Renewable and Sustainable Energy Reviews 213 (2025) 115470

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

ELSEVIER journal homepage: www.elsevier.com/locate/rser

Unraveling the spatial complexity of national energy system models: A
systematic review

Komar Javanmardi*" ®, Floor van der Hilst*®, Amir Fattahi *”, Luis Ramirez Camargo " ®,
André Faaij *"

@ Copernicus Institute of Sustainable Development, Group Energy & Resources, Utrecht University, Utrecht, the Netherlands
Y The Netherlands Organization for Applied Scientific Research (TNO), Energy and Materials Transition, Amsterdam, the Netherlands

ARTICLE INFO ABSTRACT

Keywords: The energy transition poses spatial planning challenges owing to reliance on renewable sources, featured by a

Energy transition decentralized nature and substantial space requirements. Developing national energy system models capable of

National energy system model integrating spatial details while being robust enough for coherent policy development remains challenging. This
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Energy infrastructure integration into energy system models. We conduct a systematic literature review on integrating spatially
dependent parameters in bottom-up energy system models. The essential role of spatial aspects is highlighted by
introducing a classification system for comparing energy system models. We critically evaluate and explore
various approaches for assessing spatially dependent parameters in energy systems (energy sources, demand, and
infrastructure), spatial aggregation methods (clustering and regionalization), and linking techniques (soft-linking
and hard-linking) for incorporating spatially dependent parameters into the energy system models. Results show
that energy system models have some spatial capabilities, yet certain crucial elements, like energy infrastructure
distribution, are highly aggregated or neglected. Clustering methods can effectively capture spatial variations,
and soft-linking techniques can incorporate these spatial details into the energy system model. Here, we propose
a novel framework to facilitate the integration of spatial elements into energy system model, a spatial converter
to exchange information with the energy system model, a detailed energy system model, and a converter to
exchange feedback to the spatial model. Additionally, we advocate for using a soft-linking method with a
recursive procedure to exchange feedback between the energy system model and spatial model.
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1. Introduction

Transition to a net-zero energy system poses spatial planning chal-
lenges due to increased reliance on renewable energy sources (RES) and
corresponding infrastructure [1,2]. The decentralized nature of renew-
able energy (RE) and the uneven spatial and temporal distribution of
energy demand and supply affect storage and logistics. Renewable
technologies require more space aboveground and belowground for
transportation, distribution, conversion, and storage compared to con-
ventional systems [3,4], making energy infrastructure a primary land
use nowadays [1]. The spatial configuration of an energy system affects
its capacity as RE suitability varies across regions owing to
location-specific factors, such as climate conditions, landscape, and local
economic activities [5]. Climate change and environmental disasters
pose further uncertainties to future energy system planning, especially
for deploying RESs [6], which rely on weather conditions and are more
susceptible to these changes [7]. The energy transition is challenging
owing to the lock-in effect, path dependency due to high investments,
and long construction times of energy infrastructure [8,9]. The visibility
of many RE technologies, e.g., wind technology, can impact social
acceptance, leading to opposition from affected actors [10]. In addition
to technical significance, energy transition has potential socio-economic
and health implications at the regional scale [11]. The deployment of
RESs and its required infrastructure can contribute to promoting
regional economic growth [12,13], increase new job opportunities [14],
and reduce CO2 emissions [13]. Therefore, transitioning to a net-zero
energy system requires a significant spatial reconfiguration [4], espe-
cially in densely populated regions with limited land availability [5].
Spatial planning facilitates energy transition, long-term land use change
dynamics, potential spatial conflicts among multiple land uses, and
considering stakeholders’ perspectives [15,16]. To accelerate the energy
transition, it is vital to grasp the space requirements for various energy
system components, such as RE technologies, storage, pipelines, cables,
and electrolyzers [17], as well as the impacts of spatial configurations on
system performance and costs. For example, the potential of solar and
wind fluctuates with varied weather conditions, highlighting the
importance of efficient storage and transmission systems, which depend
on spatial and temporal co-occurrence [18].

Energy System Models (ESMs) can be instrumental in providing so-
lutions for specific policy questions [19], assessing energy-related pol-
icies’ effects, and evaluating energy transition pathways [20,21]. ESMs
incorporate the interactions of energy resources, demands, infrastruc-
ture, and storage [19]. ESMs are broadly classified as bottom-up or
top-down [22]. Top-down models, like computable general equilibrium
(CGE), focus on the macroeconomic system, considering policy and
market impacts without detailed technological analysis [23,24]. How-
ever, bottom-up ESMs are partial equilibrium representations of energy
sectors [25], structured as optimization problems to estimate
cost-optimal solutions within technical and policy constraints [26].
Bottom-up ESMs provide future energy system pathways, boundary
conditions for reducing greenhouse gas emissions (GHG) [22], detailed
sector-specific insights [25], and solutions to balance between energy
supply and demand [27]. Bottom-up models can be classified by tem-
poral and spatial resolution, sector coupling, and their adopted
modeling approaches [28].

Bottom-up ESMs integrated with spatially dependent parameters
facilitate evaluating the feasibility and spatial requirements of deploy-
ing energy system components in real-world scenarios [29]. For
example, this integration assists in identifying the location of energy
demands, potential RES, and energy infrastructure, which can be un-
evenly distributed nationwide [30,31]. Spatial planning harmonizes
land use regulations and policies that either restrict or promote the
adoption of RE technologies [32]. Spatial analysis also supports the
development of energy infrastructure to store, transport, and distribute
the energy generated by RESs across the regions. Spatially explicit en-
ergy planning is crucial for evaluating land availability for RESs,
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assessing the spatial claims among land uses, and analyzing the
compatibility of RE technologies in specific areas [16].

Choosing an optimal spatial resolution in ESMs is essential for
balancing necessary details and managing computational loads [33-35],
as it affects the model’s ability to project system costs realistically [36].
Increasing spatial details in ESM poses a challenge owing to complexity,
data-intensive computing, limited data availability, and diverse data
structure [31]. Spatially explicit models aid in capturing transmission
and distribution congestions [37] and estimating potential resources
accurately, particularly in RE-dependent energy systems [37,38]. The
results of ESMs are strongly influenced by spatially sensitive parameters,
such as heat demand and RE potential, necessitating high-resolution
spatial approaches [39]. Regarding spatial resolution, ESMs are classi-
fied into single-node or multi-node models [40]. Single-node models are
assumed to be a perfect transmission system without internal bottle-
necks or losses, while multi-node models incorporate grid bottlenecks
and transmission constraints. However, spatially explicit models
generate more realistic results but also increase the computational loads
[22,31]. Spatial aggregation methods reduce data volume and simplify
ESMs to address this challenge [36].

Future country-wide ESMs could enhance their flexibility to incor-
porate spatial details. Country-wide ESMs have some spatial capabil-
ities, yet certain crucial elements are limited or overlooked. Firstly,
explicitly addressing spatial resolution, particularly energy infrastruc-
ture, is essential, yet it is often limited in many ESMs. Despite its vital
role in the cost of future energy systems, many ESMs have overlooked
bottlenecks and aggregated networks into single nodes. For instance,
unlike power networks, most ESMs often overlook heat, gas, hydrogen,
methane, and CCUS [37-39] or represent these components in a single
node. Secondly, incorporating inputs from spatial planning into ESM is
beneficial for optimizing and designing future pathways. Climate
change, biodiversity, and landscape protection significantly influence a
country’s spatial layout. ESMs can benefit from spatial planning that
considers these factors alongside spatial dynamics such as population
growth, urbanization, and industrial transformation. Notably, spatial
planning is not often included in current country-wide ESMs, and land
use assessment is overlooked [28,41] or limited to evaluating RES po-
tential [42,43]. Thirdly, enhancing future ESMs with bidirectional data
exchange with a spatial model could help identify potential bottlenecks,
such as land availability or infrastructure capacity constraints [31].
Lastly, enabling scalability from the national to the regional level can
enhance the model’s adaptability.

Integrating country-wide ESMs and spatially dependent parameters
is an emerging field, and the relevant literature on the topic needs to be
more extensive. Martinez-Gordon et al. [31] conducted a holistic review
of the importance of spatial resolution in ESMs. They proposed a
spatially explicit framework for the North Sea region to integrate
offshore energy by addressing spatial planning challenges. Aryanpor
et al. [36] critically reviewed the spatial resolutions of various national
energy system optimization models, highlighting their impacts on sce-
nario insights and the trade-off between spatial resolution and compu-
tational feasibility. Camargo et al. [44] reviewed the state-of-the-art
trends in spatiotemporal modeling for distributed energy system plan-
ning on local scales, emphasizing approaches to optimize renewable
energy potential and energy demand estimations. While these studies
have addressed various spatially dependent parameters and introduced
methods to incorporate them into energy system optimization, there is a
lack of comparison and evaluation of approaches to incorporate spatial
planning and high-quality databases into these models, especially in
country-wide ESMs. Utilizing high-quality validated databases, partic-
ularly those that provide spatially explicit inputs for energy supply,
demand, and infrastructure, is essential. Therefore, our study contrib-
utes to the existing literature by highlighting the spatial characteristics
of different bottom-up ESMs at the national level. We also explored
methods for evaluating the spatially dependent parameters of energy
system components (energy supply, demand, and infrastructure). Our
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study also emphasizes spatial aggregation methods for integrating these
spatially dependent parameters into ESMs and evaluates linking
methods for incorporating spatial models into ESMs.

Various bottom-up ESMs have been developed to assess, optimize,
design, and project future energy systems but often overlook spatially
dependent parameters. The challenge lies in developing a national ESM
that incorporates spatially dependent inputs while ensuring robustness
for coherent policy development. The critical question is: What spatial
details and methodologies are needed for national ESMs to evaluate
spatial configuration, system performance, and the cost of a net-zero
energy system? Therefore, this study aims to systematically review
and synthesize spatially dependent parameters and methods for inte-
grating spatial details into national-scale ESMs while considering the
spatial feasibility of ESMs’ solutions and managing the computational
load. The following questions are answered by reviewing the literature
to obtain insights and address research gaps.

e Which national-scale ESMs explicitly integrate spatially resolved
representations of energy supply, demand, and infrastructure for
long-term energy planning, and how do they address key spatial
interconnections?

e What spatially dependent parameters and methods are employed in
bottom-up ESMs to assess energy supply, demand, and
infrastructure?

e What methods are used to aggregate spatially dependent parameters
into ESMs?

e What are the techniques for linking spatial models and ESMs?

2. Review methodology

The methodology of this study was conducted in five steps. Firstly,
the research scope was determined to establish the research boundary,
which is the basis for the next step. Secondly, an identification step was
carried out based on the research scope to select relevant literature for
review. This step was conducted in four stages: inclusion criteria,
exclusion criteria, abstract screening, and in-depth screening of the full
text. Thirdly, a classification scheme was established to compare and
evaluate the functionality of ESMs using criteria such as mathematical
features, modeling resolution, and spatial methods. Fourthly, an over-
view was conducted to assess the spatially dependent parameters of
energy system components (energy supply, demand, and infrastructure),
different spatial aggregation methods, and existing linking methods to
incorporate spatial inputs into ESMs. Lastly, given the results from
previous steps, a holistic framework was proposed to integrate spatially
dependent inputs into future national ESMs.

2.1. Defining research scope

We identified the research boundaries by focusing on bottom-up
ESMs that assist in analyzing energy policies and technological details
of energy systems. Spatially, ESMs that employed multi-node spatial
analysis at national and regional levels were selected, as policies are
often formulated at these levels. Temporally, the focus is on hourly
resolution to effectively tackle the intermittency of variable renewable
energy sources (VRESs). Additionally, we consider ESMs that reduce
temporal resolution by using hourly time slices, which helps to mitigate
computational load. While short-term temporal extent is considered, the
main focus is on the long-term temporal extent that aligns with national
policies and ambitions such as net-zero emissions by 2050. This study
focuses on technologically rich ESMs with diverse RESs, storage, and
energy carriers because they can capture energy system complexities
and facilitate the exploration of cost and emission optimization options.

2.2. Systematic literature review

This study employed a systematic review of integrating spatially
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dependent parameters into ESMs in four stages. Fig. A- 1 shows the
document selection and literature review process, conducted in multiple
stages to determine whether a document meets inclusion criteria. Sco-
pus© was chosen to retrieve literature on October 1, 2023. This sys-
tematic search included several studies that used spatially dependent
parameters in ESMs. A meta-analysis was also conducted to explore the
classification scheme used in relevant review papers.

Defining search criteria: Three keyword categories were defined to
filter search results. Table 1 presents the search terms used to collect
relevant documents within the study’s scope, resulting in 750 papers
and 42 paper reviews. Keywords should appear in the papers’ titles,
abstracts, or keywords. The AND operation was used in the search query
between primary, secondary, and tertiary terms and between two pri-
mary keywords to ensure the inclusion of papers using a model or
modeling of the “energy system.” This approach also helps to identify
documents that separately mention the terms “energy system” and
“model.”

Applying exclusion criteria: We applied exclusion criteria to focus
on English-language journal articles, resulting in 480 journal articles
and 39 review papers. Given the significant increase in spatial-based
ESMs publications after 2012, the search was limited to articles
released between 2012 and October 2023, as shown in Fig. A- 2.

Screening based on title and abstract: The remaining articles were
screened based on title, abstract, and keywords. This step excluded 357
articles out of 474 journal papers that focused on climate [45], food
[46], water [47], air pollution [48], radiation models [49], specific
sectors or technologies [50], or local-scale ESMs [51]. Next, 117 articles
were excluded as their content did not meet the research scope based on
the following requirements.

e Clearly describe using a bottom-up ESMs in the methodology.

e Implement multi-node ESMs at a national level.

e Complete articles should be accessible online (for some, just the
abstract is available).

Full text review and study selection: The full text of the papers was
reviewed to confirm the use of spatially explicit ESMs at a national scale.
This detailed screening identified 38 journal papers. Then, the selection
criteria prioritized studies that used unique ESMs. For models that were
repeated across studies, the selection was limited to a maximum of two
studies per model, as long as they used different spatial inputs, spatial
methods, or ESM configurations. Based on these criteria, 20 models were
chosen for in-depth analysis. Additionally, 11 review papers that met the
requirements of previous stages were selected and used to create the
classification scheme.

2.3. Classification of energy system models

A classification scheme was developed to facilitate ESM compari-
sons, highlight their capabilities, and identify those suitable to meet our
objective of reviewing and evaluating spatial details and methods inte-
grated within national ESMs. To create a comprehensive scheme, several
review papers were identified in the first step (see Fig. A- 1) to determine
the criteria and sub-criteria for comparing ESMs. Thus, existing
schemes, as shown in Table A- 1, were adapted by adding spatial-related
sub-criteria to align with our research scope. We used this scheme to

Table 1
Search terms for finding relevant literature in Scopus.

Primary terms Secondary terms Tertiary terms

energy system* GIS geographic information system nation*
model* geospatial region*
spatio* countr*
spatial state
node*
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compare 15 specific ESMs across 20 documents selected in the second
step.

2.4. Assessment of spatial parameters and linking techniques

The snowballing technique is used to review a broader range of
literature beyond the documents filtered in the second step. We identi-
fied the spatially sensitive parameters of energy system (energy supply,
demand, and infrastructure), their relation to land use, and the ap-
proaches for evaluating these parameters in the literature and the
reviewed ESMs. This review was conducted to identify and analyze the
existing spatial aggregation methods to integrate spatially dependent
parameters into ESMs and explored linking methods to integrate spatial
models with ESMs.

2.5. Spatially integrated framework

We proposed a framework that incorporates the essential details of
energy system components (energy supply, demand, infrastructure), as
identified in the previous steps. Additionally, we outlined methods to
aggregate these spatial details to incorporate them into ESMs. This
framework also integrated a spatial model with ESMs for land use
allocation.

3. Results and discussion
3.1. Classification and evaluation of ESMs

A classification scheme of ESM gives insight into whether to include
new criteria or exclude ones not aligned with the study’s scope. Hall
et al. [52] proposed a classification scheme with four criteria and 14
sub-criteria divided into purpose and structure (model structure, spatial,
sectoral, and time resolution), technological details (renewable and
storage technology inclusion, energy demand, cost), and mathematical
description (mathematical approach and data requirement).
Plazas-Nino et al. [53] suggested a categorization scheme comprising 23
sub-criteria classified into three groups: a modeling approach, modeling
resolution, and technological details. Similarly, Savvidis et al. [54]
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proposed a framework with 28 sub-criteria, including four categories:
model-theory specifications, modeling details, market representation,
and general information. Table A- 1 highlights key factors in comparing
ESMs, such as analytical approach, availability, methodology, algo-
rithm, and spatiotemporal resolutions.

Due to our focus on spatial-based ESMs, spatial methods criterion,
and its relevant sub-criteria were incorporated into the existing classi-
fication schemes. Therefore, we proposed a classification scheme with
five criteria and 31 sub-criteria, as shown in Fig. 1. The spatial methods
category covers the approaches used for assessing spatially dependent
parameters (e.g., the spatial distribution of energy demand, supply, and
infrastructure), spatial data utilization, spatial aggregation methods (e.
g., clustering), and linking techniques (e.g., soft-linking).

3.2. Spatially explicit ESMs

This section compares spatially explicit ESMs for analyzing and
assessing their capabilities. This comparison shows a tradeoff between
spatial and temporal resolution with their spatial extent. While most
ESMs have high temporal resolution, few achieve high spatial resolu-
tion. Additionally, many ESMs can be applied across different spatial
extents, from local to international scales. There is also diversity in
technical, mathematical, and general characteristics of ESMs. Table 2
summarizes the general information about ESMs, including case study,
model purpose, availability, and documentation. It shows that model
purposes vary, including cost optimization, GHG reduction, and support
for the energy transition. Additionally, most ESMs are open source, but
their documentation still needs improvement to clearly describe the
methodology and data used.

Table 3 overviews the components, such as renewable and storage
technologies, energy carriers, and demand sectors. Most ESMs include
different types of RE and storage technologies. Additionally, they
incorporate various types of energy carriers, including heat, electricity,
and hydrogen. For the energy demand sectors, several ESMs either
exclude some sectors or aggregate all sectors together, while only a few
ESMs include all energy demand sectors separately. For emissions, they
mostly consider CO2, and few ESMs include all GHG emissions. They
also include multiple cost factors to improve their comprehensiveness in

Classification schema

I:I Classification criteria

l:l Sub criteria (existed) |:| Sub criteria (proposed)

| General information Different components Technical and

Modeling Resolution Spatial methods |

: of ESMs included in ESMs Mathematical structure :
' |
| | [ | I
| Case study Renewab!e Algorithm used Spatial resolution SpéFlal qata Spatial analysis of |
i technologies utilization energy storage !

Model purpose

Storage technology
inclusion

Solver

[ [ | i

Spatial extent

Land use assessment

Spatial analysis of
CCUS

I

Availability

Energy carriers

Objective function

Temporal resolution

Spatial analysis of
energy resources

Spatial aggregation
method

l

Documentation

Demand sectors

Programming
language

Temporal extent

Spatial analysis of
energy demands

Aim of spatial
aggregation

Emissions

Runtime reduction
method

Planning horizon

l

l

Spatial analysis of
infrastructure

Spatial & ESM
integration method

Fig. 1. The proposed classification scheme for analyzing and comparing ESMs.




K. Javanmardi et al.

Renewable and Sustainable Energy Reviews 213 (2025) 115470

Table 2
General information on ESMs.
Model Case study” Model purpose Availability Documentation Ref
OMNI-ES Italy Optimization of network-integrated energy system Not 0s" https://doi.org/10.1016/j.enconman.20 [40]
23.117168
Balmorel Denmark Investigating the decarbonization pathways of sector- oS https://github.com/balmorelcommunity [55]
coupled energy systems /Balmorel [56]
OPERA North of the Netherlands Optimize energy decarbonization and sector integration for ~ Not OS https://doi.org/10.1007/s10666-020-097 [30]
Groningen province in the  a low-carbon future 41-7 [39]
Netherlands
IESA-NS North Sea region Optimize decarbonization of energy system oS https://github.com/IESA-Opt [29,
31]

urbs European union (EU) —28 Optimization of capacity expansion planning and unit 0s https://github.com/tum-ens/urbs [42]

countries commitment for distributed energy system

LUT-ESTM Japan Analyzing cost-optimal energy system pathways with high Not OS https://doi.org/10.1016/j.energy.2023.12 [57]

LUT Egypt RE shares 7213/ [41]

BeWhere Malaysia Optimizing the allocation of RESs (o} https://pure.iiasa.ac.at/id/eprint/17549/ [58]

MyPyPSA- Germany Simulating and optimizing modern power and energy (o} https://github.com/PyPSA/PyPSA [59]

Ger system
PyPSA-EU Germany [60]
Oemof- Italy Analyzing multi-objective models and spatiotemporal (o} https://github.com/matpri/oemof-moea [28]
moea A County in Germany resolution effects [61]

TIMES North of India Exploring possible energy futures based on contrasted Commercial  https://iea-etsap.org/index.php/etsap [62]

scenarios -tools/model-generators/times

AnyMOD Germany Modeling system with high RE shares and cross-sectoral (o} https://github.com/leonardgoeke/ [43]

integration AnyMOD.jl [63]

REMix Germany Assessing techno-economic of possible future energy system  OS https://dlr-ve.gitlab.io/esy/remix/frame [64]

designs work/dev/index.html

Calliope Ttaly Analyze energy systems with high RE shares with flexible (o} https://github.com/calliope-project/callio [65]

spatial-temporal resolution pe

@ Study-based characteristics of the model, not necessarily the model’s specifications.

b Open source.

Table 3
Different components included in the models.

Modelused  Renewable tech” Storage tech Energy carriers” Demand sectors” Emission Cost” Ref

inclusion®

OMNI-ES Solar, wind, Battery, Hydrogen, Electricity, gas, Residential, services, CO2 Annualized capital cost, [40]
geothermal, biomass, pumped hydro heat, hydrogen industry, transportation operational costs
hydro storage (PHS)

Balmorel Solar, wind, Hydrogen, heat Electricity, Residential, services, CO,, SO, Investment, operational, fuel, [55,
hydropower, wave storage hydrogen, gas industry, transportation NOx and carbon costs 56]
power

OPERA Solar, wind, Battery, Hydrogen Electricity, gas, Residential, services, GHG Investment, variable, and [30,
geothermal, biomass heat, hydrogen industry, transportation, emissions operational costs 39]

agriculture

IESA-NS Solar, wind Hydrogen storage Electricity, Residential, services, CO2 Investment, retrofitting, [29,

hydrogen, gas industry, transportation, decommissioning, and operation 31]
agriculture costs

urbs Solar, wind, hydro, Battery, heat storage Electricity, heat Aggregated demand Cco2 Investment, fixed, total variable, [42]
biomass fuel, and environmental

pollution costs

LUT-ESTM Solar, wind, Battery, PHS, Electricity, heat, Residential, services, GHG Annualized capital, operational, [57]1

LUT geothermal hydro, compressed air methane, synthetic industry, transportation emissions fuel, and CO2 costs [41]
wave power energy storage fuels

BeWhere Bioenergy N/A” Electricity, heat Aggregated Cco2 Technology and transport cost [58]

MyPyPSA- Solar, wind, biomass, PHS, hydro reservoirs Electricity Residential, industry, Cco2 Capital costs [59]

Ger hydropower services, transportation
PyPSA-EU Battery Technology, fuel, CO2 costs [60]
Oemof- Solar, wind, biomass, Battery, PHS, hydro Electricity, heat, Residential, services, Cco2 Investment, operational, [28]
moea geothermal, hydro reservoirs hydrogen industry, transportation maintenance, and fuel costs
Solar, wind, biomass Hydrogen storage Electricity, heat, [61]
hydrogen

TIMES Solar, wind, biomass,  Battery, PHS Electricity Aggregated GHG _ [62]
hydro emissions

AnyMOD Solar, wind, Battery, Hydrogen Electricity, heat, Buildings, industry, N/A Investment and variable costs [43,
Hydrogen, biomass storage, gas hydrogen, methane  transportation 63]

REMix Solar, wind, hydro, Battery, PHS, Electricity, heat, Aggregated CO2 Operational, fuel, and CO2 costs [64]
biomass, Hydrogen Hydrogen, heat hydrogen

storage

Calliope Solar, wind, Battery, PHS, gas, Electricity, Residential, industry, and GHG Investment, operational, and [65]

geothermal, hydro, hydro reservoir hydrogen, gas transportation in an emissions maintenance costs

biomass

aggregated way

@ Study-based characteristics of the model, not necessarily the model’s specifications.
b Not clearly mentioned.
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Table 5
Modeling resolutions and extents.

energy planning.
Table 4 illustrates the technical and mathematical features of ESMs,
such as the algorithm used, solver, programming language, and planning Model

Spatial Spatial Temporal Temporal Ref
horizon. Linear programming (LP) is the prevalent algorithm used in used resolution®  extent resolution”  extent”
most ESMs. A few models use mixed-integer linear programming (MILP) OMNLES 20 nodes Regional- Hourly Snapshot [40]
or a combination of LP and MILP, which adds complexity to the model. National (2050)
These ESMs use solvers such as Gurobi, CBC, and CPLEX, as well as Balmorel 15 regions  Regional- 96-time Evolutionary [55]
different programming languages like AIMMS, GAMS, and Python, to International  slices (10 years)
A . T 98 regions 672- time Snapshot [56]
optimize solutions. We evaluated the feasibility of these models for long slices (2050)
planning horizons and considered different runtime reduction methods OPERA 5 nodes Regional- (32-432) Snapshot [30]
they used to mitigate computational load. 96 nodes National time slices  (2030-2050) [39]
Table 5 outlines the models’ temporal and spatial resolution, as well IESA-NS 8 nodes Regional- Hourly Snapshot [29,
as their spatial and temporal extent. It shows a significant variation in ) International ) (2050) 31]
ial luti f f d hundred I . id urbs 28 regions Local- 96-time Snapshot [42]
spatial reso UFIOH rom a few nodes to hun reds, resu ting in a wide International  slices (2015-2050)
range of spatial granularity. Temporal resolution varies from hourly LUT- 9 regions Local- Hourly Evolutionary 571
time slices to broader time slices using representative days. The tem- ESTM International (2020-2050
poral extent also varies, from snapshots of specific years to evolutionary Ll 7 regions e"efy)ﬁ"e [41]
. . . . A years
extepts cover11'1g mu.ltlple time '1ntervals. Fig. 2 compares temporal and BeWhere 560 equal  National Two. Evolutionary 58]
spatial resolution with the spatial extent of ESMs. We assumed a model regions month sub- (20202050
with 30 nodes and 300 hourly slots has a medium spatial and temporal annual every five
resolution, respectively. This figure shows that while most ESMs have a time years)
high temporal resolution, such as OMNI-ES, Calliope, IESA-NS, and LUT MYPYPSA. Up o317 Local ;"Srvais' Snanshot (501
. . . yPyPSA- p to ocal- -Hourly napsho 5
models, only a few models have a hlg}'l spatial resolutlon,' such as PyPSA, Ger nodes International  interval (2050)
OPERA, and Balmorel. Some ESMs, like TIMES, can be implemented at PyPSAEU  37/1024 Hourly [60]
various resolutions and scales. It is worth noting that these character- nodes
istics are specific to the selected papers reviewed in this study and do not Oemof- 6 nodes Regional- Hourly Snapshot [28]
represent the overall scope of the model. For instance, while the Calliope moea 5 nodes National (2050) t61]
P . . P . ’. ] .p TIMES 9 regions Local- 288- time Annual [62]
model is represented with 6 nodes [65], the Euro-Calliope configuration International  slices Evolutionary
operated in higher spatial resolution, covering 98 regions [66]. (2012-2050)
AnyMOD 29 regions Local- Hourly Snapshot [43]
38 regions International (2030) [63]
3.3. Spatial aspects of energy systems REMix 18 nodes Regional- Hourly Annual [64]
National Evolutionary
The energy supply chain significantly affects land use depending on (2020-2050)
. L. Calliope 6 regions Local- Hourly 2050 [65]
where it is extracted, generated, transported, distributed, and used [67]. International

The spatial requirement of energy production depends on the energy
source density and land use compatibility [68,69]. RE technologies are
land intensive due to low energy density compared to fossil fuels, which
highly affects land use [32]. The expansion of RESs has spatial

# Study-based characteristics of the model, not necessarily the model’s
specifications.

Table 4
Technical and mathematical structures of models.
Model used Algorithm Solver Objective function Programming Runtime reduction method” Planning horizon Ref
used reported” language
OMNI-ES LP Gurobi Cost minimization MATLAB® N/AP Perfect foresight [40]
Balmorel LP N/A Cost minimization GAMS Time slice Perfect foresight- Myopic [55,
56]
OPERA LP Gurobi Cost minimization AIMMS Time slice Perfect foresight [30,
39]
IESA-NS LP Gurobi Cost minimization AIMMS Clustering method to simplify Perfect foresight [29,
spatial details 31]
urbs LP Gurobi Cost or CO2 Python Time slice and three steps clustering  Perfect foresight [42]
minimization
LUT-ESTM LP MOSEK Total annual system MATLAB® Hierarchical simulations for regional =~ Myopic- perfect foresight [57]
cost disaggregation
LUT N/A [41]
BeWhere MILP CPLEX Cost minimization GAMS Using cells to aggregate variables Perfect foresight [58]
MyPyPSA- LP Gurobi Cost minimization Python Aggregating data across nodes Myopic (Perfect foresight in [59]
Ger recent versions)
PyPSA-EU [60]
Oemof- LP Gurobi Cost or CO2 Python Aggregating data across nodes Myopic [28]
moea minimization Clustering data [61]
TIMES LP N/A Cost minimization GAMS Time slice Perfect foresight [62]
AnyMOD LP Gurobi Cost minimization Julia Aggregating data across nodes Myopic [43,
63]
REMix LP, MILP CPLEX Cost minimization GAMS Aggregating data across nodes Myopic [64]
Calliope LP, MILP CBC or Cost minimization Python Aggregating data across nodes N/A [65]
Gurobi

@ Study-based characteristics of the model, not necessarily the model’s specifications.

b Not clearly mentioned.
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Fig. 2. Temporal and spatial resolution and spatial extent of the reviewed ESMs of the selected studies.

implications on landscapes, such as competition for land and the po-
tential declines in environmental quality [70]. Given that RESs are
localized and site-specific, shifting to a more decentralized and diver-
sified energy system necessitates a closer spatial correlation between
where the energy is produced, transported, and consumed [71]. Energy
infrastructure such as pipelines, grids, and roads affect neighboring land
use patterns [67]. The energy system has three main components:

supply, demand, and infrastructure. Various methods were used in the
literature to evaluate spatially dependent parameters for estimating RES
potential. Land use was inherently considered within energy system
components, recognizing their significant overlaps, see Fig. 3. Addi-
tionally, the full overview of geospatial aspects and linking methods to
integrate spatially dependent parameters into ESMs is depicted in
Table 6.

Energy system

Energy Supply

oil, coal, etc.)

Energy Demand

Energy Energy
Demand «—» Infrastructure Energy Infrastructure

power, heat, and gas

Renewable energy sources (Wind, solar,
biomass, geothermal, hydropower, etc.)
and Non-renewable energy sources (gas,

The energy demand of different sectors,
including buildings, services,
transportation, and agriculture

Energy infrastructure for transportation,
distribution, conversion, and storage of

Energy extraction, production, | |

and distribution footprint. I Land use

Indirect effect of energy | | |
system (e.g., visibility affect of I I
wind) can limit the potential | : Different land use types :
land use options in certain | | and their energy demand |

areas. | |
Effect of the energy system on land use Spatial claims and land

i
i
i
i
i
i
i
i
i
i
i . availability for different
‘_ | land uses !
! .
: :
i
i
i
i
i
i
i

Landscape features like past I Multifunctional use of i
industry, and current land use | : space for energy system. :
topography, and hydrology | ! |
affect the energy system. | Exclusion zones and |
Competing land use affect the | | Standard buffers for each
availability of energy resources | : €nergy system element

and the implementation of :
energy infrastructure. | |

Fig. 3. The interconnection between the energy system and land use.



Table 6

Summary of spatial methods to incorporate spatial components, aggregate these details, and integrate them into ESMs.

ESM Spatial data Land use Spatial approaches to evaluate the distribution of energy system components Spatial aggregation Aim of spatial Ref
utilization assessment Energy resources Energy demands Infrastructure Storage CCUS method aggregation
OMNI-ES Exogenous Land use Using land limit Allocate demand Allocating infrastructure Using a database to Aggregated in  Regionalization Tracking energy vector [40]
spatial potential for percentages and from a database to capacity of bidding zones  define PHS one node (sub-national) flows to identify
databases RESs weather data regions. between regions regionally infrastructural needs
Balmorel Exogenous - Solar and wind Heat demand for Large, medium, and small Short-term and - Regionalization N/A? [55]
spatial capacity regions district heating networks seasonal storage for (sub-national)
databases for regions heat and electricity
Balmorel- Exogenous - Using a database to Obtained Euclidean distance of Short-term and - Regionalization The importance of the [56]
OptiFlow spatial allocate biomass exogenously from regions’ centers seasonal storage for (sub-provincial) local distribution of
databases potential across areas TIMES-DK heat and electricity energy resources
OPERA GIS" analysis Assessing spatial GIS analysis and Using GIS analysis Using an actual physical N/A Aggregated in  Regionalization To show the impacts of [30,
claims external database electricity network one node (sub-national & energy system 39]
provincial) components regionally
IESA-NS GIS analysis Assessing spatial Wind potential, Database for It is considered, as noted Using a database to - Clustering (k-means)  Model simplification for [29,
claims considering the demand allocation in Appendix B allocate hydrogen finding the best offshore 31]
available area storage hubs
urbs GIS analysis Land use Using available lands Using land use map  Allocating transmission N/A - Clustering (k- Generate cohesive [42]
potential for and weather data lines between regions means++ & max-p) clusters with maximum
RESs using a database data similarity
LUT-ESTM Exogenous - Using land limit Using a database, a Power transmission Regional battery - Regionalization Reduce simulation timein ~ [57]
spatial percentages and general assumption capacity of regions and capacity (sub-provincial) spatially low-resolution
databases weather data for 2050 their annual trading with high-quality results.
LUT Different criteria for Regional electricity,  — Regionalization Spatially dissolving data [41]
obtaining each heat, and gas (sub-national) in energy demand zones
demand type storage
BeWhere GIS analysis Considering It is considered, as Power, heat, and Transportation network N/A - Regionalization Spatially dissolving in [58]
protected area noted in Appendix B transport demand (road and sea), pipeline, (equally-sized equal cells
for areas power grid transmission regions)
MyPyPSA- Exogenous - Using a database for Linear regression Using the power network  Energy storage for - Clustering (k-means)  Aggregating information [59]
Ger spatial RESs for power demand each node and simplifying the
databases analysis process
PyPSA-EU Using a database to It is considered, as Dissolving data in [60]
allocate RESs noted in Appendix different spatial levels.
B.
Oemof- Exogenous - Population factor for Heat and power Power transmission Regional capacity - Regionalization Spatially dissolving in [28]
moea spatial PV‘and using a demand for each capacity and bottlenecks for PHS (sub-national) regions
databases database for wind node between bidding zones
- Using a database for Database for Not clearly mentioned N/A - Clustering Spatially explicit data for [61]
RES capacity electricity, heat, (hierarchical decentralizing municipal
and hydrogen agglomerative) energy systems
demand
TIMES GIS analysis Assessing spatial PV/wind potential and Regression method The power transmission N/A - Regionalization Spatially dissolving in [62]
claims considering land claims network between regions (sub-national) regions
AnyMOD Exogenous It is considered, Allocate potential from  Database for Transmission networks Battery and - Regionalization Spatially dissolving in [43,
spatial as noted in a database to regions demand allocation and their capacity hydrogen storage (sub-provincial) regions 63]
databases Appendix B considering land between regions
availability.
REMix Exogenous - Using the European Database for Using the power network ~ Aggregating storage  — Regionalization Spatially dissolving in [64]
spatial model’s results for RE demand allocation for each node (sub-provincial) regions
databases potential
Calliope Exogenous - Using a database for a Using bidding zone Transmission between Aggregated regional - Regionalization Spatially dissolving in [65]
spatial maximum capacity of and demand profile central nodes and VRESs storage capacity (sub-national) regions
databases RESs of sectors with their linked nodes

All variables in this table are related to the studies that used ESMs, not necessarily the model’s specifications.

? Not clearly mentioned.

b Geographic information system.

¢ Photovoltaic.
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3.3.1. Spatial aspects of energy supply

Distinguishing between different levels of potential for evaluating RE
capacity is crucial. These levels are classified into four key groups.
Theoretical potential is the highest resource capacity based on natural
and climatic factors [72,73]. Technical potential considers geographical
and system limitations, including land use, infrastructure constraints,
and technically feasible technologies [73,74]. Economic potential refers
to cost-effectiveness, where RE’s revenue covers its cost [74]. Market
potential indicates the amount of RE that can be implemented, consid-
ering regulatory limits, policies, and competition with other technolo-
gies [73]. Our review shows that most selected papers focused on the
theoretical potential, often simplifying the technical and economic po-
tential and overlooking the market potential, see Appendix B.

The systematic approach to identifying high-potential areas for RESs
considers environmental and legal constraints, land use claims, suit-
ability analysis, spatial competition of RE technologies, and these
technologies’ technical and economic feasibility, as illustrated in Fig. 4.
This procedure can be applied for each specific RE technology to esti-
mate the land availability of different technologies. Our review shows
that some studies simplified calculations for RES’s theoretical and
technical potentials using low-resolution renewable capacity factor
maps [63,65], generalized approaches to estimate available land, or
highly aggregated methods for allocating solar potential regionally. For
solar energy, these methods included equal distribution of solar poten-
tial between regions by using a weighted average approach [57] or
selecting a representative site for each region [75,76]. Additionally, only
a few studies have examined the explicit technical potential of RESs by
considering land use restrictions and claims [29,30]. Table 7 provides an
overview of proposed indicators to assess RE production in the literature
and those used in the reviewed papers. The methods of how the spatially
dependent parameters of energy resources are used in ESMs are sum-
marized in Table 6 and detailed in Appendix B.

3.3.2. Spatial aspects of energy demand

Aggregation and disaggregation represent the literature’s common
methods for the spatial distribution of energy demand among regions.
The aggregation approach helps summarize data such as energy profiles
of buildings and vehicles and the energy consumption of different
building types. In contrast, the disaggregation technique uses statistical
approaches to allocate energy demand across smaller regions [86].
Studies either used specific indicators for each energy sector [39,60] or
utilized indicators applicable to combined energy sectors [41,58]. For
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instance, in OPERA, the energy demand inputs were obtained by esti-
mating the energy demands of different energy sectors, including resi-
dential buildings, services, industry, and agriculture. Building
information such as building use, type, energy label, construction year,
and population is used to estimate the energy consumption of the built
environment. For transportation, demand information is obtained using
the population factor. REMix used population distribution to estimate
building energy demand and the number of vehicles needed for trans-
portation energy demand. LUT, Urbs, and BeWehre utilized indicators
for energy demand estimation for combined energy sectors. Therefore, a
comprehensive methodology is required to obtain a detailed analysis of
energy demand for different energy sectors. Table 8 summarizes critical
indicators to evaluate energy demand in the literature and those applied
in the reviewed ESMs. The methods used to assess spatially dependent
parameters of energy demand in ESMs are summarized in Table 6 and
explained in detail in Appendix B.

3.3.3. Spatial aspects of energy infrastructure and storage

Energy infrastructure, comprising energy grids, conversion technol-
ogies, and storage options should be integrated into ESMs to evaluate
balance constraints in energy flow. Some ESMs represent the energy
infrastructure as a copper plate, neglecting transportation distances and
related losses in balancing energy supply and demand [63]. However,
some models, such as PyPSA, IESA-NS, OPERA, and OMNI-ES, use ho-
listic approaches to incorporate spatially dependent parameters of en-
ergy infrastructure. For example, PyPSA uses a structured methodology
that effectively captures the interaction of spatially dependent param-
eters within energy systems. It aggregates energy supply and demand in
the same nodes and links multiple nodes through energy infrastructure.
This model uses power substations to define the nodes, and these nodes
represent various components such as generators, consumers, storage
capacity, and transmission lines [94]. PyPSA-Eur’s network typology is
designed based on a power transmission grid map, including high
voltage alternating current (HVAC) and high voltage direct current
(HVDC) power lines. In addition, countries are split into Voronoi cells as
catchment areas and connected to substations through low-voltage (LV)
networks. These cells include power plant capacities, RE potential, and
the share of demand that can be met at each substation [95].

Following a similar approach, most ESMs aggregated the capacity of
one or multiple energy networks (power, heat, and gas) and storage
options at their closest node. For instance, PyPSA-Eur-Sec [96] and
OMNI-ES [40] developed a detailed methodology to incorporate various

Land use restrictions
Exclusion areas that prohibit the
installation of RE technologies
due to environmental, legal,

Land use
classification

Renewable energy
technologies

Land use claims
Spatial claims of different
land use for the same area
(provided by spatial

Suitable area for RESs
Suitable area with high
potential for installation of
RESs (considering geographical
and weather conditions)

Competing area of RESs
Spatial competition of different
RE technologies for the same area

Excluded area

Excluded area

o — Public services

Transportation

economic, or social limitations planning)

Rooftop solar Residential

Commercial High Restriction Excluded area
GMPV -
Industrial
Floating PV i
£ Agricultural High land claim
Onshore wind ’H \> Forestry —» Medium Restriction* >

Medium land claim*
Not suitable area

Hydropower " e
Water bodies No restriction bkt . H Competing with other RES
Biomass Conservation, and... i No competing with other RES
Geothermal o T

v

This process should be
done separately for
each RE technology.

Selected area to evaluate
the potential of each RES or
a combination of them

Analyzing the time series
weather data to determine
RES’s capacity factor

Evaluation of the economic
potential of each RE
technology (e.g., using LCOE,
NPV)

Technically feasible energy
conversion system
(available infrastructure
and storage)

* A portion of the medium land use restriction area and the medium land use claim area may be excluded following the land use assessment.

Fig. 4. The procedure of determining the technical and economic potential for each specific RE technology adopted from [77,78].
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Table 7

RE potential Proposed inputs and indicators Inputs and indicators used

factors to evaluate and estimate energy  in selected ESMs
potential (from literature)
Land use Environmental and legal OPERA: land limit
restrictions restrictions assumptions for solar and

wind

LUT [41]: land limit
assumptions for solar and
wind

AnyMOD: site quality of
land uses for PV and wind
IESA-NS: protected areas
and exclusion zones
IESA-NS: sensitivity
analysis for onshore wind
acceptance levels

OPERA: spatial planning as
scenarios

IESA-NS: sea use claims and
multi-use of sea spaces

Social acceptance

Land use claims Spatial planning

Suitability GMPV": solar radiation, slope, OPERA: agricultural land,
analysis aspect [79], onshore water onshore water body
body) LUT [41]: solar radiation,
solar power density
AnyMOD: capacity factor of
PV
Rooftop PV: solar radiation, OPERA: building footprint
building data, rooftop area for agriculture, industry,
constraint, shading factor, roadside, and ground-based
future building growth rate AnyMOD: capacity factor of
[801) PV
Wind: wind speed, slope, OPERA: annual wind speed
aspect, roughness length, profile
longitudinal, plan, and LUT [41]: wind speed, wind
transverse curvature [79]) power density
AnyMOD: capacity factor of
wind
IESA-NS: wind power
density, water depth
Geothermal: surface ambient LUT [41, 75]: surface
temperature, heat flow [75, ambient temperature, heat
81]) flow
Biomass (Energy crops): OPERA: region-based
altitude constraint, slope, soil residue potential
characteristics, geotechnical Balmorel [56]:
characteristics, precipitation, geographical distribution of
temperature [82]; residue potential
Biomass (Residue potential): LUT [41]: region-based
livestock manure, straw residue potential
potential, forestry residue, Bewhere: palm oil mill’s
urban greenery residue, food locations and capacities,
waste [83] palm plantation, locations
and capacities of rice miles,
paddy plantation, livestock
population
Hydropower: slope, elevation, LUT [41]: real weather data
precipitation, temperature, soil
classification, runoff, land
cover, river discharge [84, 85]
Competing Suitability map of RE Not considered
technologies technologies, land use, spatial
Combination of planning scenarios Not considered
RE
technologies

# Ground-mounted PV systems.

energy networks such as power, heat, gas, CCUS, and related compo-
nents. OPERA used a spatially explicit approach for the heat network to
integrate heat supply sources and the DH network at the regional scale.
This model combines the district heating (DH) transmission and distri-
bution network across industry clusters, geothermal source locations,
city centers, and city outskirts [39]. Moreover, existing energy infra-
structure is vital in developing economically feasible and efficient plans.
For example, onshore wind and ground-mounted PV installations near
their corresponding energy infrastructure are more financially desirable
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Table 8
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Methods and indicators employed for estimating spatially sensitive parameters

of energy demand.

Demand sector

Proposed indicators to
calculate energy demand
(from literature)

Indicators used in selected
ESMs

Residential
buildings

Non-residential

Household numbers, building
type, energy label, building
size, building age, climate
condition [30,86,87]

Operating hours, occupancy

OPERA: building use,
building types, construction
year, household numbers,
energy label

PyPSA-EU: (future)
population, living space (for
heating)

REMix: population
distribution

OPERA: building use,

buildings rate, building function, building types, construction
(services) building type, energy label, year, energy label
building size, building age, PyPSA-EU: current and
climate condition [30,86-89] future population,
employment rate
Industry Industrial activity type, OPERA: final industrial
production volume, plant product unit
size, climate condition [30] PyPSA-EU: current and
future population,
employment rate
Transportation Network density, vehicle OPERA: population
kilometers traveled, distribution
population density and PyPSA-EU: population, e-
distribution, public transport mobility penetration
infrastructure, freight and REMix: number of vehicles
passenger movement [86,
90-92]
Agriculture Agriculture area, crop types, OPERA: heat, electricity,

and livestock, irrigation

needs, machinery usage,

climate condition [93]
Combined sectors -

machinery demand

BeWhere: power substation
map for electricity, natural
gas map for heat demand,
population map for transport
fuel demand

Urbs: hourly load profile
LUT: air conditioning,
tourism contribution, and
local and seasonal
temperatures

TIMES & MyPyPSA-Ger:
population, gross domestic
product (GDP), historical
trend of power consumption

[97]. In IESA-NS, the capacity and size of power cables and gas pipelines
are estimated for reuse for energy transportation. Considering these
challenges, a holistic methodology is needed to measure the current and
potential capacities, transportation constraints, and capacity limitations
of different energy networks (power, heat, gas, and CCUS), and energy
storage [29]. The methods used to assess the spatially dependent pa-
rameters of energy infrastructure, storage options, and CCUS are sum-
marized in Table 6 and explained in detail in Appendix B.

3.4. Spatial aggregation methods

The literature review highlights clustering and regionalization as
primary spatial aggregation methods for defining regions or nodes in
ESMs. K-means, max-p, k-means++ & max-p are the standard clustering
methods in ESMs. Regionalization can be classified into market-bidding
zones, subnational, sub-provincial, and equally-sized regions. Table 9
provides a checklist to evaluate these approaches and their pros and
cons based on four criteria and their corresponding sub-criteria: policy
(policy alignment and understandability by policymakers), flexibility (to
accommodate inputs and sensitivity to variation), spatial capabilities
and features, and knowledgebase (including available literature and
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Table 9

Aggregation methods ~ Schematic design Ref Policy Flexibility Spatial capabilities Knowledgebase/Databases
Policy Easily Allows No Homogeneity contiguity Flexibility Identifies Better reflects Corresponds Supported
alignment  understandable customization sensitivity of results of results in distinct socioeconomic to the by

by of spatial to input capturing spatial patterns available extensive
policymakers resolution variations spatial patterns data literature
variation and
algorithms

K-means [29] - - v - v - v v - - v

Max-p [27] - - - - - v - v - - -

K-means++ & max p [42] - - v - v v v v - - -

K-means using power [59, v - 4 - v - v v - v 4

nodes
60]
Market bidding 55, v v/ - v - - - - - v v
zones
57,
64,
651]
Sub-national s, v v - v - - - - v v v
(Provincial level)
40,
41,
62,
75,
81,
108]
Sub-provincial 30, v v/ - v/ - - - - v/ - v
icipali

(municipality 39,

level)
43,
56,
63]

Equally sized regions [58, - - v v - - - - - - -

109]
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data). This assessment compares the capabilities and limitations of
clustering and regionalization methods in ESMs.

Most ESMs use input data that is available in administrative units.
However, there is often a lack of alignment between the administrative
divisions and spatial distribution of energy supply (due to differences in
factors such as wind speed and solar radiation) and power and heat
demand [42]. Because policies are primarily formulated at national or
regional levels, regionalization aligns better with policy assessment and
is more accessible to policymakers and stakeholders. While clustering
provides flexibility to customize the number of nodes, regionalization is
less adaptable. This flexibility helps scale down or up by changing the
number of regions or nodes exogenously. Clustering methods can adjust
node distribution based on input data, unlike regionalization, where
input variations do not impact region numbers. In the max-p clustering
method, node numbers are fixed and cannot be adjusted exogenously to
ensure the spatial contiguity [31]. K-means clustering prioritizes ho-
mogeneity when clustering nodes, demonstrating similarity and con-
sistency in energy-related attributes such as demand, supply, and
storage. Meanwhile, max-p clustering offers contiguity of results as re-
gions and nodes are clustered through spatial proximity [27,31,98],
ensuring each area shares at least one border with adjacent areas in the
same region [27].

Both regionalization and clustering are spatially explicit approaches,
but regionalization, defined by fixed administrative units like provinces,
may only partially capture the spatial distribution of energy supply,
demand, and infrastructure. For instance, while regionalization assigns
one node to each province or municipality, k-means clustering flexibly
adjusts the node numbers according to the spatial distribution of energy
system components. Thus, using administrative units such as provinces
may lead to an inadequate representation of resource variation [99].
Clustering methods can better handle spatial variations by tracking
distinct spatial patterns, e.g., the spatial pattern of demand distribution,
supply, or industry locations. Spatial aggregation using administrative
units benefits from greater data availability and aligns better with so-
cioeconomic patterns [100]. Additionally, extensive knowledge bases
and relevant algorithms support k-means clustering, power zone clus-
tering, and administrative unit approaches.

Regionalization based on administrative units is also a common
approach to aggregate spatial variations. Sahoo et al. [30] conducted an
ESM analysis to regionalize a national ESM in the Netherlands at mul-
tiple administrative levels. They studied the municipality of Groningen
with high spatial detail, the northern part of the Netherlands at a pro-
vincial level, and the remaining part of the country as a single region. In
another study, Sahoo et al. [39] used multiple nodes with distinct types,
e.g., demand, supply, and energy infrastructure, by considering 24
Dutch regions corresponding to energy demand and supply. To represent
the energy infrastructure, they incorporated 67 nodes, including in-
dustries, geothermal, district heating, and power nodes.

Clustering is a practical approach for aggregating spatial data.
Martinez et al. [29] used k-means clustering to identify suitable offshore
hubs in the North Sea. Their approach connected offshore wind power
plants (OWPP) to the nearest hub and deployed the fewest hubs possible
to accommodate the maximum number of OWPPs. Due to the signifi-
cance of geographical distance between OWPPs and hubs, k-means
clustering is an effective method to find the optimal offshore hubs. They
assessed potential conflicts between various space uses to identify suit-
able areas for offshore wind deployment, which were used as input for
the clustering. Jarosch et al. [61] employed clustering analysis to
characterize distinct clusters with internal homogeneity and similarities
within each cluster, while external heterogeneity and differences be-
tween clusters. They used various indicators to determine clusters,
including population, power demand, and installed capacity of RE
technologies. In PyPSA, power substations are clustered through the
k-means technique to group geo-located buses of the power networks
[95,101]. This approach can help to capture, manage, and represent
spatially explicit data.
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Clustering methods aim to aggregate data according to similarities or
dissimilarities criteria while minimizing information loss. For instance,
high-potential areas for RESs can be identified using clustering, unlike
regionalization methods [102]. Clustering techniques, like k-means, use
input data to identify regions based on similarities in their attributes (e.
g., energy demand and supply). This flexibility allows clustering to
define regions that align more with energy system inputs, unlike
regionalization methods that rely on fixed administrative units. How-
ever, clustering techniques have limitations, as they are highly sensitive
to input data and parameters like the initial number of node selected
[103,104]. K-means is particularly sensitive to the initial centroid se-
lection, as well as to outliers and noise, which can distort the cluster
shapes [105,106]. Moreover, if the spatial variations are highly scat-
tered, clustering may fail to capture the complexity of spatial variation
due to its reliance on specific parameters to define clusters [103,107].
Therefore, parameters (e.g., initial centroids and cluster numbers) and
input data should be carefully selected to ensure that the clusters
accurately represent the spatial distribution of relevant features.

3.5. Linking methods of ESM and spatial model

Researchers have classified linking methods for integrating ESMs
with other models differently. Wene [110] identified hard link and soft
link approaches in ESMs, shown in Fig. C- 1 (a), while Helgesen et al.
[111] added an integrated approach, where models combine into a
single model. Linking methods are crucial for balancing granularity and
complexity while ensuring system adaptability. The selection of the
linking method depends on model types, purpose, and capabilities.
Fattahi et al. [19] proposed hard link ESMs with regional and energy
market models and soft-linking with the macroeconomic model. A soft
link method is recommended to integrate ESM and spatial models to
encompass higher spatial granularity, land use assessment, and infra-
structure analysis in ESMs.

In the hard link approach, models are connected to transfer data
automatically without user intervention [41], with one model as the
master and others as complementary models, all running simultaneously
[19]. Durand-Lasserve et al. [112] defined hard links as a fully inte-
grated method, and soft links as a partial linking method for a few
variables. This linkage can be intensified when the objective function of
various methods is translated into a single equation [113]. Wene [110]
highlighted the advantages of hard link methods, such as productivity,
uniqueness, and control. However, it has limited computational effi-
ciency and data resolution compared to the soft link process [114].
Helgesen et al. [111] indicated that soft linking can improve model
capabilities, but it can pose challenges like convergence issues and
identifying connection points [19]. Hard-link method yields consistent
and efficient outcomes by incorporating all constraints within a single
model but it can lead to complex optimization problems [114]. For
instance, Bramstoft et al. [56] proposed a methodology to assess possible
solutions for ESM biomass distribution (see Fig. C- 1 (b). They
co-simulated OptiFlow with Balmorel, a hard-link approach to exchange
data. Additionally, the TIMES-DK model optimizes energy demand as an
exogenous input for OptiFlow-Balmorel.

In the soft-link approach, multiple models operate separately,
transferring information iteratively and sequentially [114]. In this
approach, one model generates a result as an input for another and can
be structured as a feedback loop between models [37]. The soft-link
method attracts more attention as it leverages the high resolution of
each model involved in the linking process [114] and provides better
system complexity management than hard-linking [115]. However,
combining models using soft-link techniques might reach a different
level of accuracy than the hard-linked linking model [114]. Identifying
the connection points is essential, as one model’s endogenous variable
becomes the other’s exogenous variable [24]. Soft-linking provides
practicality, transparency, and learning advantages [110], but does not
guarantee model convergence to optimal outcomes. It may also cause
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substantial problems in obtaining consistency owing to differences in
model structure and methodologies [23]. Unlike hard-linking, which
limits technological resolution, soft-linking divides problems into
sub-problems, allowing for higher technological resolutions [114].

Soft link methods are classified as bidirectional and unidirectional
approaches. The data flow between models occurs iteratively in the
bidirectional method, leading to more reliable results [29]. Each model
can modify the other iteratively until convergence criteria are met. This
technique was designed to improve the quality of results in both models
[116]. However, this method demands higher computation loads and
deals with challenges in reaching convergence. In contrast, in the uni-
directional method, the output of one model feeds into the second model
without iteration [29]. For instance, Sahoo et al. [30] used a unidirec-
tional method to soft-linked the pan-European power model, COM-
PETES, to consider the power exchange beyond the country, as shown in
Fig. C- 1 (c). On the other hand, Pina et al. [117] used a bidirectional
soft-link technique to integrate TIMES, a long-term model for optimizing
electricity generation investments, and EnergyPLAN, a short-term model
for optimizing system operation. The results of installed capacity from
TIMES are used as inputs in EnergyPLAN to calculate the maximum
production potential for each generator. The convergence criteria
ensure that installed RE technologies can generate at least 90 % of the
expected annual output. If the requirements are not met, a new yearly
capacity limit is defined to update the previous constraints of all sources
in TIMES [117]. Similarly, Seljom et al. [116] developed an iterative
soft-link method by integrating TIMES-Norway into the EMPS opera-
tional power market model to enhance the decision support provided by
both models. All European countries are included in EMPS, while only
Norway is covered in TIMES-Norway. The income generated by hydro-
power from both models is used as a convergence criterion to determine
generation and electricity prices.

4. Synthesis and perspective

Given the insights drawn from the analysis and results, this section
outlines a methodological proposal for ESM design by linking a spatial
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model with an ESM. This proposal specifically focuses on national en-
ergy planning by incorporating spatial dynamics and constraints at a
high spatial resolution. The key recommendation is to integrate various
spatially dependent parameters into an ESM (see Fig. 5). We propose
linking the ESM to a spatial model for optimizing land use allocation,
recognizing that various competing land use claims should be consid-
ered to assess the feasibility of ESM solutions in terms of spatial
feasibility.

Regarding the aggregation approach, while clustering techniques
can allow for adaptability in representing the spatial variation of energy
supply and demand, their suitability is context-dependent. For instance,
if policy advice is targeted at specific administrative units, e.g., prov-
inces or municipalities, aligning the analysis with administrative units
may provide more policy-relevant results due to data availability and
alignment with policy goals. However, for a spatially explicit ESM at the
national level we propose using clustering methods (e.g., k-means or k-
means++ & max-p). Unlike regionalization methods that are limited by
administrative boundaries, clustering provides more flexibility to cap-
ture spatial variability in energy supply, demand, and infrastructure. It
minimizes information loss and defines regions based on shared char-
acteristics rather than predefined boundaries. It also enhances scal-
ability in adjusting the spatial resolution. However their limitations such
as sensitivity to input data, initial centroid selection, and challenges in
determining the number of clusters should be carefully managed (see
section 3.4).

To link the spatial model with ESM, we propose a bidirectional soft-
linking technique. As discussed in section 3.5, this approach enables the
inclusion of higher resolution data from each model involved in the
linking process, leading to better management of system complexity.
Although soft-linking possess challenges, such as potential convergence
validation issues, managing two distinct models, and ensuring consis-
tency between models, its advantages outweigh these disadvantages,
particularly for managing high-resolution data and reducing computa-
tional demand. Moreover, we propose using a recursive soft-linking
technique that offers another layer of robustness by providing recur-
sive feedback exchanges between two models. While this approach
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Fig. 5. A conceptual schematic of linking a spatial model with an ESM.
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requires higher computational loads and tackles challenges in reaching
convergence, it enhances the reliability of results by enabling iterative
adjustments between models.

4.1. A modular framework for integrating spatial aspects into ESM

4.1.1. Module A: A detailed spatial model

Developing a spatially explicit ESM is essential for obtaining reliable
outcomes and addressing challenges like the varied distribution of RESs.
A detailed spatial model ensures that key spatial dynamics, such as land
use competition and regional variation in energy supply and demand are
included. This module emphasizes two main components: a spatial
model to allocate land use based on spatial planning scenarios, and the
incorporation of spatially dependent parameters for energy demand,
sources, and infrastructure.

For the first component, we recommend considering national spatial
planning to include economic growth, land use management, environ-
mental conservation, social coherence, and disaster risk management.
For example, Spatial Outlook 2023 presents four scenarios for spatial
decision-making in the Netherlands for 2050, each prioritizing either
economic growth, nature-based solutions, technology, or community-
led development [118]. Incorporating such national spatial planning
scenarios and land use assessments into an ESM allows for considering
different dynamics influencing future energy systems. This combination
leads to spatial coherence (determining what fits where) and choices of
optimal use of space, which is crucial, especially in densely populated
countries.

However, there is a lack of studies that directly incorporate a spatial
model into an ESM to optimize land allocation for energy supplies and
infrastructure. Most ESMs (e.g., OPERA, PyPSA, and Calliope) use GIS
input data or preprocess these data to include only spatially dependent
parameters into ESM. In contrast, we propose incorporating a spatial
model that goes beyond this preprocessing step, facilitating land allo-
cation for energy supply, storage, and infrastructure while considering
competing land uses such as residential areas, green spaces, agriculture,
transportation networks, and protected areas. This model integrates
spatial planning inputs such as future land use scenarios with ESM re-
sults, which provide cost-optimized energy supply and infrastructure.
The spatial model allocates the energy system’s land use requirements
across different regions while balancing competing land uses. An
example of such a spatial model is RuimteScanner 2.0, which allocates
regional land demand to specific grid cells based on land availability,
suitability, and supporting long-term planning by simulating land use
changes, as described in Ref. [119]. Another example is a spatially
explicit energy location model, ADVENT-NEV, which optimizes the
location of solar farms, wind farms, bioenergy power stations, and their
associated bioenergy crops [120].

For the second component, several spatial approaches were defined
to capture the spatially dependent parameters of energy supply, de-
mand, and infrastructure, as explained in section 3.3. Sahoo et al. [30]
and Martinez-Gordoén et al. [29] included spatially explicit components
in their model’s framework. However, further improvement is needed to
integrate energy systems’ spatial dimensions, for example, spatially
explicit gas, CCUS, methane, and hydrogen networks, into their ap-
proaches. Moreover, depending on data availability, we can employ
either aggregation or disaggregation techniques to allocate values across
nodes. For example, in the case of rooftop solar, a high-precision
approach is illustrated in Fig. B- 1 in Appendix B to estimate potential
using roof orientation, slope, and shading leveraging light detection and
ranging (LiDAR) data. However, when data availability is limited, we
suggest using either a representative area and extrapolating its potential
to the targeted region [75,76] or solar energy density across available
areas [95]. Such differentiated approaches exist for each RE technology,
energy demand, and infrastructure.

14

Renewable and Sustainable Energy Reviews 213 (2025) 115470

4.1.2. Module B: spatial-converter

Module A provides spatially explicit outputs, including land avail-
ability and optimal placement of various energy system components
aggregated within their respective nodes to feed into the ESM. Our
analysis indicates that clustering methods offer more capabilities than
regionalization methods to capture spatial variables (see Table 9). We
recommend using either k-means or k-means++ & max-p clustering
techniques among these clustering methods. Like PyPSA-Eur, a catch-
ment area can be defined around each node to assign the available land
and maximum capacity for energy supply, demand, infrastructure,
storage, and CCUS. This catchment area defines boundaries for each
node based on proximity, facilitating the allocation of different energy
system variables to individual nodes [95]. Then, these components can
be converted to costs or constraints and imported into ESMs.

4.1.3. Module C: A highly detailed ESM

ESMs are crucial for policymakers to evaluate energy-related pol-
icies” impacts and explore the most effective energy transition pathways.
To address policy-related challenges, ESMs with high temporal, tech-
nological, and spatial resolutions are required for comprehensive
decision-making support. Our findings indicate that PyPSA-EU, IESA-
NS, MyPyPSA-Ger, AnyMOD, and Balmorel possess such detailed reso-
lution (see Fig. 2). Furthermore, the ESM framework must incorporate
highly detailed spatial features for energy demands, resources, infra-
structure, and spatial claims. This capability is observed in REMix,
Calliope, Opera, BeWhere, and TIMES. However, based on Table 6, these
spatial capabilities are often highly aggregated or overlooked in current
ESMs. For instance, many ESMs do not integrate national spatial plan-
ning to incorporate various spatial dynamics to address spatial conflicts
among land uses.

We propose using an ESM that includes detailed spatial inputs. Our
review in Table 6 reveals that most ESMs highly aggregate the spatial
distribution of energy demand, supply, infrastructure, and storage. This
aggregation reflects the limitation in data availability, lack of holistic
perspective for spatially dependent parameters, or focus on high tem-
poral and technological resolution, which restrict further improvement.
Adding spatial details increases the complexity of the model and re-
quires greater computational capacity, as a large amount of data is
involved. Additionally, the capability of scaling up or down from an
upper to a lower level is a practical feature to enhance the model’s
adaptability. This capability helps to change the resolution level based
on policy needs. For example, PyPSA has this capability by using power
system nodes and employing spatial clustering methods for node
grouping.

4.1.4. Module D: ESM-converter

In this module, ESMs’ outputs are integrated into the spatial model
for further analysis. These outputs encompass investment decisions,
emission levels, infrastructure requirements, and system costs for
various scenarios. The ESM provides these results at individual nodes,
which are then transferred to the spatial model through the ESM con-
verter. This converter facilitates the implementation of a recursive
procedure between the spatial model and the ESM. It helps to assess
whether adjustments are needed for investments in ESMs to meet spatial
model constraints. Additionally, it offers various benefits to support
decisions, such as providing feedback on infrastructure requirements,
identifying bottlenecks like insufficient transmission capacity, and
optimizing the energy supply chain.

4.2. A recursive framework for ESM and spatial model

A recursive platform for exchanging feedback between the energy
system and spatial models ensures consistent results. The spatial model
can be soft-linked to the ESM through two-way connections. In this
approach, the energy system and spatial models are linked iteratively
using a recursive connection instead of a unidirectional linkage. For
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instance, the ESM may initially determine the placement of wind farms
based on land availability and suitability criteria for wind energy at each
node. However, if the spatial model cannot accommodate the required
wind farm area in a specific region due to competing land use claims, it
provides feedback to modify the ESM in subsequent iterations. The ESM
can also provide feedback to the spatial model regarding the unmet
energy demand in certain nodes, helping the spatial model to reconsider
land allocation and potentially prioritize specific energy supplies over
other land uses.

Asillustrated in Fig. 6, the recursive soft link process involves several
steps. The process begins with a preprocessing step, where spatial-based
data (e.g., land use, suitability maps, exclusion areas) and energy data
(e.g., energy demand profiles and fuel prices) are collected, analyzed,
and stored in an integrated database. The spatial-based data are then
transferred to the geo converter and spatial model. The geo converter is
executed to cluster the input data into nodes and translate its outputs
into cost parameters and constraints for the ESM. The ESM is executed,
and its results are transferred through the ESM converter to the spatial
model. The spatial model allocates the energy system’s land requirement
by optimizing land use while considering land use competitions and
claims. Subsequently, feedback from the spatial model is used to update
the ESM decisions. From the second iteration onward, convergence
criteria are checked, and the process continues until these criteria are
satisfied. One example of such a criterion is ensuring that the unmet
energy demand across all nodes is below a certain threshold. Finally, the
outputs of the ESM and spatial model are reported corresponding to the
highest iteration index. Compared to unidirectional linking, this recur-
sive approach provides more reliable results as it ensures the consistency
of connected models.

4.3. Challenges in implementing spatially explicit ESM

Implementing a spatially explicit ESM at a national scale poses some
challenges, particularly in balancing data availability, computation
time, and accuracy. Various methods exist to reduce the computation
time, such as aggregating temporal resolution, reducing the time extent,
or lowering the technological resolution. Clustering time series can also

Preprocessing step

Spatial-based data :
preprocessing |
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effectively address the computation load [121]. Furthermore, increasing
the number of generation nodes without expanding the energy system
nodes can enhance model’s accuracy and minimize runtime. For this
purpose, Frysztacki et al. [99] compared different scenarios and
concluded that increasing the spatial resolution of generation sites and
aggregating them into energy system nodes, rather than increasing the
number of system nodes, can be a practical approach to enhance the
model’s reliability when computational time is limited. Lombardi et al.
[65] also structured a two-scale spatial configuration of the Italian
power system in six bidding zones and 20 administrative-level regions
using Calliope. They applied this two-scale resolution system to incor-
porate the variation of RESs and local political conditions in different
areas. Bidding zones represent power demand profiles, transmission
lines, and power storage plants. However, the regional administrative
level helps to estimate renewable and PHS capacity. To reduce the
model’s complexity, this structure can incorporate variations at a lower
scale and aggregate results at a higher scale.

Moreover, improving spatial details while maintaining maximum
temporal, technological, and spatial resolution remains challenging.
Incorporating additional spatial details impacts the resolution, as shown
in PyPSA-Eur-Sec [96], which includes more detailed infrastructure for
heat, methane, hydrogen, CCUS, and solid biomass compared to
PyPSA-Eur [60]. Nevertheless, it decreases spatial resolution to one
node per country, unlike PyPSA-Eur. Another challenge lies in the
network typology for allocating supply and demand nodes, which can be
structured through various methods. For example, clustering can be
performed for supply nodes, followed by aggregation of demand nodes
in these supply nodes, or vice versa. Alternatively, both energy demand
and supply nodes can be clustered simultaneously. In addition, clus-
tering can be separately performed for demand and supply nodes, sub-
sequently aggregating them. Another challenge is selecting a method for
the spatial aggregation of energy supply and demand in nodes. Different
possibilities exist, such as connecting all energy demand points to the
closest supply nodes or vice versa. The other possibility is to define a
new node as a connector to link demand and supply nodes. These pos-
sibilities should be explored to find cost-effective configurations in
future studies. The other challenge is the arrangement of nodes for
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Fig. 6. The process flowchart of the proposed linking approach (i indicates the iteration number).
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different energy commodities (power, heat, hydrogen, CCUS), as they
have different characteristics and limitations and are grouped to match
energy supply and demand.

5. Conclusion

ESMs can be instrumental in providing solutions and policy assess-
ment but insufficiently incorporate spatial planning scenarios and high-
quality spatially dependent parameters. This study evaluated the na-
tional ESMs that primarily focus on long-term energy planning models to
provide energy transition pathways and infrastructure development
over extended time horizons. It contributes to the existing literature by
identifying and evaluating various spatially dependent parameters
influencing energy supply distribution. It focuses, particularly on
renewable energy potential, energy demand distribution, and the spatial
arrangement of energy infrastructure. We reviewed the methods
employed in existing literature to evaluate these spatially dependent
parameters. Additionally, the importance of incorporating spatial
planning into future ESMs was highlighted, as past and current spatial
choices significantly impact the future energy system. Furthermore, we
analyzed aggregation methods to integrate spatially dependent param-
eters into ESMs and explored linking methods to integrate spatial models
with ESMs.

Our findings highlight that several ESMs such as PyPSA, IESA-NS,
Calliope, OPERA, and Balmorel offer high spatial, temporal, and tech-
nological resolution. We also reviewed the approaches these ESMs use to
incorporate energy infrastructure in their frameworks. The results show
that clustering and regionalization are the main approaches to defining
regions and nodes within the spatial domain. We suggest using clus-
tering methods that provide greater flexibility in capturing spatial var-
iations of spatially dependent parameters and adjusting spatial
resolution for national ESMs. Regarding the linking methods, soft-
linking and hard-linking are valid approaches in the literature to con-
nect spatial models with ESMs. We recommend using the soft link
method to link a spatial model with an ESM, as this approach allows for
higher spatial resolution. We propose implementing a dynamic feedback
loop to exchange data between ESMs and spatial models. This recursive
soft-linking would provide continuous information exchange between
two models, enhancing decision-making processes within energy sys-
tems such as resource allocation and infrastructure development.

We recommend a comprehensive framework including four modules
to facilitate ESM and spatial model integration. In module A, a detailed
spatial model evaluates spatial claims by integrating national spatial
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planning, policies, and land use assessments. It also includes spatially
dependent parameters for energy demand, supply, and infrastructure as
inputs for ESMs. Additionally, the spatially dependent parameters con-
cerning energy demand, supply, and infrastructure are evaluated using
the techniques overviewed in section 3.3. In module B, the output of the
spatial model is aggregated to its respective nodes and regions using a
clustering method, either k-means or k-means++ & max-p. A potential
approach could involve using the supply areas as primary nodes and
aggregating other elements like energy demand and storage with the
closest nodes using a catchment area. A detailed ESM would offer a
highly spatial, temporal, and technological resolution in module C. This
ESM accommodates spatially explicit inputs and can scale up or down
from an upper to a lower level. In module D, we proposed an ESM
converter to employ a recursive procedure between the spatial model
and ESM. It supports decisions regarding potential changes in in-
vestments in energy system components according to the constraints
defined in the spatial model. Then, a recursive procedure is proposed to
exchange information between ESM and spatial and define convergence
criteria to obtain more reliable results. Minor adjustments based on data
availability can adapt the methodology to any specific case study.

In future work, investigating a tradeoff analysis between data
availability, accuracy, and computation time can provide clear insights
to make informed decisions for spatial, temporal, and technological
resolution of ESMs. Furthermore, future studies can investigate the role
of climate change on the spatially dependent parameters that impact the
energy system. Lastly, although we proposed using a bidirectional
linking method to incorporate the spatial model and the ESM, we did not
identify any studies implementing this approach to optimize land allo-
cation for different land uses. Therefore, future studies can consider
implementing such a recursive soft link platform between ESMs and
spatial models.
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Table A- 1
Classification scheme for ESM comparison from literature
Criteria Sub-criteria Details References

Modeling Structure/
Components

Mathematical approach

Modeling resolution

Technological details

Country/Institution
Analytical approach
Purpose

Structure of the model

Transformation analysis
Data requirements
Costs

Emissions
Availability

Documentation
Methodology

Algorithm used

Objective function

Programming language/
Software

Spatial aggregation method
Spatial resolution

Spatial resolution flexibility
Spatial extent
Temporal resolution

Temporal flexibility
Time Horizon

Time horizon flexibility
Time analysis

Renewable technologies
Storage technology inclusion

Country name, institute, or authors

Bottom-up, top-down, hybrid

e Investment decision support, operation decision support, scenario, power system analysis
tool, analysis

o General (forecasting, exploring, back casting); specific (energy demand, supply,
environmental impacts, etc.)

Degree of endogenization, description of non-energy sectors, end-uses, supply technologies,

supply or demand analysis tool

Myopic, Foresight, None

Qualitative, quantitative, monetary, aggregated, disaggregated,

Investment, operation maintenance, fuel,c

arbon cost, taxes, balancing cost

CO3, CHg4, No, NOy, SOg, SOy, any pollutant

e Commercial, open access

e Commercial, free, open source, free academic version

e Low, medium, and high

Link

Simulation, optimization, and hybrid

Simulation, dispatch optimization, single/multi-objective investment optimization
Simulation, scenario, equilibrium, operation/investment optimization

Linear optimization, mixed integer linear programming, generic network, agent-based,
etc.

e Linear, nonlinear, dynamic, mixed-integer, heuristic, or other

Levelized cost of electricity (LCOE), total cost, net present value (NPV), annualized system
cost

GAMS, AIMMS, Python, Fortran, etc.

Nonoptimal, optimal (k-means, GIS, etc.)

e Number of regions/nodes

e Number of regions/nodes, region type (administrative, climate, etc.)
e Single-node, multi-node

Yes, No

Building local, regional, national, and global

Sub-hourly to annual resolution

Yes, No
Short and long-term

User-defined, no

Snapshot, evolution

Wind, solar, hydropower, geothermal, wave, and tidal power

Pumped hydro storage, compressed air energy storage, batteries, hydrogen, and thermal
energy storage

[33,36,122]
[33,52,122-125]
[125]

[52]

[52]

[22,33,53]
[52]
[52,125]

[125]
[31,33,53,123,
124]

[125]

[22]
[53,122-124]
[31,33,123,125,
126]

[22,122]

[124]
[31,52,53,123,
125]

[22]

[123]

[33,53,125,126]

[31]

[31,33,125]

[36]

[22]

[31,33,126]
[31,52,122-125]
[22,33,36,52,
122-126]
[33,52]
[33,36,52,122,124,
125]

[52,125]

[53]

[52,125]
[52,125]

(continued on next page)
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Table A- 1 (continued)

Criteria Sub-criteria Details References
Commodities e Power, transport, heat [123]
e Power, transport, heat, fuels, hydrogen [31,125]
Demand sectors o Building, electricity, transport, industry [125]
e Building, power, energy, heating, transport, hydrogen, biomass [36]
e Transport, residential, commercial, agriculture [52]
e Energy sector (electricity, heat, transport) [124]
Demand representation Elastic, inelastic [53,125]
Geospatial aspect Incorporation of spatial Infrastructure planning, region-specific energy service demand, GIS, multi-scale modeling, [36]
details region-specific reference energy system
Aim of geographical Explanation [36]
disaggregation
Included GIS tool Yes, No [31,127]

Energy supply:

Several studies have simplified the assessment of RE generation using different approaches. Prina et al. [28] spatially disaggregated PV and
onshore potential, battery storage, and power transmission capacity by multiplying the population by the average PV generation per person. ElSayed
et al. [41] used various methods to estimate upper limits for RESs based on the renewables’ current share and land availability. Regarding land
availability, 6 % and 4 % restrictions are imposed for solar and wind installation after excluding protected and urban areas. In addition, global weather
data was used to calculate the hourly solar and wind production. Another way to simplify the inputs is to evaluate a specific site as a representative
node for a larger area. Solomon et al. [76] proposed assessing one site in each region as a representative indicator of the entire region’s solar potential.
Gulagi et al. [75] employed various approaches to extract the potential of RESs and subdivided the country’s map with specified RE capacities.
Because solar energy variation is negligible in Bangladesh, evaluating a specific site to represent the solar potential for the entire subregion is feasible.
The biomass potential is obtained from existing research and is divided into sub-regions based on population factors. Additionally, geothermal energy
potential is calculated based on the ambient surface temperature, heat flow, and extrapolation approach for areas without data. Furthermore, Lopez
et al. [81] estimated geothermal potential using surface ambient temperature and heat flow for eight regions in Bolivia. Solar, wind, and hydro-energy
potential is obtained from weather data. Biomass potential was also classified and estimated for solid biomass waste, residues, and biogas. As an
illustration, Fig. B- 1 summarizes approaches for estimating solar rooftops and GMPV, considering spatial inputs, temporal resolution, spatial reso-
lution, and constraints across three levels of accuracy, from highly precise to low-accurate approaches.

In addition to these methodologies, multiple investigations have used global or national databases and allocated data among targeted regions. For
instance, they acquired solar and wind data at a spatial resolution of 50 km x 50 km from NASA’s surface meteorology and solar energy database. They
processed these data using the German Aerospace Centre database [41,57,76]. Goke et al. [63] obtained capacity factors of RESs and storage capacity
from the Ninja website at the Nomenclature of Territorial Units for Statistics (NUTS) level. In addition, the capacity factors of PV and wind are
allocated to regions at the NUTS2 level by considering urban and suburban areas for rooftop PV and agricultural and forest areas for wind and GMPV.
Subsequently, the share of PV and wind for these land-use categories is determined based on assumptions from the literature to estimate the renewable
potential for each region within the NUTS2 level. However, the total energy potential remains fixed for each NUTS level. Furthermore, Kendziorski
et al. [43] used a database to extract data on solar (GMPV and rooftop PV) and onshore wind potential at the national level. The energy potential was
allocated among 38 regions of Germany, considering forest and agriculture areas for onshore wind and GMPV and urban and sub-urban layers for
rooftop PV. Furthermore, a geological map is used to assess the site quality for energy production. Horsch et al. [95] estimated the maximum gen-
eration capacity of solar and wind by using a constant technical potential density for each RES and available area, considering land use claims and
public acceptance. To this end, 30 % of available land is allocated to wind energy, and 1 % is designated for solar energy installations.

Some studies focus solely on investigating the availability of bioenergy in certain regions. Bramstoft et al. [56] extracted the geographical dis-
tribution of available bioenergy resources and straw across 98 municipalities of Denmark from available information. The biomass potential for
different sources is considered at the municipality level, encompassing straw for energy and manure, deep litter, grass, and organic waste for biogas
production. Mohd Idris et al. [58] disaggregated the availabile potential of bioenergy feedstock among 560 equally sized grids in Malaysia. Different
criteria are used for each bioenergy type, including palm oil mills’ locations and capacities for palm kernel shells, palm plantation maps for oil palm
trunks, locations and capacities of rice mills for rice husks, paddy plantation maps for rice straw, and livestock population maps for manure.

In a comprehensive study in the Netherlands, the spatial claims are estimated for multiple land uses such as built environment, agriculture, forests,
and nature. First, they distinguished rooftop PV and GMPV for their solar energy potential. For rooftop PV, they extracted building footprints using an
intersection tool in GIS and estimated the PV potential for the case study. For GMPV, spatial claims were defined, including the built environment,
forests and nature, national landscapes, and energy infrastructure. Additionally, this study determines standard buffer zones of the built environment,
networks, and energy infrastructure in different scenarios as exclusion zones for 2030 and 2050. Furthermore, various fractions are used to determine
the potential GMPV in agricultural land for progressive, intermediate, and conservative scenarios. For onshore wind, considering the scenarios
mentioned, they used the layer of possible locations for GMPV, including transmission networks, and used a greater buffer zone to build the envi-
ronment. Additionally, they utilized the exclusion zones to identify the geothermal potential areas and used a grid map (1 km x 1 km) to define their
technical potential. For industrial waste heat (IWH), they used relevant databases to extract data from industries producing IWH. Finally, they
classified biomass into six types for assesing biomass potential and assumed specific land availability for each type in 2030 and 2050 [30].
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Appendix B
Energy demand:

As mentioned in section 3.3.2, studies use aggregation, disaggregation, or a combination of these approaches to obtain regional energy demand
data. Using a disaggregation method, a study in Malaysia estimated power, heat, and transport energy demand between 2020 and 2050 for all 560
equally-sized grids. Various assumptions are made for the spatial disaggregation of energy demand, including the use of a power substation map for
electricity, a natural gas map for heat demand, and a population map for transport fuel demand [58]. Henni et al. [60] used a hierarchical meth-
odology to disaggregate heat and electricity consumption from national databases to state, district, and municipality levels across energy sectors. For
the building sector, they used current and future population factors (at the state level), population for appliances, and population and living space for
heat (at district and municipality levels). For industry and services, they used current and future population and employment rates (at the state level),
energy consumption (at the district level), and the number of employees (at the municipality level). The transportation sector used current and future
population, the rate of registered vehicles, and EVs for all administrative levels. Additionally, representative load profiles are used for each energy
sector. Siala et al. [42] used an hourly load profile for each European country and disaggregated these data using a land use map for each demand
sector. The same load profile was used for both 2015 and 2050.

ElSayed et al. [41] divided Egypt into seven sub-regions and obtained regional data from existing sources or by distributing national data using
various methods. For example, the demand for space heating among regions is allocated using population data. As an assumption, a 3 % growth rate is
considered for developing electricity demand by 2050. To obtain the hourly power demand profile, this study employed a methodology that involved
different indicators such as air conditioning, tourism contribution, and local and seasonal temperatures. Colbertaldo et al. [40] used a transmission
system operator (TSO) database to disaggregate energy load from the market zone to the regional level for the power, gas, and industry sectors. The
demand is distributed among regions, considering the current shares of annual demand and the available areas defined by TSO. Similarly,
hourly-resolved power demand profiles are provided for each bidding zone based on historical trends. Finally, the electric load is calculated by
considering the contributions of residential, services, transportation, and industry sectors. One approach involved the extraction of power demand
profiles and allocating them across regions using population distribution and the number of vehicles. Additionally, the hydrogen demand is estimated
by analyzing the industry sector’s heat demand and the share of cars. They also spatially disaggregated heat demand across the regions based on the
plant distribution [64].

In contrast, by using an aggregation method, a study conducted in Chile derived demand data from an existing dataset, grouped these data by zone,
and reclassified it by the energy sector (power, heat, transport, and desalination) and energy form (electricity, heat, and fuel). Then, the energy
demand in each form is allocated among end-users or consumption sources, e.g., power demand is divided into residential, commercial, and industrial
[128]. Sahoo et al. [30] proposed using the demand for the industry’s final product unit instead of the energy demand of the industrial sector. The
researchers used the projected dwellings as a suitable index instead of residential energy demand. Furthermore, a GIS database was used to collect
building-related information, including building type, service type, energy label, and construction year. In another study, these researchers classified
the energy demand sectors as the built environment, industries, agriculture, and transportation. For transportation, the information was allocated
according to the population distribution at the regional level. The built environment is classified into three main categories: apartments, terraced
houses, and other buildings, with their corresponding energy labels ranging from highly efficient to highly inefficient buildings. Additionally, services
are classified into different types, including offices, educational institutions, hospitals, halls, and others with corresponding energy labels. The in-
dustry is considered in terms of its specific activities and current and future production projections. Finally, agriculture is considered in terms of its
related heat, electricity, and machinery demand [39].

Population is a primary factor in allocating or calculating the energy demand in most studies. Two studies utilized a regression method by
considering population, GDP, and the historical trend of power consumption to estimate the energy demand [59,62]. Furthermore, a different
investigation used a current database to allocate energy demands among various regions based on population distribution and GDP. In addition,
hourly demand profiles are calculated for residential, industry, and service sectors using standardized load profiles [43]. Bogdanov et al. [57] stated
that the final electricity demand decreases due to population decline and advancements in technology and efficiency. It is assumed that residential and
commercial energy consumption decreased by 20 %, industrial demand by 30 %, and cooling demand by 6 %. Transportation demand is based on the
population decline factor and projected transportation volume for 2030, which is then extrapolated to 2050. However, another study derived power
demand from an existing database for 2010 and 2016 and extrapolated it using a growth rate by 2050. The hourly load profile for each sub-region is
calculated as a fraction of the total power demand, using data derived from the literature and weighted by the population of each sub-region [75]. In a
study conducted in Bolivia, energy demand is extrapolated using an existing database for 2030. The growth rate for energy demand is estimated by
considering the population and the increase in energy access. The power sector was classified into residential, commercial, and industrial demand
categories. Heat demand was classified into space heating, domestic hot water, biomass, and industrial process heat. Additionally, the transport sector
is categorized into road, rail, marine, and aviation, and the energy demand is estimated based on vehicle technology and specific vehicle energy
demand [81].

Energy infrastructure:

Like most reviewed ESMs, OMNI-ES’ energy infrastructure is designed as a network graph with nodes and edges. Spatial nodes depict energy
system elements such as generators, energy demand, RESs, and storage, while edges represent energy networks. In this model, the power transport
capacity is limited to seven bidding zones in Italy, based on the TSO’s information. As each bidding zone includes several regions, these limits are set
on the combined power flow between areas rather than separate limits for individual nodes. These values are determined according to current network
capacity and planned upgrades by 2040. The same approach identifies power transfer limits at the country’s import points. Furthermore, the gas
network’s transport capacity is estimated using existing natural gas pipelines’ capacity to transfer the CH4-H2 blend. The transport capacity of all 20
nodes is determined by summing the capacity of pipelines that connect these regions in pairs. The hydrogen flow between nodes is calculated based on
hydrogen capacity, which comprises production and import. Predefined limits on capacity and flow rates constrain hydrogen flow. For biofuel, the
model consideres the constraint on biomass consumption. It also simplified all fuel types into a single category for each node. This study also simplified
the CCUS process using an annual balance approach, without modeling the local storage, inter-nodal, and long-distance transportation [40].

PyPSA-Eur-Sec, an extension of PyPSA-Eur, offers a comprehensive ESM that integrates a spatially explicit approach to cluster power transmission
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nodes with RES. It includes details of the gas network, CCUS, and enhanced transportation and biomass components. The electricity network is
modeled in nodal configuration, and its distribution network is designed as links representing the energy transfer between distribution and trans-
mission levels. The model has two options for modeling solid biomass in one node or multiple nodes. The multi-node structure includes biomass
potential (distributed based on each country’s population density) and biomass transport between countries [129]. Biogas and solid biomass are
assumed to be transported between countries without bottlenecks since each country has a surplus biomass supply compared to its demand. CCUS
networks can be modeled as single node for Europe or disaggregated in nodal structures using CO2 transport pipelines. The transportation of CCUS is
unconstrained among countries in the model. The Methene network can also be modeled in one node or multiple nodes. Notably, modeling methane in
one node is logical as no bottlenecks are expected due to the future low demand, and it can be freely transported between countries. The liquid
hydrocarbons are modeled as a single node due to a low transport cost and no bottlenecks in the future. The hydrogen network can be activated as the
nodal configuration in the model. Two options for storing hydrogen include overground steel tanks and salt caverns, with a 50 km exclusion zone from
the shore. Unlike the transmission grid, the distribution network is not included, and optimization focuses only on the capacity from the transmission
grid to the LV level [96]. Therefore, PyPSA-Eur-Sec simplified the transportation of biomass, biofuels, and CCUS by assuming no regional bottlenecks.
It also simplified the methene and liquid hydrocarbon infrastructure in one node. Compared to PyPSA-Eur [95], this model reduces the spatial res-
olution to one node per country to tackle computational limitation.

OPERA and IESA-NS are models that effectively integrate different spatial energy infrastructure components. OPERA is soft-linked by a pan-
European power market model that considers the international electricity trade-off. They used GIS to calculate the high voltage (HV) power
network distance between regions. Using the current power network plans, they have created some nodes and connected all municipalities with at
least one HV line. They have also included the region-based medium voltage (MV) network in the ESMs and the network distance in the balance
constraint of energy flow. They proposed MVs to connect cities, integrate RES with the grid, and link a sizeable industrial cluster. For the heating
network, they incorporated new nodes to accommodate DH, an uncommon feature in the current ESMs. They have differentiated between the
transmission and distribution of the heating network and connecting distant nodes through transmission networks. They used GIS to find the closest
routes between industry clusters, city centers, city outskirts, and geothermal doublets. They included all possible routes between these nodes and
optimized the results in OPERA [39]. The best offshore hubs are defined in IESA-NS by estimating the space available for single-use and multi-use
activities of various clusters in the North Sea. They deduced unavailable areas due to different spatial claims within the defined groups. The study
analyzed several spatial claims activities in the North Sea, including protected and vulnerable areas, fishing and shipping networks, sand extraction
areas, and oil and gas networks. Furthermore, they calculated the physical distance between cluster centroids to measure the required HVDC and
hydrogen pipeline length. In addition, they estimated the capacity and size of suitable infrastructure that could be reused for future energy system
deployment, including power cables and natural gas pipelines. Moreover, a database is employed to calculate the potential of hydrogen storage within
each node [29].

Three geographical dimension layers are defined in the Balmorel model that shapes its energy network structure. The first layer is countries, which
help formulate policies and aims for them. The second layer consists of regions defined by power system transmission. This layer acts as copper plates
regarding electricity generation and demand. The third layer includes areas that help determine VRES’ capacity and investment options for energy
generation and total load hours. The heat network is defined as a cooper plate in this layer [130]. AnyMOD follows a graph structure for modeling an
energy system. Initially, the model is executed for Europe, and a single node defines each country. Subsequently, the investment decisions of all
countries were fixed, and the model was executed for 38 regions in Germany. A simplified power transmission network is considered for exchanging
power between regions. Synthetic methane can be transported through the existing pipeline network. For hydrogen, the current pipelines need to be
upgraded [43]. Using the REMix model, Germany is divided into 18 regions, with aggregated power demand, power plants, and storage for each area.
The transmission grid capacity, the electricity exchange, and the capacity of hydrogen electrolyzers and storage are obtained from European REMix
results [64].

Energy transmission, storage, and CCUS are also synthesized in different ESMs. LUT-ESTM is designed to consider the HVAC and HDVC of power
transmission between regions. The model calculates the optimal power transmission grid capacity, the capacity of AC/DC converters, the length of
power lines, and their losses. The efficiency of HVDC grids is calculated using the grid length and converter’s efficiency. Meanwhile, the efficiency of
HVAC depends only on the transmission distance. The distance-related losses are calculated for both transmission lines [57,131]. Prina et al. [28]
developed a framework based on dispatch/operational optimization to manage the surplus RE generation by storing it through pumped hydro or
batteries or exporting it to another node to fulfill its demand or store it. Siala et al. [42] estimated regional pumped hydro storage capacities and
divided an equal battery capacity between regions. Power constraints of transmission lines and their associated losses are also considered in the model.
Transmission lines are allocated across regions based on their lengths and voltage levels. This transmission network is considered for connection
between countries. Regarding the CCUS network, Mesfun et al. [132] identified the locations and potential of CO2 sources within the Alpine region
using GIS. Considering the future projections, these databases include the CO2 emissions from power plants, CHPs and processes, other industrial
processes, and air. However, they did not classify the industrial types as CO2 emitters in the model.

In many ESMs, the Euclidean distance approach is commonly used to estimate the transmission length and capacity. For instance, the OptiFlow
model was employed to determine the location of biogas plants and refineries. The researchers applied the Euclidean distance by considering the
geometric centroid of each municipality to transport the biomass across regions by trucks. Excess heat potential is distributed equally among Den-
mark’s five main district heating networks [56]. The road and sea transportation network is established, including the distance between grids, grids
and harbors, and harbors for optimization purposes in the model. In road transportation networks, trucks are used to transport products, while in sea
transportation, ships are employed to move products from harbors to targeted grids. The required extension of power transmission lines is considered
to connect agricultural mills to power substations. Additionally, the necessary extension of steam pipelines for transporting bioheat is considered for
industrial demand centers [58]. Due to the lack of available data, Das et al. [62] utilized the Euclidian distance approach to calculate the length of HV
power transmission lines between regions through the TIMES model. In another investigation, the same approach is used to estimate distances among
grids and harbors to transport feedstock through roads, sea, and pipelines for all grids.
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