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Abstract

In the realm of automated vehicles (AVs), the focus is predominantly on the potential of sub-symbolic deep-learning-based
artificial intelligence (AI) systems. Our study questions the suitability of this data-driven approach for AVs, particularly
in embodying societal values in their behaviour. Through a systematic examination of sub-symbolic and symbolic Al, we
identify key issues for AVs, including adaptability, safety, reliability, trust, fairness, transparency, and control. Deep learn-
ing systems’ lack of adaptability and inherent complexities pose significant safety concerns and hinder meaningful human
control. This limitation prevents humans from effectively updating Al decision-making processes to better reflect ethical
values. Furthermore, deep learning systems are prone to biases and unfairness, leading to incidents that are difficult to
explain and rectify. In contrast, symbolic, model-based approaches offer a structured framework for encoding ethical goals
and principles within AV systems, thus enabling meaningful human control. However, they also face challenges, such as
inefficiencies in handling large amounts of unstructured data for low-level tasks and maintaining explicit knowledge bases.
Therefore, we advocate for hybrid Al, combining symbolic and sub-symbolic models with symbolic goal functions. We
propose Augmented Utilitarianism (AU) as an ethical framework for developing these goal functions, aiming to minimise
harm by integrating principles from consequentialism, deontology, and virtue ethics, while incorporating the perspective
of the experiencer. Our methodology for eliciting moral attributes to construct an explicit ethical goal function engages
collective societal values through iterative refinement, contributing to the development of safer, more reliable, and ethi-
cally aligned automated driving systems.
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1 Introduction industry. With advancements in artificial intelligence, sen-
sor technology, and connectivity, AVs are rapidly evolving
towards greater autonomy and reliability. Potential ben-

efits of large-scale adoption of AVs include improving road

1.1 AVs:an overview

Automated Vehicles (AVs) are a prominent area of Al
research nowadays. In today’s landscape, AVs are at the
forefront of innovation and disruption in the transportation
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safety, alleviating congestion, decreasing pollution, and
reducing energy consumption [1]. Major automotive manu-
facturers, technology companies, and startups are investing
heavily in research and development to bring automated
vehicles to the market. However, challenges such as regu-
latory frameworks, safety concerns, and public acceptance
need to be addressed alongside technological advancements.
Recently, concerns have been raised about robotaxis caus-
ing accidents that human drivers would not have caused,
such as driving into wet concrete in work zones or not mak-
ing room for emergency vehicles [2].

There are 5 levels of vehicle automation as defined by
SAE J3016 [3]. Level 1 introduces driver assistance sys-
tems such as adaptive cruise control, where the vehicle
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can control one aspect (e.g. longitudinal control) of driv-
ing while the human manages others. Level 2 automation
involves partial automation, where advanced driver assis-
tance systems (ADAS) manage both steering and accelera-
tion under specific conditions. However, a human driver
remains responsible for the overall driving task, requiring
constant vigilance, road monitoring, and typically main-
taining hands on the wheel. Level 3 marks a significant
technological and human-centred leap, where vehicles can
temporarily perform the entire dynamic driving task while
being in predefined conditions, defined as the Operational
Design Domain. This means that the driver can temporarily
be out of the loop and perform non-driving related tasks and
only needs to take back control if warned by the vehicle.

Moving to Level 4, vehicles are included that can per-
form a minimum-risk manoeuvre if a driver does not
respond to a take-over request. However, it also includes
automated shuttles and robotaxis that are capable of self-
driving within limited areas, such as urban environments or
predefined locations, and the person inside is not required to
have any active role in driving or taking over control. Level
5 vehicles represent the pinnacle of automation, as they sug-
gest being able to handle any situation a human driver could
handle in any environment.

Since levels 1 and 2 still require the driver to monitor the
driving task and are formally responsible for all parts of the
driving task, in this paper we focus particularly on levels
3 to 5, where the automated system can act upon the driv-
ing environment without the need for active human input or
monitoring while driving. From this level 3 and above, the
AV will need to decide how to act upon any situation within
the operational design domain.

1.2 Therole of Al in AVs

Al technology has emerged as a cornerstone in the devel-
opment of AVs, revolutionising the way vehicles perceive,
interpret, and navigate the world around them. Al is integral
to the operation of AVs, contributing to various aspects of
their functionality. Al algorithms process data from sensors
such as cameras, LiDAR, radar, and GPS to perceive the
vehicle’s surroundings and to create a world model. Such
a world model allows a cognitive system to better predict
future sensory observations and optimise its actions based
on those predictions. It encompasses not only the dynamics
of the external environment but also bodily dynamics and
social interactions [4].

Based on this world model, Al algorithms enable AVs to
make real-time decisions. AVs analyse sensor data to predict
the behaviour of surrounding objects and choose appropri-
ate actions to determine the optimal paths and trajectories
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for AVs to reach their destinations safely and efficiently.
This is referred to as path planning.

In addition, Al algorithms control the vehicle’s actuators,
such as steering, throttle, and brakes, to execute the planned
trajectory. These algorithms strive to achieve smooth and
precise control of the vehicle’s movements, adjusting in
real-time to changes in the environment, though this is not
always guaranteed. Al is also used for simultaneous locali-
sation and mapping (SLAM), allowing AVs to accurately
determine their position and create maps of their surround-
ings in real-time. SLAM algorithms fuse data from sensors
and use probabilistic techniques to estimate the vehicle’s
pose and map the environment.

Finally, AI algorithms can assist AVs in decision-mak-
ing during unavoidable collisions by evaluating potential
damages across various scenarios. For example, in their
2021 article, Perumal et al. highlight the critical role Crash
Avoidance and Overtaking Advice (CAOA) systems within
Advanced Driver Assistance Systems (ADAS) systems play
in improving road safety by tackling challenges such as
obstacle avoidance, overtaking, and lane changes [5]. Addi-
tionally, in their 2016 paper, Wiseman and Grinberg describe
a real-time assessment method using computational geome-
try, which involves constructing intelligent simulation mod-
els of vehicles as simple polygons [6]. Finally, in 2022, Li et
al. introduced an innovative integrated approach to enhance
collision avoidance during emergencies [7]. Their strategy
combines steering and braking mechanisms through a two-
layer framework: an upper-level decision-making layer and
a lower-level control layer.

In summary, Al technology is central to the evolution
of automated vehicles, enabling them to perceive their sur-
roundings, make real-time decisions, and navigate safely.
By processing sensor data and creating detailed world mod-
els, Al facilitates precise path planning, control of vehicle
actuators, and accurate localization and mapping. Recent
advancements underscore Al’s critical role in enhancing
safety and optimizing collision avoidance strategies, reflect-
ing its transformative impact on automated driving.

2 Deep-learning-based Al systems

Typically, common-day AVs use deep learning based-Als,
meaning that their world model is primarily based on sub-
symbolic neural networks. Deep learning techniques involve
training artificial neural networks with large amounts of data
to recognise patterns and make decisions. This approach
allows AVs to learn complex patterns and behaviours from
sensor data without explicitly programmed rules. However,
while deep learning excels in tasks like object recogni-
tion and classification, it may struggle with understanding
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abstract concepts or adapting to novel situations. Deep learn-
ing can be described as a data-driven approach, also called a
bottom-up approach or sub-symbolic approach. This means
that the model does not develop explicit symbolic reasoning
or understand the knowledge behind specific decisions, as
it learns through examples without being given an explicit
symbolic world model to optimise.

It is important to note that while sub-symbolic Al sys-
tems primarily learn through examples, they still require
symbolic goal functions. A “goal function” is a comprehen-
sive term encompassing all types of loss functions, objec-
tive functions, multi-objective functions, or utility functions
used in various fields, especially in machine learning and
artificial intelligence. It serves as a mathematical criterion
that quantifies the performance or desirability of different
outcomes or actions. For instance, in supervised learning,
the loss function measures the difference between the pre-
dicted values and the actual values, guiding the optimisation
process to minimise this difference and improve the model’s
accuracy. In multi-objective optimisation, the goal function
involves balancing several objectives, often competing, to
find an optimal trade-off solution. Utility functions assign
values to different outcomes to reflect their relative prefer-
ence or worth, driving the decision-making process towards
maximising expected utility [8]. Thus, the goal function
provides a formalised way to direct the learning or optimisa-
tion process toward achieving desired results, incorporating
various constraints and priorities inherent to the problem at
hand.

In deep-learning-based Al systems, goal functions are
used beforehand to select relevant training data. Imagine
an AV system designed to prioritise pedestrian safety. Goal
functions based on symbolic rules can help choose train-
ing data that includes diverse pedestrian scenarios, such as
crosswalks, school zones, and crowded city streets. This
ensures the system learns from a wide range of critical situ-
ations. Additionally, symbolic evaluation criteria allow for
systematic performance assessment. For example, after
training, the AV’s behaviour can be evaluated against pre-
defined ethical guidelines, such as stopping for pedestri-
ans at crosswalks or maintaining safe distances from other
vehicles. If the AV fails to stop at a crosswalk during a test,
this symbolic evaluation helps identify specific issues in the
algorithm.

2.1 Case study: Wayve's gaia

Wayve is a software development company that uses Al
to pioneer a next-generation approach to self-driving [9].
Wayve’s autonomous driving technology, known as Gaia,
operates on an approach called end-to-end learning. Unlike
traditional methods that rely on handcrafted rules and

mapping techniques, Gaia learns to drive directly from
raw sensor data, such as camera images, using deep learn-
ing algorithms. This approach enables Gaia to perceive and
understand the environment in a manner similar to how
humans learn to drive, without extensive manual interven-
tion or hand-crafted rules.

The GAIA-1 model utilises specialised encoders for vari-
ous input modalities, including video, text, and action, to
create a shared representation. These encoders project input
data into a coherent timeline, ensuring alignment across
different modalities. The core component of the model is
the sub-symbolic world model, an autoregressive trans-
former trained to predict the next set of image tokens in a
sequence by considering past image tokens, textual context,
and action-based guidance. With 6.5 billion parameters, the
world model generates visually coherent images aligned
with textual and action-based input. Subsequently, a video
decoder, employing a video diffusion model with 2.6 bil-
lion parameters, translates predicted image tokens into pixel
space, enhancing the semantic meaning, visual accuracy,
and temporal consistency of generated videos. GAIA-1
boasts over 9 billion parameters and was trained for 15
days on 64 NVIDIA A100s, utilising a dataset of 4,700 h of
proprietary driving data collected in London, UK, between
2019 and 2023.

Wayve’s Gaia represents a state-of-the-art example of
modern automated vehicles that are solely based on deep
learning and sub-symbolic Al. The formulation of the world
modelling task in GAIA-1 is streamlined to focus on pre-
dicting the next token. This method underscores the reli-
ance on sub-symbolic processes, highlighting the potential
and current applications of deep learning in creating highly
advanced automated driving systems.

Although models like Wayve’s Gaia are at the forefront
of automated driving technology, their reliance on deep
learning proves inadequate for addressing the ethical chal-
lenges inherent in automated driving because of a lack of
symbolic reasoning, explainability and therefore meaning-
ful human control. We will elaborate on these shortcomings
in the following section.

2.2 Ethical challenges

The advent of deep learning Al systems, characterised by
approaches like end-to-end learning and deep reinforcement
learning, has heralded remarkable advancements in various
domains, including automated driving. However, along-
side their potential benefits, these methods introduce pro-
found ethical challenges. In most cases, challenges of deep
learning-based Al systems highlighted in literature include
technical challenges, but more attention is now also given
to ethical issues such as unbiased data availability, limited
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transfer between tasks, brittleness, but also explainability,
trustworthiness and security [10—12].

Further, on 8 April 2019, the High-Level Expert Group
on Al presented Ethics Guidelines for Trustworthy Artifi-
cial Intelligence [13]. This document highlights 4 ethical
principles that serve as the foundations of Trustworthy Al:
respect for human autonomy, prevention of harm, fairness,
and explicability. To address these concerns comprehen-
sively, we adopt a systematic approach that includes the fol-
lowing six critical topics: adaptability, reliability, fairness,
explainability, trustworthiness, and security. These topics
were chosen because they encompass the primary ethical
and technical challenges unique to deep learning Al systems
in automated driving. By addressing these six areas, we aim
to provide a holistic evaluation of the ethical implications
of deep learning Al systems in automated driving, ensuring
alignment with the EU’s guidelines for trustworthy Al.

2.2.1 Adaptability

Deep learning’s demand for vast amounts of data starkly
contrasts with human learning capabilities, which excel
at abstracting relationships from limited examples. While
humans can effortlessly grasp abstract concepts with mini-
mal examples, deep learning systems require extensive data-
sets to achieve similar feats. Despite advancements, deep
learning struggles with abstract reasoning and adaptability
to new situations, relying heavily on extensive training data
and appropriate examples. This leads to several challenges.
If incorrect data are present in the training set, simply
removing them can be difficult without potentially disrupt-
ing the system’s learned behaviour, as deep learning models
integrate information from all given data. Identifying and
extracting erroneous data without losing valuable contex-
tual information is a significant challenge, underscoring the
limitations of deep learning in achieving robust and reliable
performance across varied and unforeseen scenarios.

Moreover, deep learning’s reliance on numerous hid-
den layers does not inherently imply conceptual depth; the
representations acquired often lack nuanced understanding.
Transfer tests reveal the superficial nature of deep learning’s
solutions, with systems failing when encountering minor
perturbations outside their training set. Additionally, the
explosion of state-action space in complex environments,
such as the number of possible scenarios in automated driv-
ing situations, exacerbates these issues, making it difficult
for deep learning models to generalise effectively across
different situations. This inherent rigidity and dependency
on specific training data highlight the need for more adapt-
able and flexible Al systems to ensure robust performance in
dynamic and unpredictable real-world scenarios.
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This stems from the inability of Al systems to explicitly
update their world models due to a lack of understanding.
Unlike humans, who can adapt their mental models of the
world based on new information and experiences, deep
learning systems operate within predefined frameworks and
struggle to incorporate novel or unexpected situations into
their existing models. This limitation comes from the inher-
ent inability of deep learning algorithms to understand and
create explanatory knowledge, which is needed in order to
update their world model. As Roli et al. show in their 2022
paper, true general intelligence entails situational reasoning,
perspective-taking, goal selection, and handling ambiguous
information, all of which rely on identifying and exploit-
ing new affordances—opportunities or impediments for
goal attainment. However, as it is not possible to predefine
a complete list of such uses, they cannot be treated purely
algorithmically. Unlike organisms, deep learning agents do
not possess the capacity to leverage new affordances [14].
As a result, Al systems may struggle to update their world
models in real-time, leading to inaccuracies or errors in their
perception and decision-making.

The lack of true understanding of deep learning Al sys-
tems poses significant challenges for AVs in real-world
scenarios. Without an explicit world model, which defines
the functional relationship between objects, the Al model
will not be able to transfer knowledge from one situation
to the next and create an efficient self-improving feedback
loop. Hence, such an Al system will not be able to gener-
alise to infinite situations. For instance, if an AV encounters
unanticipated road closures or obstacles, its Al may struggle
to adjust its world model to navigate safely. Additionally,
changing traffic patterns, new road layouts, and unpredict-
able pedestrian or cyclist behaviour can further challenge
AVs relying on implicit world models. Furthermore, when
an incident occurs, the lack of an explicit understanding and
transparent decision-making process means it cannot be
easily explained in court. This lack of explainability addi-
tionally hampers our ability to learn from the incident and
implement improvements. The inability to provide clear,
understandable reasons for Al decisions undermines trust
and accountability, crucial elements for the widespread
acceptance and ethical deployment of AV technology.

2.2.2 Transparency

It has been contended that the opacity inherent in deep
learning systems is not necessarily problematic [10]. For
instance, in advisory Al systems, absolute transparency
may not be imperative if these models show a high suc-
cess rate. However, these systems involve the supervision
of a human before any decision-making takes place. For
example, consider the case of Al systems used in advanced
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driver-assistance systems in vehicles. For instance, a lane-
keeping assist feature might rely on sophisticated algorithms
to help drivers stay within their lane. Absolute transparency
into the exact workings of this Al might not be crucial, as
long as the system performs reliably and the driver remains
in control, with the Al providing assistance when needed.
In contrast, AVs operate with a higher level of automation
where real-time decision-making is critical. These vehicles
continuously process a vast amount of sensory data and
make instantaneous decisions about navigation, obstacle
avoidance, and traffic interactions without human inter-
vention. In this setting, transparency in the AI’s decision-
making process is essential to ensure that the system can be
trusted to handle complex and dynamic driving conditions
safely.

Moreover, the acceptability of this lack of transpar-
ency hinges upon the successful resolution of other tech-
nical challenges inherent in deep learning methodologies.
In situations where data availability is limited or where
the transferability of knowledge from one task to another
is critical—particularly in high-risk scenarios—an opaque
system could yield inconsistencies or erroneous decision-
making, potentially resulting in catastrophic consequences.
Furthermore, recent accidents involving robotaxis and even
partially automated vehicles have raised significant public
acceptance issues, highlighting the importance of transpar-
ent decision-making processes in automated systems to
build trust and confidence among users and stakeholders
[15].

Additionally, the inability to remove bad examples from
training data in deep learning algorithms poses a signifi-
cant challenge. Even if AVs are trained on diverse datas-
ets, including scenarios with adverse weather or unusual
road conditions, the presence of erroneous or misleading
examples in the training data could lead to suboptimal
decision-making in real-world situations. As a result, AVs
may struggle to accurately interpret and respond to novel or
ambiguous situations, highlighting the inherent limitations
of relying solely on deep learning for automated driving.

The lack of transparency in deep learning Al systems
presents significant challenges for humans in debugging,
interpreting, controlling, and reasoning about them [10].
Without transparency, these systems operate as black boxes,
concealing the underlying mechanisms driving their deci-
sions and behaviours. This opacity hinders human efforts to
debug errors or anomalies within the system, as understand-
ing the root cause becomes elusive. As a result, interpreting
the outputs or predictions of these systems becomes daunt-
ing, leaving humans unable to discern how or why certain
decisions were made.

2.2.3 Control

Meaningful human control refers to the ability of humans to
understand, influence, and ultimately take responsibility for
the decisions and actions of automated systems, particularly
in contexts where these systems have a significant impact on
human lives or society as a whole. In the realm of Al, mean-
ingful human control requires the ability to influence all
relevant aspects of an automated system, access to informa-
tion, and meeting strict control conditions, including knowl-
edge and capacity [16]. This entails ensuring that humans
have the capability to oversee and intervene in Al systems’
decision-making processes, understand the rationale behind
these decisions, and hold the companies responsible for the
actions of their Al systems.

Operational control is generally interpreted in terms of
having a driver control the vehicle. However, the concept of
“human before the loop” goes beyond this traditional view.
It emphasises meaningful human control through humans
being involved in the design, development, and governance
stages of Al systems. This ensures that ethical principles
and societal values are embedded from the outset, rather
than just having humans take control in real-time situations.
Meaningful human control is essential for ensuring that Al
systems serve human interests, align with societal values,
and operate in a manner that is transparent, accountable, and
trustworthy. It is a fundamental principle in the responsible
development, deployment, and governance of Al technolo-
gies across various domains, including automated vehicles,
healthcare, finance, and defence.

Relying solely on sub-symbolic implicit world models, as
observed in certain automated driving systems like Wayve’s
Gaia, may impose limitations on meaningful control, par-
ticularly due to the inadequate specification of both world
models and ethical goal functions. Without explicit repre-
sentation of ethical considerations and higher-level goals,
sub-symbolic models may make decisions that implicitly
prioritise efficiency or convenience over safety, leading to
potentially unsafe or unpredictable behaviour.

2.2.4 Security

In addition to the challenges posed by the inability of deep
learning Al systems to have an explicit world model, there
is also the concern of how this limitation could facilitate
adversarial attacks. Adversarial attacks involve intention-
ally manipulating input data to deceive Al systems, causing
them to make incorrect predictions or decisions. Since Al
systems lack a comprehensive understanding of the world
and rely on predefined frameworks, they are susceptible to
adversarial attacks that exploit vulnerabilities in their per-
ception and decision-making processes.
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For example, in the context of AVs, adversaries could
manipulate sensor inputs, such as traffic signs or road mark-
ings, in subtle ways that are imperceptible to humans but
can lead to misinterpretations by Al algorithms. Without the
ability to dynamically update their world models to adapt to
these adversarial inputs, Al-powered AVs may be vulner-
able to safety risks and security threats. As Al technology
continues to advance, addressing these vulnerabilities and
developing robust defence mechanisms against adversarial
attacks will be crucial for ensuring the safety and reliability
of Al-powered systems in real-world environments [10, 17].

2.2.5 Data bias and fairness

Deep learning models rely heavily on training data, and
biases present in the data can propagate to the model’s deci-
sions. This raises concerns about fairness and equity, par-
ticularly if the automated system exhibits biased behaviour
towards certain demographic groups or communities.

Bias is defined as a systematic error in decision-making
processes that results in unfair outcomes [18]. Al systems
can learn and replicate patterns of bias present in the data
used to train them, resulting in unfair or discriminatory out-
comes. Bias and fairness in Al are closely related to user and
societal trust: When Al systems exhibit biases or unfairness
due to biased training data or flawed algorithms, it can erode
public trust in these systems. Users may lose confidence in
Al-powered applications, questioning the reliability and
impartiality of the decisions made by these systems.

Numerous instances of biased facial recognition tech-
nology have been observed in law enforcement agencies.
For instance, research conducted by the National Institute
of Standards and Technology (NIST) revealed that this
technology exhibited significantly lower accuracy rates for
individuals with darker skin tones, resulting in elevated
false positive rates [19]. This bias can lead to significant
outcomes, including unjust arrests or convictions, and an
increased risk of collisions with AVs. We can easily see
how this type of bias could translate into AVs in a deep-
learning-based approach: a biased Al system trained mostly
on a white sample of the population may be less able to
identify individuals with darker skin tones, which may
lead to an overrepresentation of injuries in this group. As
a result, current disparities may be exacerbated, leading to
increased discrimination against marginalised communities
and restricting their access to critical services. The lack of
transparency of the black box Al system increases the dif-
ficulty of identifying these biases.

Relying solely on deep learning Al in AVs can have
significant consequences, particularly concerning biases
present in the training data. Without appropriate measures,
these biases may propagate into the AV’s decision-making,
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leading to unfair outcomes, such as disproportionately
affecting certain demographic groups, and potentially lead-
ing to wrongful arrests, injuries, or other forms of discrimi-
nation. Additionally, the lack of transparency in Al systems
complicates the identification and mitigation of biases, high-
lighting the urgent need for proactive measures to ensure
fairness and equity in AV technology.

2.2.6 Trust

One of the main arguments for the development of auto-
mated vehicles is that they would be substantially safer than
conventional vehicles. A widely circulated statistic states
that 94% of car crashes are due to human error [20]. Replac-
ing humans with AVs would then lead to significantly fewer
road injuries and fatalities. Some scholars have even posited
in the literature that the safety advancements of AVs could
lead to an obligation to transition from conventional trans-
portation methods to AVs: if a new technology is introduced
which is safer than previously existing alternatives, then this
creates a duty to switch over to the safer alternative [21, 22].

However, the current public opinion seems reluctant to
the adoption of AV technology. A recent survey commis-
sioned by Forbes Advisor shows that 93% of Americans
have concerns about some aspects of self-driving cars and
that 62% of consumers have lost confidence in Tesla due to
recent safety and technology recalls [23]. Additionally, 61%
of respondents would not trust a self-driving car with their
loved ones or children. The main cause of concern when it
comes to self-driving cars is safety. Improving AV safety is
therefore crucial for AV acceptance and to ensure that the
positive benefits of AVs are met.

Trust in Al is crucial in overcoming this barrier, and
transparency is key to building that trust. As Eschenbach
describes, “A trusts B to do X only if A judges B to be trust-
worthy where trustworthy means that A has good reason to
believe that B is competent in doing X and that B would act
on A’s behalf.” We can draw a clear parallel with AVs, where
A would be a human agent, trusting an AV (B), to drive in
on their behalf (X) [24]. However, in a trust relationship,
how the action X (driving) is performed by B (the AV), is as
important as performing the action itself. If the AV compro-
mises one’s safety or that of others while driving on one’s
behalf, one may feel that their trust has been betrayed in the
same manner as one would feel if the AV did not drive at
all. Taking action on behalf of someone else implies align-
ing with, or at least not contradicting, their values and com-
mitments, thereby offering justification for one’s actions.
Trust in another’s ability to act on one’s behalf is built upon
understanding and insight into their motives and methods.
Transparency in their actions or intentions is essential for
evaluating their trustworthiness.
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In a deep learning approach, the Al system is opaque due
to the absence of any mechanisms to reproduce or explain
decision-making processes: inputs go into the system, and
outputs come out, but the process by which the inputs are
transformed into outputs is not clear. This poses significant
challenges when considering questions of trust. Such an Al
system cannot be guaranteed to be reliable and free from
bias. The challenges posed by the inability to comprehend
or clarify errors, as well as the process leading to significant
outcomes, greatly diminish confidence, and therefore trust,
in these systems.

In conclusion, deep learning approaches, such as the
data-driven bottom-up methods prevalent in current auto-
mated vehicle technologies like Wayve’s Gaia, face inherent
limitations in addressing several ethical challenges. These
approaches lack explicit representation of ethical consider-
ations and higher-level goals, relying solely on deep learn-
ing without incorporating domain knowledge or symbolic
reasoning. Without an explicit ethical goal function and a
comprehensive understanding of the underlying decision-
making processes, deep learning Al systems may implic-
itly prioritise efficiency or convenience over safety, leading
to potentially unsafe or unpredictable behaviour without
humans even realising this. Additionally, the opacity of these
systems makes it difficult to reproduce or explain their deci-
sion-making processes, diminishing confidence and trust in
their reliability. Therefore, while deep learning approaches
have demonstrated advancements in Al capabilities, they
fall short in providing the meaningful human control and
oversight necessary for ensuring ethical and responsible Al
deployment in automated vehicles.

3 Model-based Al systems

Alternatively, a top-down or model-based approach offers a
promising avenue for addressing some of the ethical chal-
lenges inherent in current bottom-up Al methodologies.
Unlike data-driven approaches relying solely on deep learn-
ing, model-based approaches leverage symbolic Al tech-
niques, reasoning with models, and incorporating domain
knowledge to explicitly encode world models as well as
ethical goals and principles within Al systems [25].

In model-based systems, we can use orthogonality-based
disentanglement by separating the Al system’s problem-
solving capabilities from its ethical considerations [26]. This
is achieved by defining two distinct axes: one for the tech-
nical performance and problem-solving abilities of the Al,
and another for its adherence to ethical values as encoded
by human stakeholders. The first axe includes developing
accurate world models representing the vehicle’s environ-
ment, enabling precise object detection, localisation, and

mapping through sensor fusion. These world models can be
developed without relying on deep learning by integrating
various techniques, such as knowledge graphs that integrate
prior knowledge (geometry, properties and rules) and sensor
data to represent the AV-environment and symbolic reason-
ing and planning algorithms to interpret knowledge graphs
and predict the environment. Sensor fusion combines data
from multiple sensors like cameras and LiDAR, while tradi-
tional algorithms and symbolic Al interpret this data to map
the environment. Probabilistic models and simulations fur-
ther enhance these representations, providing transparency
and predictability. Additionally, the AI’s problem-solving
capabilities extend to real-time decision-making processes,
such as adapting to dynamic traffic situations, predicting the
actions of other road users, and handling unexpected events.

The second axe involves explicitly encoding ethical
goals within a dedicated ethical goal function. This func-
tion guides the Al’s behaviour, ensuring that its actions align
with predefined ethical principles. The separation allows for
clear responsibility delineation among different stakehold-
ers, such as developers focusing on the AI’s technical pro-
ficiency and regulators overseeing its ethical compliance.
This framework enhances transparency and accountability,
facilitating more robust oversight and control over the Al’s
operations, and ensuring that ethical considerations are con-
sistently prioritised in decision-making processes.

By explicitly representing the underlying mechanisms of
the environment, such as the properties of objects and the
relationship between them, and the dynamics of AV opera-
tion, model-based approaches enable more transparent and
interpretable decision-making processes. This transparency
enhances trust and confidence in AV systems by allowing
human operators to understand and verify the rationale
behind the system’s actions. Furthermore, model-based
approaches facilitate meaningful human control by provid-
ing a structured framework for encoding ethical goals and
principles within AV systems. During training and even
after deployment, humans can supervise and intervene in
the system’s actions more effectively, ensuring alignment
with a priori defined societal values and preferences.

Additionally, model-based approaches enable real-time
updates and adaptation of the AV’s world model in response
to changing environmental conditions or unforeseen events,
enhancing the system’s robustness and reliability. Model-
based approaches offer greater flexibility and generalisa-
tion capabilities compared to purely deep learning methods.
By encoding domain knowledge and physical laws into
the model, AV systems can generalise across diverse sce-
narios and extrapolate their behaviour to novel situations
not encountered during training. This adaptability is crucial
for navigating complex and dynamic environments, where
unforeseen challenges and uncertainties may arise.
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One example of model-based approach is described in a
recent paper from van der Ploeg et al. (2023), introducing
an innovative trajectory planning method. By incorporating
a novel application of a knowledge graph, which utilises a
traffic-oriented ontology to reason about the risk of objects
and infrastructural elements, the trajectory generator for-
mulates adaptive trajectories validated through simulation.
This method formalises the role of contextual information
in motion planning, combining model-based predictive
planning with a knowledge graph, and demonstrates robust-
ness and real-time applicability through extensive simula-
tion testing across four use cases with 309 variations [27].

However, despite its strengths in adaptability, explain-
ability, reasoning, and knowledge representation, model-
based or symbolic Al systems have notable limitations,
particularly in handling low-level tasks like image classi-
fication. In contrast, deep learning-based Al excels in such
tasks by leveraging large datasets to automatically learn and
generalise from patterns without requiring predefined mod-
els. This data-driven approach allows deep learning mod-
els to achieve superior performance in such tasks, handling
nuances and variations that model-based systems struggle
with [25].

Moreover, the hand-coding of rules and knowledge cre-
ates a significant Knowledge Acquisition Bottleneck, requir-
ing extensive human involvement and leading to high costs
and time inefficiencies [28]. Acquiring explicit knowledge
bases, typically from experts, is error-prone and expensive,
limiting the scope of such systems. Additionally, the main-
tenance of rule bases poses challenges, as it necessitates
complex verification and validation processes. Logic-based
reasoning methods are subject to combinatorial explosions
that limit both the number of axioms and the depth of rea-
soning that is possible, further constraining the efficiency
and scalability of symbolic Al approaches. While model-
based Al offers robustness and interpretability, its limita-
tions highlight the need for complementary approaches to
effectively address the complexities of modern Al applica-
tions [11].

4 Hybrid Al

The combination of both implicit and explicit models is
called hybrid AI [11]. By integrating the strengths of sym-
bolic methods with the adaptability and learning capabilities
of sub-symbolic techniques, hybrid Al offers a promising
solution to overcome the challenges faced by purely model-
based or deep-learning-based Al systems. In this hybrid
framework, the symbolic component oversees the deep
learning part, providing oversight and guidance based on
predetermined models. Unlike deep learning algorithms,
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which operate primarily based on learned patterns from
data, the symbolic reasoning process allows for self-assess-
ment and self-management. This capacity for reasoning
enables the system to generalise knowledge and make deci-
sions based on logical principles, enhancing its adaptability
and robustness in various situations.

In hybrid Al-based AVs, the symbolic layer serves as a
crucial bridge between technical functionalities and ethi-
cal considerations, guided by the principles of orthogonal-
ity-based disentanglement (see Fig. 1) [26]. It integrates
technical elements such as sophisticated path-planning
algorithms, leveraging symbolic reasoning to navigate com-
plex environments efficiently while considering high-level
goals and constraints. Simultaneously, the symbolic layer
incorporates an ethical component, manifested in the form
of an ethical goal function derived from the orthogonality-
based disentanglement approach. This function quantita-
tively encodes human values and preferences, guiding AVs
to prioritise actions aligned with ethical principles, such as
pedestrian safety or environmental sustainability. Through
the orthogonality-based disentanglement framework, the
symbolic layer ensures a transparent division of responsi-
bilities, enabling AVs to operate not only effectively but also
responsibly and ethically in dynamic real-world scenarios.

Finally, the sub-symbolic layer primarily handles tasks
requiring pattern recognition capabilities. This layer lever-
ages deep learning techniques to process raw sensor data,
such as images from cameras, radar signals, and LiDAR
data, to perform essential functions. It identifies and clas-
sifies objects in the environment, integrates data from mul-
tiple sensors for accurate perception, and determines the
vehicle’s precise location using GPS and visual odometry.
Additionally, it predicts the future movements of dynamic
objects, such as other vehicles and pedestrians, to enhance
safety and decision-making. By efficiently handling these
data-intensive tasks, the sub-symbolic layer is crucial for
the AV’s overall performance and adaptability.

5 Moral decision-making for AVs

Efforts to address the moral implications of new technol-
ogy require shifting focus towards considering moral issues
during the design process, rather than as an afterthought.
While laws, ethical codes, and theories offer frameworks
for ethical assessment, they often lag behind technologi-
cal advancements and primarily serve as tools for review-
ing moral impact rather than proactively guiding design.
Despite their utility, these top-down approaches are insuf-
ficient to keep pace with the rapid innovation in technology,
necessitating a more proactive and integrated approach to
moral design [29].
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Fig. 1 Illustration of a hybrid Al system

Ethics must be integrated into the design process from
the outset, a concept known as “ethics at the front door”
[27], and continuously embedded throughout the develop-
ment stages, referred to as “ethics by design.” This com-
bined approach ensures that ethical considerations shape the
entire design process and the moral impact of the result-
ing technology from the very beginning and throughout its
lifecycle. Recognising that technology’s ethics are multi-
faceted—with influences from both the designer’s values
and the inherent moral implications of the artefact—high-
lights the importance of aligning values from the initial
design stages and maintaining this alignment as the technol-
ogy evolves. This comprehensive ethical integration helps
ensure the development of morally sound technology that
remains stable and ethically aligned throughout its lifecycle.

Crucially, in the context of high-risk Al systems where
risk is defined as the probability of harm [30], the symbolic
layer must explicitly incorporate representations of poten-
tial harm, in the shape of an ethical goal function. By inte-
grating explicit representations of harm into the objective

functions, the Al system can prioritise minimising harm
while maximising the defined objectives. This approach
relies on the Al system’s utilisation of an implicit or explicit
world model, which enables it to understand and navigate
its environment while adhering to the established objective
function.

Explicitly representing harm within Al systems neces-
sitates a clear definition of what constitutes harm. While
physical harm is a fundamental aspect, a comprehensive
harm model must also encompass moral harm. Beyond tan-
gible or physical damage, moral harm considers the ethi-
cal implications of Al decisions and actions, particularly in
scenarios where human welfare, rights, or societal values
are at stake. This dimension of harm extends beyond mere
physical consequences to encompass the broader impact
on individuals, communities, and society as a whole. By
incorporating moral harm into the harm model, Al systems
can more effectively evaluate the consequences of their
actions and make decisions that align with ethical prin-
ciples and societal norms. This holistic approach to harm
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representation ensures that Al systems consider not only the
immediate physical risks but also the broader ethical impli-
cations of their behaviour.

However, modelling moral harm within Al systems pres-
ents a significant challenge due to the inherent subjectivity
and diversity of ethical theories. Different ethical frame-
works, such as consequentialism, deontology, and virtue
ethics, may yield divergent perspectives on what constitutes
moral harm and how it should be prioritised. For example,
consequentialism, specifically utilitarianism, prioritises
maximising overall happiness or utility, often leading to
decisions that may sacrifice the well-being of a few indi-
viduals for the greater good of the majority. In contrast,
deontological ethics emphasises adherence to moral rules
or principles, regardless of the consequences, which may
lead to different judgments in morally complex situations.
Similarly, virtue ethics focuses on the character traits or vir-
tues of individuals, which may lead to judgments based on
the intentions or motivations behind actions rather than their
outcomes. By definition, virtue ethics cannot be applied to
sub-symbolic Al

The inherent variability among ethical theories poses a
significant obstacle to developing a unified model of moral
harm within Al systems, as the choice of ethical framework
can profoundly influence the system’s decision-making pro-
cesses and outcomes.

5.1 Augmented utilitarianism

In response to these ethical challenges, a framework known
as Augmented Ultilitarianism (AU) [31] has emerged
as a promising way forward. Unlike traditional utilitar-
ian approaches that focus solely on maximising utility or
outcomes, AU adopts a more nuanced perspective by pri-
oritising harm minimisation while adhering to predefined
ethical principles. This framework emphasises principles
over specified outcomes and incorporates attributes and
weights defined by society, rendering it a non-normative
framework shaped by societal values. Grounded in moral
psychology, cognitive neuroscience, and philosophy, AU
aims to capture the diversity of human moral reasoning and
ethical perspectives.

AU draws upon the theory of dyadic harm, as eluci-
dated by Gray and Schein [32], to provide a comprehensive
understanding of harm in ethical decision-making. Dyadic

Table 1 Multiple ethical frameworks included in augmented utilitari-
anism [33]

Ethics framework/focus Agent Action Outcome Experiencer
Virtue ethics X

Deontological ethics X

Consequentialist ethics

AU X X X X

@ Springer

harm considers not only the consequences of actions, akin
to consequentialism, but also factors such as the intentional
agent, the action itself, and the perceptions of the observer
(see Table 1). By integrating these dimensions of harm,
AU offers a holistic approach to ethical decision-mak-
ing that transcends simplistic utilitarian or deontological
frameworks.

Central to AU is the construction of an ethical goal
function that guides the decision-making process of AV
systems. This goal function is designed to be transparent,
explainable, and grounded in societal values predefined by
humans, often referred to as the “human before the loop”
perspective. By explicitly encoding ethical principles into
the decision-making system, AU enables AVs to navigate
complex moral dilemmas and prioritise actions that align
with societal norms and preferences even under new situ-
ations that were not encountered before or are not part of
the training set. This ensures that AVs operate in a manner
consistent with previously defined and explicit human val-
ues and ethical standards, fostering trust, accountability, and
societal acceptance of automated technologies. Crucially,
the ethical goal function derived from AU reflects societal
values, ensuring that AVs prioritise actions that align with
human preferences and ethical standards. By incorporating
these values into the decision-making process, AVs become
more transparent and accountable, as their actions can be
traced back to predefined societal norms. Moreover, AU’s
emphasis on explainability allows for a clearer understand-
ing of how decisions are made, reducing the potential for
bias and promoting fairness in AV operations and the poten-
tial to learn from mistakes.

In essence, AU represents a significant advancement in
ethical Al design for AVs, offering a principled and trans-
parent framework for addressing the ethical challenges
inherent in automated systems. By combining moral phi-
losophy with insights from psychology and neuroscience,
AU provides a robust foundation for developing Al systems
that not only maximise utility but also uphold fundamental
ethical principles and values.

5.2 Moral value elicitation

Building on AU, we propose a method to elicitate moral
attributes to construct an explicit ethical goal function. To
ensure alignment with societal values, this method allows
for meaningful input from society, represented by a diverse
sample of the population. This method comprises two key
steps: first, defining an initial set of attributes, and second,
refining this initial set through scenario-based attribute
ranking and supplementation with any missing attributes
(see Fig. 2).
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Augmented Utilitarianism

Fig. 2 Illustration of the experi-
mental method

Agent

Additional attributes

(Virtue Ethics)

The initial phase of this experimental process entails
defining a comprehensive set of attributes. While some
studies have begun describing such a set, these frameworks
often lack scientific grounding [34-37]. For example, the
Moral Machine experiment asked thousands of participants
to choose their preferred outcomes in various moral dilem-
mas [38]. The attributes used for decision-making included
the number of individuals killed, their gender, age, and
social status. However, the selection of these attributes was
not scientifically grounded, leading to ambiguity in under-
standing the participants’ decision-making processes. For
instance, it is unclear whether children were favoured due
to perceived vulnerability or based on the ‘fair innings’
philosophy, which advocates for everyone having the right
to live a certain number of years. Additionally, the experi-
ment’s random comparison of attributes made it difficult to
discern their individual impacts on decisions. Moreover, the
study did not allow participants to suggest their own attri-
butes or attempt to create an exhaustive set, further limiting
its robustness and comprehensiveness.

In contrast, AU integrates insights from neuroscience,
cognitive psychology, and ethical philosophy to ensure
that moral attributes are both scientifically grounded and
explainable. In addition, AU, being a non-normative frame-
work, prioritises principles over normative ethical theories,
aligning with the foundation of principlism. Principlism is
an approach to ethics that emphasises the application of four
core principles: autonomy, beneficence, non-maleficence,
and justice [39]. These principles provide a flexible yet
robust ethical framework that can be applied across vari-
ous contexts without adhering to a single normative ethical
theory [40].

This strategic alignment with principlism allows for the
integration of these core ethical principles into the attribute
definition process, ensuring that the attributes reflect essen-
tial ethical considerations. For instance, autonomy ensures
that the attributes respect individual decision-making and
personal freedom, beneficence promotes the well-being and
positive outcomes for individuals and society, non-malefi-
cence ensures that the attributes prevent harm and minimise
potential negative impacts, and justice guarantees fairness
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and equity in the treatment of individuals and distribution of
benefits and burdens.

By incorporating these principles, the process establishes
a robust ethical foundation for the subsequent stages of
attribute refinement and scenario analysis, ensuring that the
ethical dimensions are thoroughly considered and integrated
into the development of the technology. This principled
approach ensures that the resulting attributes are not only
technically sound but also ethically robust, aligning with
broader societal values and ethical standards. This approach
led to the identification of attributes such as physical dam-
age, psychological damage, moral responsibility, legality,
and damage to the vehicle [41].

The next challenge involves determining how to accu-
rately capture societal values and who is responsible for
defining them. Understanding and integrating societal val-
ues into the attribute definition process is crucial for devel-
oping ethically sound technologies. This can be achieved
through participatory methods that involve diverse stake-
holders, including the public, experts, and policymakers,
to ensure a broad and inclusive representation of societal
values.

To address this challenge, we propose an experimental
process that allows individuals to voice their opinions and
suggest additional attributes. This participatory approach
ensures that the attributes reflect a wide range of perspec-
tives and values. The defined attributes undergo rigorous
testing across two distinct scenarios: high-risk and low-
risk situations. High-risk scenarios might include situations
where the potential for significant harm or ethical dilem-
mas is greater, such as emergency decision-making by AVs.
Low-risk scenarios, on the other hand, could involve every-
day situations with minimal ethical stakes.

Participants in the experiment are invited to rank the attri-
butes based on their perceived importance in these scenar-
i0s, elucidate their decision-making process, and contribute
additional attributes as needed. This approach not only cap-
tures the initial set of societal values but also allows for the
identification of new attributes that may emerge from the
participants’ feedback. The collected feedback is then used
to refine and expand the attribute set, ensuring it remains
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comprehensive and reflective of evolving societal values
[41].

To ensure that the evolving societal values are accurately
reflected, the experiment incorporates a feedback loop.
This iterative cycle allows for the ethical goal function to
be dynamically adjusted, ensuring ongoing relevance and
adaptability to changing norms and ethical considerations.
This loop involves continuously revisiting and refining the
attributes based on participant feedback and changes in
societal norms and values. By doing so, the process remains
dynamic and responsive to societal shifts, ensuring that the
technology remains aligned with current ethical standards.

After participants contribute to defining and refining
the attributes, regulators review these inputs to ensure they
comply with existing laws and ethical guidelines. This over-
sight helps bridge the gap between experimental findings
and legal requirements, providing a formal mechanism for
integrating public input into regulatory frameworks. By
validating the attributes, regulators ensure that the ethical
decision-making processes of AVs are not only comprehen-
sive and representative but also legally sound. Additionally,
regulators can adapt these attributes as laws evolve, ensur-
ing that AV technologies remain compliant and ethically
responsible in the face of changing legal landscapes. This
collaborative approach between public input and regulatory
oversight ensures that AV decision-making is both ethically
grounded and legally robust.

The rationale behind this approach lies in the belief that
with a sufficiently large and representative sample of par-
ticipants, an exhaustive list of attributes can be generated
to fully define the decision-making processes of AVs. This
inclusivity ensures that diverse perspectives are considered,
addressing any inadequacies in the initial set of attributes
through participant contributions and ensuring compre-
hensive coverage. While complete agreement among par-
ticipants cannot be realistically achieved, by prioritizing
transparency and inclusivity, we aim to build a consensus
that, while not perfect, reflects a broad spectrum of societal
values and ethical considerations. This dynamic approach
ensures that the decision-making framework for AVs can
adapt over time, accommodating shifts in societal norms
and maintaining alignment with evolving ethical standards.

Ultimately, the objective of this endeavour is to cultivate
a robust and transparent framework that incorporates soci-
etal values into the decision-making processes of AVs. By
embedding ethical considerations at the core of AV design
and operation, our aim is to bolster public trust and accep-
tance of automated vehicles while ensuring alignment with
societal values and priorities. Through ongoing collabora-
tion and iteration, we aspire to contribute to the responsible
and ethical development of automated vehicle technology
for the betterment of society as a whole.
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6 Conclusion

In conclusion, this paper has addressed the ethical chal-
lenges confronting AV technologies and proposed viable
solutions to surmount them. By highlighting the constraints
of deep learning-based Al and advocating for transparent,
interpretable, and ethically grounded methodologies like
hybrid AI, we underscore the significance of ethical consid-
erations in real-time AV decision-making. Technical hurdles
such as data limitations and explainability issues, coupled
with broader apprehensions regarding transparency and
trustworthiness, underscore the intricacy of seamlessly inte-
grating Al into AVs. Model-based approaches offer a prom-
ising avenue by explicitly embedding ethical principles and
prioritising safety, fairness, and meaningful human control.
However, they encounter challenges, particularly in terms
of inefficiency when confronted with substantial amounts of
unstructured data. Hybrid Al, blending symbolic and sub-
symbolic methodologies, presents a compelling strategy to
effectively address these challenges. Augmented Utilitari-
anism is proposed as an ethical framework for AVs, with a
focus on harm minimisation while upholding ethical tenets.
Our method for eliciting moral attributes strives to construct
an explicit ethical goal function, steering AV decision-mak-
ing in harmony with societal values. By infusing ethics into
the design and operation of AVs, we can bolster public trust
and contribute to the conscientious advancement of auto-
mated vehicle technology.
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