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Abstract. Despite the significant advancements in computer vision
models, their ability to generalize to novel object-attribute compositions
remains limited. Existing methods for Compositional Zero-Shot Learning
(CZSL) mainly focus on image classification. This paper aims to enhance
CZSL in object detection without forgetting prior learned knowledge.
We use Grounding DINO and incorporate Compositional Soft Prompting
(CSP) into it and extend it with Compositional Anticipation. We achieve
a 70.5% improvement over CSP on the harmonic mean (HM) between
seen and unseen compositions on the CLEVR dataset. Furthermore, we
introduce Contrastive Prompt Tuning to incrementally address model
confusion between similar compositions. We demonstrate the effective-
ness of this method and achieve an increase of 14.5% in HM across the
pretrain, increment, and unseen sets. Collectively, these methods pro-
vide a framework for learning various compositions with limited data,
as well as improving the performance of underperforming compositions
when additional data becomes available.

Keywords: compositional zero-shot learning - prompt tuning -
incremental learning

1 Introduction

Although humans have never seen a blue apple, they can easily picture it. This
is due to the inherent human ability to generalize to novel concepts by combin-
ing the known entity “apple” with the color “blue”. However, do computer vision
models possess this capability? This question has motivated the development
of Compositional Zero-Shot Learning (CZSL) [5,21,22,26]. In CZSL, the goal is
to recognize unseen object-attribute combinations, referred to as compositions,
based on the compositions seen during training. For this, models should under-
stand the attributes and objects that compose these compositions to generalize
to all possible compositions.

Vision Language Models (VLMs), pretrained on large-scale image-text pairs,
are promising for CZSL due to their ability to understand the relationship
between the visual content and the textual description [16,22,26]. For object
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detection, VLMs such as Grounding DINO [10] and GLIP [7] learn to asso-
ciate regions of text with regions of images by pulling the embeddings of paired
image regions and text descriptions close while pushing others away [25]. These
models perform cross-modality fusion throughout the whole architecture, which
makes the textual features image-aware and the visual features text-aware. Liu
et al. [10] argue that VLMs benefit from frequent cross-modality fusion, making
Grounding DINO superior to GLIP. Therefore, throughout this paper, we will
solely focus on Grounding DINO.

Unfortunately, these models tend to be biased towards object categories
rather than attributes, which makes it suffer from feature misalignment when
used directly for attribute recognition [3]. Fine-tuning VLMs can solve this but
often leads to catastrophic forgetting of prior knowledge [28], thereby compro-
mising their generalization ability. To address this, we explore how to fine-tune
VLMs to perform well in CZSL without forgetting any prior knowledge. Nayak et
al. [15] introduced Compositional Soft Prompting (CSP), which combats catas-
trophic forgetting by adding auxiliary tokens for all words in a given dataset and
training only these tokens. This approach preserves the model’s original embed-
dings, allowing it to retain and revert to its initial knowledge when necessary,
unlike full fine-tuning, which alters the model’s parameters. CSP improves model
performance in CZSL for image classification. We incorporate CSP in Grounding
DINO, to leverage it for object detection.

We consider CSP as a baseline and improve it for CZSL by introducing Com-
positional Anticipation (CA), which recognizes that additional compositions may
exist beyond those present during training. In this context, the term “anticipa-
tion” does not refer to actively predicting new compositions. Instead, it involves
enhancing the model’s ability to handle potential new compositions by adjusting
how it processes partially correct predictions through Compositional Smoothing
and by guiding the model to disentangle attributes from objects via Compo-
sitional Independence. Compositional Smoothing prepares the model for novel
compositions by assigning soft labels when predictions are partially correct, e.g.,
the object is correct but the attribute is different. This approach deviates from
conventional Label Smoothing [20], which assigns soft labels to all classes. Com-
positional Independence disentangles objects from attributes through Separa-
tion and Decorrelation. Separation introduces a separation loss to maximize the
distinction between object and attribute classes by applying intra-class separa-
tion within objects and attributes and an inter-class separation between objects
and attributes. Decorrelation minimizes the correlation between objects and
attributes to reduce dependency between the two.

For incremental learning on newly added compositions, we use prior knowl-
edge to address specific mistakes related to confusion between similar composi-
tions. Inspired by recent developments in prompt tuning [17,29,30], we introduce
a novel method called Contrastive Prompt Tuning, specifically tailored for object
attributes. Contrastive Prompt Tuning addresses cases where the model confuses
similar compositions, such as mistaking a blue apple for a red apple, by adding
a trainable prompt in front of the confused class: “is not red apple but is blue
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apple”. This approach utilizes our prior knowledge to harness the ability of a
VLM to exploit language.
In summary, our main contributions are:

1. We incorporate CSP [15] into Grounding DINO [10] and extend it with Com-
positional Anticipation. Compositional Anticipation consists of:

— Compositional Smoothing, which assigns soft labels when predictions are

partially correct.

— Compositional Independence, which disentangles objects from attributes.

2. We develop Contrastive Prompt Tuning, a method that adds a learnable

prompt for compositions that are confused with each other during training.

This technique harnesses the power of language and our understanding of the

model to improve performance beyond simply training with additional data.

2 Related Work

In this section, we review literature related to our work. We cover Composi-
tional Zero-Shot Learning (CZSL), Prompt Tuning in Vision-Language Models
(VLMs), and Class Incremental Learning (CIL). Our research focuses on improv-
ing the CZSL capabilities of Grounding DINO [10], a VLM designed for object
detection, by utilizing prompt tuning. Additionally, we address underperforming
compositions in a class-incremental manner to further improve model perfor-
mance.

Compositional Zero-Shot Learning. The main objective of CZSL is to rec-
ognize unseen compositions from the compositions encountered during training.
In CZSL, individual objects and attributes are referred to as primitives. Misra
et al. [13] use a limited set of compositions to learn linear classifiers for each
primitive. Then, they learn a transformation network that takes these classifiers
as input and composes them to produce a classifier for their combination. Since
then, multiple works [8,12,14,19] have been proposed to tackle the CZSL task.
Recent works focus on adapting pretrained VLMs for CZSL by fine-tuning
primitive tokens. While CSP [15] only trains these tokens, others [11,21] also
introduce prompt disentangled tuning. This technique addresses entanglement,
where optimizing one primitive’s embedding affects another. Prompt disentan-
gled tuning divides the process into three phases with different prompts: one
for the entire composition, one for the attribute, and one for the object. This
ensures attributes and objects learn their optimal parameters independently.
While [11,21] improve upon [15] with an average performance increasement
of 1.7% and 2.3%, respectively, the gains are marginal relative to the increased
complexity. Our work is closely related to [11,15] as we adapt CSP for object
detection and address entanglement through Compositional Independence.



268 Y. Zahran et al.

Prompt Tuning in VLMs. Ever since CLIP [16] demonstrated that prompt
templates such as “a photo of a [CLASS]” improve the results of VLMs com-
pared to using only the classname, several other works [17,24,29,30] have been
introduced to replace the hand-crafted prompt with learnable soft prompts.
CoOP [30] introduces soft prompts that are shared across all classes, resulting in

prompts like [v1], [v2], . . . [vas] for all images. CoCoOp [29] improves upon this by
proposing soft prompts that are image-conditioned, generating prompts such as
[v1(2)], [v2()], . . . [var(x)] for each image . Building upon these advancements,

Rao et al. [17] use contextual information from the image to prompt the language
model.

Our work is closely related to these works but is unique in its focus on
improving the performance of confused compositions using learnable prompts
that are initialized based on our knowledge of the model’s errors.

Class Incremental Learning. Class-Incremental Learning (CIL) refers to
learning new classes while retaining previously learned classes [27,28]. In typi-
cal CIL scenarios, learning occurs through a sequence of training tasks, each of
which introduce new classes without any overlap of the classes from previous
tasks. The main challenge is avoiding catastrophic forgetting, where learning
new classes leads to a loss of knowledge from previous tasks. Our approach bears
resemblance to Blurry CIL [1,2], where former classes can be revisited during
training. Similarly, we train incrementally with underperforming compositions
while allowing former compositions to be revisited.

3 Method

3.1 Problem Definition

Compositional Zero-Shot Learning. We follow [21,22,26] and formalize the
CZSL task as follows. Let A denote the set of attributes, and O the set of
objects, and C = A x O the set of all compositions. 7 = {(x;,¢;)}}_, denotes
the train set where z; € X is a sample in the input (image) space X and
c; € Cs is a composition in the subset C; C C. The seen set C; C C consists
of all compositions encountered during training, whereas the unseen set C,, C C
consists of compositions not seen during training. Let C; and C,, be two sets such
that C; N C, = 0. While C; and C,, are disjoint, the objects O, and attributes
A, are defined such that O, C O, and A, C A,

Catastrophic Forgetting. VLMs, such as Grounding DINO [10], are known
for their ability to generalize well across diverse tasks due to the extensive and
varied data used during pre-training. However, fine-tuning these models on a
new dataset often compromises their generalization capability, as the rich fea-
tures learned during pre-training are replaced by features specific to the new
dataset. This can lead to catastrophic forgetting, where the model’s perfor-
mance on previously learned tasks significantly deteriorates. In the context of
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CZSL with VLMs, catastrophic forgetting is particularly problematic. While the
model may perform well on the specific compositions present in the new dataset
it was fine-tuned on, it risks becoming overly specialized. This specialization
may result in a model that loses its ability to generalize to other compositions,
objects, or concepts, and instead becomes exceptionally good at predicting the
compositions seen during training. Such a limitation is especially undesirable for
open-set object detectors like Grounding DINO, which are meant to recognize a
wide range of concepts.

3.2 Incremental CZSL

In practical settings, models often encounter new data or need to improve per-
formance on underperforming compositions after the initial training phase. To
address this, we introduce an increment set C; C C to CZSL. Let C, be the set
used for the initial fine-tuning of the model, with C, = C,. After introducing
C;, the set of seen compositions becomes Cs = C, U C;. The increment set C;
consists of compositions introduced after the initial fine-tuning to improve per-
formance on underperforming compositions. Improving these underperforming
compositions with additional compositions is challenging because C,, is designed
to cover A and O with the minimum number of compositions. Extending C, with
C; makes the attributes and objects in C; overrepresented in Cs, which can bias
the model towards these attributes and objects. In this paper, we focus solely on
improving performance on compositions c¢; € C without extending the attribute
set A or the object set O.

3.3 Compositional Soft Prompting

To prevent catastrophic forgetting in Grounding DINO [10], we follow CSP [15]
and modify it for object detection. Objects and attributes that form compositions
are treated as learnable tokens within the VLMs vocabulary. Each attribute
a; € A and each object 0; € O is represented as an auxiliary token t,; and t,,
respectively, where t,;,1,, € R?, with d being the dimension of the vocabulary
embedding. During training, only these auxiliary tokens are tuned, resulting in
(JA] +|O|) x d learnable parameters.

To illustrate, CSP creates auxiliary tokens for each attribute and object such
as tpiye for the attribute “blue” and tqppe for the object “apple”. These tokens
are adjusted during training while the rest of the weights, such as those of the
encoder and decoder in Grounding DINO, remain unchanged. By doing this,
CSP prevents catastrophic forgetting and preserves the pretrained weights of
the model.

3.4 Compositional Smoothing

To combat bias during training for Cs, where the model becomes overly confident
with the seen classes, we assign soft labels rather than hard labels (0 and 1) in
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Fig. 1. Our method anticipates unseen, future object-attribute compositions through
Compositional Independence and Compositional Smoothing. Forgetting is mitigated by
creating auxiliary tokens for the language embeddings and refining only these tokens.
Errors in compositions are incrementally corrected using Contrastive Prompt Tuning,
which contrasts confused compositions.

the classification loss. This is referred to as Label Smoothing [20], and it prevents
the model from becoming overly confident in its predictions, thereby improving
its generalization capability. Conventional Label Smoothing adjusts the target
labels by distributing a small portion of the probability mass to all other labels.
For a given true label y in a classification problem with k classes, the smoothed
label Ysmootn is defined as:

€
- (1)
where ¢ is the smoothing parameter, and the term 7 distributes the smoothing
equally among all classes.

We deviate from conventional Label Smoothing [20] and assign soft labels
based on the correctness of the object, attribute, or the entire composition. We
refer to this as Compositional Smoothing. Let po, p4, and pc represent the prob-
abilities for object, attribute, and overall composition predictions, respectively.
For a given true composition ¢; composed of object o, and attribute a;, and

Ysmooth = (]- - 6)9 +
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predicted composition ¢, composed of object o, and attribute a,, the smoothed
label y, , is defined as:

po ifop =0, ANap # ay,
You = pa if ap = as Aoy # o, @)
o pc ifap =a; Aoy = oy,

0 otherwise.

Compositional Smoothing ensures that there is a difference between having par-
tial correctness and no correctness in the prediction, guiding the model to learn
what the compositions are composed of rather than learning the compositions
themselves. This, in turn, should lead to better performance on C,.

Figure 1 (top right) illustrates Compositional Smoothing. For a given ground
truth label (a1, 01), predictions where both the attribute and object are correct
are shown in black, and the smoothed label becomes pe. Partial correctness is
depicted in gray, with the smoothed label being either pp or p4. When both the
object and attribute are completely wrong, no smoothing is applied.

3.5 Compositional Independence

In CZSL, it is important to disentangle objects from attributes and have clear
distinctions withing each category. For example, a cube and a cylinder should
be easily distinguishable to prevent confusion. Additionally, colors should be
distinguished from specific objects, such as cubes, to ensure their independence.
This prevents similar attributes or objects to be confused with each other and
helps the model treat attributes and objects as distinct concepts.

We achieve this independence through two components: Separation and
Decorrelation. Separation enforces orthogonality within the embeddings of
objects and attributes and maximizes the distance between their mean embed-
dings. Decorrelation minimizes the correlation between the embeddings of
objects and attributes. This is achieved using the Hilbert-Schmidt Independence
Criterion (HSIC) [4], a kernel statistical test commonly used to measure inde-
pendence between two random variables, which proved to be effective for CZSL
image classification [18] and is leveraged here for object detection.

Separation. To help the model differentiate between similar attributes or
objects, we introduce an orthogonality loss. We achieve orthogonality within the
groups of attributes and objects by minimizing the average absolute similarity
between the normalized embeddings within each group:

[E| |E|

Lowen(B) = ﬁ D> lei-el 3)

i=1 j=1
J#i
where E is the set of normalized embeddings, and e; and e; are embeddings

within this set. The summation sz ignores self-similarity, and m ensures
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that self-similar terms are excluded during normalization. This orthogonality loss
is applied to both the attributes and objects:

E.A = ﬁorth (E.A) (4)

Lo = Lown(Eo) (5)

where E 4 and Eo represent the sets of normalized embeddings for the attributes
and objects, respectively.

Additionally, to enforce a clear distinction between attributes and objects,
we ensure that the mean embeddings of attributes and objects are significantly
separated:

Laistance = — log([lpa — poll2) (6)

where py = |17\ Z'{i‘l ey, and pp = ‘—(19‘ Z'fill ep, represent the mean embed-
dings of attributes and objects, respectively. The distance is computed using the
Lo norm between the mean embeddings of the two groups.

The total Separation loss is a weighted combination of the orthogonality and
mean separation components:

Lseparation = Alﬁdistance + AQLA + A3‘60 (7)

where A\1,\2 and A3 are hyperparameters controlling the contribution of Lgistance,
L 4 and Lo to the final loss, respectively.

Decorrelation. To further ensure the independence between object and
attribute embeddings, we introduce Decorrelation by using HSIC [4]. For an
object o; with attribute a;, we formulate the HSIC loss as follows:

thic = )\hHSIC(Oj, aj) (8)

Here, \j is a hyperparameter that controls the contribution of the HSIC term
to the total loss.

3.6 Compositional Anticipation

Our method, which we refer to as Compositional Anticipation (CA), consists
of both Compositional Smoothing and Compositional Independence. While CA
does not actively predict unseen compositions, it prepares the model by refin-
ing how it handles potential new compositions and disentangles attributes from
objects. Figure 1 shows how we implement CA in Grounding DINO [10].

3.7 Contrastive Prompt Tuning

To improve the performance of some underperforming composition after training
with C,, we extend C, with an additional set C; to improve performance. Our
approach begins with analyzing the predictions to identify compositions that are
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frequently confused with each other. For instance, if ¢; and ¢ are often mixed-
up, both compositions are included in C;, and a trainable prompt is added in
front of the underperforming class(es). For example, if ¢; performs poorly, we
add the following prompt in front of the class: “s not ¢ but is ¢;”. This prompt
contains both a negative and an affirmative component.

We refer to this method as Contrastive Prompt Tuning and it does not modify
any of the tokens present in the sets A4 and O. Instead, it focuses solely on the
learnable prompt, which leads to fewer changes in the performance of other
compositions and mitigates catastrophic forgetting. By doing this, we exploit
the ability of a VLM to understand language and use a semantically meaningful
initial prompt to learn to distinguish between similar compositions. This step is
depicted as Incremental Learning in Fig. 1.

4 Experiments

4.1 Evaluation

Dataset. We evaluate our approach using a synthetic dataset generated follow-
ing the CLEVR framework [6]. This dataset consists of three types of objects:
cube, cylinder, and sphere. Each object is associated with six attributes: blue,
red, green, purple, brown, and yellow.

The dataset intentionally excludes non-visual attributes (e.g., heavy) and
attributes that exhibit significant variation across different objects (e.g., wet
in wet dog versus wet car). This yields a dataset that is reliable for assessing
a model’s performance in the CZSL task. Given that there are no ambiguous
attributes present in this dataset, a poorly performing model would indicate
that the model is bad in the CZSL task.

Train-Test Split. Throughout this section, all experiments for the CZSL task
are trained using the set: {red cube, blue cube, green sphere, purple sphere,
brown cylinder, yellow cylinder} as C, with 10 shots per composition. This split
ensures that Cs; covers the entire set of objects O and attributes A. Testing is
performed with the whole set of composition C with 60 samples per composition.

Evaluation Metric. We adopt the NMS mAP evaluation metric introduced
by Yoa et al. [23]. In this work they argued that the traditional COCO mAP
[9] is deceiving for open vocabulary detection models, such as Grounding DINO
[10]. Consider an image annotated with two ground-truth instances: a purple
cylinder and a green cylinder, assuming these are the only cylinder categories
in the model. These models tend to be able to detect and locate the presence
of all cylinders in the image, but they struggle with the contextual description.
They would predict two overlapping bounding boxes for each object, mistakenly
assigning both ‘green’ and ‘purple cylinder’ labels to each object. All four of
these boxes would be predicted with a high confidence score. Additionally, the
highest scoring label is not necessarily the correct one. Consequently, the AP for
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each category would misleadingly be 0.50, despite the model failing to correctly
comprehend the target objects. Yao et al. [23] refer to this as the ‘inflated AP
problem’.

To address this issue, Yao et al. [23] propose applying class-agnostic Non-
Maximum Suppression (NMS) before calculating the mAP. This method sup-
presses redundant bounding boxes, ensuring that only the prediction with the
highest confidence score is used in the calculation of the mAP. We adopt this
NMS mAP metric to provide a more realistic measure of our model’s perfor-
mance.

4.2 CSP Base

We adapt CSP [15] and modify it for Grounding DINO [10] and this integration
serves as our baseline method. To assess its performance, we begin by training
it with C,, = C. This yields an NMS mAP of 87.2£ 6.8, demonstrating that good
performance can be achieved by only training the embeddings of O and A.

Table 1. Compositional Anticipation improves both object detection performance and
generalization to unseen compositions. Compositional Smoothing contributes the most
to these improvements, followed by Separation and Decorrelation.

Compositional Anticipation (CA) Seen Unseen HM

Compositional Smoothing Separation Decorrelation
X X X 814+76 45+46 80 +38.1

81.3 £ 7.7 10.8 £ 6.7 18.2 £ 10.5
82.5 + 6.8 15.1 4.2 254 + 6.1
84.4 + 7.1 20.8 +4.7 33.1 +6.4
86.2 + 6.8 64.3 £ 5.9 73.5+5.3
92.4 + 3.0 61.6 5.7 73.8 + 4.5
86.0 £ 6.1 67.7 4.7 757+ 5.0
88.7 +49 706 + 7.4 78.5 + 6.0

NN N X % X
NN X X% NN X
N X \ %X \ X \

Table 2. Our model does not forget. It achieves good performance on the fine-tuned
CLEVR |[6] dataset while preserving performance on MS-COCO [9], whereas conven-
tional fine-tuning of Grounding DINO [10] leads to forgetting on MS-COCO.

CLEVR [6] MS-COCO [9]
Model Before After Before After
Grounding DINO [10] 934 91.0 1676 11.8 1293

. 41.1
+ CSP [15] + CA (ours) 76.6 153-2 41.1 =00
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4.3 CZSL Comparison

We compare the CSP [15] baseline with our proposed method, Compositional
Anticipation (CA) which extends CSP with Compositional Independence and
Compositional Smoothing. The results, averaged over 13 experimental runs,
are shown in Tablel and are denoted using the NMS mAP metric [23]. Our
results show that our method substantially improves upon the CSP baseline,
with the harmonic mean (HM) between seen and unseen compositions improving
by 70.5%. This improvement is predominately achieved on the unseen composi-
tions, which improved by 66.1%.

Additionally, we showcase that our method does not suffer from catastrophic
forgetting by evaluating its generalization ability compared to the conventional
fine-tuning of Grounding DINO [10]. We compare the results on the MS-COCO [9]
dataset before and after fine-tuning on the CLEVR [6] dataset for the CZSL task.
Table 2 shows that conventional fine-tuning of Grounding DINO [10] achieves a
67.6% improvement on CLEVR, whereas our method achieves a 53.2% improve-
ment. This suggests that conventional fine-tuning of Grounding DINO is superior
in CZSL. However, conventional fine-tuning of Grounding DINO leads to a 29.3%
performance drop on MS-COCO, whereas our method maintains stable perfor-
mance with no drop at all. This demonstrates that conventional fine-tuning suffers
from catastrophic forgetting, while our method does not.

4.4 Improving Incrementally

In this experiment, we incrementally learn new classes using the model initially
trained with CSP [15] extended with Compositional Anticipation. We continue
training the model using a dataset that includes both C, and C;.

We explore two different fine-tuning methods: fine-tuning class-specific tokens
and our proposed method, Contrastive Prompt Tuning. For fine-tuning class-
specific tokens, we compare CSP [15] with CSP extended with Compositional
Anticipation. Additionally, we conduct this fine-tuning in two ways: (1) allow-
ing the fine-tuning of all tokens in the sets O and A, and (2) fine-tuning only
objects and attributes present in C;, specifically O; and A;. For Contrastive
Prompt Tuning, all tokens are frozen and only the prompt is fine-tuned. The
prompt is initialized with semantically meaningful information, including both
an affirmative and a negative component. For instance, if “green cylinder” is often
confused with “green cube”, the prompt is initialized as “is not green cube but is
green cylinder”. We also analyze the individual contributions of each component
to the overall performance enhancements.

To evaluate performance, we compare the model’s results before and after
introducing C;. Specifically, we determine performance across the sets C,, C;, and
Cy. Initially, C,, is defined as C —C,,. After introducing C;, C,, becomes C —C,, —C;.
The results on these sets after introducing C; are shown in Table3, with the
absolute changes compared to the initial values indicated with arrows.

Our results show that our method, Contrastive Prompt Tuning, which fine-
tunes a prompt initialized with prior knowledge to address specific mistakes
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Table 3. Our Contrastive Prompt Tuning is effective for incremental learning. It
improves performance across all classes including the unseen ones.

Class-Specific Tuning

Method  Tunable Tokens Pretrained Increment Unseen HM
CSP O+ A 88.1 +£4.5 %9 729420335 00400 0.0+00 "7
+ CA O+ A 80.9 £ 5.0 191 60.5 £18.2 1% 765 +£84 > 69.6 + 7.0 1!
CspP O; + A 89.0 +£2.3 120 64.1+£209 1% 69448310 706+ 82!
+ CA O + A; 89.2+ 395 624 +£19.6 "1 786+49"™% 733911
Compositional Prompt Tuning (ours)
Affirmation Prompt 88.8 £ 5.5 127 828+ 17.8 1% 748 +6.61° 802+ 7.9 18°
Negation Prompt 91.2 +£2.0 %2 81.9 4+ 13.8 226 76,6+ 58 % 8214 6.0 04
Both Prompt 92.6 + 1.5 ™6 93.7+£21 ™44 7524507 86.2 £ 2.1 71°

blue cube 00 00 00 0 0 blue cube 00 0 0 0 0 0
red cube | O 0O 0 0 0O 0 0 O red cube | O 0
greensphere | 0 0 0 0 0 O greensphere | 0 0
_ purplesphere [ 0 0 0 0 0 o _ purplesphere [ 0 0
[ [
S browncylinder [ 0 0 0 0 0 0 2 browncylinder [ 0 0
L yellowcylinder [ 0 0 0 0 0 0.03 Y yellow cylinder | 0 0
= =
greencube | 0 0 0 0 0 o0 greencube [ 0 0
green cylinder | 0 0 0 Blo o green cylinder | 0 0
brownsphere [ 0 0 0 O O O 0 brownsphere | 0 0 0 0 O
yellowsphere [ 0 0 0 0 0 0 cllowsphere | 0 0 0 0 0
v @ @ ¢ 5 5 O @ @ v 9 5
£ 522 ¢ ¢ ¢ S5 2 2 ¢ ¢
s 3 3 & § 5 ¢ s 5 % 5 5 5 ¢
2 8 ¢ o S T ¢ 2 8 ¢ o T T 3
= $ 8 £ 3 © = $ 8 £ 3 © s
5 2 £ 3 5 ® 2 £ 3 s
Predicted label Predicted label
(a) Before incremental learning (b) After incremental learning

Fig. 2. Our Contrastive Prompt Tuning method is effective in incremental learning.
It improves performance on the increment compositions (in gray) while preserving
performance of the pretrained compositions (in black). (Color figure online)

related to confusion between similar compositions, is superior to the class-specific
tuning strategy. With Contrastive Prompt Tuning, we achieve a 12.9% enhance-
ment in the HM across the pretrain, increment, and unseen sets compared to the
best class-specific tuning method. This improvement is predominately achieved
across the increment set, which improved by 31.3% compared to the best class-
specific tuning method. Furthermore, Contrastive Prompt Tuning benefits from
both the affirmative and negative components of the prompt.

Figure 2 shows the effects of Compositional Prompt Tuning on the model’s
predictions. Figure2a shows that before incremental learning, 39% of all
instances of “green cylinder” are misclassified as “green cube”, and all instances of
“brown sphere” are misclassified as “yellow sphere”. Figure 2b demonstrates that
after applying Compositional Prompt Tuning, “green cube”, “green cylinder”,
“yellow sphere”, and “brown sphere” are classified correctly on all instances.
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5 Conclusion

In this paper, we demonstrated that conventional fine-tuning of Grounding
DINO achieves an NMS mAP of 91.0 when fine-tuned on the CLEVR dataset for
CZSL. However, this approach suffers from catastrophic forgetting, as confirmed
by a 29.3% decrease in performance on the MS-COCO dataset post fine-tuning.
To address this, we proposed incorporating CSP into Grounding DINO to miti-
gate forgetting by only fine-tuning auxiliary tokens. However, we observed that
using CSP alone resulted in an NMS mAP of only 8.0 for the HM between
seen and unseen compositions. Therefore, we extended CSP with Compositional
Anticipation, which improved the HM by 70.5%. While our method improves
upon the CSP baseline, it does not surpass conventional fine-tuning of Grounding
DINO. Additionally, we introduced Contrastive Prompt Tuning to incrementally
improve compositions that are confused with each other during training. With
Contrastive Prompt Tuning, we improve performance on the HM across the pre-
train, increment, and unseen sets by 12.9% compared to the best class-specific
tuning method.

Given these findings, we recommend conventional fine-tuning of Grounding
DINO for applications where performance on a specific dataset is prioritized, and
our method for scenarios emphasizing overall performance across datasets. How-
ever, we acknowledge that our experiments are limited to the CLEVR dataset,
and it remains unclear how the proposed methods will perform on real-world
datasets beyond this toy dataset.

Considering that Grounding DINO excels in CZSL, likely due to the cross-
modality fusion between image and text embeddings and our proposed methods
involve strategically guiding the positioning of embeddings in the embedding
space. Having demonstrated the benefits of our approach for CZSL, further inves-
tigation into the positioning of embeddings in the fused embedding space could
potentially yield results approaching those achieved by conventional fine-tuning
of Grounding DINO, but without encountering catastrophic forgetting.
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