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Monitoring the condition of geothermal facilities and equipment (GFE) is crucial for ensuring reliable and cost-
effective operations. This work emphasizes the importance of real-time data-driven condition monitoring for
proactive operation and maintenance (O&M) planning in geothermal assets. Recognizing that operational
planning can be significantly impacted by uncertainties, a novel framework is proposed to monitor the perfor-
mance of geothermal assets under these conditions. The approach combines machine learning (ML), statistical
methods, and expert knowledge to account for uncertainty in evaluating the degradation or onset of failure in
GFE. This method was applied to field data from a geothermal plant to monitor Electrical Submersible Pumps
(ESPs) and tested for the accuracy and robustness of the framework. Additionally, the framework provides
explainability, aiding in understanding the factors influencing equipment condition and degradation. The
framework was capable of systematically detecting the onset of the ESP degradation up to six months prior to its
failure, with an accuracy of more than 95% in estimating the performance of ESP during normal operation. The
explainability layer provided insights on the cause of the failure which was not attributed to ESP malfunction but
to a restriction in production inflow into the well. The framework’s ability to accurately assess equipment
condition under uncertainty supports more informed maintenance decisions, ultimately improving GFE opera-
tional reliability and efficiency.

1. Introduction occasional equipment degradation and malfunctions are still inevitable.

It is necessary to monitor the assets and equipment condition constantly

Low and mid-enthalpy geothermal energy is an increasingly impor-
tant part of the heat transition, making the heating of moderate climate
horticulture sector and built environment free from natural gas (IEA,
2021). Geothermal plants consist of several equipment, parts, and
components both in the subsurface and at the surface including wells,
downhole pumps, separator, filters, heat exchanger, and valves. Despite
an extensive operational experience in geothermal systems, character-
ized by a steep learning curve with ongoing operational knowledge
acquisition, the sector is still in an emerging phase. The operation of
geothermal assets is often associated with problems in the GFE caused by
the chemistry of the geothermal brine (Ocampo-Diaz et al., 2005),
production conditions such as pressure and temperature (Wasch et al.,
2019), variability in the heat demand (Lund and Lienau, 2009) and
operational errors (van’t Spijker et al., 2016). In the current systems,

to prevent unplanned shut-ins and costs associated with the inspection,
repair, and downtime. Tools providing insight and delivering predict-
ability in GFE condition deterioration and malfunctioning are still in
development (Siratovich et al., 2020).

Several technologies have been developed to monitor operational
performance, utilizing either sensor data alone or in combination with
models, a method known as model-based monitoring (Jaber, 2016). The
latter relies on the continuous comparison of real-time data with pre-
dictive models to detect anomalies, optimize system performance, and
enhance operational reliability (Surucu et al., 2023). These technologies
can provide insights into equipment performance, up to real-time, and
detect component and system anomalies (Chandola et al., 2009; Loh
et al., 2018; Poort et al., 2020; Octaviano et al., 2020). The operation
monitoring and maintenance planning is shifting gradually from
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reactive and corrective to preventive and eventually predictive.
Condition-based monitoring is a critical paradigm in the realm of pre-
dictive maintenance. Corrective maintenance refers to the process of
repairing or restoring a system, equipment, or facility to its proper
functioning state after a failure or malfunction has occurred which is a
reactive maintenance strategy (Moleda et al., 2023). The preventive
maintenance involves scheduled inspection and maintenance to prevent
potential failures in the equipment which has lower inspection cost but
lead to a higher failure cost for unplanned instances (Soh et al., 2021).
The predictive maintenance allows for proactive maintenance prior to
the failure by utilizing data analysis and monitoring techniques.
Currently, most of the maintenance and operation planning is performed
by operators’ knowledge based on available data, generally without
model-based decision support assistance.

As an example, an Electrical Submersible Pump (ESP) is a critical
equipment in geothermal assets due to its vital role ensuring the desired
production rates and high costs associated with their inspection, main-
tenance, and replacement. ESP can often suffer from performance
degradation or failure due to changes in their efficiency, suboptimal
production from the reservoirs, wrong operational settings, or an oper-
ator mistake. It has been observed that ESPs in geothermal systems on
average have a shorter lifetime and they are dealing with several
operational issues which are unique for geothermal systems (Shoeibi
Omrani et al., 2021) due to utilization of larger pumps with a higher
horsepower combined with high temperature and high salinity of the
geothermal fluid. Apart from the production downtime due to ESP
maintenance or replacement, there is a large cost associated with the
replacement of ESPs up to 3% of the CAPEX (Capital Expenditure)
(Octaviano et al., 2022). A robust ESP operational decision support
system is therefore needed to operate these pumps in an optimal way,
and to enable operators to perform early failure detection for improving
maintenance planning.

There are several sensors providing monitoring data for the entire
GFE, including different components such as ESP. This data can be used
and processed to provide real-time insights on the performance of the
geothermal production. Machine learning (ML) techniques are increas-
ingly being applied to model and monitor equipment in process instal-
lation and energy assets (Shoeibi Omrani et al., 2018; Alatrach et al.,
2020). Based on the provided example of ESPs, they come equipped with
various sensors, including temperature, pressure, frequency, vibration,
voltage, and current, enabling the utilization of complex ML methods.
However, the multitude of potential failure modes associated with ESP
systems poses challenges for condition monitoring and predictive
maintenance (Shoeibi Omrani et al., 2021). Examples of prior work in
this field, which are mainly from the petroleum sector, are summarized
in Table 1. The publications are compared based on four different
criteria, data-driven, expert knowledge, explainability, and uncertainty.
Previous studies have employed a wide range of algorithms and meth-
odologies for ESP monitoring, from detecting ESP failure patterns using
principal component analysis (Gupta et al., 2016; Adesanwo et al., 2017;
Bhardwaj et al., 2019) to leveraging deep learning techniques, such as
convolutional neural networks (CNNs) (Lastra et al., 2021). Additional
applications of ML in ESP systems include predictive maintenance
(Abdalla et al., 2022), failure detection and diagnostics (Lastra et al.,
2022), and the establishment of a digital ESP monitoring framework
(Lastra, 2019). Few studies also focused on development of digital twin
for ESPs to predict the remaining useful lifespan of ESP or ESP compo-
nents such as stator windings (Don et al., 2024). Most publications focus
on the application of individual machine learning and data-driven
methods for monitoring or detecting ESP failures. However, as evident
from the literature, the aspects of uncertainty and the use of ensemble
models have received limited attention.

The challenges of data-driven condition-based monitoring are
mainly two folds, lack of explainability of the data-driven models and
dealing with uncertainties in the processes. The monitoring of GFE can
be greatly impacted by the inherent uncertainties in monitoring data,
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uncertainties in the performance and lifetime of equipment components,
and the intricate complexities involved in modeling the dynamic
behavior of such equipment (Kullick et al., 2017). These factors
complicate the operational decisions and maintenance planning and
necessitate sophisticated techniques and robust predictive models to
accurately anticipate and mitigate potential operational problems in
geothermal systems. Applying ensemble ML techniques can provide
more confidence in the prediction made by ML models for condition
monitoring (Surucu et al., 2023). By employing data-driven models, the
challenge of modelling the complex production behavior in geothermal
assets can be partially tackled, however these models are lacking
explainability. Explainable Al enhances data-driven decision-making by
providing transparent and interpretable insights into the models’ pre-
dictions, enabling users to understand, trust, and effectively act on the
insights from data-driven models (van Gerven et al., 2019).

To date, limited efforts have been made to explore the impact of
uncertainties in monitoring geothermal systems or predicting compo-
nent performance and failures. In a thorough and systematic review of
application of data-analytics in the operation of geothermal systems
(Abrasaldo et al., 2024), the word ‘uncertainty’ was hardly mentioned in
the literatures reviewed in this publication. Looking into other sectors,
in one of the studies performed by Dussi et al. (2022), Bayesian neural
networks were employed to predict ESP degradation in oil wells across
different forecasting horizons, achieving remarkably low error scores of
2.5% for a ten-day prediction horizon by explicitly incorporating causal
relationships between input features and the associated probability of
the specific failure. A recent study by Costa et al. (2024) demonstrated
the integration of uncertainties with deep learning models for simu-
lating ESP systems in oil wells. The study detailed the development and
testing of NARX DNN models for ESP simulation, where synthetic data
was generated to meet the data requirements of this approach, and
Bayesian inference was applied for uncertainty assessment. The results
confirmed the accuracy of NARX DNN models in predicting ESP system
parameters. However, the incorporation of uncertainties into real-time
condition monitoring of geothermal assets and facilities, where fast
and robust methods are essential for handling field data, has not yet
been explored.

ML models are black-box, and their performance can be impacted by
several parameters such as data availability, data variability, and data
quality. Hence, operational decisions based on a single ML model
without considering uncertainties and explainability can be misleading.
To monitor geothermal plant equipment’s performance and assist with
operational decisions, we propose a novel data-driven framework. In
this paper, we developed a framework for model-based condition
monitoring of geothermal assets by integrating data-driven models, with
explainability and expert knowledge by leveraging ensemble ML models
and uncertainty metrics. The framework was tested on the data of a
geothermal ESP in a low-enthalpy geothermal asset to demonstrate its
accuracy and performance.

Unlike traditional approaches that primarily focus on model selec-
tion or rely on multi-variate data analysis, the proposed method adopts a
heuristic process to design and implement an ensemble-based solution.
By integrating multiple statistical metrics and explainability tools, the
framework aims to offer robust real-time anomaly detection and
degradation monitoring, providing insights into potential failure causes.
This work not only highlights the reasoning behind model design but
also expands the scope of condition monitoring by demonstrating the
practical application of uncertainty metrics beyond conventional pre-
diction error metrics. It is important to emphasize that the primary focus
of this paper is not on optimizing machine learning model architecture
or hyperparameters for system performance evaluation.

The organization of this paper is as follows: first, the Methodology
section provides a schematic overview of the developed framework,
detailing each component, including model training, explainability,
ensemble ML models for uncertainty analysis, metrics calculations, and
operator knowledge in anomaly detection. Next, the case study for
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Table 1
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Overview of studied literature and publications related to condition monitoring of geothermal systems and ESPs (both in geothermal and petroleum applications)
compared based on four criteria: data-driven modelling, integration of expert knowledge, explainability of the approach and dealing with uncertainties.

Reference Data-driven

Expert knowledge Explainability Uncertainty

v
Karnik et al. (2021);

Adesanwo et al., 2016**;
Gupta et al., 2016**;
Adesanwo et al., 2017**;
Bhardwaj et al., 2019**;
Sherif et al., 2019*%;
Peng et al., 2021*%;
Nanavaty (2024);
Hamedi Shokrlu et al., 2024
Guo et al. (2015);
Andrade Marin et al. (2019);
Jansen van Rensburg et al. (2019);
Zulkarnain et al. (2019);
Alamu et al. (2020);
Abdurakipov (2021);
Lastra et al., 2021, 2022;
Abdalla et al. (2022);
Alhashem et al. (2024)
Zhao et al. (2006);
Xi (2008);
Li et al. (2008);
Tao et al. (2011);
Zhao (2011);
Zhang et al. (2017)
Rauber et al. (2017);
Sharma et al. (2022)
Tandazo et al. (2022);
Octaviano et al. (2022);
Irl et al. (2023)
Costa et al. (2021)
Dussi et al. (2022);
Mello et al. (2022);

Costa et al. (2024)

X v X

v x/ /* X

* The methods based on expert knowledge and physics-based modelling are inherently explainable, however they do not directly provide parameters’ importance on

observed processes, like explainability applied to ML learning models.

** These studies utilized Principal Component Analysis (PCA) for event detection in ESPs, leveraging a data-driven approach that provides a certain degree of

explainability in the results.

which the framework was tested and validated is described. Subse-
quently, the results obtained from the framework testing are presented
and analyzed. In the conclusion section the highlights of the results and
proposed next steps are presented.

2. Methodology

The schematic and steps of the proposed framework is shown in
Fig. 1. The framework depicted in Fig. 1 outlines an approach to use ML

models for condition monitoring under uncertainty and explainability.
The framework consists of five steps and below is a detailed description
of each step.

Step 1: Model training (Data collection and ML models trainings
using historical data).

Initially, the historical data needs to be used to establish the base
model for condition monitoring. The focus is on historical data to train
the ML models representing the optimal state of the component or sys-
tem. Here, ‘optimal’ does not refer solely to maximum efficiency
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Fig. 1. Schematic of the framework for real-time monitoring of geothermal assets and facilities, X, y stands for the input and outputs of the models, respectively, to be
determined based on the quantities to be monitored, I: imputation based on the score of the ML model, Subscript t: time, m: model, k: index of trees in the ensemble

ML model (in this case quantile forest regression).

operation but encompasses operation across various points within the
operating envelope where no degradation or malfunction of the equip-
ment is observed. Thus, selection of the historical data to be used for ML
model is of great importance. This process typically begins with
consultation with subject matter experts (SMEs) or the plant operator to
determine which signals’ period best represent the healthy period of the
equipment. If such information is not available, unsupervised machine
learning such as clustering or dimensionality reduction can be utilized to
provide insights on degrading state of the equipment. Once the selection
of the normal period for the model training is done, a ML model is
trained following a set of procedures typically involve data pre-
processing, feature selection, model training, and hyperparameter tun-
ing to ensure robust and reliable performance on unseen data.

The preprocessing step is employed to smoothen the data noise,
address missing values, and identify and rectify any unphysical data
anomalies. The choice of the appropriate filter (such as moving average
or Savitzky-Golay filter), interpolation method (e.g. linear or poly-
nomial), and data imputation (e.g. listwise deletion or regression based),
and denoising techniques (e.g. wavelet transforms) depends on the
specific problem, as well as the type and quality of the data. The se-
lection of these techniques must align with the data characteristics to
ensure meaningful and accurate preprocessing results. After the selec-
tion of the historical dataset, the parameters of interest and features
need to be selected to support the monitoring of the plant or equipment.
The essential elements for building a baseline model representing the

normal state of the equipment is prepared. In this framework, we pro-
pose the use of ML models for condition monitoring due to the re-
quirements for calculation speed (to be deployed in real-time) and
complexities of the equipment and processes involved.

Two sets of ML models are trained on historical data, a set of indi-
vidual ML models and ensemble ML models. For the individual ML
models, a variety of ML models (ML Models (1, 2, ..., m)) are trained on
the historical data and the ones used in this study are random forest (RF)
regressor, support vector regression (SVR), artificial neural networks
(ANN), and extreme gradient boosting (XGBoost). RF, an ensemble
method using bootstrap aggregation of decision trees, improves pre-
diction accuracy through averaging and cross-validation, making it
robust against bias and variance (Breiman, 2001). SVR aims to find a
hyperplane that best fits data points within certain margins, focusing on
support vectors to minimize regression errors (Smola et al. 2004). ANN,
inspired by neural connections in the human brain, uses a multi-layer
perceptron architecture where weights and biases are optimized to
minimize prediction errors (Hastie et al., 2008). XGBoost, an algorithm
within the gradient boosting framework, sequentially builds decision
trees to correct errors from previous iterations, making it effective for
sparse data (Chemura et al., 2020) and enhancing predictive perfor-
mance through iterative improvements (Lu et al. 2020).

These models were chosen due to their general applicability and
well-established performance in regression tasks in similar applications
(Abdalla et al., 2022). While these models can handle temporal data,
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they do not explicitly model temporal dependencies. Models such as
Long Short-Term Memory (LSTM) networks, which are better suited for
time-series and temporal behavior, could also be considered in future
studies. It is important to note that LSTM would require substantial
amount of data for an effective training.

For the ensemble ML models to quantify uncertainties and confi-
dence bounds of the prediction, quantile regression forest was
employed. Quantile regression forest is an extension of the RF regression
model that allows for the estimation of conditional quantiles, rather
than just the conditional mean (Hastie et al., 2008). The quantile forest
algorithm works by growing an ensemble of regression trees, where each
tree is trained to predict a specific quantile of the target variable’s dis-
tribution. This provides a more complete picture of the conditional
distribution. Quantile regression forests have been shown to outperform
standard random forests in applications where the conditional distri-
bution exhibits heteroscedasticity or skewness (Meinshausen, 2006).
The selection of this method was due to its robust mechanism to estimate
prediction intervals and allowing for quantification of uncertainty and
statistical analysis in anomaly detection (Li et al. 2023). Each model is
optimized to predict the target variable and the optimized and trained
models are used in the following steps.

Step 2: Prediction step (ML model testing using real-time data).

Following the establishment of the baseline model, real-time data is
connected for condition monitoring. For this purpose, model prediction
emerges as a key component of the framework, facilitating the detection
of deviations between predicted and measured values. Real-time data
which is continuous data streams are collected from sensors or other
data sources and will be fed directly into the ML models for processing
and prediction. To enhance the effectiveness of this predictive approach,
various trained ML models outlined above are deployed for error esti-
mation. Several predictions are made in this step. Each individual ML
model (denoted by m) generates its own prediction (¥,,,) using the same
(real-time) input data. The individual predictions provide additional
insights into the status of GFE. Another set of predictions is performed
using ensemble ML models. From such ensemble ML models, ensemble
of predictions can be generated () based on real-time data inputs. In
addition, the predictions from the ensemble are averaged to yield a
single prediction value at time t (¥,). The output of the model’s pre-
diction is further forwarded to the next steps for metrics estimation (Step
3) and model explainability (Step 4).

Step 3: Metrics estimation.

Uncertainty can arise from several sources, including the selection of
model forms and errors inherent in the model itself, which aligns with
the approach taken in this work to assess model reliability through
statistical metrics. In this study, uncertainty is defined as the dispersion
of model predictions within the ensemble of machine learning models,
similar to the concept described by Der Kiureghian and Ditlevsen
(2009), where uncertainty is viewed as the variability in model outputs
(a.k.a. variance). This approach follows a common practice in machine
learning, where uncertainty is expressed by analyzing the spread of
predictions around a central value, providing a statistical measure of the
confidence in the model’s predictions, with wider dispersions indicating
greater uncertainty.

The ML models prediction will be compared with the data streams
which are recorded from the GFE. To detect whether the GFE is under a
degradation or an anomalous state, several metrics are required to
compare the estimation of the ML model with the actual measured value
from the sensors. The choice to use multiple metrics, rather than just
one, has been extensively studied across various applications. Research
has shown that relying on a single metric often provides an incomplete
representation of processes, particularly in real-world scenarios (Ribeiro
et al., 2016). The detection of anomalies based on models’ prediction on
the real-time data is performed using several metrics, including.

- Mean Squared Error (MSE)
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- Root Mean Squared Error (RMSE)

- Coefficient of Determination (RZ)

- Mean and median differences (for ensemble ML models)
- Empirical coverage (for ensemble ML models)

- Confidence interval width (for ensemble ML models)

Firstly, the definitions of the first three metrics which are used for
each individual ML model prediction (with subscript m) are given below:

1n .
MSEm = HZi:l (.yl - Ym.i) ?
RMSE,, = /MSE,,

g2 =1 2 0= Im)’
Y-y
In which.

n the number of data points in the prediction time window.

yi the actual value of the target variable for the ith data point.

Vm,i the predicted value of the target variable for the ith data point for
the ML model m.

y mean of the actual target variable values (also denotes as ).

The subscript m is dropped in the results and analysis section as these
metrics are reported for each ML model separately. It is important to
note that these metrics are often used to evaluate the accuracy of the
models. However, in this context we compare the estimated value of the
ML model with the actual measured value from the real-time data
stream to detect the mismatch between these values and potentially flag
it as an alarm to the operator of the plant.

For the ensemble ML model predictions from the quantile regression
forest, several additional metrics can be derived. These indicators were
evaluated for a selected prediction time window and were namely, ab-
solute difference between the mean and median of the predicted values,
width of the confidence interval bound and empirical coverage. Each of
the metrics are formulated as follows:

Absolute Difference = |u — M|

Confidence interval width = F (0.5 + %) —F! (0.5 - %)

"I eEA
Empirical coverage = <7Z‘:1 (::l = )>7

I(XieA):{(l): i xi S1“"’1(0.5+%)andxi EF’1<0.57%>

otherwise

In which.

M median of the predicted variable values.

p mean of the predicted variable values.

F~! Inverse of the cumulative distribution function of the predicted
values.

q desired confidence interval, a value between 0 and 1 (in this case
0.95).

I an indicator function as defined above, to count the number of data
points between the upper and lower bound of the confidence interval.

The first metric provides information on the skewness of the data
distribution as one of the metrics for deviation from the expected
behavior. One of the common figures for anomaly detection is based on
median absolute deviation (MAD) which is described as the median of
the absolute deviations from the data’s median (Dodge et al. 2010). In
the context of anomaly detection in this paper, anomalies are identified
by analyzing a window of predicted data points rather than individual
points, focusing on structured mismatches between the measured and
estimated values (Sagoolmuang et al., 2017). Thus, instead of using
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MAD as a measure of anomaly, the mean and median of the predicted
data are calculated to detect these anomalies. Another metric which is
evaluated on the ensemble ML model is the confidence interval width. If
the confidence interval width is increasing over time, this is an indica-
tion for growing uncertainty in the predictions as time progresses and
the model accuracy is decreasing (Hochenbaum et al., 2017). The final
metric is empirical coverage of the confidence interval (Schall, 2012).
This parameter refers to the proportion of confidence intervals that
contain the estimated values. By having a higher coverage of the esti-
mated data points within the confidence interval of the ensemble ML
model prediction, higher the probability of the system or equipment to
be in the normal condition. The metrics above are all calculated for the

Geoenergy Science and Engineering 249 (2025) 213775

trained models using real-time data. At this stage, no decision is made on
the state of the system or equipment and only different indicators are
estimated and passed into the next step for explainability and anomaly
detection.

Step 4: Model explainability.

Explainability is a crucial aspect for condition monitoring as they
provide insights into the factors driving equipment performance and
potential failures, enabling operators to prioritize resources and in-
terventions effectively. Understanding which features have the most
significant impact on equipment condition, not only enhances predictive
accuracy but also improves transparency and trust in the monitoring
system’s decision-making process. In this framework, permutation

Voltage

Current

T motor

CCION

25 50 75 0
T flow

0 50 25 50 75
freq P_intake

2500
Voltage

> > {
0 100 50 100 O 250 0.0 2.5
Current T_motor Q V_total

Fig. 2. Pairwise relationship between the variables in the dataset (frequency of the pump, intake pressure of the pump, flow temperature, voltage, current, motor
temperature, flow rate and total vibration). All the variables are included in both x and y axis with the same order. Each individual scatterplot (off-diagonal plots)
illustrates the relationship between two variables. The diagonal plots represent the distribution of each variable as histograms.
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importance was used as a method to assess the importance of features in
the developed and trained ML models. The method works by randomly
shuffling the values of a feature and measuring the drop in the model’s
performance (Altmann et al., 2010). This method was selected due to
being model-agnostic and easy to interpret which is key in operational
decisions. This step will enable targeted intervention strategies for in-
spection and maintenance by providing insights on the most influential
parameters causing a deviation from the normal operation state.

Step 5: Anomaly detection with expert knowledge.

The predictions and their associated metrics are analyzed to deter-
mine the state of the equipment or asset. The outputs of Step 3 (metrics
estimation) and Step 4 (explainability) are used as inputs for the
anomaly detection. This step is the point where expert knowledge is
integrated with the data-driven model, uncertainties, and explainability
which enable targeted intervention strategies an operator (or in the
future an automated system) can do. In the context of a decision support
system, the operator reviews the model outputs and all the calculated
metrics together with the model explainability results to classify the
status as either “Normal” or “Abnormal".

As the first step, the calculated metrics are used for the detection of
anomalies and events. Any change in the estimated metrics over time
can be indicated and flagged as an anomaly. In order to minimize the
number of alarms to the operator, thresholds can be set. Operators can
set custom thresholds for each of the estimated metrics for anomaly
detection, ensuring that the system triggers alarms based on the sensi-
tivity and risk tolerance appropriate for the specific operational context.
Selecting a threshold for each indicator is critical and impacts the per-
formance of the condition monitoring tool (Choi et al., 2021). If the
threshold is set at a high value (higher error to be detected as event), it
may lead to a high number of undetected events and if a lower value is
set, then a minute deviation from the threshold caused by e.g. noise in
the data can also be detected as an event and leads to overwhelming the
operators. In this study, we did not aim to recommend a threshold for the
detection of anomalies in geothermal systems but rather provide an
overview of different indicators trends near the degradation or anomaly
regimes.

The operator has the flexibility to configure alarms for anomaly
detection based on operational protocols, or criticality of the process,
allowing them to decide whether alarms should trigger when any single
indicator signals an anomaly or only when multiple indicators align.
This decision is based on predefined thresholds and rules derived from
historical analysis or the trends which are available in the handbooks
(Octaviano et al., 2022).

In the next step, the model explainability is used to support the
operator for confirming the anomaly. Since data-driven models are used
in this framework, their performance and accuracy will be impacted by
extrapolation. Thus, a mismatch between the prediction and measured
values can be caused by extrapolation errors, e.g. when in the evaluation
phase it is the first time that the pump is ramped up to its maximum
frequency and the ML models for ESP were not trained in this condition.
The feature importance estimated by explainability can provide further
insight on the actual reason of the mismatch prediction by the model.
Operator and experts’ wisdom will be used to analyze the model
explainability to flag it as a true event or not.

3. Case study
3.1. Dataset and pre-processing

In this study, the ESP in a low-enthalpy hydrothermal geothermal
well was used as a case study to demonstrate the proposed monitoring
framework. Two years of data from this well was provided with an
hourly data acquisition frequency. Several sensor data of the geothermal
production was provided, including flow rate, wellhead pressure, well-
head temperature and separator pressure. For the ESP, an extensive
dataset was provided including pump frequency, intake pressure, motor
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temperature, voltage, current, and vibration in two horizontal and
vertical directions along pump shaft (x and z). An overview of the pro-
vided data and pairwise relationships between variables in the dataset is
shown in Fig. 2 (using Seaborn Python Library (Waskom et al., 2017)).

Missing data and entries (e.g. containing NaN values) were replaced
using linear interpolation. Outliers were identified based on a statistical
threshold, defined as values exceeding three standard deviations from
the mean, and were replaced with interpolated values. The data received
from the system had already undergone a moving average filter, and no
additional data smoothing was performed. Finally, min-max scaling was
applied to normalize the data within the range of 0-1, ensuring con-
sistency across all features. For other applications or systems, data
preprocessing may require alternative algorithms or filters depending on
the specific data quality and characteristics, such as noise levels or the
frequency of missing values.

3.2. Data splitting and feature selection

According to the proposed framework and to construct a data-driven
model for the ESP (Step 2), several supervised learning techniques were
employed consists in training the model based on known input-output
pairs, before using the model on ‘unseen’ data. Since, the goal of this
method is to derive a model-based condition monitoring algorithm to
detect abnormalities or degradation in the geothermal systems, the
training period should consist of data associated to the normal condition
of the production, meaning that no degradation or malfunctioning
occurred yet. The historical data containing the normal operation of the
equipment is used for training the ML models. This dataset is split into
the training and validation subsets using a fixed random seed and no
shuffling to preserve the temporal order. From the total historical
dataset, 80% was used for training and 20% for validation. The current
dataset only contains 0.7% of missing data.

This evaluation should be done carefully to ensure that the trained
model can predict the production performance under the new conditions
otherwise the mismatch can also be associated to models’ inaccuracy. It
is crucial to test the model using data in a similar range as the training
set, and for this purpose the distribution of the data in the training and
test set was compared to ensure the data in both sets have a similar
distribution. A large difference of means and distribution range between
training and testing set were not observed. Based on the advice from the
pump operator, the degradation happened at an uncertain period in the
second year of operation, therefore, it was assumed that the first year of
operation are data of the ESP being in normal condition. The remaining
data was used for testing model’s capability in predicting normal ESP
performance and detecting off-normal behavior and/or degradation.
The histograms in Fig. 3 illustrate the distribution of feature values in
the training and test datasets. Understanding the similarities and dif-
ferences in feature distributions between these datasets is essential for
robust model generalization and performance evaluation. Differences in
dataset distributions, potentially attributed to degradation of the pro-
duction, are observable; however, notable overlaps suggest that errors in
the test set may not solely arise from extrapolation.

Three ESP parameters were selected to assess the condition of the
ESP in real-time, namely motor temperature, total vibration, and intake
pressure which are typical in condition monitoring of ESPs (Mohamad
et al., 2022). Motor temperature often provides indication on ESP per-
formance, overheating (often resulted from wear, lubrication or elec-
trical faults) and insulation degradation (Hoevenaars et al., 2021). The
total vibration is a direct measure for mechanical condition of the pump
resulted from imbalances, misalignments, or bearing issues and ESP
intake pressure can hint towards flow assurance, blockages, or reservoir
performance (Iranzi et al., 2024). For each output parameter, a certain
collection of input features from the original dataset was selected, as
shown in Table 2.
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Fig. 3. Comparison of variables’ distributions between the training and test datasets for all the 8 parameters in the dataset, including ESP frequency (freq), ESP
intake pressure (P_intake), flow temperature (T_flow), voltage, current, ESP motor temperature (T_motor), mass flow rate (Q), and total vibration (V_total).

Table 2
The input features and output parameters of ML models.

Input features Output parameter

£ Pin, Tfiow, Voltage, current, Vs, V;,Q
f+Pin, Triow, Voltage, current, Tmotor, Q
£,Q. Py, Tfiow, Tmotor, Voltage, current

Motor temperature: Tmotor
Total vibration: Vg
ESP intake pressure: P;,

3.3. ML models’ hyperparameter settings

This section provides a brief overview of the ML models used to
predict ESP parameters. For ANN regression, the output layer was
tailored to generate continuous values as predictions for the parameters
of interest. The ANN architecture includes an input layer with di-
mensions twice the number of features, two hidden layers with the same
dimensions and ReLU activation functions, and an output layer with a
single node and a linear activation function. The model is compiled with
the Adam optimizer. Key hyperparameters include 300 epochs, a batch
size of 10, and an early stopping criterion with a patience of 10 epochs,
monitoring the loss metric and restoring the best weights. SVR models
were constructed utilizing a linear kernel function. The key

Train set regression plot of deterministic models, Viotar

hyperparameter tuned was the regularization parameter, which controls
the trade-off between achieving a low error on the training data and
maintaining generalization to unseen data. The SVR model was evalu-
ated with three different regularization parameters, 0.1, 1, and 5 and the
optimum result was found for the regularization parameter of 1 (based
on MSE). This configuration was subsequently used to evaluate the
model on the test set.

Furthermore, XGBoost model the primary hyperparameters tuned for
this model were the number of estimators [50,100, 200], and the
learning rate [0.01, 0.1, 0.2]. The tuning was carried out using 5-fold
cross-validation, with performance evaluated based on the mean
squared error (MSE) on the validation set. The final hyperparameter
values were comprised ensembles of 100 trees with a learning rate of
0.1. The early stopping rounds were set to 10 without performing any
sensitivity. For the RF model, no further hyperparameter study was
performed and the model was selected with ensembles comprising of
100 trees that were constructed with the random state parameter set to 3
to ensure reproducibility.

As explained, Mean Squared Error (MSE) is used as the loss function
and in the final step R%, MSE and RMSE were used as a comparison for
the performance of the models. Prior to selecting the final hyper-
parameters, k-fold cross-validation with 5 folds was applied to the
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models. All ML models are implemented within a Scikit-learn pipeline in
Python (Pedregosa et al., 2011).

The focus of the manuscript is not on selecting the best-performing
ML model, but rather on demonstrating the application of ensemble
ML models and statistical metrics for condition monitoring. These
specified architectures and hyperparameters were carefully selected and
tested to ensure robust and effective model performance within the
context of the study’s objectives. A broad selection of ML models was
necessary to thoroughly understand the problem space. Firstly, it was
important to conduct a comprehensive evaluation that covers a range of
model complexities and approaches. Secondly, comparing the perfor-
mance of different models provides valuable insights into the impact of
data size on model effectiveness. The results derived from these models
are indicative given the selected architecture and hyperparameters and
no generic conclusion can be made on the performance of each model
from this study.

4. Results and discussion
4.1. ML model training results

This section summarizes the results from Step 1, as proposed in the
framework. After several changes in the size of the training set and the
sampling size for the training and validation sets, the training set (the
first year of data) was split into 60% for the training and 40% for vali-
dation. The sampling was done randomly and no significant change in
the accuracy of the model was found for a smaller training set. The re-
sults of the prediction values versus actual values in the validation set for
four different ML models of three target variables are shown in Fig. 4.
The regression analysis for Ty indicates that most of the models
yielded precise predictions, except for some deviations observed at
lower Tptor values in the predictions made by the SVR model. Similarly,
the prediction of Vi, was largely accurate, although both the ANN and
SVR models demonstrated a tendency to underpredict at higher Viyq
values. The intake pressure (P;) of the ESP was predicted with high
accuracy by nearly all models, with the SVR model exhibiting the lowest

Model Performance Metrics for Viotar
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prediction accuracy for Pj,.

A summary of the accuracy indicators is provided in Fig. 5. The re-
sults showed that RF and XGBoost exhibited superior predictive per-
formance compared to SVR. Specifically, RF and XGBoost demonstrated
lower MSE and RMSE values and higher coefficient of determination
(R?) values indicating better accuracy in predicting the target variable.
In terms of accuracy, motor temperature and intake pressure were pre-
dicted accurately almost by all four models. In addition, it was shown
that while ANN did not outperform other models, its inclusion in the
analysis highlights the data-dependency of model performance. SVR
showed the lowest performance in the current dataset, likely due to its
sensitivity to the limited dataset size and potentially difficulty in
capturing the underlying patterns with the available data and using a
relatively high number of features. Based on the derived results, it can be
concluded that using RF and XGBoost will lead to a monitoring accuracy
of more than 95% for all the quantities of interest during the normal
operation of the system.

4.2. Results of ML models for condition monitoring

To assess the condition monitoring framework, after the ML model
training is performed, the real-time data is introduced to the ML model
to estimate the quantities of interest (Step 2). In this study, the second
year of data is treated as real-time data. The output of the individual ML
models and ensemble ML models are used to calculate the metrics in
Step 3. In the subsections below, first the outcome of metrics from the
individual ML models are described and afterwards the metrics calcu-
lated from the ensemble ML models.

4.3. Condition monitoring with individual ML models

The output of each individual ML model for all the quantities of in-
terest in the second year of data (test data) is calculated. Based on the
case study data, while the exact point of failure was identified, the
initiation of the degradation leading to this failure remained unknown.
As the first step, the change in individual ML models’ metrics between
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Fig. 5. Metrics, including MSE, RMSE and R?, for different ML models (random forest, artificial neural networks, support vector regression, XGboost) predicting (a)

total vibration, (b) Motor temperature, (c) intake pressure.
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Fig. 6. Model performance metrics for all the ML models compared between the training and test set for total vibration, motor temperature and intake pressure.

the training and test sets was compared. The results of Step 3, illustrated
in Fig. 6, show the three metrics (MSE, RMSE, R?) for all three quantities
of interest (Viotat, Trmotors Pin) and all the four ML models trained. Based on
the initial observation on the results, it is indicated that MSE and RMSE
for the test set compared to the training set is increasing. Additionally,
the test set exhibited a lower R? value for the test set. This observation is
consistent for all the models, irrespective of the model accuracy on the
training set, and in all three quantities of interests. These metrics have
also been studied in other applications for the condition monitoring and
similar trends were observed (Surucu et al., 2023).

Such a change in the metrics for individual ML models, can be caused
either by the change in the data structure due to the degradation of the
equipment or lack of generalization of the model. Since analyzing the
distribution of the dataset, showed that the train and test sets do have an
overlap in distribution and range (Fig. 3), hence data structure was not
at the base of this mismatch. As mentioned in the results of ML models
training, the accuracy of the ML model for different training set was not
significantly changed that hints towards the model’s robustness and
consistent performance across various data subsets (Freiesleben et al.
2023). This stability suggests that the models have generalization ca-
pabilities and the underlying patterns in the data are likely caused by
changes and degradation in the production.

10

4.4. Condition monitoring with ensemble ML models

In this section, we present the results of the ensemble ML models
along with the statistical metrics derived from the analysis (Step 3).
Analysis was performed on all three parameters described in the previ-
ous section but only shown in detail for ESP intake pressure, illustrating
how the framework detects performance degradation over time. As
previously indicated, quantile regression forest method was used for the
ensemble ML models.

The results of the condition monitoring under uncertainty frame-
work are illustrated in Fig. 7. The top graph shows field data and pre-
dictions for the train and test sets over a span of nearly two years
(including the training and test sets). The field data is represented by
blue lines, with the training set indicated by solid lines and the test set by
dashed lines. The predictions from the averaged of ensemble model
predictions are depicted in red dashed lines, and the confidence intervals
at 50% and 95% levels are shown in green and blue shaded areas,
respectively. The close alignment between the predicted values and
actual field data, particularly within the confidence intervals, demon-
strates the model’s accuracy and robustness in capturing the perfor-
mance of the ESP.

The middle and bottom graphs focus on the test set data for the first
and last months of the observation period, respectively. These graphs
provide a more granular view of the model’s performance over shorter
timeframes. The middle graph, representing the first month of the test
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Fig. 7. Condition monitoring of ESP using a quantile forest regression model under uncertainty. The top panel shows field data and model predictions for both the
training and test sets over nearly two years, with confidence intervals at 50% and 95%. The middle panel focuses on the first month of the test set, highlighting the
model’s performance and accuracy. The bottom panel shows the last month of the test set, indicating potential degradation in ESP performance as evidenced by
increased deviations between field data and predictions for the ESP intake pressure.

set, shows a tight clustering of field data around the predicted values,
with most data points falling within the 95% confidence interval. This
indicates a strong initial performance of the ESP. The bottom graph,
representing the last month of the test set, reveals a slight increase in
deviations between the field data and predictions, with more data points
outside the confidence intervals, especially almost all the data falls
outside the 50% confidence bound. This divergence suggests potential

11

degradation in the production and ESP’s performance over time. In
addition, by observing the bounds of the 50% and 95% confidence in-
terval, a shift in the distribution of the data within the bounds is
observed which suggests the mismatch between the mean and median of
the prediction, which will be quantified in the next part. The size of the
50% and 95% confidence bound also increased in the last month of
monitoring prior to the failure.
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Fig. 10. Comparison of performance metrics (Absolute Difference, Empirical Coverage, and Confidence Interval Width) for training and testing datasets for three
different parameters (a)Pin, (b) Viotal and (¢)Tmotor-

12



P. Shoeibi Omrani et al.

The prediction results for the other two parameters, total vibration,
and motor temperature, are shown in Figs. 8 and 9, respectively. For the
total vibration, a more noticeable discrepancy between the predicted
values and the confidence bounds is observed, with data consistently
falling outside the bounds approximately six months before the failure.
Additionally, there is a significant increase in total vibration one month
prior to the failure, which the model, including both 50% and 95%
confidence bounds, failed to capture. In contrast, the motor temperature
parameter exhibits less pronounced and visible changes, with a slightly
larger 95% confidence interval bound width closer to the failure point.
There are more fluctuations in the motor temperature field data, but
these remain within the confidence bound range, as observed around

Geoenergy Science and Engineering 249 (2025) 213775

August and September 2020. However, the motor temperature data fall
outside the confidence bounds a few days before the event.

Overall, these detailed visualizations highlight the effectiveness of
the proposed framework in real-time monitoring. To make a step from
qualitative to quantitative analysis, the statistical metrics which were
previously defined are calculated for all three parameters and are shown
in Fig. 10, both for the train and test sets. A systematic observation is
that a clear difference between all three indicators on the train and test
sets can be seen, Absolute Difference between mean and median in-
creases, empirical coverage decreases and confidence interval width
increases.

Despite the difference in Absolute Difference between the two
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datasets, the variation is marginal, and only using this metric can be
unreliable for detecting performance degradation. The difference in
empirical coverage and confidence interval width of train and test sets
provide more noticeable changes in the datasets. In addition, Empirical
Coverage shows moderate values for both training and testing, sug-
gesting that the model captures a proportion of the true parameter
values within the predicted confidence intervals. The Confidence In-
terval Width is significantly larger for the testing set compared to the
training set, indicating greater uncertainty in the model’s predictions
when applied to unseen data. For real-time applications in the field, it is
suggested to estimate these metrics in real-time on a moving window,
the size of the window to be determined by the operator, to ensure an
accurate detection of degradation onset.

4.5. Model explainability

To provide explainability on the derived results (Step 4), a permu-
tation importance of various input features in predicting the three
output parameters was performed. The feature importance provides
insights into which input features significantly contribute to the pre-
diction performed by each model. This step was performed on the test
dataset. The outcome is shown in Fig. 11 for Tpotor, Viotal and Pin. From
the graph, it is evident that the feature importance varies notably across
different models. By considering Tpr as an example, and looking into
the RF and XGBoost explainability, Tpe, exhibits the highest importance,
followed by frequency and voltage. This indicates that the RF model
relies heavily on these features to predict Tpor in the test set. In
contrast, the ANN model assigns the greatest importance to Tpoy and
voltage, highlighting a different feature interaction pattern compared to
the RF model. The SVR model, which performed the worst in terms of
predictive accuracy, shows a more evenly distributed importance across
several features. This distribution suggests that SVR might struggle to
leverage specific features effectively due to the limited dataset size,
inherent complexity in the data or lack of convergence.

Feature Importance for Tmotor prediction
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When analyzing explainability results, both the ranking of the fea-
tures and their influence on the prediction parameters, as indicated by
the amplitude, must be taken into account. If the feature importance
ranking remains unchanged but their amplitudes changes, it indicates
that the equipment is following the same underlying correlation, but the
influence of parameters has been impacted. This might reflect a change
in operational conditions or component performance. In addition, a
change in the feature importance ranking signals a shift in the equip-
ment’s behavior, possibly due to altered system dynamics or emerging
issues, highlighting the need for further investigation. By analyzing the
explainability using the most accurate ML models, the following
explainability for the degradation monitoring can be derived.

- Total vibration exhibited the most prominent mismatch, started
around 6 months prior to the failure and the features that supports
the prediction of this mismatch are flow rate, voltage, and current.
Based on the operation of an ESP, it is well known that the changes in
the flow rate, voltage and current can impact the total vibration.

- Motor temperature mismatch seems to be mainly correlated to the
voltage, flow temperature, and pump frequency. Such a correlation
can also be found in during the normal operation of the ESP. Motor
temperature is significantly correlated with the flow temperature
and an increase in the frequency or voltage can lead to a higher
motor temperature due to a higher power consumption.

ESP intake pressure degradation is captured through the impact of

voltage and wellhead pressure followed by flow rate and ESP

frequency.

In order to better understand the impact of features on three moni-
tored parameters, a comparison was made between the feature impor-
tance calculated based on the training and test set (a month prior to the
failure). This comparison for RF, as one of the most accurate model in
this case study, is shown in Fig. 12. For ESP intake pressure and motor
temperature, the ranking of features remains stable across both datasets,
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Fig. 12. Comparison of feature importance between the training set and a portion of test data (last month prior to the failure) of the trained random forest model to
identify the features contribution to the mismatch detected in motor temperature, total vibration and intake pressure of ESP.
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but the amplitude of feature permutation varies. This suggests that while
the relative importance of each feature stays the same, the magnitude of
their impact on model predictions differs between the training and test
sets. On the other hand, for total vibration, although voltage, current,
and frequency continue to be important features, the correlation be-
tween flow rate and total vibration significantly weakens in the test set.
This shift indicates that the model’s ability to capture the flow rate’s
impact on vibration diminishes over time, which may be due to changes
in the system dynamics or the model’s reduced ability to generalize the
relationship between these features as the failure approaches. The
explainability observed demonstrates that the relationship between in-
puts and outputs captured by the accurate ML models is logical and
remains valid during both normal and abnormal operations. While some
correlation is expected, excessive or unexpected changes in the moni-
toring parameters with the features could signal potential issues. Such
deviations may indicate system degradation or the early onset of a
failure and is provided from the metrics calculated in Step 3.

4.6. Anomaly detection with expert knowledge

In the final step of the framework, the expert needs to decide about the
status of the system. As explained in the Step 5 of the framework, the
detection of anomalies and degradation is done by the operator of GFE
based on in-house operational practices or handbooks to setup the
threshold and is dependent on the criticality of the equipment. In the case
study, all the metrics and model mismatches provide insights on the
initiation of the degradation prior to the failure which can vary between 1
and 6 months and with different level of severity. Based on the visuali-
zation of ML models, the initiation of the ESP degradation was identified
between 1 month, for ESP intake pressure, up to 6 months, for the total
vibration, prior to the failure of the pump. In case, an accurate model for
some of the monitoring values cannot be made, other parameters can be
used to detect anomalies and degradation in the equipment.

Along with the metrics, visualization, and explainability, it was
found that in the test data containing ESP degradation, the ESP intake
pressure was higher than the field data, the predicted vibration was
lower than the actual field value, and the field motor temperature was
higher than predicted values. By considering the changes predicted by
the models and comparing with known trend analysis for ESP degra-
dation (Awaid et al., 2014), the analysis suggested a potential blockage
at the inflow and perforation, due to a higher vibration and motor
temperature while the intake pressure was lower than anticipated. In a
similar example shown in the reference paper by Awaid et al. (2014), an
ESP in a well showed trends of declining intake pressure and higher
motor temperature which were associated to blockage at perforations.
The observed behavior in the case study was consulted with the operator
and the analysis was confirmed that the ESP degradation was mainly
caused by inflow restriction.

In conclusion, the proposed framework showed promising result to
serve as a real-time tool for surveillance of the ESP and geothermal
production systems. In case a degradation is observed, the geothermal
operator or engineers could receive an alarm to evaluate the condition
and take corrective actions to resolve the situation. In addition, when a
failure or trip occurred, the additional analysis provided by the frame-
work could support the engineers to perform a root-cause failure anal-
ysis and improve the understanding of the situation.

In real-time conditions, the uncertainty intervals should be inter-
preted as a range of potential outcomes, informed by the diversity in
predictions from the ensemble models. These intervals represent
epistemic uncertainty due to variations in model performance, helping
to provide a more nuanced understanding of the prediction’s reliability.
Managing uncertainty in model predictions has significant practical
contributions in real-time decision-making. By incorporating uncer-
tainty intervals, decision-makers can assess the confidence in pre-
dictions and make more informed choices in dynamic environments.
This is especially important in complex systems where decisions must
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account for potential variability and model limitations. Uncertainty
management improves the robustness of decisions and reduces the risk
of overconfidence in model outputs.

5. Conclusions

In this paper we introduce a novel methodology in the realm of
monitoring and anomaly detection by leveraging an ensemble of ML
models, quantifying the model confidence, integrating with explain-
ability and expert knowledge. Unlike existing frameworks that typically
rely on a single model and metric for event detection, the ensemble
approach combines the strengths of multiple models, such as RF, ANN,
SVR, and XGBoost, to generate more robust and accurate predictions.
This strategy mitigates the limitations of individual models and en-
hances predictive performance.

Ensemble ML models were also integrated into the framework to
quantify the uncertainties and confidence bound in the predictive models
for an enhanced detection of events in the data in an objective manner.
This framework is crucial for risk management and improved operational
planning, as it enables the identification of anomalies with a quantifiable
degree of confidence. Furthermore, the incorporation of model explain-
ability adds a layer of interpretability, allowing for a deeper under-
standing of the factors contributing to predictions. By focusing on both
prediction accuracy and model transparency, this approach facilitates
better decision-making in anomaly detection scenarios.

Introducing several metrics for individual and ensemble ML models
provides a comprehensive view on the monitoring of the geothermal
systems based on the developed models as each metric has a different
implication of the detected event, e.g. MSE and RMSE quantifies the
average magnitude of prediction errors, confidence interval width in-
dicates the precision of the model’s predictions, and empirical coverage
helps validating the model’s prediction and its confidence bound
coverage for the measured values. This approach goes beyond current
practice, which often focuses solely on metrics like R? and RMSE, by
incorporating additional indicators that provide deeper insights into
model reliability and event implications.

For the case study, the framework could predict the onset of the ESP
degradation from 1 month up to 6 months prior to the occurrence of the
failure with more than 95% confidence and the explainability layer
together with the predicted trends provided potential cause of the failure
which was due to the inflow restriction and production decline into the
geothermal well. Compared to existing monitoring approaches, this
methodology is more comprehensive due to its combined use of ensemble
modeling, detailed explainability, and robust uncertainty quantification,
offering an advanced solution for real-time anomaly detection. The pro-
posed framework for real-time monitoring, combining ensemble ML
models and uncertainty metrics, is inherently generic and can be adapted
to any geothermal plant with adequate training data and the case study
presented in the paper serves solely as a demonstration example. The
results of this research can support the operators and engineers of
geothermal plants to maintain reliable an efficient operation of the
geothermal systems, as well as equipment manufacturers and service
providers to improve the maintenance and inspection of these systems.

To ensure practical usability, the framework should supports infor-
mative visualizations such as model predictions with uncertainty
bounds and feature importance trends over time. These tools highlight
the key parameters influencing predictions and their temporal changes,
as illustrated in the manuscript, and needs to be implemented for the
operators to enable real-time decisions.

While the proposed framework shows promise in using ensemble
models for monitoring geothermal systems, its conclusions are limited
by the choice of employed ML models, selected indicators, and expert-
provided inputs. The system’s performance is heavily influenced by
the selection of machine learning models, which must be carefully
tailored to the specific geothermal systems, processes, or equipment
based on their unique operational conditions. For new systems with
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limited data or vastly different operating conditions, the framework’s
applicability may be constrained, highlighting the need for further
research. Additionally, reliance on sensor data and statistical metrics
can limit the framework’s ability to fully capture the complexity of real-
world scenarios, particularly under extreme conditions or significant
operational variability. Issues such as missing or noisy data further
impact the framework’s effectiveness, emphasizing the importance of
robust preprocessing techniques.

To address variability in operating conditions, methods like transfer
learning could be explored to adapt existing ensemble models to new
environments. These limitations should be carefully considered when
interpreting the results and assessing the framework’s broader
applicability.

For future works, the framework is suggested to be tested on a larger
well database to estimate remaining useful lifetime of ESP or other vital
equipment in the geothermal plant, providing therefore predictive
capability to the monitoring tool. Further integration of the framework
with the digital twin of geothermal assets can provide confidence in the
monitoring and detection of anomalous production behavior. While this
study demonstrates the applicability of the proposed framework through
a single case study, future work will focus on validating its use across
diverse geothermal systems, including different pump types in various
geothermal plants, heat exchangers, and filter clogging scenarios. This
will help assess its general applicability and further enhance its
robustness. Benchmarking the proposed framework with other existing
monitoring approaches from the literature in a geothermal site will be
another future research topic. Finally, integrating measurement un-
certainties in the workflow is foreseen as a next step.
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Nomenclature

ANN Artificial neural networks

CNN Convolutional Neural Networks
ESP Electrical Submersible Pumps
GFE Geothermal facilities and equipment
LSTM Long Short-Term Memory

MAD Median Absolute Deviation

ML Machine Learning

MSE Mean squared error

O&M Operation and maintenance

RF Random Forest

RMSE Root mean square error

SME Subject Matter Expert

SVM Support vector machine

SVR Support vector regression
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UuQ Uncertainty quantification
XGBoost Extreme Gradient Boosting
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