-
tems poses significant challenges for AVs in real-world 
scenarios. Without an explicit world model, which defines 
the functional relationship between objects, the AI model 
will not be able to transfer knowledge from one situation 
to the next and create an efficient self-improving feedback 
loop. Hence, such an AI system will not be able to gener-
alise to infinite situations. For instance, if an AV encounters 
unanticipated road closures or obstacles, its AI may struggle 
to adjust its world model to navigate safely. Additionally, 
changing traffic patterns, new road layouts, and unpredict-
able pedestrian or cyclist behaviour can further challenge 
AVs relying on implicit world models. Furthermore, when 
an incident occurs, the lack of an explicit understanding and 
transparent decision-making process means it cannot be 
easily explained in court. This lack of explainability addi-
tionally hampers our ability to learn from the incident and 
implement improvements. The inability to provide clear, 
understandable reasons for AI decisions undermines trust 
and accountability, crucial elements for the widespread 
acceptance and ethical deployment of AV technology.

2.2.2  Transparency

It has been contended that the opacity inherent in deep 
learning systems is not necessarily problematic [10]. For 
instance, in advisory AI systems, absolute transparency 
may not be imperative if these models show a high suc-
cess rate. However, these systems involve the supervision 
of a human before any decision-making takes place. For 
example, consider the case of AI systems used in advanced 

transfer between tasks, brittleness, but also explainability, 
trustworthiness and security [10–12].

Further, on 8 April 2019, the High-Level Expert Group 
on AI presented Ethics Guidelines for Trustworthy Artifi-
cial Intelligence [13]. This document highlights 4 ethical 
principles that serve as the foundations of Trustworthy AI: 
respect for human autonomy, prevention of harm, fairness, 
and explicability. To address these concerns comprehen-
sively, we adopt a systematic approach that includes the fol-
lowing six critical topics: adaptability, reliability, fairness, 
explainability, trustworthiness, and security. These topics 
were chosen because they encompass the primary ethical 
and technical challenges unique to deep learning AI systems 
in automated driving. By addressing these six areas, we aim 
to provide a holistic evaluation of the ethical implications 
of deep learning AI systems in automated driving, ensuring 
alignment with the EU’s guidelines for trustworthy AI.

2.2.1  Adaptability

Deep learning’s demand for vast amounts of data starkly 
contrasts with human learning capabilities, which excel 
at abstracting relationships from limited examples. While 
humans can effortlessly grasp abstract concepts with mini-
mal examples, deep learning systems require extensive data-
sets to achieve similar feats. Despite advancements, deep 
learning struggles with abstract reasoning and adaptability 
to new situations, relying heavily on extensive training data 
and appropriate examples. This leads to several challenges. 
If incorrect data are present in the training set, simply 
removing them can be difficult without potentially disrupt-
ing the system’s learned behaviour, as deep learning models 
integrate information from all given data. Identifying and 
extracting erroneous data without losing valuable contex-
tual information is a significant challenge, underscoring the 
limitations of deep learning in achieving robust and reliable 
performance across varied and unforeseen scenarios.

Moreover, deep learning’s reliance on numerous hid-
den layers does not inherently imply conceptual depth; the 
representations acquired often lack nuanced understanding. 
Transfer tests reveal the superficial nature of deep learning’s 
solutions, with systems failing when encountering minor 
perturbations outside their training set. Additionally, the 
explosion of state-action space in complex environments, 
such as the number of possible scenarios in automated driv-
ing situations, exacerbates these issues, making it difficult 
for deep learning models to generalise effectively across 
different situations. This inherent rigidity and dependency 
on specific training data highlight the need for more adapt-
able and flexible AI systems to ensure robust performance in 
dynamic and unpredictable real-world scenarios.
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2.2.3  Control

Meaningful human control refers to the ability of humans to 
understand, influence, and ultimately take responsibility for 
the decisions and actions of automated systems, particularly 
in contexts where these systems have a significant impact on 
human lives or society as a whole. In the realm of AI, mean-
ingful human control requires the ability to influence all 
relevant aspects of an automated system, access to informa-
tion, and meeting strict control conditions, including knowl-
edge and capacity [16]. This entails ensuring that humans 
have the capability to oversee and intervene in AI systems’ 
decision-making processes, understand the rationale behind 
these decisions, and hold the companies responsible for the 
actions of their AI systems.

Operational control is generally interpreted in terms of 
having a driver control the vehicle. However, the concept of 
“human before the loop” goes beyond this traditional view. 
It emphasises meaningful human control through humans 
being involved in the design, development, and governance 
stages of AI systems. This ensures that ethical principles 
and societal values are embedded from the outset, rather 
than just having humans take control in real-time situations. 
Meaningful human control is essential for ensuring that AI 
systems serve human interests, align with societal values, 
and operate in a manner that is transparent, accountable, and 
trustworthy. It is a fundamental principle in the responsible 
development, deployment, and governance of AI technolo-
gies across various domains, including automated vehicles, 
healthcare, finance, and defence.

Relying solely on sub-symbolic implicit world models, as 
observed in certain automated driving systems like Wayve’s 
Gaia, may impose limitations on meaningful control, par-
ticularly due to the inadequate specification of both world 
models and ethical goal functions. Without explicit repre-
sentation of ethical considerations and higher-level goals, 
sub-symbolic models may make decisions that implicitly 
prioritise efficiency or convenience over safety, leading to 
potentially unsafe or unpredictable behaviour.

2.2.4  Security

In addition to the challenges posed by the inability of deep 
learning AI systems to have an explicit world model, there 
is also the concern of how this limitation could facilitate 
adversarial attacks. Adversarial attacks involve intention-
ally manipulating input data to deceive AI systems, causing 
them to make incorrect predictions or decisions. Since AI 
systems lack a comprehensive understanding of the world 
and rely on predefined frameworks, they are susceptible to 
adversarial attacks that exploit vulnerabilities in their per-
ception and decision-making processes.

driver-assistance systems in vehicles. For instance, a lane-
keeping assist feature might rely on sophisticated algorithms 
to help drivers stay within their lane. Absolute transparency 
into the exact workings of this AI might not be crucial, as 
long as the system performs reliably and the driver remains 
in control, with the AI providing assistance when needed. 
In contrast, AVs operate with a higher level of automation 
where real-time decision-making is critical. These vehicles 
continuously process a vast amount of sensory data and 
make instantaneous decisions about navigation, obstacle 
avoidance, and traffic interactions without human inter-
vention. In this setting, transparency in the AI’s decision-
making process is essential to ensure that the system can be 
trusted to handle complex and dynamic driving conditions 
safely.

Moreover, the acceptability of this lack of transpar-
ency hinges upon the successful resolution of other tech-
nical challenges inherent in deep learning methodologies. 
In situations where data availability is limited or where 
the transferability of knowledge from one task to another 
is critical—particularly in high-risk scenarios—an opaque 
system could yield inconsistencies or erroneous decision-
making, potentially resulting in catastrophic consequences. 
Furthermore, recent accidents involving robotaxis and even 
partially automated vehicles have raised significant public 
acceptance issues, highlighting the importance of transpar-
ent decision-making processes in automated systems to 
build trust and confidence among users and stakeholders 
[15].

Additionally, the inability to remove bad examples from 
training data in deep learning algorithms poses a signifi-
cant challenge. Even if AVs are trained on diverse datas-
ets, including scenarios with adverse weather or unusual 
road conditions, the presence of erroneous or misleading 
examples in the training data could lead to suboptimal 
decision-making in real-world situations. As a result, AVs 
may struggle to accurately interpret and respond to novel or 
ambiguous situations, highlighting the inherent limitations 
of relying solely on deep learning for automated driving.

The lack of transparency in deep learning AI systems 
presents significant challenges for humans in debugging, 
interpreting, controlling, and reasoning about them [10]. 
Without transparency, these systems operate as black boxes, 
concealing the underlying mechanisms driving their deci-
sions and behaviours. This opacity hinders human efforts to 
debug errors or anomalies within the system, as understand-
ing the root cause becomes elusive. As a result, interpreting 
the outputs or predictions of these systems becomes daunt-
ing, leaving humans unable to discern how or why certain 
decisions were made.

1 3



AI and Ethics

leading to unfair outcomes, such as disproportionately 
affecting certain demographic groups, and potentially lead-
ing to wrongful arrests, injuries, or other forms of discrimi-
nation. Additionally, the lack of transparency in AI systems 
complicates the identification and mitigation of biases, high-
lighting the urgent need for proactive measures to ensure 
fairness and equity in AV technology.

2.2.6  Trust

One of the main arguments for the development of auto-
mated vehicles is that they would be substantially safer than 
conventional vehicles. A widely circulated statistic states 
that 94% of car crashes are due to human error [20]. Replac-
ing humans with AVs would then lead to significantly fewer 
road injuries and fatalities. Some scholars have even posited 
in the literature that the safety advancements of AVs could 
lead to an obligation to transition from conventional trans-
portation methods to AVs: if a new technology is introduced 
which is safer than previously existing alternatives, then this 
creates a duty to switch over to the safer alternative [21, 22].

However, the current public opinion seems reluctant to 
the adoption of AV technology. A recent survey commis-
sioned by Forbes Advisor shows that 93% of Americans 
have concerns about some aspects of self-driving cars and 
that 62% of consumers have lost confidence in Tesla due to 
recent safety and technology recalls [23]. Additionally, 61% 
of respondents would not trust a self-driving car with their 
loved ones or children. The main cause of concern when it 
comes to self-driving cars is safety. Improving AV safety is 
therefore crucial for AV acceptance and to ensure that the 
positive benefits of AVs are met.

Trust in AI is crucial in overcoming this barrier, and 
transparency is key to building that trust. As Eschenbach 
describes, “A trusts B to do X only if A judges B to be trust-
worthy where trustworthy means that A has good reason to 
believe that B is competent in doing X and that B would act 
on A’s behalf.” We can draw a clear parallel with AVs, where 
A would be a human agent, trusting an AV (B), to drive in 
on their behalf (X) [24]. However, in a trust relationship, 
how the action X (driving) is performed by B (the AV), is as 
important as performing the action itself. If the AV compro-
mises one’s safety or that of others while driving on one’s 
behalf, one may feel that their trust has been betrayed in the 
same manner as one would feel if the AV did not drive at 
all. Taking action on behalf of someone else implies align-
ing with, or at least not contradicting, their values and com-
mitments, thereby offering justification for one’s actions. 
Trust in another’s ability to act on one’s behalf is built upon 
understanding and insight into their motives and methods. 
Transparency in their actions or intentions is essential for 
evaluating their trustworthiness.

For example, in the context of AVs, adversaries could 
manipulate sensor inputs, such as traffic signs or road mark-
ings, in subtle ways that are imperceptible to humans but 
can lead to misinterpretations by AI algorithms. Without the 
ability to dynamically update their world models to adapt to 
these adversarial inputs, AI-powered AVs may be vulner-
able to safety risks and security threats. As AI technology 
continues to advance, addressing these vulnerabilities and 
developing robust defence mechanisms against adversarial 
attacks will be crucial for ensuring the safety and reliability 
of AI-powered systems in real-world environments [10, 17].

2.2.5  Data bias and fairness

Deep learning models rely heavily on training data, and 
biases present in the data can propagate to the model’s deci-
sions. This raises concerns about fairness and equity, par-
ticularly if the automated system exhibits biased behaviour 
towards certain demographic groups or communities.

Bias is defined as a systematic error in decision-making 
processes that results in unfair outcomes [18]. AI systems 
can learn and replicate patterns of bias present in the data 
used to train them, resulting in unfair or discriminatory out-
comes. Bias and fairness in AI are closely related to user and 
societal trust: When AI systems exhibit biases or unfairness 
due to biased training data or flawed algorithms, it can erode 
public trust in these systems. Users may lose confidence in 
AI-powered applications, questioning the reliability and 
impartiality of the decisions made by these systems.

Numerous instances of biased facial recognition tech-
nology have been observed in law enforcement agencies. 
For instance, research conducted by the National Institute 
of Standards and Technology (NIST) revealed that this 
technology exhibited significantly lower accuracy rates for 
individuals with darker skin tones, resulting in elevated 
false positive rates [19]. This bias can lead to significant 
outcomes, including unjust arrests or convictions, and an 
increased risk of collisions with AVs. We can easily see 
how this type of bias could translate into AVs in a deep-
learning-based approach: a biased AI system trained mostly 
on a white sample of the population may be less able to 
identify individuals with darker skin tones, which may 
lead to an overrepresentation of injuries in this group. As 
a result, current disparities may be exacerbated, leading to 
increased discrimination against marginalised communities 
and restricting their access to critical services. The lack of 
transparency of the black box AI system increases the dif-
ficulty of identifying these biases.

Relying solely on deep learning AI in AVs can have 
significant consequences, particularly concerning biases 
present in the training data. Without appropriate measures, 
these biases may propagate into the AV’s decision-making, 
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mapping through sensor fusion. These world models can be 
developed without relying on deep learning by integrating 
various techniques, such as knowledge graphs that integrate 
prior knowledge (geometry, properties and rules) and sensor 
data to represent the AV-environment and symbolic reason-
ing and planning algorithms to interpret knowledge graphs 
and predict the environment. Sensor fusion combines data 
from multiple sensors like cameras and LiDAR, while tradi-
tional algorithms and symbolic AI interpret this data to map 
the environment. Probabilistic models and simulations fur-
ther enhance these representations, providing transparency 
and predictability. Additionally, the AI’s problem-solving 
capabilities extend to real-time decision-making processes, 
such as adapting to dynamic traffic situations, predicting the 
actions of other road users, and handling unexpected events.

The second axe involves explicitly encoding ethical 
goals within a dedicated ethical goal function. This func-
tion guides the AI’s behaviour, ensuring that its actions align 
with predefined ethical principles. The separation allows for 
clear responsibility delineation among different stakehold-
ers, such as developers focusing on the AI’s technical pro-
ficiency and regulators overseeing its ethical compliance. 
This framework enhances transparency and accountability, 
facilitating more robust oversight and control over the AI’s 
operations, and ensuring that ethical considerations are con-
sistently prioritised in decision-making processes.

By explicitly representing the underlying mechanisms of 
the environment, such as the properties of objects and the 
relationship between them, and the dynamics of AV opera-
tion, model-based approaches enable more transparent and 
interpretable decision-making processes. This transparency 
enhances trust and confidence in AV systems by allowing 
human operators to understand and verify the rationale 
behind the system’s actions. Furthermore, model-based 
approaches facilitate meaningful human control by provid-
ing a structured framework for encoding ethical goals and 
principles within AV systems. During training and even 
after deployment, humans can supervise and intervene in 
the system’s actions more effectively, ensuring alignment 
with a priori defined societal values and preferences.

Additionally, model-based approaches enable real-time 
updates and adaptation of the AV’s world model in response 
to changing environmental conditions or unforeseen events, 
enhancing the system’s robustness and reliability. Model-
based approaches offer greater flexibility and generalisa-
tion capabilities compared to purely deep learning methods. 
By encoding domain knowledge and physical laws into 
the model, AV systems can generalise across diverse sce-
narios and extrapolate their behaviour to novel situations 
not encountered during training. This adaptability is crucial 
for navigating complex and dynamic environments, where 
unforeseen challenges and uncertainties may arise.

In a deep learning approach, the AI system is opaque due 
to the absence of any mechanisms to reproduce or explain 
decision-making processes: inputs go into the system, and 
outputs come out, but the process by which the inputs are 
transformed into outputs is not clear. This poses significant 
challenges when considering questions of trust. Such an AI 
system cannot be guaranteed to be reliable and free from 
bias. The challenges posed by the inability to comprehend 
or clarify errors, as well as the process leading to significant 
outcomes, greatly diminish confidence, and therefore trust, 
in these systems.

In conclusion, deep learning approaches, such as the 
data-driven bottom-up methods prevalent in current auto-
mated vehicle technologies like Wayve’s Gaia, face inherent 
limitations in addressing several ethical challenges. These 
approaches lack explicit representation of ethical consider-
ations and higher-level goals, relying solely on deep learn-
ing without incorporating domain knowledge or symbolic 
reasoning. Without an explicit ethical goal function and a 
comprehensive understanding of the underlying decision-
making processes, deep learning AI systems may implic-
itly prioritise efficiency or convenience over safety, leading 
to potentially unsafe or unpredictable behaviour without 
humans even realising this. Additionally, the opacity of these 
systems makes it difficult to reproduce or explain their deci-
sion-making processes, diminishing confidence and trust in 
their reliability. Therefore, while deep learning approaches 
have demonstrated advancements in AI capabilities, they 
fall short in providing the meaningful human control and 
oversight necessary for ensuring ethical and responsible AI 
deployment in automated vehicles.

3  Model-based AI systems

Alternatively, a top-down or model-based approach offers a 
promising avenue for addressing some of the ethical chal-
lenges inherent in current bottom-up AI methodologies. 
Unlike data-driven approaches relying solely on deep learn-
ing, model-based approaches leverage symbolic AI tech-
niques, reasoning with models, and incorporating domain 
knowledge to explicitly encode world models as well as 
ethical goals and principles within AI systems [25].

In model-based systems, we can use orthogonality-based 
disentanglement by separating the AI system’s problem-
solving capabilities from its ethical considerations [26]. This 
is achieved by defining two distinct axes: one for the tech-
nical performance and problem-solving abilities of the AI, 
and another for its adherence to ethical values as encoded 
by human stakeholders. The first axe includes developing 
accurate world models representing the vehicle’s environ-
ment, enabling precise object detection, localisation, and 
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which operate primarily based on learned patterns from 
data, the symbolic reasoning process allows for self-assess-
ment and self-management. This capacity for reasoning 
enables the system to generalise knowledge and make deci-
sions based on logical principles, enhancing its adaptability 
and robustness in various situations.

In hybrid AI-based AVs, the symbolic layer serves as a 
crucial bridge between technical functionalities and ethi-
cal considerations, guided by the principles of orthogonal-
ity-based disentanglement (see Fig.  1) [26]. It integrates 
technical elements such as sophisticated path-planning 
algorithms, leveraging symbolic reasoning to navigate com-
plex environments efficiently while considering high-level 
goals and constraints. Simultaneously, the symbolic layer 
incorporates an ethical component, manifested in the form 
of an ethical goal function derived from the orthogonality-
based disentanglement approach. This function quantita-
tively encodes human values and preferences, guiding AVs 
to prioritise actions aligned with ethical principles, such as 
pedestrian safety or environmental sustainability. Through 
the orthogonality-based disentanglement framework, the 
symbolic layer ensures a transparent division of responsi-
bilities, enabling AVs to operate not only effectively but also 
responsibly and ethically in dynamic real-world scenarios.

Finally, the sub-symbolic layer primarily handles tasks 
requiring pattern recognition capabilities. This layer lever-
ages deep learning techniques to process raw sensor data, 
such as images from cameras, radar signals, and LiDAR 
data, to perform essential functions. It identifies and clas-
sifies objects in the environment, integrates data from mul-
tiple sensors for accurate perception, and determines the 
vehicle’s precise location using GPS and visual odometry. 
Additionally, it predicts the future movements of dynamic 
objects, such as other vehicles and pedestrians, to enhance 
safety and decision-making. By efficiently handling these 
data-intensive tasks, the sub-symbolic layer is crucial for 
the AV’s overall performance and adaptability.

5  Moral decision-making for AVs

Efforts to address the moral implications of new technol-
ogy require shifting focus towards considering moral issues 
during the design process, rather than as an afterthought. 
While laws, ethical codes, and theories offer frameworks 
for ethical assessment, they often lag behind technologi-
cal advancements and primarily serve as tools for review-
ing moral impact rather than proactively guiding design. 
Despite their utility, these top-down approaches are insuf-
ficient to keep pace with the rapid innovation in technology, 
necessitating a more proactive and integrated approach to 
moral design [29].

One example of model-based approach is described in a 
recent paper from van der Ploeg et al. (2023), introducing 
an innovative trajectory planning method. By incorporating 
a novel application of a knowledge graph, which utilises a 
traffic-oriented ontology to reason about the risk of objects 
and infrastructural elements, the trajectory generator for-
mulates adaptive trajectories validated through simulation. 
This method formalises the role of contextual information 
in motion planning, combining model-based predictive 
planning with a knowledge graph, and demonstrates robust-
ness and real-time applicability through extensive simula-
tion testing across four use cases with 309 variations [27].

However, despite its strengths in adaptability, explain-
ability, reasoning, and knowledge representation, model-
based or symbolic AI systems have notable limitations, 
particularly in handling low-level tasks like image classi-
fication. In contrast, deep learning-based AI excels in such 
tasks by leveraging large datasets to automatically learn and 
generalise from patterns without requiring predefined mod-
els. This data-driven approach allows deep learning mod-
els to achieve superior performance in such tasks, handling 
nuances and variations that model-based systems struggle 
with [25].

Moreover, the hand-coding of rules and knowledge cre-
ates a significant Knowledge Acquisition Bottleneck, requir-
ing extensive human involvement and leading to high costs 
and time inefficiencies [28]. Acquiring explicit knowledge 
bases, typically from experts, is error-prone and expensive, 
limiting the scope of such systems. Additionally, the main-
tenance of rule bases poses challenges, as it necessitates 
complex verification and validation processes. Logic-based 
reasoning methods are subject to combinatorial explosions 
that limit both the number of axioms and the depth of rea-
soning that is possible, further constraining the efficiency 
and scalability of symbolic AI approaches. While model-
based AI offers robustness and interpretability, its limita-
tions highlight the need for complementary approaches to 
effectively address the complexities of modern AI applica-
tions [11].

4  Hybrid AI

The combination of both implicit and explicit models is 
called hybrid AI [11]. By integrating the strengths of sym-
bolic methods with the adaptability and learning capabilities 
of sub-symbolic techniques, hybrid AI offers a promising 
solution to overcome the challenges faced by purely model-
based or deep-learning-based AI systems. In this hybrid 
framework, the symbolic component oversees the deep 
learning part, providing oversight and guidance based on 
predetermined models. Unlike deep learning algorithms, 
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functions, the AI system can prioritise minimising harm 
while maximising the defined objectives. This approach 
relies on the AI system’s utilisation of an implicit or explicit 
world model, which enables it to understand and navigate 
its environment while adhering to the established objective 
function.

Explicitly representing harm within AI systems neces-
sitates a clear definition of what constitutes harm. While 
physical harm is a fundamental aspect, a comprehensive 
harm model must also encompass moral harm. Beyond tan-
gible or physical damage, moral harm considers the ethi-
cal implications of AI decisions and actions, particularly in 
scenarios where human welfare, rights, or societal values 
are at stake. This dimension of harm extends beyond mere 
physical consequences to encompass the broader impact 
on individuals, communities, and society as a whole. By 
incorporating moral harm into the harm model, AI systems 
can more effectively evaluate the consequences of their 
actions and make decisions that align with ethical prin-
ciples and societal norms. This holistic approach to harm 

Ethics must be integrated into the design process from 
the outset, a concept known as “ethics at the front door” 
[27], and continuously embedded throughout the develop-
ment stages, referred to as “ethics by design.” This com-
bined approach ensures that ethical considerations shape the 
entire design process and the moral impact of the result-
ing technology from the very beginning and throughout its 
lifecycle. Recognising that technology’s ethics are multi-
faceted—with influences from both the designer’s values 
and the inherent moral implications of the artefact—high-
lights the importance of aligning values from the initial 
design stages and maintaining this alignment as the technol-
ogy evolves. This comprehensive ethical integration helps 
ensure the development of morally sound technology that 
remains stable and ethically aligned throughout its lifecycle.

Crucially, in the context of high-risk AI systems where 
risk is defined as the probability of harm [30], the symbolic 
layer must explicitly incorporate representations of poten-
tial harm, in the shape of an ethical goal function. By inte-
grating explicit representations of harm into the objective 

Fig. 1  Illustration of a hybrid AI system
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harm considers not only the consequences of actions, akin 
to consequentialism, but also factors such as the intentional 
agent, the action itself, and the perceptions of the observer 
(see Table  1). By integrating these dimensions of harm, 
AU offers a holistic approach to ethical decision-mak-
ing that transcends simplistic utilitarian or deontological 
frameworks.

Central to AU is the construction of an ethical goal 
function that guides the decision-making process of AV 
systems. This goal function is designed to be transparent, 
explainable, and grounded in societal values predefined by 
humans, often referred to as the “human before the loop” 
perspective. By explicitly encoding ethical principles into 
the decision-making system, AU enables AVs to navigate 
complex moral dilemmas and prioritise actions that align 
with societal norms and preferences even under new situ-
ations that were not encountered before or are not part of 
the training set. This ensures that AVs operate in a manner 
consistent with previously defined and explicit human val-
ues and ethical standards, fostering trust, accountability, and 
societal acceptance of automated technologies. Crucially, 
the ethical goal function derived from AU reflects societal 
values, ensuring that AVs prioritise actions that align with 
human preferences and ethical standards. By incorporating 
these values into the decision-making process, AVs become 
more transparent and accountable, as their actions can be 
traced back to predefined societal norms. Moreover, AU’s 
emphasis on explainability allows for a clearer understand-
ing of how decisions are made, reducing the potential for 
bias and promoting fairness in AV operations and the poten-
tial to learn from mistakes.

In essence, AU represents a significant advancement in 
ethical AI design for AVs, offering a principled and trans-
parent framework for addressing the ethical challenges 
inherent in automated systems. By combining moral phi-
losophy with insights from psychology and neuroscience, 
AU provides a robust foundation for developing AI systems 
that not only maximise utility but also uphold fundamental 
ethical principles and values.

5.2  Moral value elicitation

Building on AU, we propose a method to elicitate moral 
attributes to construct an explicit ethical goal function. To 
ensure alignment with societal values, this method allows 
for meaningful input from society, represented by a diverse 
sample of the population. This method comprises two key 
steps: first, defining an initial set of attributes, and second, 
refining this initial set through scenario-based attribute 
ranking and supplementation with any missing attributes 
(see Fig. 2).

representation ensures that AI systems consider not only the 
immediate physical risks but also the broader ethical impli-
cations of their behaviour.

However, modelling moral harm within AI systems pres-
ents a significant challenge due to the inherent subjectivity 
and diversity of ethical theories. Different ethical frame-
works, such as consequentialism, deontology, and virtue 
ethics, may yield divergent perspectives on what constitutes 
moral harm and how it should be prioritised. For example, 
consequentialism, specifically utilitarianism, prioritises 
maximising overall happiness or utility, often leading to 
decisions that may sacrifice the well-being of a few indi-
viduals for the greater good of the majority. In contrast, 
deontological ethics emphasises adherence to moral rules 
or principles, regardless of the consequences, which may 
lead to different judgments in morally complex situations. 
Similarly, virtue ethics focuses on the character traits or vir-
tues of individuals, which may lead to judgments based on 
the intentions or motivations behind actions rather than their 
outcomes. By definition, virtue ethics cannot be applied to 
sub-symbolic AI.

The inherent variability among ethical theories poses a 
significant obstacle to developing a unified model of moral 
harm within AI systems, as the choice of ethical framework 
can profoundly influence the system’s decision-making pro-
cesses and outcomes.

5.1  Augmented utilitarianism

In response to these ethical challenges, a framework known 
as Augmented Utilitarianism (AU) [31] has emerged 
as a promising way forward. Unlike traditional utilitar-
ian approaches that focus solely on maximising utility or 
outcomes, AU adopts a more nuanced perspective by pri-
oritising harm minimisation while adhering to predefined 
ethical principles. This framework emphasises principles 
over specified outcomes and incorporates attributes and 
weights defined by society, rendering it a non-normative 
framework shaped by societal values. Grounded in moral 
psychology, cognitive neuroscience, and philosophy, AU 
aims to capture the diversity of human moral reasoning and 
ethical perspectives.

AU draws upon the theory of dyadic harm, as eluci-
dated by Gray and Schein [32], to provide a comprehensive 
understanding of harm in ethical decision-making. Dyadic 

Table 1  Multiple ethical frameworks included in augmented utilitari-
anism [33]
Ethics framework/focus Agent Action Outcome Experiencer
Virtue ethics x
Deontological ethics x
Consequentialist ethics x
AU x x x x
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and equity in the treatment of individuals and distribution of 
benefits and burdens.

By incorporating these principles, the process establishes 
a robust ethical foundation for the subsequent stages of 
attribute refinement and scenario analysis, ensuring that the 
ethical dimensions are thoroughly considered and integrated 
into the development of the technology. This principled 
approach ensures that the resulting attributes are not only 
technically sound but also ethically robust, aligning with 
broader societal values and ethical standards. This approach 
led to the identification of attributes such as physical dam-
age, psychological damage, moral responsibility, legality, 
and damage to the vehicle [41].

The next challenge involves determining how to accu-
rately capture societal values and who is responsible for 
defining them. Understanding and integrating societal val-
ues into the attribute definition process is crucial for devel-
oping ethically sound technologies. This can be achieved 
through participatory methods that involve diverse stake-
holders, including the public, experts, and policymakers, 
to ensure a broad and inclusive representation of societal 
values.

To address this challenge, we propose an experimental 
process that allows individuals to voice their opinions and 
suggest additional attributes. This participatory approach 
ensures that the attributes reflect a wide range of perspec-
tives and values. The defined attributes undergo rigorous 
testing across two distinct scenarios: high-risk and low-
risk situations. High-risk scenarios might include situations 
where the potential for significant harm or ethical dilem-
mas is greater, such as emergency decision-making by AVs. 
Low-risk scenarios, on the other hand, could involve every-
day situations with minimal ethical stakes.

Participants in the experiment are invited to rank the attri-
butes based on their perceived importance in these scenar-
ios, elucidate their decision-making process, and contribute 
additional attributes as needed. This approach not only cap-
tures the initial set of societal values but also allows for the 
identification of new attributes that may emerge from the 
participants’ feedback. The collected feedback is then used 
to refine and expand the attribute set, ensuring it remains 

The initial phase of this experimental process entails 
defining a comprehensive set of attributes. While some 
studies have begun describing such a set, these frameworks 
often lack scientific grounding [34–37]. For example, the 
Moral Machine experiment asked thousands of participants 
to choose their preferred outcomes in various moral dilem-
mas [38]. The attributes used for decision-making included 
the number of individuals killed, their gender, age, and 
social status. However, the selection of these attributes was 
not scientifically grounded, leading to ambiguity in under-
standing the participants’ decision-making processes. For 
instance, it is unclear whether children were favoured due 
to perceived vulnerability or based on the ‘fair innings’ 
philosophy, which advocates for everyone having the right 
to live a certain number of years. Additionally, the experi-
ment’s random comparison of attributes made it difficult to 
discern their individual impacts on decisions. Moreover, the 
study did not allow participants to suggest their own attri-
butes or attempt to create an exhaustive set, further limiting 
its robustness and comprehensiveness.

In contrast, AU integrates insights from neuroscience, 
cognitive psychology, and ethical philosophy to ensure 
that moral attributes are both scientifically grounded and 
explainable. In addition, AU, being a non-normative frame-
work, prioritises principles over normative ethical theories, 
aligning with the foundation of principlism. Principlism is 
an approach to ethics that emphasises the application of four 
core principles: autonomy, beneficence, non-maleficence, 
and justice [39]. These principles provide a flexible yet 
robust ethical framework that can be applied across vari-
ous contexts without adhering to a single normative ethical 
theory [40].

This strategic alignment with principlism allows for the 
integration of these core ethical principles into the attribute 
definition process, ensuring that the attributes reflect essen-
tial ethical considerations. For instance, autonomy ensures 
that the attributes respect individual decision-making and 
personal freedom, beneficence promotes the well-being and 
positive outcomes for individuals and society, non-malefi-
cence ensures that the attributes prevent harm and minimise 
potential negative impacts, and justice guarantees fairness 

Fig. 2  Illustration of the experi-
mental method
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6  Conclusion

In conclusion, this paper has addressed the ethical chal-
lenges confronting AV technologies and proposed viable 
solutions to surmount them. By highlighting the constraints 
of deep learning-based AI and advocating for transparent, 
interpretable, and ethically grounded methodologies like 
hybrid AI, we underscore the significance of ethical consid-
erations in real-time AV decision-making. Technical hurdles 
such as data limitations and explainability issues, coupled 
with broader apprehensions regarding transparency and 
trustworthiness, underscore the intricacy of seamlessly inte-
grating AI into AVs. Model-based approaches offer a prom-
ising avenue by explicitly embedding ethical principles and 
prioritising safety, fairness, and meaningful human control. 
However, they encounter challenges, particularly in terms 
of inefficiency when confronted with substantial amounts of 
unstructured data. Hybrid AI, blending symbolic and sub-
symbolic methodologies, presents a compelling strategy to 
effectively address these challenges. Augmented Utilitari-
anism is proposed as an ethical framework for AVs, with a 
focus on harm minimisation while upholding ethical tenets. 
Our method for eliciting moral attributes strives to construct 
an explicit ethical goal function, steering AV decision-mak-
ing in harmony with societal values. By infusing ethics into 
the design and operation of AVs, we can bolster public trust 
and contribute to the conscientious advancement of auto-
mated vehicle technology.

Declarations

Conflict of interest  On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1.	 Othman, K.: Exploring the implications of autonomous vehicles: 
a comprehensive review. Innov. Infrastruct. Solut. 7 (2022). 
https://doi.org/10.1007/s41062-022-00763-6

2.	 Schneider, B.: Robotaxis are Here. It’s Time to Decide What to 
do About them. MIT Technology Review. (2023). https://www.

comprehensive and reflective of evolving societal values 
[41].

To ensure that the evolving societal values are accurately 
reflected, the experiment incorporates a feedback loop. 
This iterative cycle allows for the ethical goal function to 
be dynamically adjusted, ensuring ongoing relevance and 
adaptability to changing norms and ethical considerations. 
This loop involves continuously revisiting and refining the 
attributes based on participant feedback and changes in 
societal norms and values. By doing so, the process remains 
dynamic and responsive to societal shifts, ensuring that the 
technology remains aligned with current ethical standards.

After participants contribute to defining and refining 
the attributes, regulators review these inputs to ensure they 
comply with existing laws and ethical guidelines. This over-
sight helps bridge the gap between experimental findings 
and legal requirements, providing a formal mechanism for 
integrating public input into regulatory frameworks. By 
validating the attributes, regulators ensure that the ethical 
decision-making processes of AVs are not only comprehen-
sive and representative but also legally sound. Additionally, 
regulators can adapt these attributes as laws evolve, ensur-
ing that AV technologies remain compliant and ethically 
responsible in the face of changing legal landscapes. This 
collaborative approach between public input and regulatory 
oversight ensures that AV decision-making is both ethically 
grounded and legally robust.

The rationale behind this approach lies in the belief that 
with a sufficiently large and representative sample of par-
ticipants, an exhaustive list of attributes can be generated 
to fully define the decision-making processes of AVs. This 
inclusivity ensures that diverse perspectives are considered, 
addressing any inadequacies in the initial set of attributes 
through participant contributions and ensuring compre-
hensive coverage. While complete agreement among par-
ticipants cannot be realistically achieved, by prioritizing 
transparency and inclusivity, we aim to build a consensus 
that, while not perfect, reflects a broad spectrum of societal 
values and ethical considerations. This dynamic approach 
ensures that the decision-making framework for AVs can 
adapt over time, accommodating shifts in societal norms 
and maintaining alignment with evolving ethical standards.

Ultimately, the objective of this endeavour is to cultivate 
a robust and transparent framework that incorporates soci-
etal values into the decision-making processes of AVs. By 
embedding ethical considerations at the core of AV design 
and operation, our aim is to bolster public trust and accep-
tance of automated vehicles while ensuring alignment with 
societal values and priorities. Through ongoing collabora-
tion and iteration, we aspire to contribute to the responsible 
and ethical development of automated vehicle technology 
for the betterment of society as a whole.

1 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41062-022-00763-6
https://www.technologyreview.com/2023/06/23/1074270/obotaxis-decision-time/


AI and Ethics

19.	 Schwartz, M.S.: Ethical decision-making theory: An Integrated 
Approach. J. Bus. Ethics. 139 (2016). https://doi.org/10.1007/
s10551-015-2886-8

20.	 Yang, C.Y.D., Fisher, D.L.: Safety impacts and benefits of con-
nected and automated vehicles: How real are they? J. Intell. 
Transp. Systems: Technol. Plann. Oper. 25, 135–138 (2021). 
https://doi.org/10.1080/15472450.2021.1872143

21.	 Nyholm, S.: The ethics of crashes with self-driving cars: a road-
map, I. Philos. Compass. 13 (2018). https://doi.org/10.1111/
phc3.12507

22.	 Sparrow, R., Howard, M.: When human beings are like drunk 
robots: Driverless vehicles, ethics, and the future of transport. 
Transp. Res. Part. C Emerg. Technol. 80, 206–215 (2017). https://
doi.org/10.1016/j.trc.2017.04.014

23.	 Bieber, C.: 93% Have Concerns About Self-Driving Cars– Forbes 
Advisor. (2024). https://www.forbes.com/advisor/legal/auto-
accident/perception-of-self-driving-cars/ Accessed 2 May 2024

24.	 von Eschenbach, W.J.: Transparency and the Black Box Problem: 
Why we do not trust AI. Philos. Technol. 34, 1607–1622 (2021). 
https://doi.org/10.1007/s13347-021-00477-0

25.	 Alam, M., Groth, P., Hitzler, P., Paulheim, H., Sack, H., Tresp, V.: 
Symbolic Vs Sub-symbolic AI Methods: Friends or Enemies? In: 
International Conference on Information and Knowledge Man-
agement, Proceedings, Association for Computing Machinery, 
pp. 3523–3524 (2020). https://doi.org/10.1145/3340531.3414072

26.	 Aliman, N.M., Kester, L., Werkhoven, P., Yampolskiy, R.: 
Orthogonality-based disentanglement of responsibilities for ethi-
cal intelligent systems. In: Hammer, P., Agrawal, P., Goertzel, B., 
Iklé, M. (eds.) Artificial General Intelligence. AGI 2019. Lecture 
Notes in Computer Science(), pp. 22–31. Springer (2019). https://
doi.org/10.1007/978-3-030-27005-6_3

27.	 van der Ploeg, C., Braat, M., Masini, B., Brouwer, J., 
Paardekooper, J.-P.: Connecting the Dots: Context-Driven Motion 
Planning Using Symbolic Reasoning. In: 2023 IEEE Intelli-
gent Vehicles Symposium (IV) (2023). https://doi.org/10.1109/
IV55152.2023.10186794

28.	 Cullen, J., Bryman, A.: The Knowledge Acquisition Bottle-
neck: Time for reassessment? Expert Syst. 5 (1988). https://
doi.org/https://doi.orghttps://doi.org/10.1111/j.1468-0394.1988.
tb00065.x

29.	 Wernaart, B.F.W.: 1. An introduction to moral design 
and technology. In: Moral Design and Technology, Brill, 
pp. 13–23. Wageningen Academic (2022). https://doi.
org/10.3920/978-90-8686-922-0_1

30.	 Risk (Stanford Encyclopedia of Philosophy): (2022). https://
plato.stanford.edu/entries/risk/ Accessed 23 May 2024

31.	 Aliman, N.-M., Kester, L.: Crafting a flexible heuris-
tic moral meta-model for meaningful AI control in plu-
ralistic societies. In: B. Wernaart (Ed.), Moral Design and 
Technology, pp. 63–80. Wageningen Academic (2022). https://
doi.org/10.3920/978-90-8686-922-0_4

32.	 Schein, C., Gray, K.: The theory of Dyadic Morality: Reinventing 
Moral Judgment by redefining harm. Personality Social Psychol. 
Rev. 22 (2018). https://doi.org/10.1177/1088868317698288

33.	 Aliman, N.-M., Kester, L.: Augmented utilitarianism for AGI 
Safety. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. 
(eds.) Artificial General Intelligence. AGI 2019. Lecture Notes 
in Computer Science. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-27005-6_2

34.	 Bergmann, L.T., Schlicht, L., Meixner, C., König, P., Pipa, G., 
Boshammer, S., Stephan, A.: Autonomous vehicles require socio-
political acceptance—an empirical and philosophical perspective 
on the problem of moral decision making. Front. Behav. Neuro-
sci. 12 (2018). https://doi.org/10.3389/fnbeh.2018.00031

35.	 Li, J., Zhao, X., Cho, M.J., Ju, W., Malle, B.F., SAE Inter-
national: from trolley to autonomous vehicle: perceptions of 

technologyreview.com/2023/06/23/1074270/obotaxis-decision-
time/ Accessed 2 May 2024

3.	 On-Road Automated Driving (ORAD), Committee, J.: Taxonomy 
and Definitions for Terms Related to Driving Automation Sys-
tems for On-Road Motor Vehicles—SAE International, (2021). 
https://doi.org/10.4271/J3016_202104

4.	 Taniguchi, T., Murata, S., Suzuki, M., Ognibene, D., Lanillos, 
P., Ugur, E., Jamone, L., Nakamura, T., Ciria, A., Lara, B., Pez-
zulo, G.: World models and predictive coding for cognitive and 
developmental robotics: frontiers and challenges. Adv. Robot. 37, 
780–806 (2023). https://doi.org/10.1080/01691864.2023.222523
2

5.	 Perumal, P.S., Sujasree, M., Chavhan, S., Gupta, D., Mukthineni, 
V., Shimgekar, S.R., Khanna, A., Fortino, G.: An insight into crash 
avoidance and overtaking advice systems for autonomous vehi-
cles: a review, challenges and solutions. Eng. Appl. Artif. Intell. 
104 (2021). https://doi.org/10.1016/j.engappai.2021.104406

6.	 Wiseman, Y., Grinberg, I.: Circumspectly crash of autono-
mous vehicles. In: IEEE International Conference on Elec-
tro Information Technology (2016). https://doi.org/10.1109/
EIT.2016.7535271

7.	 Li, H., Zheng, T., Xia, F., Gao, L., Ye, Q., Guo, Z.: Emergency 
collision avoidance strategy for autonomous vehicles based on 
steering and differential braking. Sci. Rep. 12 (2022). https://doi.
org/10.1038/s41598-022-27296-3

8.	 Eckersley, P.: Impossibility and uncertainty theorems in AI value 
alignment (or why your AGI should not have a utility function). 
SafeAI. (2019). https://doi.org/10.48550/arXiv.1901.00064

9.	 Hu, A., Russell, L., Yeo, H., Murez, Z., Fedoseev, G., Ken-
dall, A., Shotton, J., Corrado, G.: GAIA-1: a generative world 
model for autonomous driving (2023). https://doi.org/10.48550/
arXiv.2309.17080

10.	 Dengel, A., Etzioni, O., DeCario, N., Hoos, H., Li, F.F., Tsujii, J., 
Traverso, P.: Next Big challenges in core AI technology. In: Lec-
ture notes in Computer Science (including subseries lecture notes 
in Artificial Intelligence and Lecture notes in Bioinformatics). 
Springer Sci. Bus. Media Deutschland GmbH. 90–115 (2021). 
https://doi.org/10.1007/978-3-030-69128-8_7

11.	 Van Harmelen, F., Ten Teije, A.: A boxology of design patterns for 
hybrid learning and reasoning systems. In: CEUR Workshop Proc 
(2019). https://doi.org/10.13052/jwe1540-9589.18133

12.	 Marcus, G., Critical Appraisal, D.L.A.: CoRR (2018). https://doi.
org/https://doi.org/10.48550/arXiv.1801.00631

13.	 European Commission: Directorate-General for Communica-
tions Networks, Content and Technology, Ethics guidelines for 
trustworthy AI (2019). https://doi.org/https://data.europa.eu/
doi/10.2759/346720

14.	 Roli, A., Jaeger, J., Kauffman, S.A.: How organisms come to 
know the World: fundamental limits on Artificial General Intel-
ligence. Front. Ecol. Evol. 9 (2022). https://doi.org/10.3389/
fevo.2021.806283

15.	 Hawkins, A.J.: Waymo’s robotaxis are under investigation for 
crashes and traffic law violations. (2024). https://www.theverge.
com/2024/5/14/24156238/waymo-nhtsa-investigation-crash-
wrong-side-road Accessed 23 May 2024

16.	 de Sio, F.S., van den Hoven, J.: Meaningful human control over 
autonomous systems: A philosophical account. Front. Rob. AI. 5 
(2018). https://doi.org/10.3389/frobt.2018.00015

17.	 Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, 
C., Prakash, A., Kohno, T., Song, D.: Robust. Physical-World 
Attacks Deep Learn. Models. (2017). https://doi.org/10.48550/
arXiv.1707.08945

18.	 Ferrara, E.: Fairness and Bias in Artificial Intelligence: A brief 
survey of sources, impacts, and mitigation strategies. Sci. 6 
(2024). https://doi.org/10.3390/sci6010003

1 3

https://doi.org/10.1007/s10551-015-2886-8
https://doi.org/10.1007/s10551-015-2886-8
https://doi.org/10.1080/15472450.2021.1872143
https://doi.org/10.1111/phc3.12507
https://doi.org/10.1111/phc3.12507
https://doi.org/10.1016/j.trc.2017.04.014
https://doi.org/10.1016/j.trc.2017.04.014
https://www.forbes.com/advisor/legal/auto-accident/perception-of-self-driving-cars/
https://www.forbes.com/advisor/legal/auto-accident/perception-of-self-driving-cars/
https://doi.org/10.1007/s13347-021-00477-0
https://doi.org/10.1145/3340531.3414072
https://doi.org/10.1007/978-3-030-27005-6_3
https://doi.org/10.1007/978-3-030-27005-6_3
https://doi.org/10.1109/IV55152.2023.10186794
https://doi.org/10.1109/IV55152.2023.10186794
https://doi.org/https://doi.org
https://doi.org/https://doi.org
https://doi.org/10.1111/j.1468-0394.1988.tb00065.x
https://doi.org/10.1111/j.1468-0394.1988.tb00065.x
https://doi.org/10.3920/978-90-8686-922-0_1
https://doi.org/10.3920/978-90-8686-922-0_1
https://plato.stanford.edu/entries/risk/
https://plato.stanford.edu/entries/risk/
https://doi.org/10.3920/978-90-8686-922-0_4
https://doi.org/10.3920/978-90-8686-922-0_4
https://doi.org/10.1177/1088868317698288
https://doi.org/10.1007/978-3-030-27005-6_2
https://doi.org/10.1007/978-3-030-27005-6_2
https://doi.org/10.3389/fnbeh.2018.00031
https://www.technologyreview.com/2023/06/23/1074270/obotaxis-decision-time/
https://www.technologyreview.com/2023/06/23/1074270/obotaxis-decision-time/
https://doi.org/10.4271/J3016_202104
https://doi.org/10.1080/01691864.2023.2225232
https://doi.org/10.1080/01691864.2023.2225232
https://doi.org/10.1016/j.engappai.2021.104406
https://doi.org/10.1109/EIT.2016.7535271
https://doi.org/10.1109/EIT.2016.7535271
https://doi.org/10.1038/s41598-022-27296-3
https://doi.org/10.1038/s41598-022-27296-3
https://doi.org/10.48550/arXiv.1901.00064
https://doi.org/10.48550/arXiv.2309.17080
https://doi.org/10.48550/arXiv.2309.17080
https://doi.org/10.1007/978-3-030-69128-8_7
https://doi.org/10.13052/jwe1540-9589.18133
https://doi.org/https://doi.org/10.48550/arXiv.1801.00631
https://doi.org/https://doi.org/10.48550/arXiv.1801.00631
https://doi.org/https://data.europa.eu/doi/10.2759/346720
https://doi.org/https://data.europa.eu/doi/10.2759/346720
https://doi.org/10.3389/fevo.2021.806283
https://doi.org/10.3389/fevo.2021.806283
https://www.theverge.com/2024/5/14/24156238/waymo-nhtsa-investigation-crash-wrong-side-road
https://www.theverge.com/2024/5/14/24156238/waymo-nhtsa-investigation-crash-wrong-side-road
https://www.theverge.com/2024/5/14/24156238/waymo-nhtsa-investigation-crash-wrong-side-road
https://doi.org/10.3389/frobt.2018.00015
https://doi.org/10.48550/arXiv.1707.08945
https://doi.org/10.48550/arXiv.1707.08945
https://doi.org/10.3390/sci6010003


AI and Ethics

experiment. Nature. 563, 59–64 (2018). https://doi.org/10.1038/
s41586-018-0637-6

39.	 Beauchamp, T.L., Childress, J.F.: Principles of Biomedical Eth-
ics, 8th edn. Oxford University Press (2019)

40.	 Scher, S., Kozlowska, K.: The rise of bioethics: a historical over-
view. In: Rethinking Health Care Ethics, pp. 31–44. Springer Sin-
gapore (2018). https://doi.org/10.1007/978-981-13-0830-7_3

41.	 Gros, C., Werkhoven, P., Kester, L., Martens, M.: Defin-
ing a method for ethical decision making for automated 
vehicles. In: ICAIL2023 (2023). https://doi.org/10.13140/
RG.2.2.34735.71844

Publisher’s note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

responsibility and moral norms in traffic accidents with self-
driving cars. In:: SAE Technical Papers (2016). https://doi.
org/10.4271/2016-01-0164

36.	 Faulhaber, A.K., Dittmer, A., Blind, F., Wächter, M.A., Timm, S., 
Sütfeld, L.R., Stephan, A., Pipa, G., König, P.: Human decisions 
in Moral dilemmas are largely described by Utilitarianism: Vir-
tual Car driving study provides guidelines for Autonomous Driv-
ing vehicles. Sci. Eng. Ethics. 25 (2019). https://doi.org/10.1007/
s11948-018-0020-x

37.	 Kallioinen, N., Pershina, M., Zeiser, J., Nosrat Nezami, F., Pipa, 
G., Stephan, A., König, P.: Moral judgements on the actions of 
self-driving cars and human drivers in dilemma situations from 
different perspectives. Front. Psychol. 10 (2019). https://doi.
org/10.3389/fpsyg.2019.02415

38.	 Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shar-
iff, A., Bonnefon, J.F., Rahwan, I.: The Moral Machine 

1 3

https://doi.org/10.1038/s41586-018-0637-6
https://doi.org/10.1038/s41586-018-0637-6
https://doi.org/10.1007/978-981-13-0830-7_3
https://doi.org/10.13140/RG.2.2.34735.71844
https://doi.org/10.13140/RG.2.2.34735.71844
https://doi.org/10.4271/2016-01-0164
https://doi.org/10.4271/2016-01-0164
https://doi.org/10.1007/s11948-018-0020-x
https://doi.org/10.1007/s11948-018-0020-x
https://doi.org/10.3389/fpsyg.2019.02415
https://doi.org/10.3389/fpsyg.2019.02415

	﻿Addressing ethical challenges in automated vehicles: bridging the gap with hybrid AI and augmented utilitarianism
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿AVs: an overview
	﻿1.2﻿ ﻿The role of AI in AVs

	﻿2﻿ ﻿Deep-learning-based AI systems
	﻿2.1﻿ ﻿Case study: Wayve’s gaia
	﻿2.2﻿ ﻿Ethical challenges
	﻿2.2.1﻿ ﻿Adaptability
	﻿2.2.2﻿ ﻿Transparency
	﻿2.2.3﻿ ﻿Control
	﻿2.2.4﻿ ﻿Security
	﻿2.2.5﻿ ﻿Data bias and fairness
	﻿2.2.6﻿ ﻿Trust


	﻿3﻿ ﻿Model-based AI systems
	﻿4﻿ ﻿Hybrid AI
	﻿5﻿ ﻿Moral decision-making for AVs
	﻿5.1﻿ ﻿Augmented utilitarianism
	﻿5.2﻿ ﻿Moral value elicitation

	﻿6﻿ ﻿Conclusion
	﻿References


