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Abstract. Localizing object parts precisely is essential for tasks such as
object recognition and robotic manipulation. Recent part segmentation
methods require extensive training data and labor-intensive annotations.
Segment-Anything Model (SAM) has demonstrated good performance
on a wide range of segmentation problems, but requires (manual) posi-
tional prompts to guide it where to segment. Furthermore, since it has
been trained on full objects instead of object parts, it is prone to over-
segmentation of parts. To address this, we propose a novel approach
that guides SAM towards the relevant object parts. Our method learns
positional prompts from coarse patch annotations that are easier and
cheaper to acquire. We train classifiers on image patches to identify part
classes and aggregate patches into regions of interest (ROIs) with posi-
tional prompts. SAM is conditioned on these ROIs and prompts. This
approach, termed ‘Guided SAM’, enhances efficiency and reduces manual
effort, allowing effective part segmentation with minimal labeled data.
We demonstrate the efficacy of Guided SAM on a dataset of car parts,
improving the average loU on state of the art models from 0.37 to 0.49
with annotations that are on average five times more efficient to acquire.

Keywords: Image segmentation - Object parts - Foundation models

1 Introduction

Precise localization of object parts is essential for many tasks, including scene
perception [11], recognizing objects by the their parts [4,15], part-whole under-
standing [1,5] and robotic manipulation [8]. A specific part indicates what the
object can do, e.g. the sharp blade of the knife can be used to cut, whereas the
handle can be used to hold it. Segmentation is helpful to localize where the part
is exactly, which is a requirement for a robot to grasp it at the right point, use
it in the right way, or to understand the attributes of the part such as size and
shape. However, segmentation of parts is not trivial. Boundaries between parts
are not always clear (e.g. the hood of a car), parts can be very small compared
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to the full object size (e.g. the side mirror of a car), and they can have large
inter-class variations (e.g. cars have very different lights).

Recently, advanced methods have become available for part segmentation.
VLPart [17] trains a model on various granularities at the same time: parts,
objects, and image annotations jointly provide multiscale learning signals. An
object is parsed to find its parts, which provides the part segmentation with help-
ful contextual cues. OV-PARTS [18] builds on CLIP [13] and adapts it for part
segmentation. The context of the part is provided by an object mask prompt and
a compositional prompt shifts the model’s attention to the parts [16]. Grounded
SAM leverages Grounding DINO [7] as an open-vocabulary model to localize
objects or parts, which are subsequently segmented by the Segment-Anything
Model (SAM) [6]. The performance of these models is impressive. However, on
common object parts they may still fail, see e.g. Fig.1 (b) and (c).

Today’s part segmentation models can be finetuned or retrained, but this typ-
ically requires large datasets. OV-PARTS was trained using ADE20K-Part-234
[18] and VLPart was trained using PACO [14] with 641K part masks. Moreover,
part masks are labour intensive annotations, i.e. pixel-precise masks. There-
fore, improving the models on specific parts of interest involves large datasets
or labour intensive labelling. Our objective is a methodology that requires low
amounts of labelled images, and moreover, annotations that are easy to acquire
with a few clicks per image.

P

(a) Image and ground truth  (b) Grounded SAM [16]

(d) Initial guidance (e) Refined guidance (f) Our prediction

Fig. 1. Guiding SAM (bottom row) for part segmentation, where SOTA methods fail
(top row), our patch guidance (d) and refinement (e) is more effective.
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Our starting point is the Segment-Anything Model (SAM) [6], because it
has demonstrated a very strong performance on a wide range of image contents
and across various granularities from objects to parts. But, SAM is not directly
applicable to part segmentation, because it requires manual guidance where to
segment. This guidance comes in the form of one or more locations in the image,
which are referred to as positional prompts. We want to substitute the man-
ual prompting by automated prompting, such that the part segmentation can
be performed in a fully automated manner. This positional prompting is tai-
lored to the part of interest. Our approach is to learn the positional prompting,
from coarser annotations that are easy to acquire. Coarse annotations come from
image patches of approximately 1/14th of the image width and height. The anno-
tation says whether a patch contains the part. Such patch annotations are much
coarser and simpler to acquire than pixel-precise masks, therefore this strategy
is significantly more efficient. To advance the efficiency further, we leverage pro-
totypical patches [9] that group the parts already reasonably well before anno-
tation. For each part of interest, we learn a patch classifier to predict whether a
test patch contains the part. For the representation of a patch, we use DINOv2
for its strong representational power for a wide variety of image contents [10].
For a sense of context, the predicted patches are locally grouped into regions of
interest (ROIs). For the positional prompt within the ROI, a location is inferred
using a maximum likelihood formulation. SAM is invoked on the ROI with the
positional prompt. The advantage of a ROI is two-fold: it provides a contextual
cue and avoids the necessity to process the full image. Processing only the ROI is
advantageous for reducing computations and avoiding false alarms in irrelevant
image regions. We coin our method ‘Guided SAM’ and it is illustrated in Fig. 1.

The efficacy of Guided SAM is measured on a dataset of car parts. This is an
interesting testset, because the parts vary significantly in size, from very small
(a tiny back light), small (side mirror, front light), medium (bumper, trunk)
to large (door, hood). We compare our method with recent models that have
shown impressive performance, namely vision-language models that take textual
prompts: Grounded SAM [16] and VLPart [17]. Also, we compare various posi-
tional prompting strategies combined with SAM [6]. We will show the efficiency
of acquiring patch annotations and their suitability for Guided SAM. It is pos-
sible to learn a good segmentation model for a part from only 16 to 64 images,
which outperforms state of the art (SOTA) models, while requiring only 5 clicks
per image on average.

2 Related Work

For part segmentation, vision-language models have been proposed recently,
which can be prompted with a textual description of the part. VLPart [17]
trains the model on the part-, object- and image-level to align language and
image. An object is parsed by dense semantic correspondence. This approach
benefits from various data sources and foundation models, as demonstrated in
experiments where the model was applied to unseen object-part combinations
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(open-vocabulary). OV-PARTS [18] modifies and tailors CLIP [13] for part seg-
mentation. An object mask prompt is proposed to enable the model to take the
context into account. To attend more to the parts than whole objects or scenes,
a compositional prompt was proposed to reshift attention [16]. Since OV-PART'S
and VLPart are both designed to perform open-vocabulary part segmentation,
we only consider VLPart in our experiments.

Grounded SAM [16] combines two powerful models: Grounding DINO [7]
and SAM [6]. Grounding DINO localizes boxes in the image based on a textual
description. Each box contains a prediction where the target may be, in the
form of a initial mask. This box is represented by an embedding pair of the top-
left corner and the bottom-right corner that serve as positional prompts. These
prompts are provided to SAM [6], which segments the target.

Grounded SAM [16] inspired us to look more deeply into the positional
prompts themselves. Rather than using the box representations as input for
SAM, we aim for a regional prediction that is centered around the part already,
to acquire a small but tailored sense of context. Moreover, we want to predict
the positional prompts more precisely. For that purpose, we take inspiration
from OV-PARTS [18] and Grounded SAM [16], by following their strategy to
incorporate some image context around the part. Instead of an implicit context
via multiscale annotation (VLPart [17]), we follow OV-PARTS and Grounded
SAM by providing an explicit context in the form of a mask or box. Our ROI
approach differs because the ROI is more centered around the part, instead of
the full object.

3 Guided SAM

Our method segments parts of objects, such as the light of a car, see Fig.1
(a). Two state of the art methods, Grounding SAM and VLPart, fail on this
task, leading to respectively false positives in Fig.1 (b) and false negatives in
Fig.1 (¢). Our objective is to train a capable part segmentation model, while
requiring a small amount and labour-efficient type of human annotations. For
label-efficiency, we leverage a model M that has strong performance on segmen-
tation already: SAM [6]. This model cannot be applied directly to an image in
order to segment a specific part. It requires a spatial cue, provided as a posi-
tional prompt P, ,) (a pixel location). Our rationale is to learn the spatial cue
for a part, in order to guide SAM towards regions in the image where the part
is located, Pros. Our guidance model G takes an image I and a part C' and
produces a set of tuples:

g(I | C) - {(PIZ'%OP P(iz,y))}ieliN (1)

Here, P} serves as a region of interest (ROI) that conditions where SAM
is applied. For each P}, P("L y) serves as the positional prompt for SAM to
segment the part. The guidance model G involves a learner £ that classifies
whether an image patch p’ contains the part C: L(I|p’) — ¢, where c is the

confidence for the part class. Classifying patches is a much simpler learning task
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than predicting pixel-precise segments. Moreover, the learning requires a simpler
form of annotation, i.e., a binary label for the patch if it contains the part or not.
Our hypothesis is that such a patch classifier can be learned with a small amount
of labels that are simple to annotate. Figure1 (d) shows the classified patches
that are likely to contain the part. A ROI Pj,; is generated by grouping the
classified patches. The positional prompt P(im, v) for each ROI P}, is inferred
from its constituent patches and their respective confidences. Figure 1 (e) shows

(Phor: Py, ) that was inferred from the classified patches in Fig. 1 (d).

For the segmentation of an object part, both the ROI P, and the posi-
tional prompt P(iz, ,) are used. SAM is conditioned on P}o1» by passing only the
respective image contents. This avoids false positives at irrelevant image regions.
SAM is also conditioned on P(ix’ ) in order to give it a good starting point for
segmentation. Figure 1 (f) shows the part segmentation. Our method enables to
use SAM for part segmentation after providing a few labeled patches.

The flow diagram of GuidedSAM is illustrated in Fig.2. The annotation of
patches is shown in Fig.2 (a) and will be further explained in Sect.3.1. The
inference steps before the segmentation are shown in Fig.2 (b) and will be cov-
ered in Sect. 3.2. Finally, Fig. 2 (c) shows the guided segmentation with multiple
model variants that will be explained in Sects. 3.3 and 3.4.

3.1 Prototypical Patches

Our learner £ requires a set of binary labels for respective patches whether
they contain the part of interest: D = {(z;,1;)}}, with M samples, each con-
sisting of a patch z; and a label [; € [0,1] indicating presence of the part. To
arrive at D, the problem is that patches containing parts have a low prevalence,
considering that the parts are typically small. Drawing a random selection of
patches for annotation, is not efficient. Instead, we select patches that have a
larger probability of containing the part. We group similar patches by means of
prototypical patches [9]. The prototypes do not have a name, neither are they
necessarily related to the part of interest. To relate the prototypes to the part,
we match each prototype to the part name, using the visual-textual similarity
measure of CLIP [13]. Each prototype is assigned a score for the part of interest.
Figure 3 shows examples for various car parts, illustrating that the prototypes
group together patches that relate to the respective parts.

For a specific part, the prototypes are ranked by descending CLIP score.
Each prototype is verified by a human annotator. For illustration purposes, we
indicate this for an example image for the part ‘wheel” in Fig. 2 (a). This involves
one affirmative click if all patches of the prototype contain the part. Similarly,
one negative click is required when none of the patches contain the part. More
clicks are needed when most patches contain the part, by negating the fewer
patches that do not contain it, or vice versa. This procedure yields (z;,!;) that
constitute D.
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Training image to Predicted prototypical Manual
annotate patches verification
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(a) Annotation with prototypical patches as guidance.

ﬁ > fei?rgiﬁh Patch classifier @ ) ?01}12bipe
" (class: wheel > into Regions» @
HEEEE DINOvz ( ) of Interest

(b) Inference with GuidedSAM before segmentation.

Center GSAM: E—» SAM - .
Likelihood GSAM: E» sam - | @

Grounded GSAM: E +wheer - FOUded | @y

(c) Segmentation using different model variants.

Fig. 2. Various elements of the pipeline for GuidedSAM, showing the efficient annota-
tion process in (a), the inference until the segmentation in (b) and the segmentation
of the regions of interest with different model variants in (c).

3.2 Guidance Classifier

Given D = {(z;,1;)},, the classifier £ is learned, which predicts for a test
patch z; the probability that it contains the part. The patch z; is represented

as a feature vector by a model ¢(-): zf = ¢(z;). For ¢(-) we consider DINOv2
[10] which has proven to be a robust feature extractor. £, is an SVM [2] with
a radial basis function as the kernel. The parameters are learned from train
samples {(z;b ,1:)}. During inference, the trained classifiers are used to predict a
rough location of the parts of interest in the test image. This process is illustrated
on the left side of Fig.2 (b).

3.3 Guided Segmentation

A ROI P}éo ; is generated by grouping the predicted patches {p;} that are likely
to contain the part: {£(I|p;) > ¢}, where ¢; is a threshold on the confidence
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c. An example is provided in Fig.1 (d). The grouping is based on the patches
from {p;} that overlap: {pi}rov >0, where {py} C {p;}. The ROI P}y, is the
combination of the minimum and maximum coordinates of the patches in {p}.
This is also shown in Fig. 2 (b), where the individual patches are combined into
larger ROIs that take into account more context. The positional prompt P(ixﬁy)

for each ROI P}, is inferred from its constituent patches py, and their respective
confidences ¢ by taking the center coordinates of the patch with the highest
confidence. Figurel (e) shows (P}, P('L'x‘y)). Guided SAM is the conditioning

of SAM on (Pho- P(i:c,y))' An example result is shown in Fig.1 (f).

3.4 Model Variants

Besides the version of Guided SAM described in Sect. 3.3, we also consider other
variants of our conditioning. We make a distinction between applying the seg-
mentation on the ROI Pjy; (i.e. the combination of the classified patches) or
taking the individual patches py as ROIs. This is also depicted in Fig. 1 (e), where
the bounding box with the dashed line stands for a ROI of combined patches and
the smaller box represents an individual patch. For these ROI types there are
various options to segment or prompt. Firstly we can replace the segmentation
model SAM by Grounded SAM [16] and apply it to the ROI: we coin this model
Grounded Guided SAM (GGSAM). This version takes a textual prompt instead
of the positional prompt ng ) Secondly, we can infer the positional prompt

P('L'xy ) from the center coordinates of the ROI, which we coin Center Guided
SAM (CGSAM). The version that was described before, where the positional
prompt is inferred from the center of the patch with the maximum confidence
in P}o;. is coined Likelihood Guided SAM (LGSAM). This method can only be
applied to Pk, since the other ROT is just a single patch. These model variants

are illustrated in Fig.2 (c) on the combined ROIs.

3.5 Computational Load

The computational steps for model inference are shown in Fig.2 (b). These
computations are required on top of the original SAM. We apply an efficient
DINOv2 [10] variant to compute the patch features, i.e. ViT-B, which has only
86M parameters. For each part class, the same DINOv2 features are re-used,
with a class-specific part classifier. This classifier is an SVM, which involves
negligible computations compared to SAM. SAM has 94.7M parameters, com-
parable to DINOv2 ViT-B, so the computation time of our Guided SAM will be
approximately doubled by the classifier guidance. If computational efficiency is
essential, faster alternatives are available, e.g. [19], which has a faster backbone.
Currently our method applies SAM to every region of interest that is proposed
by the part classifiers. This can be implemented more efficiently by re-using its
feature maps and only re-running SAM’s efficient head on the various regions of
interest.



298 S. B. van Rooij and G. J. Burghouts

mirror

8\

tailgate

Fig. 3. Prototypical patches group together similar object parts, which facilitates the
annotation.
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4 Experiments

4.1 Setup

For evaluation we consider the Car Parts Segmentation dataset [12], because of
its large inter-class and intra-class variations. The part classes have very differ-
ent sizes relative to the object. The same part can have different appearances,
e.g. forms, sizes and colors. The dataset contains 400 images with annotated
segmentation masks of 18 part classes. We merged the different sides (front vs.
back, left vs. right) to one part class. There are a total of 9 part classes: bumper,
glass, door, light, hood, mirror, tailgate, trunk, and wheel. For language-guided
methods (i.e. VLPart and Grounded SAM) we made slight variations to these
class names that better reflect the nature of the classes (e.g. replacing glass for
window). As a metric, we consider the IoU for each part. The training efficiency
is established by increasing the number of training images from 1, 2, 4, 8, ..., 64.

retrieval efficacy annotation effort

wheel

mirror

rerrrrre

glass e
light
trunk

hood

SN
[EEEREERN whis

door

tailgate
= clip (avg=0.72)
ml clip + prototypes (avg=0.76)

= polygons (avg=20.9)

bumper Wl patches (avg=3.9)

0.50 0.55 0.60 0.65 0.70 0.75 080 085 0.90 0.95 0 5 10 15 20 25 30
clicks per image

(a) Retrieval efficacy. (b) Annotation efficiency.

Fig. 4. Prototypical patches are helpful to find the parts (a). Annotating patches is on
average >5x more efficient (b).

4.2 Patch Selection

For finding the patches that contain the part, we evaluate the merit of the
prototypical patches. To that end, we compare the retrieval efficacy of CLIP
with and without the prototypes. Figure4(a) shows that for most part classes,
there is an advantage to consider the prototypical patches. This means that it
is helpful to consider the average CLIP score for each prototype before ranking.

To evaluate the annotation efficiency, we compare the amount of manual
clicks that are necessary for conventional annotation of polygons to create pixel
masks, and for our patch-based annotations using the prototypes. Figure4(b)
shows the annotation efforts for both strategies for the various part classes.
On average, annotating patches with our prototype strategy is more than 5
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times more efficient. The speedup is most prominent for tailgate and wheel. For
conventional annotation, bumper involves the least clicks, because it has a simple
shape. Even compared to bumper, all parts are annotated with fewer clicks per
image when using the patch-based strategy.

4.3 Guidance Classifier

As shown in Tablel, the learned patch classifier £, performs classification of
object parts very accurately. For ‘door’ the performance is the highest: AUC =
0.994 when using 64 training images (in following subsections we will experiment
with fewer training images). ‘Wheel’ also has a very high performance: AUC =
0.990, possibly because of its distinct visual features. For ‘trunk’ the performance
is the lowest, but still very high: AUC = 0.977. Trunk does not have a distinctive
boundary and the part is often a flat surface without much texture or distinctive
visual features. Light is also somewhat harder to classify (AUC = 0.979). It is a
very small part and shows a lot of intra-class variation, such as different shape,
size, color (depending on whether it is on or off).

Table 1. The patch classifier performs very accurate classification of object parts
(average AUC~0.985).

Class|door |wheelmirrorfhood |glass [tailgate bumper|light [trunk
AUC|0.994/0.990(0.989 |0.988/0.988/0.987 |0.986 |0.979/0.977

4.4 Comparison to SOTA

We compare against two methods: VLPart! [17] and Grounded SAM [16].
Our method is trained on 64 images. In following subsections we evaluate the
impact of having fewer training images. Table 2 reveals that Guided SAM out-
performs VLPart and Grounded SAM for most object parts. Overall it is the
best performer, on average loU = 0.493 compared to 0.370 (VLPart) and 0.124
(Grounded SAM). VLPart does perform best at larger or common parts, such
as wheel, door and mirror. It is surprising that VLPart does not perform better
at other parts, given that it was trained on datasets that include all parts from
Table 2, i.e. LVIS [3] and PACO [14]. Grounded SAM performs much worse across
the board, probably because it is optimized for objects and not for object parts,
although on some parts it performs somewhat better: e.g. wheel and bumper.
These are larger parts or parts with clear boundaries. Some parts have a very
low performance for both VLPart and Grounded SAM: light, tailgate, and trunk,
AUC=0.04. For these parts, Guided SAM performs much better: AUC=0.35.

! For VLPart we use a confidence threshold of 0.5. For the results of VLPart with
varying confidence thresholds, see Supplementary Material.
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Table 2. Performance of VLPart [17], Grounded SAM [16], and Guided SAM on the
Car Parts dataset in terms of IoU. Bold numbers indicate the best performance per
part for the three methods. Guided SAM outperforms VLPart and Grounded SAM for
most object parts.

VLPart/Grounded SAM|Guided SAM (ours)
wheel | 0.800 0.305 0.683
glass 0.621 0.089 0.638
door 0.736 0.202 0.635
bumper| 0.027 0.299 0.605
hood 0.440 0.089 0.553
light 0.000 0.041 0.377
tailgate| 0.000 0.035 0.370
trunk | 0.006 0.048 0.314
mirror | 0.696 0.009 0.259
average| 0.370 0.124 0.493

Predictions of the tested models are illustrated for three examples, see Fig. 5.
The top row indicates the ground truth, where the other rows show the pre-
dicted part segments. VLPart (b) is sometimes very impressive (left), while at
other times it misses the part completely (middle), or over-segments it (right).
Grounded SAM (c) typically segments the full objects rather than the part.
Guided SAM provides a balance, often segmenting the part well, while some-
times over-segmenting or segmenting the background rather than the part.

4.5 Evaluating Model Variants

We evaluate the model variants from Sect.3.4. As a short recap, we have two
main divisions: taking the Ph,; as the ROI, or its consituent patches {px} as
individual ROIs. This is the top row in Table3. For each ROI type, there are
various options to segment or prompt: Grounded Guided SAM (GGSAM) which
uses Grounded SAM as the segmenter, Center Guided SAM (CGSAM) which
uses the ROI center as the positional prompt, and Likelihood Guided SAM
(LGSAM) which uses the most likely location (i.e. the center of the patch with
the highest confidence) as the positional prompt. To establish the effect of the
segmentation methods, we also compare with assigning the full patch as the
segment, i.e. no segmentation. We refer to this variant as Naive.

Table 3 presents the IoU scores per part for the model variants. ROI guid-
ance is more effective than patch guidance, in most cases. The exceptions are
tailgate and trunk, but for these parts ROI guidance performs similarly. Using a
positional prompt based on the likelihood (LGSAM) is best on average. There is
no single model variant that performs best for all parts. CGSAM performs best
on light, hood and mirror. GGSAM appears to perform well on larger car parts
that have a distinct boundary, such as bumper, door and wheel. Interestingly,
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" o . -
W Ground Truth ] | o B ] W Ground Truth

. |
loU Score: 0.39 loU Score: 0.77 Wil loU Score: 0.90

(d) Guided SAM (ours)

Fig. 5. VLPart either segments the object part very well or misses it completely,
whereas Grounded SAM typically over-segments severely and often segments the full
object. Guided SAM provides a balance, often segmenting the part well, while some-
times over-segmenting.

the performance of GGSAM (i.e. Grounded SAM as segmenter) is much bet-
ter than applying Grounded SAM on the full image, i.e. without our guidance
(Table 2). We conclude that our guidance is also helpful for an existing model.
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Table 3. Performance for Region-of-interest (ROI) and Patch guidance for Grounded
Guided SAM (GGSAM), Center Guided SAM (CGSAM), and Likelihood Guided SAM
(LGSAM) in terms of IoU. Bold numbers indicate the best performance per part for
all model variants. ROI guidance is more effective than patch guidance, where segmen-
tation based on likelihood (LGSAM) is best on average.

Region-of-interest Patches
GGSAM CGSAM LGSAM Naive GGSAM CGSAM
bumper 0.605 0.319 0.423 0.487 0.560 0.550
glass  0.317 0.626 0.638 0.354 0.458 0.480
door  0.635 0.447 0.399 0.440 0.508 0.582
light 0.173 0.377 0371 0.170 0.211 0.217
hood 0.395 0.553 0.505 0.362 0.406 0.478
mirror 0.063 0.259 0.206 0.102 0.113 0.148
tailgate 0.325 0.165 0.370 0.318 0.348 0.389
trunk  0.281 0.173 0.314 0.264 0.293 0.338
wheel 0.683 0.369 0.513 0.246 0.440 0.329
average 0.386 0.365 0.415 0.305 0.371 0.390

4.6 Model Selection

There is no single model variant that performs best for all parts (see Table 3).
Therefore, we explore model fusion. When selecting the best scores per part
out of the three ROI-based methods we get an IoU of 0.493, which is a great
improvement over the best model variant (LGGAM with 0.415). We want to
understand how many images are needed to decide properly about this model
selection. The upper bound is the best-case scenario, established from having
seen the full set. The lower bound is worst-case model selection for each part.
Now, we are interested in the performance of model fusion when selecting a
model variant for each part, after seeing 1, 2, 4, ..., 64 random images. For
each amount of images, the experiment is repeated 10 times, because it involves
random draws of the images. The increasing performance is shown in Fig. 6.
We observe that the average IoU starts way above the lower bound, indicating
that just one image is already an indication of which model is most suitable for
respective parts. After having seen a few images, e.g. 4 or &, it is already possible
to determine an effective selection of models to acquire better performance by
fusion. With 32-64 images, the performance is close to the upper bound.

4.7 Label Efficiency

We hypothesize that the performance of Guided SAM largely depends on the
accuracy of the guidance classifier. This classifier is trained with 1, 2, 4, ..., 64
images. We explore how many training images are needed for effective guidance.
At various amounts of training images, we evaluate the model variants (Sect. 4.5)
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Number of Images Needed for Model Selection
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Fig. 6. After having seen a few images, e.g. 4 or 8, it is already possible to determine
an effective selection of models to acquire better performance by fusion.

Comparison of Different Guidance Methods

0.5 1 —e— Grounding-Guided SAM
—o— Center-Guided SAM
—e— Likelihood-Guided SAM
—8— Fused Guided SAM
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0.3 4

loU

0.2 4
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Fig. 7. Learning efficiency of our model variants and the fused model. With 64 images,

a performance of loU=0.49 is achieved. With 32 or only 16 images, performance drops
with respectively only 0.04 or 0.12.

and the fused model (Sect. 4.6), which combines the best performing model vari-
ants per part. Figure 7 shows the learning efficiency. The fused model is the best
performer on average. Our guidance with Grounded SAM, i.e. Grounded Guided
SAM (GGSAM), is the best performer at very low number of images. Probably
this is because the confidences of that model are a useful source to filter out



Guided SAM: Label-Efficient Part Segmentation 305

wrong segmentations. With more than 8 training images, the fused model has
a better performance, especially with 16, 32 or 64 images. With more training
images, the guidance becomes better, hence all model variants become better.
As a consequence, merit can be taken that the best variant is different across
parts (Table 3). With 64 images, a performance of IToU~0.49 is achieved. With 32
or only 16 images, object parts can be segmented reasonably well: performance
drops with respectively only 0.04 or 0.12.

5 Conclusion

In this paper, we proposed a novel method for guiding segmentation models
to accurately identify object parts. Our approach leverages regions of interest
(ROIs) composed of patches predicted by a learnt classifier to identify specific
parts of the object and indicate a positional prompt as starting point for part
segmentation. It can be used as a guidance for advanced segmentation models
such as (Grounded) SAM. We evaluated our method using the Car Parts dataset
and demonstrated that it achieves good performance, even with a limited num-
ber of labeled patches. This approach significantly reduces the manual effort
required for annotation, as it relies on labeling patches rather than creating full
segmentation masks. The patch annotations must be centered around the object
parts to ensure that the SAM positional prompts are correctly placed. Misalign-
ment could lead the model to segment the background instead of the intended
object parts. For future work, we plan to explore techniques to automatically
refine patch placement to enhance segmentation accuracy further. Additionally,
we aim to extend our method to other datasets and object categories to validate
its generalizability and robustness across various domains.
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