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A B S T R A C T

The energy transition poses spatial planning challenges owing to reliance on renewable sources, featured by a 
decentralized nature and substantial space requirements. Developing national energy system models capable of 
integrating spatial details while being robust enough for coherent policy development remains challenging. This 
study aims to review and analyze necessary spatial modeling details at the national level and methodologies for 
integration into energy system models. We conduct a systematic literature review on integrating spatially 
dependent parameters in bottom-up energy system models. The essential role of spatial aspects is highlighted by 
introducing a classification system for comparing energy system models. We critically evaluate and explore 
various approaches for assessing spatially dependent parameters in energy systems (energy sources, demand, and 
infrastructure), spatial aggregation methods (clustering and regionalization), and linking techniques (soft-linking 
and hard-linking) for incorporating spatially dependent parameters into the energy system models. Results show 
that energy system models have some spatial capabilities, yet certain crucial elements, like energy infrastructure 
distribution, are highly aggregated or neglected. Clustering methods can effectively capture spatial variations, 
and soft-linking techniques can incorporate these spatial details into the energy system model. Here, we propose 
a novel framework to facilitate the integration of spatial elements into energy system model, a spatial converter 
to exchange information with the energy system model, a detailed energy system model, and a converter to 
exchange feedback to the spatial model. Additionally, we advocate for using a soft-linking method with a 
recursive procedure to exchange feedback between the energy system model and spatial model.
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1. Introduction

Transition to a net-zero energy system poses spatial planning chal
lenges due to increased reliance on renewable energy sources (RES) and 
corresponding infrastructure [1,2]. The decentralized nature of renew
able energy (RE) and the uneven spatial and temporal distribution of 
energy demand and supply affect storage and logistics. Renewable 
technologies require more space aboveground and belowground for 
transportation, distribution, conversion, and storage compared to con
ventional systems [3,4], making energy infrastructure a primary land 
use nowadays [1]. The spatial configuration of an energy system affects 
its capacity as RE suitability varies across regions owing to 
location-specific factors, such as climate conditions, landscape, and local 
economic activities [5]. Climate change and environmental disasters 
pose further uncertainties to future energy system planning, especially 
for deploying RESs [6], which rely on weather conditions and are more 
susceptible to these changes [7]. The energy transition is challenging 
owing to the lock-in effect, path dependency due to high investments, 
and long construction times of energy infrastructure [8,9]. The visibility 
of many RE technologies, e.g., wind technology, can impact social 
acceptance, leading to opposition from affected actors [10]. In addition 
to technical significance, energy transition has potential socio-economic 
and health implications at the regional scale [11]. The deployment of 
RESs and its required infrastructure can contribute to promoting 
regional economic growth [12,13], increase new job opportunities [14], 
and reduce CO2 emissions [13]. Therefore, transitioning to a net-zero 
energy system requires a significant spatial reconfiguration [4], espe
cially in densely populated regions with limited land availability [5]. 
Spatial planning facilitates energy transition, long-term land use change 
dynamics, potential spatial conflicts among multiple land uses, and 
considering stakeholders’ perspectives [15,16]. To accelerate the energy 
transition, it is vital to grasp the space requirements for various energy 
system components, such as RE technologies, storage, pipelines, cables, 
and electrolyzers [17], as well as the impacts of spatial configurations on 
system performance and costs. For example, the potential of solar and 
wind fluctuates with varied weather conditions, highlighting the 
importance of efficient storage and transmission systems, which depend 
on spatial and temporal co-occurrence [18].

Energy System Models (ESMs) can be instrumental in providing so
lutions for specific policy questions [19], assessing energy-related pol
icies’ effects, and evaluating energy transition pathways [20,21]. ESMs 
incorporate the interactions of energy resources, demands, infrastruc
ture, and storage [19]. ESMs are broadly classified as bottom-up or 
top-down [22]. Top-down models, like computable general equilibrium 
(CGE), focus on the macroeconomic system, considering policy and 
market impacts without detailed technological analysis [23,24]. How
ever, bottom-up ESMs are partial equilibrium representations of energy 
sectors [25], structured as optimization problems to estimate 
cost-optimal solutions within technical and policy constraints [26]. 
Bottom-up ESMs provide future energy system pathways, boundary 
conditions for reducing greenhouse gas emissions (GHG) [22], detailed 
sector-specific insights [25], and solutions to balance between energy 
supply and demand [27]. Bottom-up models can be classified by tem
poral and spatial resolution, sector coupling, and their adopted 
modeling approaches [28].

Bottom-up ESMs integrated with spatially dependent parameters 
facilitate evaluating the feasibility and spatial requirements of deploy
ing energy system components in real-world scenarios [29]. For 
example, this integration assists in identifying the location of energy 
demands, potential RES, and energy infrastructure, which can be un
evenly distributed nationwide [30,31]. Spatial planning harmonizes 
land use regulations and policies that either restrict or promote the 
adoption of RE technologies [32]. Spatial analysis also supports the 
development of energy infrastructure to store, transport, and distribute 
the energy generated by RESs across the regions. Spatially explicit en
ergy planning is crucial for evaluating land availability for RESs, 

assessing the spatial claims among land uses, and analyzing the 
compatibility of RE technologies in specific areas [16].

Choosing an optimal spatial resolution in ESMs is essential for 
balancing necessary details and managing computational loads [33–35], 
as it affects the model’s ability to project system costs realistically [36]. 
Increasing spatial details in ESM poses a challenge owing to complexity, 
data-intensive computing, limited data availability, and diverse data 
structure [31]. Spatially explicit models aid in capturing transmission 
and distribution congestions [37] and estimating potential resources 
accurately, particularly in RE-dependent energy systems [37,38]. The 
results of ESMs are strongly influenced by spatially sensitive parameters, 
such as heat demand and RE potential, necessitating high-resolution 
spatial approaches [39]. Regarding spatial resolution, ESMs are classi
fied into single-node or multi-node models [40]. Single-node models are 
assumed to be a perfect transmission system without internal bottle
necks or losses, while multi-node models incorporate grid bottlenecks 
and transmission constraints. However, spatially explicit models 
generate more realistic results but also increase the computational loads 
[22,31]. Spatial aggregation methods reduce data volume and simplify 
ESMs to address this challenge [36].

Future country-wide ESMs could enhance their flexibility to incor
porate spatial details. Country-wide ESMs have some spatial capabil
ities, yet certain crucial elements are limited or overlooked. Firstly, 
explicitly addressing spatial resolution, particularly energy infrastruc
ture, is essential, yet it is often limited in many ESMs. Despite its vital 
role in the cost of future energy systems, many ESMs have overlooked 
bottlenecks and aggregated networks into single nodes. For instance, 
unlike power networks, most ESMs often overlook heat, gas, hydrogen, 
methane, and CCUS [37–39] or represent these components in a single 
node. Secondly, incorporating inputs from spatial planning into ESM is 
beneficial for optimizing and designing future pathways. Climate 
change, biodiversity, and landscape protection significantly influence a 
country’s spatial layout. ESMs can benefit from spatial planning that 
considers these factors alongside spatial dynamics such as population 
growth, urbanization, and industrial transformation. Notably, spatial 
planning is not often included in current country-wide ESMs, and land 
use assessment is overlooked [28,41] or limited to evaluating RES po
tential [42,43]. Thirdly, enhancing future ESMs with bidirectional data 
exchange with a spatial model could help identify potential bottlenecks, 
such as land availability or infrastructure capacity constraints [31]. 
Lastly, enabling scalability from the national to the regional level can 
enhance the model’s adaptability.

Integrating country-wide ESMs and spatially dependent parameters 
is an emerging field, and the relevant literature on the topic needs to be 
more extensive. Martínez-Gordón et al. [31] conducted a holistic review 
of the importance of spatial resolution in ESMs. They proposed a 
spatially explicit framework for the North Sea region to integrate 
offshore energy by addressing spatial planning challenges. Aryanpor 
et al. [36] critically reviewed the spatial resolutions of various national 
energy system optimization models, highlighting their impacts on sce
nario insights and the trade-off between spatial resolution and compu
tational feasibility. Camargo et al. [44] reviewed the state-of-the-art 
trends in spatiotemporal modeling for distributed energy system plan
ning on local scales, emphasizing approaches to optimize renewable 
energy potential and energy demand estimations. While these studies 
have addressed various spatially dependent parameters and introduced 
methods to incorporate them into energy system optimization, there is a 
lack of comparison and evaluation of approaches to incorporate spatial 
planning and high-quality databases into these models, especially in 
country-wide ESMs. Utilizing high-quality validated databases, partic
ularly those that provide spatially explicit inputs for energy supply, 
demand, and infrastructure, is essential. Therefore, our study contrib
utes to the existing literature by highlighting the spatial characteristics 
of different bottom-up ESMs at the national level. We also explored 
methods for evaluating the spatially dependent parameters of energy 
system components (energy supply, demand, and infrastructure). Our 
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study also emphasizes spatial aggregation methods for integrating these 
spatially dependent parameters into ESMs and evaluates linking 
methods for incorporating spatial models into ESMs.

Various bottom-up ESMs have been developed to assess, optimize, 
design, and project future energy systems but often overlook spatially 
dependent parameters. The challenge lies in developing a national ESM 
that incorporates spatially dependent inputs while ensuring robustness 
for coherent policy development. The critical question is: What spatial 
details and methodologies are needed for national ESMs to evaluate 
spatial configuration, system performance, and the cost of a net-zero 
energy system? Therefore, this study aims to systematically review 
and synthesize spatially dependent parameters and methods for inte
grating spatial details into national-scale ESMs while considering the 
spatial feasibility of ESMs’ solutions and managing the computational 
load. The following questions are answered by reviewing the literature 
to obtain insights and address research gaps. 

• Which national-scale ESMs explicitly integrate spatially resolved 
representations of energy supply, demand, and infrastructure for 
long-term energy planning, and how do they address key spatial 
interconnections?

• What spatially dependent parameters and methods are employed in 
bottom-up ESMs to assess energy supply, demand, and 
infrastructure?

• What methods are used to aggregate spatially dependent parameters 
into ESMs?

• What are the techniques for linking spatial models and ESMs?

2. Review methodology

The methodology of this study was conducted in five steps. Firstly, 
the research scope was determined to establish the research boundary, 
which is the basis for the next step. Secondly, an identification step was 
carried out based on the research scope to select relevant literature for 
review. This step was conducted in four stages: inclusion criteria, 
exclusion criteria, abstract screening, and in-depth screening of the full 
text. Thirdly, a classification scheme was established to compare and 
evaluate the functionality of ESMs using criteria such as mathematical 
features, modeling resolution, and spatial methods. Fourthly, an over
view was conducted to assess the spatially dependent parameters of 
energy system components (energy supply, demand, and infrastructure), 
different spatial aggregation methods, and existing linking methods to 
incorporate spatial inputs into ESMs. Lastly, given the results from 
previous steps, a holistic framework was proposed to integrate spatially 
dependent inputs into future national ESMs.

2.1. Defining research scope

We identified the research boundaries by focusing on bottom-up 
ESMs that assist in analyzing energy policies and technological details 
of energy systems. Spatially, ESMs that employed multi-node spatial 
analysis at national and regional levels were selected, as policies are 
often formulated at these levels. Temporally, the focus is on hourly 
resolution to effectively tackle the intermittency of variable renewable 
energy sources (VRESs). Additionally, we consider ESMs that reduce 
temporal resolution by using hourly time slices, which helps to mitigate 
computational load. While short-term temporal extent is considered, the 
main focus is on the long-term temporal extent that aligns with national 
policies and ambitions such as net-zero emissions by 2050. This study 
focuses on technologically rich ESMs with diverse RESs, storage, and 
energy carriers because they can capture energy system complexities 
and facilitate the exploration of cost and emission optimization options.

2.2. Systematic literature review

This study employed a systematic review of integrating spatially 

dependent parameters into ESMs in four stages. Fig. A- 1 shows the 
document selection and literature review process, conducted in multiple 
stages to determine whether a document meets inclusion criteria. Sco
pus© was chosen to retrieve literature on October 1, 2023. This sys
tematic search included several studies that used spatially dependent 
parameters in ESMs. A meta-analysis was also conducted to explore the 
classification scheme used in relevant review papers.

Defining search criteria: Three keyword categories were defined to 
filter search results. Table 1 presents the search terms used to collect 
relevant documents within the study’s scope, resulting in 750 papers 
and 42 paper reviews. Keywords should appear in the papers’ titles, 
abstracts, or keywords. The AND operation was used in the search query 
between primary, secondary, and tertiary terms and between two pri
mary keywords to ensure the inclusion of papers using a model or 
modeling of the “energy system.” This approach also helps to identify 
documents that separately mention the terms “energy system” and 
“model.”

Applying exclusion criteria: We applied exclusion criteria to focus 
on English-language journal articles, resulting in 480 journal articles 
and 39 review papers. Given the significant increase in spatial-based 
ESMs publications after 2012, the search was limited to articles 
released between 2012 and October 2023, as shown in Fig. A- 2.

Screening based on title and abstract: The remaining articles were 
screened based on title, abstract, and keywords. This step excluded 357 
articles out of 474 journal papers that focused on climate [45], food 
[46], water [47], air pollution [48], radiation models [49], specific 
sectors or technologies [50], or local-scale ESMs [51]. Next, 117 articles 
were excluded as their content did not meet the research scope based on 
the following requirements. 

• Clearly describe using a bottom-up ESMs in the methodology.
• Implement multi-node ESMs at a national level.
• Complete articles should be accessible online (for some, just the 

abstract is available).

Full text review and study selection: The full text of the papers was 
reviewed to confirm the use of spatially explicit ESMs at a national scale. 
This detailed screening identified 38 journal papers. Then, the selection 
criteria prioritized studies that used unique ESMs. For models that were 
repeated across studies, the selection was limited to a maximum of two 
studies per model, as long as they used different spatial inputs, spatial 
methods, or ESM configurations. Based on these criteria, 20 models were 
chosen for in-depth analysis. Additionally, 11 review papers that met the 
requirements of previous stages were selected and used to create the 
classification scheme.

2.3. Classification of energy system models

A classification scheme was developed to facilitate ESM compari
sons, highlight their capabilities, and identify those suitable to meet our 
objective of reviewing and evaluating spatial details and methods inte
grated within national ESMs. To create a comprehensive scheme, several 
review papers were identified in the first step (see Fig. A- 1) to determine 
the criteria and sub-criteria for comparing ESMs. Thus, existing 
schemes, as shown in Table A- 1, were adapted by adding spatial-related 
sub-criteria to align with our research scope. We used this scheme to 

Table 1 
Search terms for finding relevant literature in Scopus.

Primary terms Secondary terms Tertiary terms

energy system* 
model*

GIS geographic information system 
geospatial 
spatio* 
spatial

nation* 
region* 
countr* 
state 
node*
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compare 15 specific ESMs across 20 documents selected in the second 
step.

2.4. Assessment of spatial parameters and linking techniques

The snowballing technique is used to review a broader range of 
literature beyond the documents filtered in the second step. We identi
fied the spatially sensitive parameters of energy system (energy supply, 
demand, and infrastructure), their relation to land use, and the ap
proaches for evaluating these parameters in the literature and the 
reviewed ESMs. This review was conducted to identify and analyze the 
existing spatial aggregation methods to integrate spatially dependent 
parameters into ESMs and explored linking methods to integrate spatial 
models with ESMs.

2.5. Spatially integrated framework

We proposed a framework that incorporates the essential details of 
energy system components (energy supply, demand, infrastructure), as 
identified in the previous steps. Additionally, we outlined methods to 
aggregate these spatial details to incorporate them into ESMs. This 
framework also integrated a spatial model with ESMs for land use 
allocation.

3. Results and discussion

3.1. Classification and evaluation of ESMs

A classification scheme of ESM gives insight into whether to include 
new criteria or exclude ones not aligned with the study’s scope. Hall 
et al. [52] proposed a classification scheme with four criteria and 14 
sub-criteria divided into purpose and structure (model structure, spatial, 
sectoral, and time resolution), technological details (renewable and 
storage technology inclusion, energy demand, cost), and mathematical 
description (mathematical approach and data requirement). 
Plazas-Niño et al. [53] suggested a categorization scheme comprising 23 
sub-criteria classified into three groups: a modeling approach, modeling 
resolution, and technological details. Similarly, Savvidis et al. [54] 

proposed a framework with 28 sub-criteria, including four categories: 
model-theory specifications, modeling details, market representation, 
and general information. Table A- 1 highlights key factors in comparing 
ESMs, such as analytical approach, availability, methodology, algo
rithm, and spatiotemporal resolutions.

Due to our focus on spatial-based ESMs, spatial methods criterion, 
and its relevant sub-criteria were incorporated into the existing classi
fication schemes. Therefore, we proposed a classification scheme with 
five criteria and 31 sub-criteria, as shown in Fig. 1. The spatial methods 
category covers the approaches used for assessing spatially dependent 
parameters (e.g., the spatial distribution of energy demand, supply, and 
infrastructure), spatial data utilization, spatial aggregation methods (e. 
g., clustering), and linking techniques (e.g., soft-linking).

3.2. Spatially explicit ESMs

This section compares spatially explicit ESMs for analyzing and 
assessing their capabilities. This comparison shows a tradeoff between 
spatial and temporal resolution with their spatial extent. While most 
ESMs have high temporal resolution, few achieve high spatial resolu
tion. Additionally, many ESMs can be applied across different spatial 
extents, from local to international scales. There is also diversity in 
technical, mathematical, and general characteristics of ESMs. Table 2
summarizes the general information about ESMs, including case study, 
model purpose, availability, and documentation. It shows that model 
purposes vary, including cost optimization, GHG reduction, and support 
for the energy transition. Additionally, most ESMs are open source, but 
their documentation still needs improvement to clearly describe the 
methodology and data used.

Table 3 overviews the components, such as renewable and storage 
technologies, energy carriers, and demand sectors. Most ESMs include 
different types of RE and storage technologies. Additionally, they 
incorporate various types of energy carriers, including heat, electricity, 
and hydrogen. For the energy demand sectors, several ESMs either 
exclude some sectors or aggregate all sectors together, while only a few 
ESMs include all energy demand sectors separately. For emissions, they 
mostly consider CO2, and few ESMs include all GHG emissions. They 
also include multiple cost factors to improve their comprehensiveness in 

Fig. 1. The proposed classification scheme for analyzing and comparing ESMs.
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Table 2 
General information on ESMs.

Model Case studya Model purpose Availability Documentation Ref

OMNI-ES Italy Optimization of network-integrated energy system Not OSb https://doi.org/10.1016/j.enconman.20 
23.117168

[40]

Balmorel Denmark Investigating the decarbonization pathways of sector- 
coupled energy systems

OS https://github.com/balmorelcommunity 
/Balmorel

[55]
[56]

OPERA North of the Netherlands Optimize energy decarbonization and sector integration for 
a low-carbon future

Not OS https://doi.org/10.1007/s10666-020-097 
41-7

[30]
Groningen province in the 
Netherlands

[39]

IESA-NS North Sea region Optimize decarbonization of energy system OS https://github.com/IESA-Opt [29,
31]

urbs European union (EU) − 28 
countries

Optimization of capacity expansion planning and unit 
commitment for distributed energy system

OS https://github.com/tum-ens/urbs [42]

LUT-ESTM Japan Analyzing cost-optimal energy system pathways with high 
RE shares

Not OS https://doi.org/10.1016/j.energy.2023.12 
7213/

[57]
LUT Egypt [41]
BeWhere Malaysia Optimizing the allocation of RESs OS https://pure.iiasa.ac.at/id/eprint/17549/ [58]
MyPyPSA- 

Ger
Germany Simulating and optimizing modern power and energy 

system
OS https://github.com/PyPSA/PyPSA [59]

PyPSA-EU Germany [60]
Oemof- 

moea
Italy Analyzing multi-objective models and spatiotemporal 

resolution effects
OS https://github.com/matpri/oemof-moea [28]

A County in Germany [61]
TIMES North of India Exploring possible energy futures based on contrasted 

scenarios
Commercial https://iea-etsap.org/index.php/etsap 

-tools/model-generators/times
[62]

AnyMOD Germany Modeling system with high RE shares and cross-sectoral 
integration

OS https://github.com/leonardgoeke/ 
AnyMOD.jl

[43]
[63]

REMix Germany Assessing techno-economic of possible future energy system 
designs

OS https://dlr-ve.gitlab.io/esy/remix/frame 
work/dev/index.html

[64]

Calliope Italy Analyze energy systems with high RE shares with flexible 
spatial-temporal resolution

OS https://github.com/calliope-project/callio 
pe

[65]

a Study-based characteristics of the model, not necessarily the model’s specifications.
b Open source.

Table 3 
Different components included in the models.

Model used Renewable techa Storage tech 
inclusiona

Energy carriersa Demand sectorsa Emission Costa Ref

OMNI-ES Solar, wind, 
geothermal, biomass, 
hydro

Battery, Hydrogen, 
pumped hydro 
storage (PHS)

Electricity, gas, 
heat, hydrogen

Residential, services, 
industry, transportation

CO2 Annualized capital cost, 
operational costs

[40]

Balmorel Solar, wind, 
hydropower, wave 
power

Hydrogen, heat 
storage

Electricity, 
hydrogen, gas

Residential, services, 
industry, transportation

CO2, SO2, 
NOX

Investment, operational, fuel, 
and carbon costs

[55,
56]

OPERA Solar, wind, 
geothermal, biomass

Battery, Hydrogen Electricity, gas, 
heat, hydrogen

Residential, services, 
industry, transportation, 
agriculture

GHG 
emissions

Investment, variable, and 
operational costs

[30,
39]

IESA-NS Solar, wind Hydrogen storage Electricity, 
hydrogen, gas

Residential, services, 
industry, transportation, 
agriculture

CO2 Investment, retrofitting, 
decommissioning, and operation 
costs

[29,
31]

urbs Solar, wind, hydro, 
biomass

Battery, heat storage Electricity, heat Aggregated demand CO2 Investment, fixed, total variable, 
fuel, and environmental 
pollution costs

[42]

LUT-ESTM Solar, wind, 
geothermal hydro, 
wave power

Battery, PHS, 
compressed air 
energy storage

Electricity, heat, 
methane, synthetic 
fuels

Residential, services, 
industry, transportation

GHG 
emissions

Annualized capital, operational, 
fuel, and CO2 costs

[57]
LUT [41]

BeWhere Bioenergy N/Ab Electricity, heat Aggregated CO2 Technology and transport cost [58]
MyPyPSA- 

Ger
Solar, wind, biomass, 
hydropower

PHS, hydro reservoirs Electricity Residential, industry, 
services, transportation

CO2 Capital costs [59]

PyPSA-EU Battery Technology, fuel, CO2 costs [60]
Oemof- 

moea
Solar, wind, biomass, 
geothermal, hydro

Battery, PHS, hydro 
reservoirs

Electricity, heat, 
hydrogen

Residential, services, 
industry, transportation

CO2 Investment, operational, 
maintenance, and fuel costs

[28]

Solar, wind, biomass Hydrogen storage Electricity, heat, 
hydrogen

[61]

TIMES Solar, wind, biomass, 
hydro

Battery, PHS Electricity Aggregated GHG 
emissions

_ [62]

AnyMOD Solar, wind, 
Hydrogen, biomass

Battery, Hydrogen 
storage, gas

Electricity, heat, 
hydrogen, methane

Buildings, industry, 
transportation

N/A Investment and variable costs [43,
63]

REMix Solar, wind, hydro, 
biomass, Hydrogen

Battery, PHS, 
Hydrogen, heat 
storage

Electricity, heat, 
hydrogen

Aggregated CO2 Operational, fuel, and CO2 costs [64]

Calliope Solar, wind, 
geothermal, hydro, 
biomass

Battery, PHS, gas, 
hydro reservoir

Electricity, 
hydrogen, gas

Residential, industry, and 
transportation in an 
aggregated way

GHG 
emissions

Investment, operational, and 
maintenance costs

[65]

a Study-based characteristics of the model, not necessarily the model’s specifications.
b Not clearly mentioned.
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energy planning.
Table 4 illustrates the technical and mathematical features of ESMs, 

such as the algorithm used, solver, programming language, and planning 
horizon. Linear programming (LP) is the prevalent algorithm used in 
most ESMs. A few models use mixed-integer linear programming (MILP) 
or a combination of LP and MILP, which adds complexity to the model. 
These ESMs use solvers such as Gurobi, CBC, and CPLEX, as well as 
different programming languages like AIMMS, GAMS, and Python, to 
optimize solutions. We evaluated the feasibility of these models for long 
planning horizons and considered different runtime reduction methods 
they used to mitigate computational load.

Table 5 outlines the models’ temporal and spatial resolution, as well 
as their spatial and temporal extent. It shows a significant variation in 
spatial resolution from a few nodes to hundreds, resulting in a wide 
range of spatial granularity. Temporal resolution varies from hourly 
time slices to broader time slices using representative days. The tem
poral extent also varies, from snapshots of specific years to evolutionary 
extents covering multiple time intervals. Fig. 2 compares temporal and 
spatial resolution with the spatial extent of ESMs. We assumed a model 
with 30 nodes and 300 hourly slots has a medium spatial and temporal 
resolution, respectively. This figure shows that while most ESMs have a 
high temporal resolution, such as OMNI-ES, Calliope, IESA-NS, and LUT 
models, only a few models have a high spatial resolution, such as PyPSA, 
OPERA, and Balmorel. Some ESMs, like TIMES, can be implemented at 
various resolutions and scales. It is worth noting that these character
istics are specific to the selected papers reviewed in this study and do not 
represent the overall scope of the model. For instance, while the Calliope 
model is represented with 6 nodes [65], the Euro-Calliope configuration 
operated in higher spatial resolution, covering 98 regions [66].

3.3. Spatial aspects of energy systems

The energy supply chain significantly affects land use depending on 
where it is extracted, generated, transported, distributed, and used [67]. 
The spatial requirement of energy production depends on the energy 
source density and land use compatibility [68,69]. RE technologies are 
land intensive due to low energy density compared to fossil fuels, which 
highly affects land use [32]. The expansion of RESs has spatial 

Table 4 
Technical and mathematical structures of models.

Model used Algorithm 
used

Solver 
reporteda

Objective function Programming 
language

Runtime reduction methoda Planning horizon Ref

OMNI-ES LP Gurobi Cost minimization MATLAB® N/Ab Perfect foresight [40]
Balmorel LP N/A Cost minimization GAMS Time slice Perfect foresight- Myopic [55,

56]
OPERA LP Gurobi Cost minimization AIMMS Time slice Perfect foresight [30,

39]
IESA-NS LP Gurobi Cost minimization AIMMS Clustering method to simplify 

spatial details
Perfect foresight [29,

31]
urbs LP Gurobi Cost or CO2 

minimization
Python Time slice and three steps clustering Perfect foresight [42]

LUT-ESTM LP MOSEK Total annual system 
cost

MATLAB® Hierarchical simulations for regional 
disaggregation

Myopic- perfect foresight [57]

LUT N/A [41]
BeWhere MILP CPLEX Cost minimization GAMS Using cells to aggregate variables Perfect foresight [58]
MyPyPSA- 

Ger
LP Gurobi Cost minimization Python Aggregating data across nodes Myopic (Perfect foresight in 

recent versions)
[59]

PyPSA-EU [60]
Oemof- 

moea
LP Gurobi Cost or CO2 

minimization
Python Aggregating data across nodes Myopic [28]

Clustering data [61]
TIMES LP N/A Cost minimization GAMS Time slice Perfect foresight [62]
AnyMOD LP Gurobi Cost minimization Julia Aggregating data across nodes Myopic [43,

63]
REMix LP, MILP CPLEX Cost minimization GAMS Aggregating data across nodes Myopic [64]
Calliope LP, MILP CBC or 

Gurobi
Cost minimization Python Aggregating data across nodes N/A [65]

a Study-based characteristics of the model, not necessarily the model’s specifications.
b Not clearly mentioned.

Table 5 
Modeling resolutions and extents.

Model 
used

Spatial 
resolutiona

Spatial 
extent

Temporal 
resolutiona

Temporal 
extenta

Ref

OMNI-ES 20 nodes Regional- 
National

Hourly Snapshot 
(2050)

[40]

Balmorel 15 regions Regional- 
International

96-time 
slices

Evolutionary 
(10 years)

[55]

98 regions 672- time 
slices

Snapshot 
(2050)

[56]

OPERA 5 nodes Regional- 
National

(32–432) 
time slices

Snapshot 
(2030–2050)

[30]
96 nodes [39]

IESA-NS 8 nodes Regional- 
International

Hourly Snapshot 
(2050)

[29,
31]

urbs 28 regions Local- 
International

96-time 
slices

Snapshot 
(2015–2050)

[42]

LUT- 
ESTM

9 regions Local- 
International

Hourly Evolutionary 
(2020–2050 
every five 
years)

[57]

LUT 7 regions [41]

BeWhere 560 equal 
regions

National Two- 
month sub- 
annual 
time 
intervals.

Evolutionary 
(2020–2050 
every five 
years)

[58]

MyPyPSA- 
Ger

Up to 317 
nodes

Local- 
International

3-Hourly 
interval

Snapshot 
(2050)

[59]

PyPSA-EU 37/1024 
nodes

Hourly [60]

Oemof- 
moea

6 nodes Regional- 
National

Hourly Snapshot 
(2050)

[28]
5 nodes [61]

TIMES 9 regions Local- 
International

288- time 
slices

Annual 
Evolutionary 
(2012–2050)

[62]

AnyMOD 29 regions Local- 
International

Hourly Snapshot 
(2030)

[43]
38 regions [63]

REMix 18 nodes Regional- 
National

Hourly Annual 
Evolutionary 
(2020–2050)

[64]

Calliope 6 regions Local- 
International

Hourly 2050 [65]

a Study-based characteristics of the model, not necessarily the model’s 
specifications.
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implications on landscapes, such as competition for land and the po
tential declines in environmental quality [70]. Given that RESs are 
localized and site-specific, shifting to a more decentralized and diver
sified energy system necessitates a closer spatial correlation between 
where the energy is produced, transported, and consumed [71]. Energy 
infrastructure such as pipelines, grids, and roads affect neighboring land 
use patterns [67]. The energy system has three main components: 

supply, demand, and infrastructure. Various methods were used in the 
literature to evaluate spatially dependent parameters for estimating RES 
potential. Land use was inherently considered within energy system 
components, recognizing their significant overlaps, see Fig. 3. Addi
tionally, the full overview of geospatial aspects and linking methods to 
integrate spatially dependent parameters into ESMs is depicted in 
Table 6.

Fig. 2. Temporal and spatial resolution and spatial extent of the reviewed ESMs of the selected studies.

Fig. 3. The interconnection between the energy system and land use.
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Table 6 
Summary of spatial methods to incorporate spatial components, aggregate these details, and integrate them into ESMs.

ESM Spatial data 
utilization

Land use 
assessment

Spatial approaches to evaluate the distribution of energy system components Spatial aggregation 
method

Aim of spatial 
aggregation

Ref

Energy resources Energy demands Infrastructure Storage CCUS

OMNI-ES Exogenous 
spatial 
databases

Land use 
potential for 
RESs

Using land limit 
percentages and 
weather data

Allocate demand 
from a database to 
regions.

Allocating infrastructure 
capacity of bidding zones 
between regions

Using a database to 
define PHS 
regionally

Aggregated in 
one node

Regionalization 
(sub-national)

Tracking energy vector 
flows to identify 
infrastructural needs

[40]

Balmorel Exogenous 
spatial 
databases

– Solar and wind 
capacity

Heat demand for 
regions

Large, medium, and small 
district heating networks 
for regions

Short-term and 
seasonal storage for 
heat and electricity

– Regionalization 
(sub-national)

N/Aa [55]

Balmorel- 
OptiFlow

Exogenous 
spatial 
databases

– Using a database to 
allocate biomass 
potential across areas

Obtained 
exogenously from 
TIMES-DK

Euclidean distance of 
regions’ centers

Short-term and 
seasonal storage for 
heat and electricity

– Regionalization 
(sub-provincial)

The importance of the 
local distribution of 
energy resources

[56]

OPERA GISb analysis Assessing spatial 
claims

GIS analysis and 
external database

Using GIS analysis Using an actual physical 
electricity network

N/A Aggregated in 
one node

Regionalization 
(sub-national & 
provincial)

To show the impacts of 
energy system 
components regionally

[30,
39]

IESA-NS GIS analysis Assessing spatial 
claims

Wind potential, 
considering the 
available area

Database for 
demand allocation

It is considered, as noted 
in Appendix B

Using a database to 
allocate hydrogen 
storage

– Clustering (k-means) Model simplification for 
finding the best offshore 
hubs

[29,
31]

urbs GIS analysis Land use 
potential for 
RESs

Using available lands 
and weather data

Using land use map Allocating transmission 
lines between regions 
using a database

N/A – Clustering (k- 
means++ & max-p)

Generate cohesive 
clusters with maximum 
data similarity

[42]

LUT-ESTM Exogenous 
spatial 
databases

– Using land limit 
percentages and 
weather data

Using a database, a 
general assumption 
for 2050

Power transmission 
capacity of regions and 
their annual trading

Regional battery 
capacity

– Regionalization 
(sub-provincial)

Reduce simulation time in 
spatially low-resolution 
with high-quality results.

[57]

LUT Different criteria for 
obtaining each 
demand type

Regional electricity, 
heat, and gas 
storage

– Regionalization 
(sub-national)

Spatially dissolving data 
in energy demand zones

[41]

BeWhere GIS analysis Considering 
protected area

It is considered, as 
noted in Appendix B

Power, heat, and 
transport demand 
for areas

Transportation network 
(road and sea), pipeline, 
power grid transmission

N/A – Regionalization 
(equally-sized 
regions)

Spatially dissolving in 
equal cells

[58]

MyPyPSA- 
Ger

Exogenous 
spatial 
databases

– Using a database for 
RESs

Linear regression 
for power demand

Using the power network Energy storage for 
each node

– Clustering (k-means) Aggregating information 
and simplifying the 
analysis process

[59]

PyPSA-EU Using a database to 
allocate RESs

It is considered, as 
noted in Appendix 
B.

Dissolving data in 
different spatial levels.

[60]

Oemof- 
moea

Exogenous 
spatial 
databases

– Population factor for 
PVcand using a 
database for wind

Heat and power 
demand for each 
node

Power transmission 
capacity and bottlenecks 
between bidding zones

Regional capacity 
for PHS

– Regionalization 
(sub-national)

Spatially dissolving in 
regions

[28]

– Using a database for 
RES capacity

Database for 
electricity, heat, 
and hydrogen 
demand

Not clearly mentioned N/A – Clustering 
(hierarchical 
agglomerative)

Spatially explicit data for 
decentralizing municipal 
energy systems

[61]

TIMES GIS analysis Assessing spatial 
claims

PV/wind potential and 
considering land claims

Regression method The power transmission 
network between regions

N/A – Regionalization 
(sub-national)

Spatially dissolving in 
regions

[62]

AnyMOD Exogenous 
spatial 
databases

It is considered, 
as noted in 
Appendix B

Allocate potential from 
a database to regions 
considering land 
availability.

Database for 
demand allocation

Transmission networks 
and their capacity 
between regions

Battery and 
hydrogen storage

– Regionalization 
(sub-provincial)

Spatially dissolving in 
regions

[43,
63]

REMix Exogenous 
spatial 
databases

– Using the European 
model’s results for RE 
potential

Database for 
demand allocation

Using the power network Aggregating storage 
for each node

– Regionalization 
(sub-provincial)

Spatially dissolving in 
regions

[64]

Calliope Exogenous 
spatial 
databases

– Using a database for a 
maximum capacity of 
RESs

Using bidding zone 
and demand profile 
of sectors

Transmission between 
central nodes and VRESs 
with their linked nodes

Aggregated regional 
storage capacity

– Regionalization 
(sub-national)

Spatially dissolving in 
regions

[65]

All variables in this table are related to the studies that used ESMs, not necessarily the model’s specifications.
a Not clearly mentioned.
b Geographic information system.
c Photovoltaic.
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3.3.1. Spatial aspects of energy supply
Distinguishing between different levels of potential for evaluating RE 

capacity is crucial. These levels are classified into four key groups. 
Theoretical potential is the highest resource capacity based on natural 
and climatic factors [72,73]. Technical potential considers geographical 
and system limitations, including land use, infrastructure constraints, 
and technically feasible technologies [73,74]. Economic potential refers 
to cost-effectiveness, where RE’s revenue covers its cost [74]. Market 
potential indicates the amount of RE that can be implemented, consid
ering regulatory limits, policies, and competition with other technolo
gies [73]. Our review shows that most selected papers focused on the 
theoretical potential, often simplifying the technical and economic po
tential and overlooking the market potential, see Appendix B.

The systematic approach to identifying high-potential areas for RESs 
considers environmental and legal constraints, land use claims, suit
ability analysis, spatial competition of RE technologies, and these 
technologies’ technical and economic feasibility, as illustrated in Fig. 4. 
This procedure can be applied for each specific RE technology to esti
mate the land availability of different technologies. Our review shows 
that some studies simplified calculations for RES’s theoretical and 
technical potentials using low-resolution renewable capacity factor 
maps [63,65], generalized approaches to estimate available land, or 
highly aggregated methods for allocating solar potential regionally. For 
solar energy, these methods included equal distribution of solar poten
tial between regions by using a weighted average approach [57] or 
selecting a representative site for each region [75,76]. Additionally, only 
a few studies have examined the explicit technical potential of RESs by 
considering land use restrictions and claims [29,30]. Table 7 provides an 
overview of proposed indicators to assess RE production in the literature 
and those used in the reviewed papers. The methods of how the spatially 
dependent parameters of energy resources are used in ESMs are sum
marized in Table 6 and detailed in Appendix B.

3.3.2. Spatial aspects of energy demand
Aggregation and disaggregation represent the literature’s common 

methods for the spatial distribution of energy demand among regions. 
The aggregation approach helps summarize data such as energy profiles 
of buildings and vehicles and the energy consumption of different 
building types. In contrast, the disaggregation technique uses statistical 
approaches to allocate energy demand across smaller regions [86]. 
Studies either used specific indicators for each energy sector [39,60] or 
utilized indicators applicable to combined energy sectors [41,58]. For 

instance, in OPERA, the energy demand inputs were obtained by esti
mating the energy demands of different energy sectors, including resi
dential buildings, services, industry, and agriculture. Building 
information such as building use, type, energy label, construction year, 
and population is used to estimate the energy consumption of the built 
environment. For transportation, demand information is obtained using 
the population factor. REMix used population distribution to estimate 
building energy demand and the number of vehicles needed for trans
portation energy demand. LUT, Urbs, and BeWehre utilized indicators 
for energy demand estimation for combined energy sectors. Therefore, a 
comprehensive methodology is required to obtain a detailed analysis of 
energy demand for different energy sectors. Table 8 summarizes critical 
indicators to evaluate energy demand in the literature and those applied 
in the reviewed ESMs. The methods used to assess spatially dependent 
parameters of energy demand in ESMs are summarized in Table 6 and 
explained in detail in Appendix B.

3.3.3. Spatial aspects of energy infrastructure and storage
Energy infrastructure, comprising energy grids, conversion technol

ogies, and storage options should be integrated into ESMs to evaluate 
balance constraints in energy flow. Some ESMs represent the energy 
infrastructure as a copper plate, neglecting transportation distances and 
related losses in balancing energy supply and demand [63]. However, 
some models, such as PyPSA, IESA-NS, OPERA, and OMNI-ES, use ho
listic approaches to incorporate spatially dependent parameters of en
ergy infrastructure. For example, PyPSA uses a structured methodology 
that effectively captures the interaction of spatially dependent param
eters within energy systems. It aggregates energy supply and demand in 
the same nodes and links multiple nodes through energy infrastructure. 
This model uses power substations to define the nodes, and these nodes 
represent various components such as generators, consumers, storage 
capacity, and transmission lines [94]. PyPSA-Eur’s network typology is 
designed based on a power transmission grid map, including high 
voltage alternating current (HVAC) and high voltage direct current 
(HVDC) power lines. In addition, countries are split into Voronoi cells as 
catchment areas and connected to substations through low-voltage (LV) 
networks. These cells include power plant capacities, RE potential, and 
the share of demand that can be met at each substation [95].

Following a similar approach, most ESMs aggregated the capacity of 
one or multiple energy networks (power, heat, and gas) and storage 
options at their closest node. For instance, PyPSA-Eur-Sec [96] and 
OMNI-ES [40] developed a detailed methodology to incorporate various 

Fig. 4. The procedure of determining the technical and economic potential for each specific RE technology adopted from [77,78].
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energy networks such as power, heat, gas, CCUS, and related compo
nents. OPERA used a spatially explicit approach for the heat network to 
integrate heat supply sources and the DH network at the regional scale. 
This model combines the district heating (DH) transmission and distri
bution network across industry clusters, geothermal source locations, 
city centers, and city outskirts [39]. Moreover, existing energy infra
structure is vital in developing economically feasible and efficient plans. 
For example, onshore wind and ground-mounted PV installations near 
their corresponding energy infrastructure are more financially desirable 

[97]. In IESA-NS, the capacity and size of power cables and gas pipelines 
are estimated for reuse for energy transportation. Considering these 
challenges, a holistic methodology is needed to measure the current and 
potential capacities, transportation constraints, and capacity limitations 
of different energy networks (power, heat, gas, and CCUS), and energy 
storage [29]. The methods used to assess the spatially dependent pa
rameters of energy infrastructure, storage options, and CCUS are sum
marized in Table 6 and explained in detail in Appendix B.

3.4. Spatial aggregation methods

The literature review highlights clustering and regionalization as 
primary spatial aggregation methods for defining regions or nodes in 
ESMs. K-means, max-p, k-means++ & max-p are the standard clustering 
methods in ESMs. Regionalization can be classified into market-bidding 
zones, subnational, sub-provincial, and equally-sized regions. Table 9
provides a checklist to evaluate these approaches and their pros and 
cons based on four criteria and their corresponding sub-criteria: policy 
(policy alignment and understandability by policymakers), flexibility (to 
accommodate inputs and sensitivity to variation), spatial capabilities 
and features, and knowledgebase (including available literature and 

Table 7 

RE potential 
factors

Proposed inputs and indicators 
to evaluate and estimate energy 
potential (from literature)

Inputs and indicators used 
in selected ESMs

Land use 
restrictions

Environmental and legal 
restrictions

OPERA: land limit 
assumptions for solar and 
wind
LUT [41]: land limit 
assumptions for solar and 
wind
AnyMOD: site quality of 
land uses for PV and wind
IESA-NS: protected areas 
and exclusion zones

Social acceptance IESA-NS: sensitivity 
analysis for onshore wind 
acceptance levels

Land use claims Spatial planning OPERA: spatial planning as 
scenarios
IESA-NS: sea use claims and 
multi-use of sea spaces

Suitability 
analysis

GMPVa: solar radiation, slope, 
aspect [79], onshore water 
body)

OPERA: agricultural land, 
onshore water body
LUT [41]: solar radiation, 
solar power density
AnyMOD: capacity factor of 
PV

Rooftop PV: solar radiation, 
building data, rooftop area 
constraint, shading factor, 
future building growth rate 
[80])

OPERA: building footprint 
for agriculture, industry, 
roadside, and ground-based
AnyMOD: capacity factor of 
PV

Wind: wind speed, slope, 
aspect, roughness length, 
longitudinal, plan, and 
transverse curvature [79])

OPERA: annual wind speed 
profile
LUT [41]: wind speed, wind 
power density
AnyMOD: capacity factor of 
wind
IESA-NS: wind power 
density, water depth

Geothermal: surface ambient 
temperature, heat flow [75, 
81])

LUT [41, 75]: surface 
ambient temperature, heat 
flow

Biomass (Energy crops): 
altitude constraint, slope, soil 
characteristics, geotechnical 
characteristics, precipitation, 
temperature [82]; 
Biomass (Residue potential): 
livestock manure, straw 
potential, forestry residue, 
urban greenery residue, food 
waste [83]

OPERA: region-based 
residue potential 
Balmorel [56]: 
geographical distribution of 
residue potential 
LUT [41]: region-based 
residue potential 
Bewhere: palm oil mill’s 
locations and capacities, 
palm plantation, locations 
and capacities of rice miles, 
paddy plantation, livestock 
population

Hydropower: slope, elevation, 
precipitation, temperature, soil 
classification, runoff, land 
cover, river discharge [84, 85]

LUT [41]: real weather data

Competing 
technologies

Suitability map of RE 
technologies, land use, spatial 
planning scenarios

Not considered

Combination of 
RE 
technologies

Not considered

a Ground-mounted PV systems.

Table 8 
Methods and indicators employed for estimating spatially sensitive parameters 
of energy demand.

Demand sector Proposed indicators to 
calculate energy demand 
(from literature)

Indicators used in selected 
ESMs

Residential 
buildings

Household numbers, building 
type, energy label, building 
size, building age, climate 
condition [30,86,87]

OPERA: building use, 
building types, construction 
year, household numbers, 
energy label 
PyPSA-EU: (future) 
population, living space (for 
heating) 
REMix: population 
distribution

Non-residential 
buildings 
(services)

Operating hours, occupancy 
rate, building function, 
building type, energy label, 
building size, building age, 
climate condition [30,86–89]

OPERA: building use, 
building types, construction 
year, energy label 
PyPSA-EU: current and 
future population, 
employment rate

Industry Industrial activity type, 
production volume, plant 
size, climate condition [30]

OPERA: final industrial 
product unit 
PyPSA-EU: current and 
future population, 
employment rate

Transportation Network density, vehicle 
kilometers traveled, 
population density and 
distribution, public transport 
infrastructure, freight and 
passenger movement [86,
90–92]

OPERA: population 
distribution 
PyPSA-EU: population, e- 
mobility penetration 
REMix: number of vehicles

Agriculture Agriculture area, crop types, 
and livestock, irrigation 
needs, machinery usage, 
climate condition [93]

OPERA: heat, electricity, 
machinery demand

Combined sectors – BeWhere: power substation 
map for electricity, natural 
gas map for heat demand, 
population map for transport 
fuel demand 
Urbs: hourly load profile 
LUT: air conditioning, 
tourism contribution, and 
local and seasonal 
temperatures 
TIMES & MyPyPSA-Ger: 
population, gross domestic 
product (GDP), historical 
trend of power consumption
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Table 9 

Aggregation methods Schematic design Ref Policy Flexibility Spatial capabilities Knowledgebase/Databases

Policy 
alignment

Easily 
understandable 
by 
policymakers

Allows 
customization 
of spatial 
resolution

No 
sensitivity 
to input 
variations

Homogeneity 
of results

contiguity 
of results

Flexibility 
in 
capturing 
spatial 
variation

Identifies 
distinct 
spatial 
patterns

Better reflects 
socioeconomic 
patterns

Corresponds 
to the 
available 
data

Supported 
by 
extensive 
literature 
and 
algorithms

K-means [29] – – ✓ – ✓ – ✓ ✓ – – ✓
Max-p [27] – – – – – ✓ – ✓ – – –
K-means++ & max p [42] – – ✓ – ✓ ✓ ✓ ✓ – – –

K-means using power 
nodes

[59,

60]

✓ – ✓ – ✓ – ✓ ✓ – ✓ ✓

Market bidding 
zones

[55,

57,

64,

65]

✓ ✓ – ✓ – – – – – ✓ ✓

Sub-national 
(Provincial level)

[28,

40,

41,

62,

75,

81,

108]

✓ ✓ – ✓ – – – – ✓ ✓ ✓

Sub-provincial 
(municipality 
level)

[30,

39,

43,

56,

63]

✓ ✓ – ✓ – – – – ✓ – ✓

Equally sized regions [58,
109]

– – ✓ ✓ – – – – – – –
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data). This assessment compares the capabilities and limitations of 
clustering and regionalization methods in ESMs.

Most ESMs use input data that is available in administrative units. 
However, there is often a lack of alignment between the administrative 
divisions and spatial distribution of energy supply (due to differences in 
factors such as wind speed and solar radiation) and power and heat 
demand [42]. Because policies are primarily formulated at national or 
regional levels, regionalization aligns better with policy assessment and 
is more accessible to policymakers and stakeholders. While clustering 
provides flexibility to customize the number of nodes, regionalization is 
less adaptable. This flexibility helps scale down or up by changing the 
number of regions or nodes exogenously. Clustering methods can adjust 
node distribution based on input data, unlike regionalization, where 
input variations do not impact region numbers. In the max-p clustering 
method, node numbers are fixed and cannot be adjusted exogenously to 
ensure the spatial contiguity [31]. K-means clustering prioritizes ho
mogeneity when clustering nodes, demonstrating similarity and con
sistency in energy-related attributes such as demand, supply, and 
storage. Meanwhile, max-p clustering offers contiguity of results as re
gions and nodes are clustered through spatial proximity [27,31,98], 
ensuring each area shares at least one border with adjacent areas in the 
same region [27].

Both regionalization and clustering are spatially explicit approaches, 
but regionalization, defined by fixed administrative units like provinces, 
may only partially capture the spatial distribution of energy supply, 
demand, and infrastructure. For instance, while regionalization assigns 
one node to each province or municipality, k-means clustering flexibly 
adjusts the node numbers according to the spatial distribution of energy 
system components. Thus, using administrative units such as provinces 
may lead to an inadequate representation of resource variation [99]. 
Clustering methods can better handle spatial variations by tracking 
distinct spatial patterns, e.g., the spatial pattern of demand distribution, 
supply, or industry locations. Spatial aggregation using administrative 
units benefits from greater data availability and aligns better with so
cioeconomic patterns [100]. Additionally, extensive knowledge bases 
and relevant algorithms support k-means clustering, power zone clus
tering, and administrative unit approaches.

Regionalization based on administrative units is also a common 
approach to aggregate spatial variations. Sahoo et al. [30] conducted an 
ESM analysis to regionalize a national ESM in the Netherlands at mul
tiple administrative levels. They studied the municipality of Groningen 
with high spatial detail, the northern part of the Netherlands at a pro
vincial level, and the remaining part of the country as a single region. In 
another study, Sahoo et al. [39] used multiple nodes with distinct types, 
e.g., demand, supply, and energy infrastructure, by considering 24 
Dutch regions corresponding to energy demand and supply. To represent 
the energy infrastructure, they incorporated 67 nodes, including in
dustries, geothermal, district heating, and power nodes.

Clustering is a practical approach for aggregating spatial data. 
Martínez et al. [29] used k-means clustering to identify suitable offshore 
hubs in the North Sea. Their approach connected offshore wind power 
plants (OWPP) to the nearest hub and deployed the fewest hubs possible 
to accommodate the maximum number of OWPPs. Due to the signifi
cance of geographical distance between OWPPs and hubs, k-means 
clustering is an effective method to find the optimal offshore hubs. They 
assessed potential conflicts between various space uses to identify suit
able areas for offshore wind deployment, which were used as input for 
the clustering. Jarosch et al. [61] employed clustering analysis to 
characterize distinct clusters with internal homogeneity and similarities 
within each cluster, while external heterogeneity and differences be
tween clusters. They used various indicators to determine clusters, 
including population, power demand, and installed capacity of RE 
technologies. In PyPSA, power substations are clustered through the 
k-means technique to group geo-located buses of the power networks 
[95,101]. This approach can help to capture, manage, and represent 
spatially explicit data.

Clustering methods aim to aggregate data according to similarities or 
dissimilarities criteria while minimizing information loss. For instance, 
high-potential areas for RESs can be identified using clustering, unlike 
regionalization methods [102]. Clustering techniques, like k-means, use 
input data to identify regions based on similarities in their attributes (e. 
g., energy demand and supply). This flexibility allows clustering to 
define regions that align more with energy system inputs, unlike 
regionalization methods that rely on fixed administrative units. How
ever, clustering techniques have limitations, as they are highly sensitive 
to input data and parameters like the initial number of node selected 
[103,104]. K-means is particularly sensitive to the initial centroid se
lection, as well as to outliers and noise, which can distort the cluster 
shapes [105,106]. Moreover, if the spatial variations are highly scat
tered, clustering may fail to capture the complexity of spatial variation 
due to its reliance on specific parameters to define clusters [103,107]. 
Therefore, parameters (e.g., initial centroids and cluster numbers) and 
input data should be carefully selected to ensure that the clusters 
accurately represent the spatial distribution of relevant features.

3.5. Linking methods of ESM and spatial model

Researchers have classified linking methods for integrating ESMs 
with other models differently. Wene [110] identified hard link and soft 
link approaches in ESMs, shown in Fig. C- 1 (a), while Helgesen et al. 
[111] added an integrated approach, where models combine into a 
single model. Linking methods are crucial for balancing granularity and 
complexity while ensuring system adaptability. The selection of the 
linking method depends on model types, purpose, and capabilities. 
Fattahi et al. [19] proposed hard link ESMs with regional and energy 
market models and soft-linking with the macroeconomic model. A soft 
link method is recommended to integrate ESM and spatial models to 
encompass higher spatial granularity, land use assessment, and infra
structure analysis in ESMs.

In the hard link approach, models are connected to transfer data 
automatically without user intervention [41], with one model as the 
master and others as complementary models, all running simultaneously 
[19]. Durand-Lasserve et al. [112] defined hard links as a fully inte
grated method, and soft links as a partial linking method for a few 
variables. This linkage can be intensified when the objective function of 
various methods is translated into a single equation [113]. Wene [110] 
highlighted the advantages of hard link methods, such as productivity, 
uniqueness, and control. However, it has limited computational effi
ciency and data resolution compared to the soft link process [114]. 
Helgesen et al. [111] indicated that soft linking can improve model 
capabilities, but it can pose challenges like convergence issues and 
identifying connection points [19]. Hard-link method yields consistent 
and efficient outcomes by incorporating all constraints within a single 
model but it can lead to complex optimization problems [114]. For 
instance, Bramstoft et al. [56] proposed a methodology to assess possible 
solutions for ESM biomass distribution (see Fig. C- 1 (b). They 
co-simulated OptiFlow with Balmorel, a hard-link approach to exchange 
data. Additionally, the TIMES-DK model optimizes energy demand as an 
exogenous input for OptiFlow-Balmorel.

In the soft-link approach, multiple models operate separately, 
transferring information iteratively and sequentially [114]. In this 
approach, one model generates a result as an input for another and can 
be structured as a feedback loop between models [37]. The soft-link 
method attracts more attention as it leverages the high resolution of 
each model involved in the linking process [114] and provides better 
system complexity management than hard-linking [115]. However, 
combining models using soft-link techniques might reach a different 
level of accuracy than the hard-linked linking model [114]. Identifying 
the connection points is essential, as one model’s endogenous variable 
becomes the other’s exogenous variable [24]. Soft-linking provides 
practicality, transparency, and learning advantages [110], but does not 
guarantee model convergence to optimal outcomes. It may also cause 

K. Javanmardi et al.                                                                                                                                                                                                                           Renewable and Sustainable Energy Reviews 213 (2025) 115470 

12 



substantial problems in obtaining consistency owing to differences in 
model structure and methodologies [23]. Unlike hard-linking, which 
limits technological resolution, soft-linking divides problems into 
sub-problems, allowing for higher technological resolutions [114].

Soft link methods are classified as bidirectional and unidirectional 
approaches. The data flow between models occurs iteratively in the 
bidirectional method, leading to more reliable results [29]. Each model 
can modify the other iteratively until convergence criteria are met. This 
technique was designed to improve the quality of results in both models 
[116]. However, this method demands higher computation loads and 
deals with challenges in reaching convergence. In contrast, in the uni
directional method, the output of one model feeds into the second model 
without iteration [29]. For instance, Sahoo et al. [30] used a unidirec
tional method to soft-linked the pan-European power model, COM
PETES, to consider the power exchange beyond the country, as shown in 
Fig. C- 1 (c). On the other hand, Pina et al. [117] used a bidirectional 
soft-link technique to integrate TIMES, a long-term model for optimizing 
electricity generation investments, and EnergyPLAN, a short-term model 
for optimizing system operation. The results of installed capacity from 
TIMES are used as inputs in EnergyPLAN to calculate the maximum 
production potential for each generator. The convergence criteria 
ensure that installed RE technologies can generate at least 90 % of the 
expected annual output. If the requirements are not met, a new yearly 
capacity limit is defined to update the previous constraints of all sources 
in TIMES [117]. Similarly, Seljom et al. [116] developed an iterative 
soft-link method by integrating TIMES-Norway into the EMPS opera
tional power market model to enhance the decision support provided by 
both models. All European countries are included in EMPS, while only 
Norway is covered in TIMES-Norway. The income generated by hydro
power from both models is used as a convergence criterion to determine 
generation and electricity prices.

4. Synthesis and perspective

Given the insights drawn from the analysis and results, this section 
outlines a methodological proposal for ESM design by linking a spatial 

model with an ESM. This proposal specifically focuses on national en
ergy planning by incorporating spatial dynamics and constraints at a 
high spatial resolution. The key recommendation is to integrate various 
spatially dependent parameters into an ESM (see Fig. 5). We propose 
linking the ESM to a spatial model for optimizing land use allocation, 
recognizing that various competing land use claims should be consid
ered to assess the feasibility of ESM solutions in terms of spatial 
feasibility.

Regarding the aggregation approach, while clustering techniques 
can allow for adaptability in representing the spatial variation of energy 
supply and demand, their suitability is context-dependent. For instance, 
if policy advice is targeted at specific administrative units, e.g., prov
inces or municipalities, aligning the analysis with administrative units 
may provide more policy-relevant results due to data availability and 
alignment with policy goals. However, for a spatially explicit ESM at the 
national level we propose using clustering methods (e.g., k-means or k- 
means++ & max-p). Unlike regionalization methods that are limited by 
administrative boundaries, clustering provides more flexibility to cap
ture spatial variability in energy supply, demand, and infrastructure. It 
minimizes information loss and defines regions based on shared char
acteristics rather than predefined boundaries. It also enhances scal
ability in adjusting the spatial resolution. However their limitations such 
as sensitivity to input data, initial centroid selection, and challenges in 
determining the number of clusters should be carefully managed (see 
section 3.4).

To link the spatial model with ESM, we propose a bidirectional soft- 
linking technique. As discussed in section 3.5, this approach enables the 
inclusion of higher resolution data from each model involved in the 
linking process, leading to better management of system complexity. 
Although soft-linking possess challenges, such as potential convergence 
validation issues, managing two distinct models, and ensuring consis
tency between models, its advantages outweigh these disadvantages, 
particularly for managing high-resolution data and reducing computa
tional demand. Moreover, we propose using a recursive soft-linking 
technique that offers another layer of robustness by providing recur
sive feedback exchanges between two models. While this approach 

Fig. 5. A conceptual schematic of linking a spatial model with an ESM.
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requires higher computational loads and tackles challenges in reaching 
convergence, it enhances the reliability of results by enabling iterative 
adjustments between models.

4.1. A modular framework for integrating spatial aspects into ESM

4.1.1. Module A: A detailed spatial model
Developing a spatially explicit ESM is essential for obtaining reliable 

outcomes and addressing challenges like the varied distribution of RESs. 
A detailed spatial model ensures that key spatial dynamics, such as land 
use competition and regional variation in energy supply and demand are 
included. This module emphasizes two main components: a spatial 
model to allocate land use based on spatial planning scenarios, and the 
incorporation of spatially dependent parameters for energy demand, 
sources, and infrastructure.

For the first component, we recommend considering national spatial 
planning to include economic growth, land use management, environ
mental conservation, social coherence, and disaster risk management. 
For example, Spatial Outlook 2023 presents four scenarios for spatial 
decision-making in the Netherlands for 2050, each prioritizing either 
economic growth, nature-based solutions, technology, or community- 
led development [118]. Incorporating such national spatial planning 
scenarios and land use assessments into an ESM allows for considering 
different dynamics influencing future energy systems. This combination 
leads to spatial coherence (determining what fits where) and choices of 
optimal use of space, which is crucial, especially in densely populated 
countries.

However, there is a lack of studies that directly incorporate a spatial 
model into an ESM to optimize land allocation for energy supplies and 
infrastructure. Most ESMs (e.g., OPERA, PyPSA, and Calliope) use GIS 
input data or preprocess these data to include only spatially dependent 
parameters into ESM. In contrast, we propose incorporating a spatial 
model that goes beyond this preprocessing step, facilitating land allo
cation for energy supply, storage, and infrastructure while considering 
competing land uses such as residential areas, green spaces, agriculture, 
transportation networks, and protected areas. This model integrates 
spatial planning inputs such as future land use scenarios with ESM re
sults, which provide cost-optimized energy supply and infrastructure. 
The spatial model allocates the energy system’s land use requirements 
across different regions while balancing competing land uses. An 
example of such a spatial model is RuimteScanner 2.0, which allocates 
regional land demand to specific grid cells based on land availability, 
suitability, and supporting long-term planning by simulating land use 
changes, as described in Ref. [119]. Another example is a spatially 
explicit energy location model, ADVENT-NEV, which optimizes the 
location of solar farms, wind farms, bioenergy power stations, and their 
associated bioenergy crops [120].

For the second component, several spatial approaches were defined 
to capture the spatially dependent parameters of energy supply, de
mand, and infrastructure, as explained in section 3.3. Sahoo et al. [30] 
and Martínez-Gordón et al. [29] included spatially explicit components 
in their model’s framework. However, further improvement is needed to 
integrate energy systems’ spatial dimensions, for example, spatially 
explicit gas, CCUS, methane, and hydrogen networks, into their ap
proaches. Moreover, depending on data availability, we can employ 
either aggregation or disaggregation techniques to allocate values across 
nodes. For example, in the case of rooftop solar, a high-precision 
approach is illustrated in Fig. B- 1 in Appendix B to estimate potential 
using roof orientation, slope, and shading leveraging light detection and 
ranging (LiDAR) data. However, when data availability is limited, we 
suggest using either a representative area and extrapolating its potential 
to the targeted region [75,76] or solar energy density across available 
areas [95]. Such differentiated approaches exist for each RE technology, 
energy demand, and infrastructure.

4.1.2. Module B: spatial-converter
Module A provides spatially explicit outputs, including land avail

ability and optimal placement of various energy system components 
aggregated within their respective nodes to feed into the ESM. Our 
analysis indicates that clustering methods offer more capabilities than 
regionalization methods to capture spatial variables (see Table 9). We 
recommend using either k-means or k-means++ & max-p clustering 
techniques among these clustering methods. Like PyPSA-Eur, a catch
ment area can be defined around each node to assign the available land 
and maximum capacity for energy supply, demand, infrastructure, 
storage, and CCUS. This catchment area defines boundaries for each 
node based on proximity, facilitating the allocation of different energy 
system variables to individual nodes [95]. Then, these components can 
be converted to costs or constraints and imported into ESMs.

4.1.3. Module C: A highly detailed ESM
ESMs are crucial for policymakers to evaluate energy-related pol

icies’ impacts and explore the most effective energy transition pathways. 
To address policy-related challenges, ESMs with high temporal, tech
nological, and spatial resolutions are required for comprehensive 
decision-making support. Our findings indicate that PyPSA-EU, IESA- 
NS, MyPyPSA-Ger, AnyMOD, and Balmorel possess such detailed reso
lution (see Fig. 2). Furthermore, the ESM framework must incorporate 
highly detailed spatial features for energy demands, resources, infra
structure, and spatial claims. This capability is observed in REMix, 
Calliope, Opera, BeWhere, and TIMES. However, based on Table 6, these 
spatial capabilities are often highly aggregated or overlooked in current 
ESMs. For instance, many ESMs do not integrate national spatial plan
ning to incorporate various spatial dynamics to address spatial conflicts 
among land uses.

We propose using an ESM that includes detailed spatial inputs. Our 
review in Table 6 reveals that most ESMs highly aggregate the spatial 
distribution of energy demand, supply, infrastructure, and storage. This 
aggregation reflects the limitation in data availability, lack of holistic 
perspective for spatially dependent parameters, or focus on high tem
poral and technological resolution, which restrict further improvement. 
Adding spatial details increases the complexity of the model and re
quires greater computational capacity, as a large amount of data is 
involved. Additionally, the capability of scaling up or down from an 
upper to a lower level is a practical feature to enhance the model’s 
adaptability. This capability helps to change the resolution level based 
on policy needs. For example, PyPSA has this capability by using power 
system nodes and employing spatial clustering methods for node 
grouping.

4.1.4. Module D: ESM-converter
In this module, ESMs’ outputs are integrated into the spatial model 

for further analysis. These outputs encompass investment decisions, 
emission levels, infrastructure requirements, and system costs for 
various scenarios. The ESM provides these results at individual nodes, 
which are then transferred to the spatial model through the ESM con
verter. This converter facilitates the implementation of a recursive 
procedure between the spatial model and the ESM. It helps to assess 
whether adjustments are needed for investments in ESMs to meet spatial 
model constraints. Additionally, it offers various benefits to support 
decisions, such as providing feedback on infrastructure requirements, 
identifying bottlenecks like insufficient transmission capacity, and 
optimizing the energy supply chain.

4.2. A recursive framework for ESM and spatial model

A recursive platform for exchanging feedback between the energy 
system and spatial models ensures consistent results. The spatial model 
can be soft-linked to the ESM through two-way connections. In this 
approach, the energy system and spatial models are linked iteratively 
using a recursive connection instead of a unidirectional linkage. For 
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instance, the ESM may initially determine the placement of wind farms 
based on land availability and suitability criteria for wind energy at each 
node. However, if the spatial model cannot accommodate the required 
wind farm area in a specific region due to competing land use claims, it 
provides feedback to modify the ESM in subsequent iterations. The ESM 
can also provide feedback to the spatial model regarding the unmet 
energy demand in certain nodes, helping the spatial model to reconsider 
land allocation and potentially prioritize specific energy supplies over 
other land uses.

As illustrated in Fig. 6, the recursive soft link process involves several 
steps. The process begins with a preprocessing step, where spatial-based 
data (e.g., land use, suitability maps, exclusion areas) and energy data 
(e.g., energy demand profiles and fuel prices) are collected, analyzed, 
and stored in an integrated database. The spatial-based data are then 
transferred to the geo converter and spatial model. The geo converter is 
executed to cluster the input data into nodes and translate its outputs 
into cost parameters and constraints for the ESM. The ESM is executed, 
and its results are transferred through the ESM converter to the spatial 
model. The spatial model allocates the energy system’s land requirement 
by optimizing land use while considering land use competitions and 
claims. Subsequently, feedback from the spatial model is used to update 
the ESM decisions. From the second iteration onward, convergence 
criteria are checked, and the process continues until these criteria are 
satisfied. One example of such a criterion is ensuring that the unmet 
energy demand across all nodes is below a certain threshold. Finally, the 
outputs of the ESM and spatial model are reported corresponding to the 
highest iteration index. Compared to unidirectional linking, this recur
sive approach provides more reliable results as it ensures the consistency 
of connected models.

4.3. Challenges in implementing spatially explicit ESM

Implementing a spatially explicit ESM at a national scale poses some 
challenges, particularly in balancing data availability, computation 
time, and accuracy. Various methods exist to reduce the computation 
time, such as aggregating temporal resolution, reducing the time extent, 
or lowering the technological resolution. Clustering time series can also 

effectively address the computation load [121]. Furthermore, increasing 
the number of generation nodes without expanding the energy system 
nodes can enhance model’s accuracy and minimize runtime. For this 
purpose, Frysztacki et al. [99] compared different scenarios and 
concluded that increasing the spatial resolution of generation sites and 
aggregating them into energy system nodes, rather than increasing the 
number of system nodes, can be a practical approach to enhance the 
model’s reliability when computational time is limited. Lombardi et al. 
[65] also structured a two-scale spatial configuration of the Italian 
power system in six bidding zones and 20 administrative-level regions 
using Calliope. They applied this two-scale resolution system to incor
porate the variation of RESs and local political conditions in different 
areas. Bidding zones represent power demand profiles, transmission 
lines, and power storage plants. However, the regional administrative 
level helps to estimate renewable and PHS capacity. To reduce the 
model’s complexity, this structure can incorporate variations at a lower 
scale and aggregate results at a higher scale.

Moreover, improving spatial details while maintaining maximum 
temporal, technological, and spatial resolution remains challenging. 
Incorporating additional spatial details impacts the resolution, as shown 
in PyPSA-Eur-Sec [96], which includes more detailed infrastructure for 
heat, methane, hydrogen, CCUS, and solid biomass compared to 
PyPSA-Eur [60]. Nevertheless, it decreases spatial resolution to one 
node per country, unlike PyPSA-Eur. Another challenge lies in the 
network typology for allocating supply and demand nodes, which can be 
structured through various methods. For example, clustering can be 
performed for supply nodes, followed by aggregation of demand nodes 
in these supply nodes, or vice versa. Alternatively, both energy demand 
and supply nodes can be clustered simultaneously. In addition, clus
tering can be separately performed for demand and supply nodes, sub
sequently aggregating them. Another challenge is selecting a method for 
the spatial aggregation of energy supply and demand in nodes. Different 
possibilities exist, such as connecting all energy demand points to the 
closest supply nodes or vice versa. The other possibility is to define a 
new node as a connector to link demand and supply nodes. These pos
sibilities should be explored to find cost-effective configurations in 
future studies. The other challenge is the arrangement of nodes for 

Fig. 6. The process flowchart of the proposed linking approach (i indicates the iteration number).
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different energy commodities (power, heat, hydrogen, CCUS), as they 
have different characteristics and limitations and are grouped to match 
energy supply and demand.

5. Conclusion

ESMs can be instrumental in providing solutions and policy assess
ment but insufficiently incorporate spatial planning scenarios and high- 
quality spatially dependent parameters. This study evaluated the na
tional ESMs that primarily focus on long-term energy planning models to 
provide energy transition pathways and infrastructure development 
over extended time horizons. It contributes to the existing literature by 
identifying and evaluating various spatially dependent parameters 
influencing energy supply distribution. It focuses, particularly on 
renewable energy potential, energy demand distribution, and the spatial 
arrangement of energy infrastructure. We reviewed the methods 
employed in existing literature to evaluate these spatially dependent 
parameters. Additionally, the importance of incorporating spatial 
planning into future ESMs was highlighted, as past and current spatial 
choices significantly impact the future energy system. Furthermore, we 
analyzed aggregation methods to integrate spatially dependent param
eters into ESMs and explored linking methods to integrate spatial models 
with ESMs.

Our findings highlight that several ESMs such as PyPSA, IESA-NS, 
Calliope, OPERA, and Balmorel offer high spatial, temporal, and tech
nological resolution. We also reviewed the approaches these ESMs use to 
incorporate energy infrastructure in their frameworks. The results show 
that clustering and regionalization are the main approaches to defining 
regions and nodes within the spatial domain. We suggest using clus
tering methods that provide greater flexibility in capturing spatial var
iations of spatially dependent parameters and adjusting spatial 
resolution for national ESMs. Regarding the linking methods, soft- 
linking and hard-linking are valid approaches in the literature to con
nect spatial models with ESMs. We recommend using the soft link 
method to link a spatial model with an ESM, as this approach allows for 
higher spatial resolution. We propose implementing a dynamic feedback 
loop to exchange data between ESMs and spatial models. This recursive 
soft-linking would provide continuous information exchange between 
two models, enhancing decision-making processes within energy sys
tems such as resource allocation and infrastructure development.

We recommend a comprehensive framework including four modules 
to facilitate ESM and spatial model integration. In module A, a detailed 
spatial model evaluates spatial claims by integrating national spatial 

planning, policies, and land use assessments. It also includes spatially 
dependent parameters for energy demand, supply, and infrastructure as 
inputs for ESMs. Additionally, the spatially dependent parameters con
cerning energy demand, supply, and infrastructure are evaluated using 
the techniques overviewed in section 3.3. In module B, the output of the 
spatial model is aggregated to its respective nodes and regions using a 
clustering method, either k-means or k-means++ & max-p. A potential 
approach could involve using the supply areas as primary nodes and 
aggregating other elements like energy demand and storage with the 
closest nodes using a catchment area. A detailed ESM would offer a 
highly spatial, temporal, and technological resolution in module C. This 
ESM accommodates spatially explicit inputs and can scale up or down 
from an upper to a lower level. In module D, we proposed an ESM 
converter to employ a recursive procedure between the spatial model 
and ESM. It supports decisions regarding potential changes in in
vestments in energy system components according to the constraints 
defined in the spatial model. Then, a recursive procedure is proposed to 
exchange information between ESM and spatial and define convergence 
criteria to obtain more reliable results. Minor adjustments based on data 
availability can adapt the methodology to any specific case study.

In future work, investigating a tradeoff analysis between data 
availability, accuracy, and computation time can provide clear insights 
to make informed decisions for spatial, temporal, and technological 
resolution of ESMs. Furthermore, future studies can investigate the role 
of climate change on the spatially dependent parameters that impact the 
energy system. Lastly, although we proposed using a bidirectional 
linking method to incorporate the spatial model and the ESM, we did not 
identify any studies implementing this approach to optimize land allo
cation for different land uses. Therefore, future studies can consider 
implementing such a recursive soft link platform between ESMs and 
spatial models.
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Fig. A- 1. Systematic process of literature review.
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Fig. A- 2. The trend of published journal papers on spatial-based ESMs in the time frame of 1981–2023.

Table A- 1 
Classification scheme for ESM comparison from literature

Criteria Sub-criteria Details References

Modeling Structure/ 
Components

Country/Institution Country name, institute, or authors [33,36,122]
Analytical approach Bottom-up, top-down, hybrid [33,52,122–125]
Purpose • Investment decision support, operation decision support, scenario, power system analysis 

tool, analysis
• General (forecasting, exploring, back casting); specific (energy demand, supply, 

environmental impacts, etc.)

[125] 
[52]

Structure of the model Degree of endogenization, description of non-energy sectors, end-uses, supply technologies, 
supply or demand analysis tool

[52]

Transformation analysis Myopic, Foresight, None [22,33,53]
Data requirements Qualitative, quantitative, monetary, aggregated, disaggregated, [52]
Costs Investment, operation maintenance, fuel,c 

arbon cost, taxes, balancing cost
[52,125]

Emissions CO2, CH4, No, NOx, SO2, SOx, any pollutant [125]
Availability • Commercial, open access

• Commercial, free, open source, free academic version
• Low, medium, and high

[31,33,53,123,
124] 
[125] 
[22]

Documentation Link [53,122–124]
Mathematical approach Methodology • Simulation, optimization, and hybrid

• Simulation, dispatch optimization, single/multi-objective investment optimization
• Simulation, scenario, equilibrium, operation/investment optimization

[31,33,123,125,
126] 
[22,122] 
[124]

Algorithm used • Linear optimization, mixed integer linear programming, generic network, agent-based, 
etc.

• Linear, nonlinear, dynamic, mixed-integer, heuristic, or other

[31,52,53,123,
125] 
[22]

Objective function Levelized cost of electricity (LCOE), total cost, net present value (NPV), annualized system 
cost

[123]

Programming language/ 
Software

GAMS, AIMMS, Python, Fortran, etc. [33,53,125,126]

Spatial aggregation method Nonoptimal, optimal (k-means, GIS, etc.) [31]
Modeling resolution Spatial resolution • Number of regions/nodes

• Number of regions/nodes, region type (administrative, climate, etc.)
• Single-node, multi-node

[31,33,125] 
[36] 
[22]

Spatial resolution flexibility Yes, No [31,33,126]
Spatial extent Building local, regional, national, and global [31,52,122–125]
Temporal resolution Sub-hourly to annual resolution [22,33,36,52,

122–126]
Temporal flexibility Yes, No [33,52]
Time Horizon Short and long-term [33,36,52,122,124,

125]
Time horizon flexibility User-defined, no [52,125]
Time analysis Snapshot, evolution [53]

Technological details Renewable technologies Wind, solar, hydropower, geothermal, wave, and tidal power [52,125]
Storage technology inclusion Pumped hydro storage, compressed air energy storage, batteries, hydrogen, and thermal 

energy storage
[52,125]

(continued on next page)
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Table A- 1 (continued )

Criteria Sub-criteria Details References

Commodities • Power, transport, heat
• Power, transport, heat, fuels, hydrogen

[123] 
[31,125]

Demand sectors • Building, electricity, transport, industry
• Building, power, energy, heating, transport, hydrogen, biomass
• Transport, residential, commercial, agriculture
• Energy sector (electricity, heat, transport)

[125] 
[36] 
[52] 
[124]

Demand representation Elastic, inelastic [53,125]
Geospatial aspect Incorporation of spatial 

details
Infrastructure planning, region-specific energy service demand, GIS, multi-scale modeling, 
region-specific reference energy system

[36]

Aim of geographical 
disaggregation

Explanation [36]

Included GIS tool Yes, No [31,127]

Energy supply:

Several studies have simplified the assessment of RE generation using different approaches. Prina et al. [28] spatially disaggregated PV and 
onshore potential, battery storage, and power transmission capacity by multiplying the population by the average PV generation per person. ElSayed 
et al. [41] used various methods to estimate upper limits for RESs based on the renewables’ current share and land availability. Regarding land 
availability, 6 % and 4 % restrictions are imposed for solar and wind installation after excluding protected and urban areas. In addition, global weather 
data was used to calculate the hourly solar and wind production. Another way to simplify the inputs is to evaluate a specific site as a representative 
node for a larger area. Solomon et al. [76] proposed assessing one site in each region as a representative indicator of the entire region’s solar potential. 
Gulagi et al. [75] employed various approaches to extract the potential of RESs and subdivided the country’s map with specified RE capacities. 
Because solar energy variation is negligible in Bangladesh, evaluating a specific site to represent the solar potential for the entire subregion is feasible. 
The biomass potential is obtained from existing research and is divided into sub-regions based on population factors. Additionally, geothermal energy 
potential is calculated based on the ambient surface temperature, heat flow, and extrapolation approach for areas without data. Furthermore, Lopez 
et al. [81] estimated geothermal potential using surface ambient temperature and heat flow for eight regions in Bolivia. Solar, wind, and hydro-energy 
potential is obtained from weather data. Biomass potential was also classified and estimated for solid biomass waste, residues, and biogas. As an 
illustration, Fig. B- 1 summarizes approaches for estimating solar rooftops and GMPV, considering spatial inputs, temporal resolution, spatial reso
lution, and constraints across three levels of accuracy, from highly precise to low-accurate approaches.

In addition to these methodologies, multiple investigations have used global or national databases and allocated data among targeted regions. For 
instance, they acquired solar and wind data at a spatial resolution of 50 km × 50 km from NASA’s surface meteorology and solar energy database. They 
processed these data using the German Aerospace Centre database [41,57,76]. Göke et al. [63] obtained capacity factors of RESs and storage capacity 
from the Ninja website at the Nomenclature of Territorial Units for Statistics (NUTS) level. In addition, the capacity factors of PV and wind are 
allocated to regions at the NUTS2 level by considering urban and suburban areas for rooftop PV and agricultural and forest areas for wind and GMPV. 
Subsequently, the share of PV and wind for these land-use categories is determined based on assumptions from the literature to estimate the renewable 
potential for each region within the NUTS2 level. However, the total energy potential remains fixed for each NUTS level. Furthermore, Kendziorski 
et al. [43] used a database to extract data on solar (GMPV and rooftop PV) and onshore wind potential at the national level. The energy potential was 
allocated among 38 regions of Germany, considering forest and agriculture areas for onshore wind and GMPV and urban and sub-urban layers for 
rooftop PV. Furthermore, a geological map is used to assess the site quality for energy production. Hörsch et al. [95] estimated the maximum gen
eration capacity of solar and wind by using a constant technical potential density for each RES and available area, considering land use claims and 
public acceptance. To this end, 30 % of available land is allocated to wind energy, and 1 % is designated for solar energy installations.

Some studies focus solely on investigating the availability of bioenergy in certain regions. Bramstoft et al. [56] extracted the geographical dis
tribution of available bioenergy resources and straw across 98 municipalities of Denmark from available information. The biomass potential for 
different sources is considered at the municipality level, encompassing straw for energy and manure, deep litter, grass, and organic waste for biogas 
production. Mohd Idris et al. [58] disaggregated the availabile potential of bioenergy feedstock among 560 equally sized grids in Malaysia. Different 
criteria are used for each bioenergy type, including palm oil mills’ locations and capacities for palm kernel shells, palm plantation maps for oil palm 
trunks, locations and capacities of rice mills for rice husks, paddy plantation maps for rice straw, and livestock population maps for manure.

In a comprehensive study in the Netherlands, the spatial claims are estimated for multiple land uses such as built environment, agriculture, forests, 
and nature. First, they distinguished rooftop PV and GMPV for their solar energy potential. For rooftop PV, they extracted building footprints using an 
intersection tool in GIS and estimated the PV potential for the case study. For GMPV, spatial claims were defined, including the built environment, 
forests and nature, national landscapes, and energy infrastructure. Additionally, this study determines standard buffer zones of the built environment, 
networks, and energy infrastructure in different scenarios as exclusion zones for 2030 and 2050. Furthermore, various fractions are used to determine 
the potential GMPV in agricultural land for progressive, intermediate, and conservative scenarios. For onshore wind, considering the scenarios 
mentioned, they used the layer of possible locations for GMPV, including transmission networks, and used a greater buffer zone to build the envi
ronment. Additionally, they utilized the exclusion zones to identify the geothermal potential areas and used a grid map (1 km × 1 km) to define their 
technical potential. For industrial waste heat (IWH), they used relevant databases to extract data from industries producing IWH. Finally, they 
classified biomass into six types for assesing biomass potential and assumed specific land availability for each type in 2030 and 2050 [30]. 
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Fig. B- 1. Methods and components to estimate resource and technical potential of solar energy.
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Appendix B 

Energy demand:

As mentioned in section 3.3.2, studies use aggregation, disaggregation, or a combination of these approaches to obtain regional energy demand 
data. Using a disaggregation method, a study in Malaysia estimated power, heat, and transport energy demand between 2020 and 2050 for all 560 
equally-sized grids. Various assumptions are made for the spatial disaggregation of energy demand, including the use of a power substation map for 
electricity, a natural gas map for heat demand, and a population map for transport fuel demand [58]. Henni et al. [60] used a hierarchical meth
odology to disaggregate heat and electricity consumption from national databases to state, district, and municipality levels across energy sectors. For 
the building sector, they used current and future population factors (at the state level), population for appliances, and population and living space for 
heat (at district and municipality levels). For industry and services, they used current and future population and employment rates (at the state level), 
energy consumption (at the district level), and the number of employees (at the municipality level). The transportation sector used current and future 
population, the rate of registered vehicles, and EVs for all administrative levels. Additionally, representative load profiles are used for each energy 
sector. Siala et al. [42] used an hourly load profile for each European country and disaggregated these data using a land use map for each demand 
sector. The same load profile was used for both 2015 and 2050.

ElSayed et al. [41] divided Egypt into seven sub-regions and obtained regional data from existing sources or by distributing national data using 
various methods. For example, the demand for space heating among regions is allocated using population data. As an assumption, a 3 % growth rate is 
considered for developing electricity demand by 2050. To obtain the hourly power demand profile, this study employed a methodology that involved 
different indicators such as air conditioning, tourism contribution, and local and seasonal temperatures. Colbertaldo et al. [40] used a transmission 
system operator (TSO) database to disaggregate energy load from the market zone to the regional level for the power, gas, and industry sectors. The 
demand is distributed among regions, considering the current shares of annual demand and the available areas defined by TSO. Similarly, 
hourly-resolved power demand profiles are provided for each bidding zone based on historical trends. Finally, the electric load is calculated by 
considering the contributions of residential, services, transportation, and industry sectors. One approach involved the extraction of power demand 
profiles and allocating them across regions using population distribution and the number of vehicles. Additionally, the hydrogen demand is estimated 
by analyzing the industry sector’s heat demand and the share of cars. They also spatially disaggregated heat demand across the regions based on the 
plant distribution [64].

In contrast, by using an aggregation method, a study conducted in Chile derived demand data from an existing dataset, grouped these data by zone, 
and reclassified it by the energy sector (power, heat, transport, and desalination) and energy form (electricity, heat, and fuel). Then, the energy 
demand in each form is allocated among end-users or consumption sources, e.g., power demand is divided into residential, commercial, and industrial 
[128]. Sahoo et al. [30] proposed using the demand for the industry’s final product unit instead of the energy demand of the industrial sector. The 
researchers used the projected dwellings as a suitable index instead of residential energy demand. Furthermore, a GIS database was used to collect 
building-related information, including building type, service type, energy label, and construction year. In another study, these researchers classified 
the energy demand sectors as the built environment, industries, agriculture, and transportation. For transportation, the information was allocated 
according to the population distribution at the regional level. The built environment is classified into three main categories: apartments, terraced 
houses, and other buildings, with their corresponding energy labels ranging from highly efficient to highly inefficient buildings. Additionally, services 
are classified into different types, including offices, educational institutions, hospitals, halls, and others with corresponding energy labels. The in
dustry is considered in terms of its specific activities and current and future production projections. Finally, agriculture is considered in terms of its 
related heat, electricity, and machinery demand [39].

Population is a primary factor in allocating or calculating the energy demand in most studies. Two studies utilized a regression method by 
considering population, GDP, and the historical trend of power consumption to estimate the energy demand [59,62]. Furthermore, a different 
investigation used a current database to allocate energy demands among various regions based on population distribution and GDP. In addition, 
hourly demand profiles are calculated for residential, industry, and service sectors using standardized load profiles [43]. Bogdanov et al. [57] stated 
that the final electricity demand decreases due to population decline and advancements in technology and efficiency. It is assumed that residential and 
commercial energy consumption decreased by 20 %, industrial demand by 30 %, and cooling demand by 6 %. Transportation demand is based on the 
population decline factor and projected transportation volume for 2030, which is then extrapolated to 2050. However, another study derived power 
demand from an existing database for 2010 and 2016 and extrapolated it using a growth rate by 2050. The hourly load profile for each sub-region is 
calculated as a fraction of the total power demand, using data derived from the literature and weighted by the population of each sub-region [75]. In a 
study conducted in Bolivia, energy demand is extrapolated using an existing database for 2030. The growth rate for energy demand is estimated by 
considering the population and the increase in energy access. The power sector was classified into residential, commercial, and industrial demand 
categories. Heat demand was classified into space heating, domestic hot water, biomass, and industrial process heat. Additionally, the transport sector 
is categorized into road, rail, marine, and aviation, and the energy demand is estimated based on vehicle technology and specific vehicle energy 
demand [81].

Energy infrastructure:

Like most reviewed ESMs, OMNI-ES’ energy infrastructure is designed as a network graph with nodes and edges. Spatial nodes depict energy 
system elements such as generators, energy demand, RESs, and storage, while edges represent energy networks. In this model, the power transport 
capacity is limited to seven bidding zones in Italy, based on the TSO’s information. As each bidding zone includes several regions, these limits are set 
on the combined power flow between areas rather than separate limits for individual nodes. These values are determined according to current network 
capacity and planned upgrades by 2040. The same approach identifies power transfer limits at the country’s import points. Furthermore, the gas 
network’s transport capacity is estimated using existing natural gas pipelines’ capacity to transfer the CH4-H2 blend. The transport capacity of all 20 
nodes is determined by summing the capacity of pipelines that connect these regions in pairs. The hydrogen flow between nodes is calculated based on 
hydrogen capacity, which comprises production and import. Predefined limits on capacity and flow rates constrain hydrogen flow. For biofuel, the 
model consideres the constraint on biomass consumption. It also simplified all fuel types into a single category for each node. This study also simplified 
the CCUS process using an annual balance approach, without modeling the local storage, inter-nodal, and long-distance transportation [40].

PyPSA-Eur-Sec, an extension of PyPSA-Eur, offers a comprehensive ESM that integrates a spatially explicit approach to cluster power transmission 
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nodes with RES. It includes details of the gas network, CCUS, and enhanced transportation and biomass components. The electricity network is 
modeled in nodal configuration, and its distribution network is designed as links representing the energy transfer between distribution and trans
mission levels. The model has two options for modeling solid biomass in one node or multiple nodes. The multi-node structure includes biomass 
potential (distributed based on each country’s population density) and biomass transport between countries [129]. Biogas and solid biomass are 
assumed to be transported between countries without bottlenecks since each country has a surplus biomass supply compared to its demand. CCUS 
networks can be modeled as single node for Europe or disaggregated in nodal structures using CO2 transport pipelines. The transportation of CCUS is 
unconstrained among countries in the model. The Methene network can also be modeled in one node or multiple nodes. Notably, modeling methane in 
one node is logical as no bottlenecks are expected due to the future low demand, and it can be freely transported between countries. The liquid 
hydrocarbons are modeled as a single node due to a low transport cost and no bottlenecks in the future. The hydrogen network can be activated as the 
nodal configuration in the model. Two options for storing hydrogen include overground steel tanks and salt caverns, with a 50 km exclusion zone from 
the shore. Unlike the transmission grid, the distribution network is not included, and optimization focuses only on the capacity from the transmission 
grid to the LV level [96]. Therefore, PyPSA-Eur-Sec simplified the transportation of biomass, biofuels, and CCUS by assuming no regional bottlenecks. 
It also simplified the methene and liquid hydrocarbon infrastructure in one node. Compared to PyPSA-Eur [95], this model reduces the spatial res
olution to one node per country to tackle computational limitation.

OPERA and IESA-NS are models that effectively integrate different spatial energy infrastructure components. OPERA is soft-linked by a pan- 
European power market model that considers the international electricity trade-off. They used GIS to calculate the high voltage (HV) power 
network distance between regions. Using the current power network plans, they have created some nodes and connected all municipalities with at 
least one HV line. They have also included the region-based medium voltage (MV) network in the ESMs and the network distance in the balance 
constraint of energy flow. They proposed MVs to connect cities, integrate RES with the grid, and link a sizeable industrial cluster. For the heating 
network, they incorporated new nodes to accommodate DH, an uncommon feature in the current ESMs. They have differentiated between the 
transmission and distribution of the heating network and connecting distant nodes through transmission networks. They used GIS to find the closest 
routes between industry clusters, city centers, city outskirts, and geothermal doublets. They included all possible routes between these nodes and 
optimized the results in OPERA [39]. The best offshore hubs are defined in IESA-NS by estimating the space available for single-use and multi-use 
activities of various clusters in the North Sea. They deduced unavailable areas due to different spatial claims within the defined groups. The study 
analyzed several spatial claims activities in the North Sea, including protected and vulnerable areas, fishing and shipping networks, sand extraction 
areas, and oil and gas networks. Furthermore, they calculated the physical distance between cluster centroids to measure the required HVDC and 
hydrogen pipeline length. In addition, they estimated the capacity and size of suitable infrastructure that could be reused for future energy system 
deployment, including power cables and natural gas pipelines. Moreover, a database is employed to calculate the potential of hydrogen storage within 
each node [29].

Three geographical dimension layers are defined in the Balmorel model that shapes its energy network structure. The first layer is countries, which 
help formulate policies and aims for them. The second layer consists of regions defined by power system transmission. This layer acts as copper plates 
regarding electricity generation and demand. The third layer includes areas that help determine VRES’ capacity and investment options for energy 
generation and total load hours. The heat network is defined as a cooper plate in this layer [130]. AnyMOD follows a graph structure for modeling an 
energy system. Initially, the model is executed for Europe, and a single node defines each country. Subsequently, the investment decisions of all 
countries were fixed, and the model was executed for 38 regions in Germany. A simplified power transmission network is considered for exchanging 
power between regions. Synthetic methane can be transported through the existing pipeline network. For hydrogen, the current pipelines need to be 
upgraded [43]. Using the REMix model, Germany is divided into 18 regions, with aggregated power demand, power plants, and storage for each area. 
The transmission grid capacity, the electricity exchange, and the capacity of hydrogen electrolyzers and storage are obtained from European REMix 
results [64].

Energy transmission, storage, and CCUS are also synthesized in different ESMs. LUT-ESTM is designed to consider the HVAC and HDVC of power 
transmission between regions. The model calculates the optimal power transmission grid capacity, the capacity of AC/DC converters, the length of 
power lines, and their losses. The efficiency of HVDC grids is calculated using the grid length and converter’s efficiency. Meanwhile, the efficiency of 
HVAC depends only on the transmission distance. The distance-related losses are calculated for both transmission lines [57,131]. Prina et al. [28] 
developed a framework based on dispatch/operational optimization to manage the surplus RE generation by storing it through pumped hydro or 
batteries or exporting it to another node to fulfill its demand or store it. Siala et al. [42] estimated regional pumped hydro storage capacities and 
divided an equal battery capacity between regions. Power constraints of transmission lines and their associated losses are also considered in the model. 
Transmission lines are allocated across regions based on their lengths and voltage levels. This transmission network is considered for connection 
between countries. Regarding the CCUS network, Mesfun et al. [132] identified the locations and potential of CO2 sources within the Alpine region 
using GIS. Considering the future projections, these databases include the CO2 emissions from power plants, CHPs and processes, other industrial 
processes, and air. However, they did not classify the industrial types as CO2 emitters in the model.

In many ESMs, the Euclidean distance approach is commonly used to estimate the transmission length and capacity. For instance, the OptiFlow 
model was employed to determine the location of biogas plants and refineries. The researchers applied the Euclidean distance by considering the 
geometric centroid of each municipality to transport the biomass across regions by trucks. Excess heat potential is distributed equally among Den
mark’s five main district heating networks [56]. The road and sea transportation network is established, including the distance between grids, grids 
and harbors, and harbors for optimization purposes in the model. In road transportation networks, trucks are used to transport products, while in sea 
transportation, ships are employed to move products from harbors to targeted grids. The required extension of power transmission lines is considered 
to connect agricultural mills to power substations. Additionally, the necessary extension of steam pipelines for transporting bioheat is considered for 
industrial demand centers [58]. Due to the lack of available data, Das et al. [62] utilized the Euclidian distance approach to calculate the length of HV 
power transmission lines between regions through the TIMES model. In another investigation, the same approach is used to estimate distances among 
grids and harbors to transport feedstock through roads, sea, and pipelines for all grids.
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Appendix C

Fig. C- 1. (a) Linking approaches according to their linking degree taken from Ref. [111]; (b) The hard-linking of results between Balmorel, OptiFlow, and TIMES-DK 
taken from Ref. [56]; (c) Soft link method of spatial analysis, COMPETES, and OPERA model adopted from Ref. [30].

Data availability

No data was used for the research described in the article.
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[6] Solaun K, Cerdá E. Climate change impacts on renewable energy generation. A 
review of quantitative projections. Renewable and sustainable energy Reviews 
2019;116:109415.

[7] Gernaat DE, de Boer HS, Daioglou V, Yalew SG, Müller C, van Vuuren DP. Climate 
change impacts on renewable energy supply. Nat Clim Change 2021;11(2): 
119–25.
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[23] Böhringer C, Rutherford TF. Integrated assessment of energy policies: 
decomposing top-down and bottom-up. J Econ Dynam Control 2009;33(9): 
1648–61. https://doi.org/10.1016/j.jedc.2008.12.007.

[24] Krook-Riekkola A, Berg C, Ahlgren EO, Söderholm P. Challenges in top-down and 
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[127] Groissböck M. Are open source energy system optimization tools mature enough 
for serious use? Renew Sustain Energy Rev 2019;102:234–48. https://doi.org/ 
10.1016/j.rser.2018.11.020.

[128] Osorio-Aravena JC, et al. Synergies of electrical and sectoral integration: 
analysing geographical multi-node scenarios with sector coupling variations for a 
transition towards a fully renewables-based energy system. Energy 2023;279: 
128038. https://doi.org/10.1016/j.energy.2023.128038.

[129] PyPSA-Eur-Sec. "PyPSA-Eur-Sec: A Sector-Coupled Open Optimisation Model of 
the European Energy System." https://pypsa-eur-sec.readthedocs.io/en/latest/i 
ndex.html (accessed.

[130] Wiese F, Bramstoft R, Koduvere H, Pizarro Alonso, Balyk O, Kirkerud JG, 
Tveten ÅG, Bolkesjø TF, Münster M, Ravn HV. Balmorel open source energy 
system model. Energy Strat Rev 2018;20:26–34. https://doi.org/10.1016/j. 
esr.2018.01.003.

[131] Bogdanov D, et al. Radical transformation pathway towards sustainable 
electricity via evolutionary steps. Nat Commun 2019;10(1):1–16.

[132] Mesfun S, et al. Power-to-gas and power-to-liquid for managing renewable 
electricity intermittency in the Alpine Region. Renew Energy 2017;107:361–72. 
https://doi.org/10.1016/j.renene.2017.02.020.

K. Javanmardi et al.                                                                                                                                                                                                                           Renewable and Sustainable Energy Reviews 213 (2025) 115470 

24 

https://doi.org/10.1016/j.envsoft.2009.11.008
https://doi.org/10.1016/j.rser.2018.10.017
https://doi.org/10.1016/j.renene.2021.06.133
https://doi.org/10.1016/j.egyr.2020.04.025
https://doi.org/10.1016/j.egyr.2020.04.025
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref86
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref86
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref86
https://doi.org/10.1016/j.jclepro.2022.131602
https://doi.org/10.1016/j.jclepro.2022.131602
https://doi.org/10.1016/j.apenergy.2020.115594
https://doi.org/10.1016/j.enbuild.2023.113533
https://doi.org/10.1016/j.trd.2016.08.009
https://doi.org/10.1016/j.energy.2021.120090
https://doi.org/10.1016/j.enconman.2022.115556
https://doi.org/10.1016/j.enconman.2022.115556
https://doi.org/10.1016/j.enpol.2012.01.050
https://doi.org/10.5334/jors.188
https://doi.org/10.1016/j.esr.2018.08.012
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref96
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref96
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref97
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref97
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref97
https://doi.org/10.1109/ENERGYCON.2016.7513882
https://doi.org/10.1109/ENERGYCON.2016.7513882
https://doi.org/10.1016/j.apenergy.2021.116726
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref100
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref100
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref100
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref101
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref101
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref102
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref102
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref102
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref103
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref103
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref104
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref104
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref105
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref105
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref106
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref106
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref106
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref107
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref107
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref107
https://doi.org/10.3390/en13102565
https://doi.org/10.3390/en13102565
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref109
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref109
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref109
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref110
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref110
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref111
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref111
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref111
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref112
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref112
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref112
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref113
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref113
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref113
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref114
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref114
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref115
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref115
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref116
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref116
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref116
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref117
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref117
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref117
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref118
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref118
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref118
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref118
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref119
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref119
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref120
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref120
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref121
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref121
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref121
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref122
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref122
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref122
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref123
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref123
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref124
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref124
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref124
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref125
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref125
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref125
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref126
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref126
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref126
https://doi.org/10.1016/j.rser.2018.11.020
https://doi.org/10.1016/j.rser.2018.11.020
https://doi.org/10.1016/j.energy.2023.128038
https://pypsa-eur-sec.readthedocs.io/en/latest/index.html
https://pypsa-eur-sec.readthedocs.io/en/latest/index.html
https://doi.org/10.1016/j.esr.2018.01.003
https://doi.org/10.1016/j.esr.2018.01.003
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref131
http://refhub.elsevier.com/S1364-0321(25)00143-1/sref131
https://doi.org/10.1016/j.renene.2017.02.020

	Unraveling the spatial complexity of national energy system models: A systematic review
	1 Introduction
	2 Review methodology
	2.1 Defining research scope
	2.2 Systematic literature review
	2.3 Classification of energy system models
	2.4 Assessment of spatial parameters and linking techniques
	2.5 Spatially integrated framework

	3 Results and discussion
	3.1 Classification and evaluation of ESMs
	3.2 Spatially explicit ESMs
	3.3 Spatial aspects of energy systems
	3.3.1 Spatial aspects of energy supply
	3.3.2 Spatial aspects of energy demand
	3.3.3 Spatial aspects of energy infrastructure and storage

	3.4 Spatial aggregation methods
	3.5 Linking methods of ESM and spatial model

	4 Synthesis and perspective
	4.1 A modular framework for integrating spatial aspects into ESM
	4.1.1 Module A: A detailed spatial model
	4.1.2 Module B: spatial-converter
	4.1.3 Module C: A highly detailed ESM
	4.1.4 Module D: ESM-converter

	4.2 A recursive framework for ESM and spatial model
	4.3 Challenges in implementing spatially explicit ESM

	5 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Acknowledgements
	Energy supply:

	Appendix B Energy supply:
	Energy demand:
	Energy infrastructure:

	Appendix C Energy infrastructure:
	Data availability
	References


