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A B S T R A C T

Monitoring the condition of geothermal facilities and equipment (GFE) is crucial for ensuring reliable and cost- 
effective operations. This work emphasizes the importance of real-time data-driven condition monitoring for 
proactive operation and maintenance (O&M) planning in geothermal assets. Recognizing that operational 
planning can be significantly impacted by uncertainties, a novel framework is proposed to monitor the perfor
mance of geothermal assets under these conditions. The approach combines machine learning (ML), statistical 
methods, and expert knowledge to account for uncertainty in evaluating the degradation or onset of failure in 
GFE. This method was applied to field data from a geothermal plant to monitor Electrical Submersible Pumps 
(ESPs) and tested for the accuracy and robustness of the framework. Additionally, the framework provides 
explainability, aiding in understanding the factors influencing equipment condition and degradation. The 
framework was capable of systematically detecting the onset of the ESP degradation up to six months prior to its 
failure, with an accuracy of more than 95% in estimating the performance of ESP during normal operation. The 
explainability layer provided insights on the cause of the failure which was not attributed to ESP malfunction but 
to a restriction in production inflow into the well. The framework’s ability to accurately assess equipment 
condition under uncertainty supports more informed maintenance decisions, ultimately improving GFE opera
tional reliability and efficiency.

1. Introduction

Low and mid-enthalpy geothermal energy is an increasingly impor
tant part of the heat transition, making the heating of moderate climate 
horticulture sector and built environment free from natural gas (IEA, 
2021). Geothermal plants consist of several equipment, parts, and 
components both in the subsurface and at the surface including wells, 
downhole pumps, separator, filters, heat exchanger, and valves. Despite 
an extensive operational experience in geothermal systems, character
ized by a steep learning curve with ongoing operational knowledge 
acquisition, the sector is still in an emerging phase. The operation of 
geothermal assets is often associated with problems in the GFE caused by 
the chemistry of the geothermal brine (Ocampo-Díaz et al., 2005), 
production conditions such as pressure and temperature (Wasch et al., 
2019), variability in the heat demand (Lund and Lienau, 2009) and 
operational errors (van’t Spijker et al., 2016). In the current systems, 

occasional equipment degradation and malfunctions are still inevitable. 
It is necessary to monitor the assets and equipment condition constantly 
to prevent unplanned shut-ins and costs associated with the inspection, 
repair, and downtime. Tools providing insight and delivering predict
ability in GFE condition deterioration and malfunctioning are still in 
development (Siratovich et al., 2020).

Several technologies have been developed to monitor operational 
performance, utilizing either sensor data alone or in combination with 
models, a method known as model-based monitoring (Jaber, 2016). The 
latter relies on the continuous comparison of real-time data with pre
dictive models to detect anomalies, optimize system performance, and 
enhance operational reliability (Surucu et al., 2023). These technologies 
can provide insights into equipment performance, up to real-time, and 
detect component and system anomalies (Chandola et al., 2009; Loh 
et al., 2018; Poort et al., 2020; Octaviano et al., 2020). The operation 
monitoring and maintenance planning is shifting gradually from 
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reactive and corrective to preventive and eventually predictive. 
Condition-based monitoring is a critical paradigm in the realm of pre
dictive maintenance. Corrective maintenance refers to the process of 
repairing or restoring a system, equipment, or facility to its proper 
functioning state after a failure or malfunction has occurred which is a 
reactive maintenance strategy (Molęda et al., 2023). The preventive 
maintenance involves scheduled inspection and maintenance to prevent 
potential failures in the equipment which has lower inspection cost but 
lead to a higher failure cost for unplanned instances (Soh et al., 2021). 
The predictive maintenance allows for proactive maintenance prior to 
the failure by utilizing data analysis and monitoring techniques. 
Currently, most of the maintenance and operation planning is performed 
by operators’ knowledge based on available data, generally without 
model-based decision support assistance.

As an example, an Electrical Submersible Pump (ESP) is a critical 
equipment in geothermal assets due to its vital role ensuring the desired 
production rates and high costs associated with their inspection, main
tenance, and replacement. ESP can often suffer from performance 
degradation or failure due to changes in their efficiency, suboptimal 
production from the reservoirs, wrong operational settings, or an oper
ator mistake. It has been observed that ESPs in geothermal systems on 
average have a shorter lifetime and they are dealing with several 
operational issues which are unique for geothermal systems (Shoeibi 
Omrani et al., 2021) due to utilization of larger pumps with a higher 
horsepower combined with high temperature and high salinity of the 
geothermal fluid. Apart from the production downtime due to ESP 
maintenance or replacement, there is a large cost associated with the 
replacement of ESPs up to 3% of the CAPEX (Capital Expenditure) 
(Octaviano et al., 2022). A robust ESP operational decision support 
system is therefore needed to operate these pumps in an optimal way, 
and to enable operators to perform early failure detection for improving 
maintenance planning.

There are several sensors providing monitoring data for the entire 
GFE, including different components such as ESP. This data can be used 
and processed to provide real-time insights on the performance of the 
geothermal production. Machine learning (ML) techniques are increas
ingly being applied to model and monitor equipment in process instal
lation and energy assets (Shoeibi Omrani et al., 2018; Alatrach et al., 
2020). Based on the provided example of ESPs, they come equipped with 
various sensors, including temperature, pressure, frequency, vibration, 
voltage, and current, enabling the utilization of complex ML methods. 
However, the multitude of potential failure modes associated with ESP 
systems poses challenges for condition monitoring and predictive 
maintenance (Shoeibi Omrani et al., 2021). Examples of prior work in 
this field, which are mainly from the petroleum sector, are summarized 
in Table 1. The publications are compared based on four different 
criteria, data-driven, expert knowledge, explainability, and uncertainty. 
Previous studies have employed a wide range of algorithms and meth
odologies for ESP monitoring, from detecting ESP failure patterns using 
principal component analysis (Gupta et al., 2016; Adesanwo et al., 2017; 
Bhardwaj et al., 2019) to leveraging deep learning techniques, such as 
convolutional neural networks (CNNs) (Lastra et al., 2021). Additional 
applications of ML in ESP systems include predictive maintenance 
(Abdalla et al., 2022), failure detection and diagnostics (Lastra et al., 
2022), and the establishment of a digital ESP monitoring framework 
(Lastra, 2019). Few studies also focused on development of digital twin 
for ESPs to predict the remaining useful lifespan of ESP or ESP compo
nents such as stator windings (Don et al., 2024). Most publications focus 
on the application of individual machine learning and data-driven 
methods for monitoring or detecting ESP failures. However, as evident 
from the literature, the aspects of uncertainty and the use of ensemble 
models have received limited attention.

The challenges of data-driven condition-based monitoring are 
mainly two folds, lack of explainability of the data-driven models and 
dealing with uncertainties in the processes. The monitoring of GFE can 
be greatly impacted by the inherent uncertainties in monitoring data, 

uncertainties in the performance and lifetime of equipment components, 
and the intricate complexities involved in modeling the dynamic 
behavior of such equipment (Kullick et al., 2017). These factors 
complicate the operational decisions and maintenance planning and 
necessitate sophisticated techniques and robust predictive models to 
accurately anticipate and mitigate potential operational problems in 
geothermal systems. Applying ensemble ML techniques can provide 
more confidence in the prediction made by ML models for condition 
monitoring (Surucu et al., 2023). By employing data-driven models, the 
challenge of modelling the complex production behavior in geothermal 
assets can be partially tackled, however these models are lacking 
explainability. Explainable AI enhances data-driven decision-making by 
providing transparent and interpretable insights into the models’ pre
dictions, enabling users to understand, trust, and effectively act on the 
insights from data-driven models (van Gerven et al., 2019).

To date, limited efforts have been made to explore the impact of 
uncertainties in monitoring geothermal systems or predicting compo
nent performance and failures. In a thorough and systematic review of 
application of data-analytics in the operation of geothermal systems 
(Abrasaldo et al., 2024), the word ‘uncertainty’ was hardly mentioned in 
the literatures reviewed in this publication. Looking into other sectors, 
in one of the studies performed by Dussi et al. (2022), Bayesian neural 
networks were employed to predict ESP degradation in oil wells across 
different forecasting horizons, achieving remarkably low error scores of 
2.5% for a ten-day prediction horizon by explicitly incorporating causal 
relationships between input features and the associated probability of 
the specific failure. A recent study by Costa et al. (2024) demonstrated 
the integration of uncertainties with deep learning models for simu
lating ESP systems in oil wells. The study detailed the development and 
testing of NARX DNN models for ESP simulation, where synthetic data 
was generated to meet the data requirements of this approach, and 
Bayesian inference was applied for uncertainty assessment. The results 
confirmed the accuracy of NARX DNN models in predicting ESP system 
parameters. However, the incorporation of uncertainties into real-time 
condition monitoring of geothermal assets and facilities, where fast 
and robust methods are essential for handling field data, has not yet 
been explored.

ML models are black-box, and their performance can be impacted by 
several parameters such as data availability, data variability, and data 
quality. Hence, operational decisions based on a single ML model 
without considering uncertainties and explainability can be misleading. 
To monitor geothermal plant equipment’s performance and assist with 
operational decisions, we propose a novel data-driven framework. In 
this paper, we developed a framework for model-based condition 
monitoring of geothermal assets by integrating data-driven models, with 
explainability and expert knowledge by leveraging ensemble ML models 
and uncertainty metrics. The framework was tested on the data of a 
geothermal ESP in a low-enthalpy geothermal asset to demonstrate its 
accuracy and performance.

Unlike traditional approaches that primarily focus on model selec
tion or rely on multi-variate data analysis, the proposed method adopts a 
heuristic process to design and implement an ensemble-based solution. 
By integrating multiple statistical metrics and explainability tools, the 
framework aims to offer robust real-time anomaly detection and 
degradation monitoring, providing insights into potential failure causes. 
This work not only highlights the reasoning behind model design but 
also expands the scope of condition monitoring by demonstrating the 
practical application of uncertainty metrics beyond conventional pre
diction error metrics. It is important to emphasize that the primary focus 
of this paper is not on optimizing machine learning model architecture 
or hyperparameters for system performance evaluation.

The organization of this paper is as follows: first, the Methodology 
section provides a schematic overview of the developed framework, 
detailing each component, including model training, explainability, 
ensemble ML models for uncertainty analysis, metrics calculations, and 
operator knowledge in anomaly detection. Next, the case study for 
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which the framework was tested and validated is described. Subse
quently, the results obtained from the framework testing are presented 
and analyzed. In the conclusion section the highlights of the results and 
proposed next steps are presented.

2. Methodology

The schematic and steps of the proposed framework is shown in 
Fig. 1. The framework depicted in Fig. 1 outlines an approach to use ML 

models for condition monitoring under uncertainty and explainability. 
The framework consists of five steps and below is a detailed description 
of each step.

Step 1: Model training (Data collection and ML models trainings 
using historical data).

Initially, the historical data needs to be used to establish the base 
model for condition monitoring. The focus is on historical data to train 
the ML models representing the optimal state of the component or sys
tem. Here, ‘optimal’ does not refer solely to maximum efficiency 

Table 1 
Overview of studied literature and publications related to condition monitoring of geothermal systems and ESPs (both in geothermal and petroleum applications) 
compared based on four criteria: data-driven modelling, integration of expert knowledge, explainability of the approach and dealing with uncertainties.

Reference Data-driven Expert knowledge Explainability Uncertainty

Karnik et al. (2021); 

Adesanwo et al., 2016**; 

Gupta et al., 2016**; 

Adesanwo et al., 2017**; 

Bhardwaj et al., 2019**; 

Sherif et al., 2019**; 

Peng et al., 2021**; 

Nanavaty (2024); 

Hamedi Shokrlu et al., 2024

✓ x ✓ x

Guo et al. (2015); 

Andrade Marin et al. (2019); 

Jansen van Rensburg et al. (2019); 

Zulkarnain et al. (2019); 

Alamu et al. (2020); 

Abdurakipov (2021); 

Lastra et al., 2021, 2022; 

Abdalla et al. (2022); 

Alhashem et al. (2024)

✓ x x x

Zhao et al. (2006); 

Xi (2008); 

Li et al. (2008); 

Tao et al. (2011); 

Zhao (2011); 

Zhang et al. (2017)

x ✓ x/ ✓* x

Rauber et al. (2017); 

Sharma et al. (2022)

✓ ✓ x x

Tandazo et al. (2022); 

Octaviano et al. (2022); 

Irl et al. (2023)

✓ ✓ ✓ x

Costa et al. (2021)
x ✓ x ✓

Dussi et al. (2022); 

Mello et al. (2022); 

Costa et al. (2024)

✓ x x ✓

* The methods based on expert knowledge and physics-based modelling are inherently explainable, however they do not directly provide parameters’ importance on 
observed processes, like explainability applied to ML learning models.
** These studies utilized Principal Component Analysis (PCA) for event detection in ESPs, leveraging a data-driven approach that provides a certain degree of 
explainability in the results.
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operation but encompasses operation across various points within the 
operating envelope where no degradation or malfunction of the equip
ment is observed. Thus, selection of the historical data to be used for ML 
model is of great importance. This process typically begins with 
consultation with subject matter experts (SMEs) or the plant operator to 
determine which signals’ period best represent the healthy period of the 
equipment. If such information is not available, unsupervised machine 
learning such as clustering or dimensionality reduction can be utilized to 
provide insights on degrading state of the equipment. Once the selection 
of the normal period for the model training is done, a ML model is 
trained following a set of procedures typically involve data pre
processing, feature selection, model training, and hyperparameter tun
ing to ensure robust and reliable performance on unseen data.

The preprocessing step is employed to smoothen the data noise, 
address missing values, and identify and rectify any unphysical data 
anomalies. The choice of the appropriate filter (such as moving average 
or Savitzky-Golay filter), interpolation method (e.g. linear or poly
nomial), and data imputation (e.g. listwise deletion or regression based), 
and denoising techniques (e.g. wavelet transforms) depends on the 
specific problem, as well as the type and quality of the data. The se
lection of these techniques must align with the data characteristics to 
ensure meaningful and accurate preprocessing results. After the selec
tion of the historical dataset, the parameters of interest and features 
need to be selected to support the monitoring of the plant or equipment. 
The essential elements for building a baseline model representing the 

normal state of the equipment is prepared. In this framework, we pro
pose the use of ML models for condition monitoring due to the re
quirements for calculation speed (to be deployed in real-time) and 
complexities of the equipment and processes involved.

Two sets of ML models are trained on historical data, a set of indi
vidual ML models and ensemble ML models. For the individual ML 
models, a variety of ML models (ML Models (1, 2, …, m)) are trained on 
the historical data and the ones used in this study are random forest (RF) 
regressor, support vector regression (SVR), artificial neural networks 
(ANN), and extreme gradient boosting (XGBoost). RF, an ensemble 
method using bootstrap aggregation of decision trees, improves pre
diction accuracy through averaging and cross-validation, making it 
robust against bias and variance (Breiman, 2001). SVR aims to find a 
hyperplane that best fits data points within certain margins, focusing on 
support vectors to minimize regression errors (Smola et al. 2004). ANN, 
inspired by neural connections in the human brain, uses a multi-layer 
perceptron architecture where weights and biases are optimized to 
minimize prediction errors (Hastie et al., 2008). XGBoost, an algorithm 
within the gradient boosting framework, sequentially builds decision 
trees to correct errors from previous iterations, making it effective for 
sparse data (Chemura et al., 2020) and enhancing predictive perfor
mance through iterative improvements (Lu et al. 2020).

These models were chosen due to their general applicability and 
well-established performance in regression tasks in similar applications 
(Abdalla et al., 2022). While these models can handle temporal data, 

Fig. 1. Schematic of the framework for real-time monitoring of geothermal assets and facilities, X, y stands for the input and outputs of the models, respectively, to be 
determined based on the quantities to be monitored, I: imputation based on the score of the ML model, Subscript t: time, m: model, k: index of trees in the ensemble 
ML model (in this case quantile forest regression).
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they do not explicitly model temporal dependencies. Models such as 
Long Short-Term Memory (LSTM) networks, which are better suited for 
time-series and temporal behavior, could also be considered in future 
studies. It is important to note that LSTM would require substantial 
amount of data for an effective training.

For the ensemble ML models to quantify uncertainties and confi
dence bounds of the prediction, quantile regression forest was 
employed. Quantile regression forest is an extension of the RF regression 
model that allows for the estimation of conditional quantiles, rather 
than just the conditional mean (Hastie et al., 2008). The quantile forest 
algorithm works by growing an ensemble of regression trees, where each 
tree is trained to predict a specific quantile of the target variable’s dis
tribution. This provides a more complete picture of the conditional 
distribution. Quantile regression forests have been shown to outperform 
standard random forests in applications where the conditional distri
bution exhibits heteroscedasticity or skewness (Meinshausen, 2006). 
The selection of this method was due to its robust mechanism to estimate 
prediction intervals and allowing for quantification of uncertainty and 
statistical analysis in anomaly detection (Li et al. 2023). Each model is 
optimized to predict the target variable and the optimized and trained 
models are used in the following steps.

Step 2: Prediction step (ML model testing using real-time data).
Following the establishment of the baseline model, real-time data is 

connected for condition monitoring. For this purpose, model prediction 
emerges as a key component of the framework, facilitating the detection 
of deviations between predicted and measured values. Real-time data 
which is continuous data streams are collected from sensors or other 
data sources and will be fed directly into the ML models for processing 
and prediction. To enhance the effectiveness of this predictive approach, 
various trained ML models outlined above are deployed for error esti
mation. Several predictions are made in this step. Each individual ML 
model (denoted by m) generates its own prediction (ŷm,t) using the same 
(real-time) input data. The individual predictions provide additional 
insights into the status of GFE. Another set of predictions is performed 
using ensemble ML models. From such ensemble ML models, ensemble 
of predictions can be generated (ỹk,t) based on real-time data inputs. In 
addition, the predictions from the ensemble are averaged to yield a 
single prediction value at time t (ŷt). The output of the model’s pre
diction is further forwarded to the next steps for metrics estimation (Step 
3) and model explainability (Step 4).

Step 3: Metrics estimation.
Uncertainty can arise from several sources, including the selection of 

model forms and errors inherent in the model itself, which aligns with 
the approach taken in this work to assess model reliability through 
statistical metrics. In this study, uncertainty is defined as the dispersion 
of model predictions within the ensemble of machine learning models, 
similar to the concept described by Der Kiureghian and Ditlevsen 
(2009), where uncertainty is viewed as the variability in model outputs 
(a.k.a. variance). This approach follows a common practice in machine 
learning, where uncertainty is expressed by analyzing the spread of 
predictions around a central value, providing a statistical measure of the 
confidence in the model’s predictions, with wider dispersions indicating 
greater uncertainty.

The ML models prediction will be compared with the data streams 
which are recorded from the GFE. To detect whether the GFE is under a 
degradation or an anomalous state, several metrics are required to 
compare the estimation of the ML model with the actual measured value 
from the sensors. The choice to use multiple metrics, rather than just 
one, has been extensively studied across various applications. Research 
has shown that relying on a single metric often provides an incomplete 
representation of processes, particularly in real-world scenarios (Ribeiro 
et al., 2016). The detection of anomalies based on models’ prediction on 
the real-time data is performed using several metrics, including. 

- Mean Squared Error (MSE)

- Root Mean Squared Error (RMSE)
- Coefficient of Determination (R2)
- Mean and median differences (for ensemble ML models)
- Empirical coverage (for ensemble ML models)
- Confidence interval width (for ensemble ML models)

Firstly, the definitions of the first three metrics which are used for 
each individual ML model prediction (with subscript m) are given below: 

MSEm =
1
n
∑n

i=1

(
yi − ŷm,i

)2 

RMSEm =
̅̅̅̅̅̅̅̅̅̅̅̅̅
MSEm

√

R2
m =1 −

∑n
i=1

(
yi − ŷm,i

)2

∑n
i=1(yi − y)2 

In which.
n the number of data points in the prediction time window.
yi the actual value of the target variable for the ith data point.
ŷm,i the predicted value of the target variable for the ith data point for 

the ML model m.
y mean of the actual target variable values (also denotes as μ).
The subscript m is dropped in the results and analysis section as these 

metrics are reported for each ML model separately. It is important to 
note that these metrics are often used to evaluate the accuracy of the 
models. However, in this context we compare the estimated value of the 
ML model with the actual measured value from the real-time data 
stream to detect the mismatch between these values and potentially flag 
it as an alarm to the operator of the plant.

For the ensemble ML model predictions from the quantile regression 
forest, several additional metrics can be derived. These indicators were 
evaluated for a selected prediction time window and were namely, ab
solute difference between the mean and median of the predicted values, 
width of the confidence interval bound and empirical coverage. Each of 
the metrics are formulated as follows: 

Absolute Difference= |μ − M|

Confidence interval width= F− 1
(

0.5+
q
2

)
− F− 1

(
0.5 −

q
2

)

Empirical coverage=
(∑n

i=1I(xi ∈ A)
n

)

,

I(xi ∈A)=
{

1,
0,

if xi ≤ F− 1
(

0.5 +
q
2

)
and xi ≥ F− 1

(
0.5 −

q
2

)

otherwise 

In which.
M median of the predicted variable values.
μ mean of the predicted variable values.
F− 1 Inverse of the cumulative distribution function of the predicted 

values.
q desired confidence interval, a value between 0 and 1 (in this case 

0.95).
I an indicator function as defined above, to count the number of data 

points between the upper and lower bound of the confidence interval.
The first metric provides information on the skewness of the data 

distribution as one of the metrics for deviation from the expected 
behavior. One of the common figures for anomaly detection is based on 
median absolute deviation (MAD) which is described as the median of 
the absolute deviations from the data’s median (Dodge et al. 2010). In 
the context of anomaly detection in this paper, anomalies are identified 
by analyzing a window of predicted data points rather than individual 
points, focusing on structured mismatches between the measured and 
estimated values (Sagoolmuang et al., 2017). Thus, instead of using 
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MAD as a measure of anomaly, the mean and median of the predicted 
data are calculated to detect these anomalies. Another metric which is 
evaluated on the ensemble ML model is the confidence interval width. If 
the confidence interval width is increasing over time, this is an indica
tion for growing uncertainty in the predictions as time progresses and 
the model accuracy is decreasing (Hochenbaum et al., 2017). The final 
metric is empirical coverage of the confidence interval (Schall, 2012). 
This parameter refers to the proportion of confidence intervals that 
contain the estimated values. By having a higher coverage of the esti
mated data points within the confidence interval of the ensemble ML 
model prediction, higher the probability of the system or equipment to 
be in the normal condition. The metrics above are all calculated for the 

trained models using real-time data. At this stage, no decision is made on 
the state of the system or equipment and only different indicators are 
estimated and passed into the next step for explainability and anomaly 
detection.

Step 4: Model explainability.
Explainability is a crucial aspect for condition monitoring as they 

provide insights into the factors driving equipment performance and 
potential failures, enabling operators to prioritize resources and in
terventions effectively. Understanding which features have the most 
significant impact on equipment condition, not only enhances predictive 
accuracy but also improves transparency and trust in the monitoring 
system’s decision-making process. In this framework, permutation 

Fig. 2. Pairwise relationship between the variables in the dataset (frequency of the pump, intake pressure of the pump, flow temperature, voltage, current, motor 
temperature, flow rate and total vibration). All the variables are included in both x and y axis with the same order. Each individual scatterplot (off-diagonal plots) 
illustrates the relationship between two variables. The diagonal plots represent the distribution of each variable as histograms.
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importance was used as a method to assess the importance of features in 
the developed and trained ML models. The method works by randomly 
shuffling the values of a feature and measuring the drop in the model’s 
performance (Altmann et al., 2010). This method was selected due to 
being model-agnostic and easy to interpret which is key in operational 
decisions. This step will enable targeted intervention strategies for in
spection and maintenance by providing insights on the most influential 
parameters causing a deviation from the normal operation state.

Step 5: Anomaly detection with expert knowledge.
The predictions and their associated metrics are analyzed to deter

mine the state of the equipment or asset. The outputs of Step 3 (metrics 
estimation) and Step 4 (explainability) are used as inputs for the 
anomaly detection. This step is the point where expert knowledge is 
integrated with the data-driven model, uncertainties, and explainability 
which enable targeted intervention strategies an operator (or in the 
future an automated system) can do. In the context of a decision support 
system, the operator reviews the model outputs and all the calculated 
metrics together with the model explainability results to classify the 
status as either “Normal” or “Abnormal".

As the first step, the calculated metrics are used for the detection of 
anomalies and events. Any change in the estimated metrics over time 
can be indicated and flagged as an anomaly. In order to minimize the 
number of alarms to the operator, thresholds can be set. Operators can 
set custom thresholds for each of the estimated metrics for anomaly 
detection, ensuring that the system triggers alarms based on the sensi
tivity and risk tolerance appropriate for the specific operational context. 
Selecting a threshold for each indicator is critical and impacts the per
formance of the condition monitoring tool (Choi et al., 2021). If the 
threshold is set at a high value (higher error to be detected as event), it 
may lead to a high number of undetected events and if a lower value is 
set, then a minute deviation from the threshold caused by e.g. noise in 
the data can also be detected as an event and leads to overwhelming the 
operators. In this study, we did not aim to recommend a threshold for the 
detection of anomalies in geothermal systems but rather provide an 
overview of different indicators trends near the degradation or anomaly 
regimes.

The operator has the flexibility to configure alarms for anomaly 
detection based on operational protocols, or criticality of the process, 
allowing them to decide whether alarms should trigger when any single 
indicator signals an anomaly or only when multiple indicators align. 
This decision is based on predefined thresholds and rules derived from 
historical analysis or the trends which are available in the handbooks 
(Octaviano et al., 2022).

In the next step, the model explainability is used to support the 
operator for confirming the anomaly. Since data-driven models are used 
in this framework, their performance and accuracy will be impacted by 
extrapolation. Thus, a mismatch between the prediction and measured 
values can be caused by extrapolation errors, e.g. when in the evaluation 
phase it is the first time that the pump is ramped up to its maximum 
frequency and the ML models for ESP were not trained in this condition. 
The feature importance estimated by explainability can provide further 
insight on the actual reason of the mismatch prediction by the model. 
Operator and experts’ wisdom will be used to analyze the model 
explainability to flag it as a true event or not.

3. Case study

3.1. Dataset and pre-processing

In this study, the ESP in a low-enthalpy hydrothermal geothermal 
well was used as a case study to demonstrate the proposed monitoring 
framework. Two years of data from this well was provided with an 
hourly data acquisition frequency. Several sensor data of the geothermal 
production was provided, including flow rate, wellhead pressure, well
head temperature and separator pressure. For the ESP, an extensive 
dataset was provided including pump frequency, intake pressure, motor 

temperature, voltage, current, and vibration in two horizontal and 
vertical directions along pump shaft (x and z). An overview of the pro
vided data and pairwise relationships between variables in the dataset is 
shown in Fig. 2 (using Seaborn Python Library (Waskom et al., 2017)).

Missing data and entries (e.g. containing NaN values) were replaced 
using linear interpolation. Outliers were identified based on a statistical 
threshold, defined as values exceeding three standard deviations from 
the mean, and were replaced with interpolated values. The data received 
from the system had already undergone a moving average filter, and no 
additional data smoothing was performed. Finally, min-max scaling was 
applied to normalize the data within the range of 0–1, ensuring con
sistency across all features. For other applications or systems, data 
preprocessing may require alternative algorithms or filters depending on 
the specific data quality and characteristics, such as noise levels or the 
frequency of missing values.

3.2. Data splitting and feature selection

According to the proposed framework and to construct a data-driven 
model for the ESP (Step 2), several supervised learning techniques were 
employed consists in training the model based on known input-output 
pairs, before using the model on ‘unseen’ data. Since, the goal of this 
method is to derive a model-based condition monitoring algorithm to 
detect abnormalities or degradation in the geothermal systems, the 
training period should consist of data associated to the normal condition 
of the production, meaning that no degradation or malfunctioning 
occurred yet. The historical data containing the normal operation of the 
equipment is used for training the ML models. This dataset is split into 
the training and validation subsets using a fixed random seed and no 
shuffling to preserve the temporal order. From the total historical 
dataset, 80% was used for training and 20% for validation. The current 
dataset only contains 0.7% of missing data.

This evaluation should be done carefully to ensure that the trained 
model can predict the production performance under the new conditions 
otherwise the mismatch can also be associated to models’ inaccuracy. It 
is crucial to test the model using data in a similar range as the training 
set, and for this purpose the distribution of the data in the training and 
test set was compared to ensure the data in both sets have a similar 
distribution. A large difference of means and distribution range between 
training and testing set were not observed. Based on the advice from the 
pump operator, the degradation happened at an uncertain period in the 
second year of operation, therefore, it was assumed that the first year of 
operation are data of the ESP being in normal condition. The remaining 
data was used for testing model’s capability in predicting normal ESP 
performance and detecting off-normal behavior and/or degradation. 
The histograms in Fig. 3 illustrate the distribution of feature values in 
the training and test datasets. Understanding the similarities and dif
ferences in feature distributions between these datasets is essential for 
robust model generalization and performance evaluation. Differences in 
dataset distributions, potentially attributed to degradation of the pro
duction, are observable; however, notable overlaps suggest that errors in 
the test set may not solely arise from extrapolation.

Three ESP parameters were selected to assess the condition of the 
ESP in real-time, namely motor temperature, total vibration, and intake 
pressure which are typical in condition monitoring of ESPs (Mohamad 
et al., 2022). Motor temperature often provides indication on ESP per
formance, overheating (often resulted from wear, lubrication or elec
trical faults) and insulation degradation (Hoevenaars et al., 2021). The 
total vibration is a direct measure for mechanical condition of the pump 
resulted from imbalances, misalignments, or bearing issues and ESP 
intake pressure can hint towards flow assurance, blockages, or reservoir 
performance (Iranzi et al., 2024). For each output parameter, a certain 
collection of input features from the original dataset was selected, as 
shown in Table 2.
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3.3. ML models’ hyperparameter settings

This section provides a brief overview of the ML models used to 
predict ESP parameters. For ANN regression, the output layer was 
tailored to generate continuous values as predictions for the parameters 
of interest. The ANN architecture includes an input layer with di
mensions twice the number of features, two hidden layers with the same 
dimensions and ReLU activation functions, and an output layer with a 
single node and a linear activation function. The model is compiled with 
the Adam optimizer. Key hyperparameters include 300 epochs, a batch 
size of 10, and an early stopping criterion with a patience of 10 epochs, 
monitoring the loss metric and restoring the best weights. SVR models 
were constructed utilizing a linear kernel function. The key 

hyperparameter tuned was the regularization parameter, which controls 
the trade-off between achieving a low error on the training data and 
maintaining generalization to unseen data. The SVR model was evalu
ated with three different regularization parameters, 0.1, 1, and 5 and the 
optimum result was found for the regularization parameter of 1 (based 
on MSE). This configuration was subsequently used to evaluate the 
model on the test set.

Furthermore, XGBoost model the primary hyperparameters tuned for 
this model were the number of estimators [50,100, 200], and the 
learning rate [0.01, 0.1, 0.2]. The tuning was carried out using 5-fold 
cross-validation, with performance evaluated based on the mean 
squared error (MSE) on the validation set. The final hyperparameter 
values were comprised ensembles of 100 trees with a learning rate of 
0.1. The early stopping rounds were set to 10 without performing any 
sensitivity. For the RF model, no further hyperparameter study was 
performed and the model was selected with ensembles comprising of 
100 trees that were constructed with the random state parameter set to 3 
to ensure reproducibility.

As explained, Mean Squared Error (MSE) is used as the loss function 
and in the final step R2, MSE and RMSE were used as a comparison for 
the performance of the models. Prior to selecting the final hyper
parameters, k-fold cross-validation with 5 folds was applied to the 

Fig. 3. Comparison of variables’ distributions between the training and test datasets for all the 8 parameters in the dataset, including ESP frequency (freq), ESP 
intake pressure (P_intake), flow temperature (T_flow), voltage, current, ESP motor temperature (T_motor), mass flow rate (Q), and total vibration (V_total).

Table 2 
The input features and output parameters of ML models.

Input features Output parameter

f,Pin,Tflow,Voltage,current,Vx,Vz,Q Motor temperature: Tmotor

f,Pin,Tflow,Voltage,current,Tmotor ,Q Total vibration: Vtotal

f,Q,Pwh ,Tflow ,Tmotor ,Voltage,current ESP intake pressure: Pin

Fig. 4. Regression plots of the actual versus predicted values of the different trained ML models (denoted in the legend) for (a) ESP motor temperature (b)total 
vibration (c) pump intake pressure.
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models. All ML models are implemented within a Scikit-learn pipeline in 
Python (Pedregosa et al., 2011).

The focus of the manuscript is not on selecting the best-performing 
ML model, but rather on demonstrating the application of ensemble 
ML models and statistical metrics for condition monitoring. These 
specified architectures and hyperparameters were carefully selected and 
tested to ensure robust and effective model performance within the 
context of the study’s objectives. A broad selection of ML models was 
necessary to thoroughly understand the problem space. Firstly, it was 
important to conduct a comprehensive evaluation that covers a range of 
model complexities and approaches. Secondly, comparing the perfor
mance of different models provides valuable insights into the impact of 
data size on model effectiveness. The results derived from these models 
are indicative given the selected architecture and hyperparameters and 
no generic conclusion can be made on the performance of each model 
from this study.

4. Results and discussion

4.1. ML model training results

This section summarizes the results from Step 1, as proposed in the 
framework. After several changes in the size of the training set and the 
sampling size for the training and validation sets, the training set (the 
first year of data) was split into 60% for the training and 40% for vali
dation. The sampling was done randomly and no significant change in 
the accuracy of the model was found for a smaller training set. The re
sults of the prediction values versus actual values in the validation set for 
four different ML models of three target variables are shown in Fig. 4. 
The regression analysis for Tmotor indicates that most of the models 
yielded precise predictions, except for some deviations observed at 
lower Tmotor values in the predictions made by the SVR model. Similarly, 
the prediction of Vtotal was largely accurate, although both the ANN and 
SVR models demonstrated a tendency to underpredict at higher Vtotal 
values. The intake pressure (Pin) of the ESP was predicted with high 
accuracy by nearly all models, with the SVR model exhibiting the lowest 

prediction accuracy for Pin.
A summary of the accuracy indicators is provided in Fig. 5. The re

sults showed that RF and XGBoost exhibited superior predictive per
formance compared to SVR. Specifically, RF and XGBoost demonstrated 
lower MSE and RMSE values and higher coefficient of determination 
(R2) values indicating better accuracy in predicting the target variable. 
In terms of accuracy, motor temperature and intake pressure were pre
dicted accurately almost by all four models. In addition, it was shown 
that while ANN did not outperform other models, its inclusion in the 
analysis highlights the data-dependency of model performance. SVR 
showed the lowest performance in the current dataset, likely due to its 
sensitivity to the limited dataset size and potentially difficulty in 
capturing the underlying patterns with the available data and using a 
relatively high number of features. Based on the derived results, it can be 
concluded that using RF and XGBoost will lead to a monitoring accuracy 
of more than 95% for all the quantities of interest during the normal 
operation of the system.

4.2. Results of ML models for condition monitoring

To assess the condition monitoring framework, after the ML model 
training is performed, the real-time data is introduced to the ML model 
to estimate the quantities of interest (Step 2). In this study, the second 
year of data is treated as real-time data. The output of the individual ML 
models and ensemble ML models are used to calculate the metrics in 
Step 3. In the subsections below, first the outcome of metrics from the 
individual ML models are described and afterwards the metrics calcu
lated from the ensemble ML models.

4.3. Condition monitoring with individual ML models

The output of each individual ML model for all the quantities of in
terest in the second year of data (test data) is calculated. Based on the 
case study data, while the exact point of failure was identified, the 
initiation of the degradation leading to this failure remained unknown. 
As the first step, the change in individual ML models’ metrics between 

Fig. 5. Metrics, including MSE, RMSE and R2, for different ML models (random forest, artificial neural networks, support vector regression, XGboost) predicting (a) 
total vibration, (b) Motor temperature, (c) intake pressure.
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the training and test sets was compared. The results of Step 3, illustrated 
in Fig. 6, show the three metrics (MSE, RMSE, R2) for all three quantities 
of interest (Vtotal, Tmotor, Pin) and all the four ML models trained. Based on 
the initial observation on the results, it is indicated that MSE and RMSE 
for the test set compared to the training set is increasing. Additionally, 
the test set exhibited a lower R2 value for the test set. This observation is 
consistent for all the models, irrespective of the model accuracy on the 
training set, and in all three quantities of interests. These metrics have 
also been studied in other applications for the condition monitoring and 
similar trends were observed (Surucu et al., 2023).

Such a change in the metrics for individual ML models, can be caused 
either by the change in the data structure due to the degradation of the 
equipment or lack of generalization of the model. Since analyzing the 
distribution of the dataset, showed that the train and test sets do have an 
overlap in distribution and range (Fig. 3), hence data structure was not 
at the base of this mismatch. As mentioned in the results of ML models 
training, the accuracy of the ML model for different training set was not 
significantly changed that hints towards the model’s robustness and 
consistent performance across various data subsets (Freiesleben et al. 
2023). This stability suggests that the models have generalization ca
pabilities and the underlying patterns in the data are likely caused by 
changes and degradation in the production.

4.4. Condition monitoring with ensemble ML models

In this section, we present the results of the ensemble ML models 
along with the statistical metrics derived from the analysis (Step 3). 
Analysis was performed on all three parameters described in the previ
ous section but only shown in detail for ESP intake pressure, illustrating 
how the framework detects performance degradation over time. As 
previously indicated, quantile regression forest method was used for the 
ensemble ML models.

The results of the condition monitoring under uncertainty frame
work are illustrated in Fig. 7. The top graph shows field data and pre
dictions for the train and test sets over a span of nearly two years 
(including the training and test sets). The field data is represented by 
blue lines, with the training set indicated by solid lines and the test set by 
dashed lines. The predictions from the averaged of ensemble model 
predictions are depicted in red dashed lines, and the confidence intervals 
at 50% and 95% levels are shown in green and blue shaded areas, 
respectively. The close alignment between the predicted values and 
actual field data, particularly within the confidence intervals, demon
strates the model’s accuracy and robustness in capturing the perfor
mance of the ESP.

The middle and bottom graphs focus on the test set data for the first 
and last months of the observation period, respectively. These graphs 
provide a more granular view of the model’s performance over shorter 
timeframes. The middle graph, representing the first month of the test 

Fig. 6. Model performance metrics for all the ML models compared between the training and test set for total vibration, motor temperature and intake pressure.
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set, shows a tight clustering of field data around the predicted values, 
with most data points falling within the 95% confidence interval. This 
indicates a strong initial performance of the ESP. The bottom graph, 
representing the last month of the test set, reveals a slight increase in 
deviations between the field data and predictions, with more data points 
outside the confidence intervals, especially almost all the data falls 
outside the 50% confidence bound. This divergence suggests potential 

degradation in the production and ESP’s performance over time. In 
addition, by observing the bounds of the 50% and 95% confidence in
terval, a shift in the distribution of the data within the bounds is 
observed which suggests the mismatch between the mean and median of 
the prediction, which will be quantified in the next part. The size of the 
50% and 95% confidence bound also increased in the last month of 
monitoring prior to the failure.

Fig. 7. Condition monitoring of ESP using a quantile forest regression model under uncertainty. The top panel shows field data and model predictions for both the 
training and test sets over nearly two years, with confidence intervals at 50% and 95%. The middle panel focuses on the first month of the test set, highlighting the 
model’s performance and accuracy. The bottom panel shows the last month of the test set, indicating potential degradation in ESP performance as evidenced by 
increased deviations between field data and predictions for the ESP intake pressure.
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Fig. 8. Ensemble ML models used for condition monitoring of the total vibration demonstrated in both train and test sets.

Fig. 9. Ensemble ML models used for condition monitoring of the ESP motor temperature demonstrated in both train and test sets.

Fig. 10. Comparison of performance metrics (Absolute Difference, Empirical Coverage, and Confidence Interval Width) for training and testing datasets for three 
different parameters (a)Pin, (b) Vtotal and (c)Tmotor.
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The prediction results for the other two parameters, total vibration, 
and motor temperature, are shown in Figs. 8 and 9, respectively. For the 
total vibration, a more noticeable discrepancy between the predicted 
values and the confidence bounds is observed, with data consistently 
falling outside the bounds approximately six months before the failure. 
Additionally, there is a significant increase in total vibration one month 
prior to the failure, which the model, including both 50% and 95% 
confidence bounds, failed to capture. In contrast, the motor temperature 
parameter exhibits less pronounced and visible changes, with a slightly 
larger 95% confidence interval bound width closer to the failure point. 
There are more fluctuations in the motor temperature field data, but 
these remain within the confidence bound range, as observed around 

August and September 2020. However, the motor temperature data fall 
outside the confidence bounds a few days before the event.

Overall, these detailed visualizations highlight the effectiveness of 
the proposed framework in real-time monitoring. To make a step from 
qualitative to quantitative analysis, the statistical metrics which were 
previously defined are calculated for all three parameters and are shown 
in Fig. 10, both for the train and test sets. A systematic observation is 
that a clear difference between all three indicators on the train and test 
sets can be seen, Absolute Difference between mean and median in
creases, empirical coverage decreases and confidence interval width 
increases.

Despite the difference in Absolute Difference between the two 

Fig. 11. Permutation importance of input features for predicting (a) Tmotor, (b)Vtotal and (c)Pin across four ML models, RF, ANN, XGBoost and SVR. The graph il
lustrates the varying significance of each feature in contributing to the models’ prediction.
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datasets, the variation is marginal, and only using this metric can be 
unreliable for detecting performance degradation. The difference in 
empirical coverage and confidence interval width of train and test sets 
provide more noticeable changes in the datasets. In addition, Empirical 
Coverage shows moderate values for both training and testing, sug
gesting that the model captures a proportion of the true parameter 
values within the predicted confidence intervals. The Confidence In
terval Width is significantly larger for the testing set compared to the 
training set, indicating greater uncertainty in the model’s predictions 
when applied to unseen data. For real-time applications in the field, it is 
suggested to estimate these metrics in real-time on a moving window, 
the size of the window to be determined by the operator, to ensure an 
accurate detection of degradation onset.

4.5. Model explainability

To provide explainability on the derived results (Step 4), a permu
tation importance of various input features in predicting the three 
output parameters was performed. The feature importance provides 
insights into which input features significantly contribute to the pre
diction performed by each model. This step was performed on the test 
dataset. The outcome is shown in Fig. 11 for Tmotor, Vtotal and Pin. From 
the graph, it is evident that the feature importance varies notably across 
different models. By considering Tmotor as an example, and looking into 
the RF and XGBoost explainability, Tflow exhibits the highest importance, 
followed by frequency and voltage. This indicates that the RF model 
relies heavily on these features to predict Tmotor in the test set. In 
contrast, the ANN model assigns the greatest importance to Tflow and 
voltage, highlighting a different feature interaction pattern compared to 
the RF model. The SVR model, which performed the worst in terms of 
predictive accuracy, shows a more evenly distributed importance across 
several features. This distribution suggests that SVR might struggle to 
leverage specific features effectively due to the limited dataset size, 
inherent complexity in the data or lack of convergence.

When analyzing explainability results, both the ranking of the fea
tures and their influence on the prediction parameters, as indicated by 
the amplitude, must be taken into account. If the feature importance 
ranking remains unchanged but their amplitudes changes, it indicates 
that the equipment is following the same underlying correlation, but the 
influence of parameters has been impacted. This might reflect a change 
in operational conditions or component performance. In addition, a 
change in the feature importance ranking signals a shift in the equip
ment’s behavior, possibly due to altered system dynamics or emerging 
issues, highlighting the need for further investigation. By analyzing the 
explainability using the most accurate ML models, the following 
explainability for the degradation monitoring can be derived. 

- Total vibration exhibited the most prominent mismatch, started 
around 6 months prior to the failure and the features that supports 
the prediction of this mismatch are flow rate, voltage, and current. 
Based on the operation of an ESP, it is well known that the changes in 
the flow rate, voltage and current can impact the total vibration.

- Motor temperature mismatch seems to be mainly correlated to the 
voltage, flow temperature, and pump frequency. Such a correlation 
can also be found in during the normal operation of the ESP. Motor 
temperature is significantly correlated with the flow temperature 
and an increase in the frequency or voltage can lead to a higher 
motor temperature due to a higher power consumption.

- ESP intake pressure degradation is captured through the impact of 
voltage and wellhead pressure followed by flow rate and ESP 
frequency.

In order to better understand the impact of features on three moni
tored parameters, a comparison was made between the feature impor
tance calculated based on the training and test set (a month prior to the 
failure). This comparison for RF, as one of the most accurate model in 
this case study, is shown in Fig. 12. For ESP intake pressure and motor 
temperature, the ranking of features remains stable across both datasets, 

Fig. 12. Comparison of feature importance between the training set and a portion of test data (last month prior to the failure) of the trained random forest model to 
identify the features contribution to the mismatch detected in motor temperature, total vibration and intake pressure of ESP.
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but the amplitude of feature permutation varies. This suggests that while 
the relative importance of each feature stays the same, the magnitude of 
their impact on model predictions differs between the training and test 
sets. On the other hand, for total vibration, although voltage, current, 
and frequency continue to be important features, the correlation be
tween flow rate and total vibration significantly weakens in the test set. 
This shift indicates that the model’s ability to capture the flow rate’s 
impact on vibration diminishes over time, which may be due to changes 
in the system dynamics or the model’s reduced ability to generalize the 
relationship between these features as the failure approaches. The 
explainability observed demonstrates that the relationship between in
puts and outputs captured by the accurate ML models is logical and 
remains valid during both normal and abnormal operations. While some 
correlation is expected, excessive or unexpected changes in the moni
toring parameters with the features could signal potential issues. Such 
deviations may indicate system degradation or the early onset of a 
failure and is provided from the metrics calculated in Step 3.

4.6. Anomaly detection with expert knowledge

In the final step of the framework, the expert needs to decide about the 
status of the system. As explained in the Step 5 of the framework, the 
detection of anomalies and degradation is done by the operator of GFE 
based on in-house operational practices or handbooks to setup the 
threshold and is dependent on the criticality of the equipment. In the case 
study, all the metrics and model mismatches provide insights on the 
initiation of the degradation prior to the failure which can vary between 1 
and 6 months and with different level of severity. Based on the visuali
zation of ML models, the initiation of the ESP degradation was identified 
between 1 month, for ESP intake pressure, up to 6 months, for the total 
vibration, prior to the failure of the pump. In case, an accurate model for 
some of the monitoring values cannot be made, other parameters can be 
used to detect anomalies and degradation in the equipment.

Along with the metrics, visualization, and explainability, it was 
found that in the test data containing ESP degradation, the ESP intake 
pressure was higher than the field data, the predicted vibration was 
lower than the actual field value, and the field motor temperature was 
higher than predicted values. By considering the changes predicted by 
the models and comparing with known trend analysis for ESP degra
dation (Awaid et al., 2014), the analysis suggested a potential blockage 
at the inflow and perforation, due to a higher vibration and motor 
temperature while the intake pressure was lower than anticipated. In a 
similar example shown in the reference paper by Awaid et al. (2014), an 
ESP in a well showed trends of declining intake pressure and higher 
motor temperature which were associated to blockage at perforations. 
The observed behavior in the case study was consulted with the operator 
and the analysis was confirmed that the ESP degradation was mainly 
caused by inflow restriction.

In conclusion, the proposed framework showed promising result to 
serve as a real-time tool for surveillance of the ESP and geothermal 
production systems. In case a degradation is observed, the geothermal 
operator or engineers could receive an alarm to evaluate the condition 
and take corrective actions to resolve the situation. In addition, when a 
failure or trip occurred, the additional analysis provided by the frame
work could support the engineers to perform a root-cause failure anal
ysis and improve the understanding of the situation.

In real-time conditions, the uncertainty intervals should be inter
preted as a range of potential outcomes, informed by the diversity in 
predictions from the ensemble models. These intervals represent 
epistemic uncertainty due to variations in model performance, helping 
to provide a more nuanced understanding of the prediction’s reliability. 
Managing uncertainty in model predictions has significant practical 
contributions in real-time decision-making. By incorporating uncer
tainty intervals, decision-makers can assess the confidence in pre
dictions and make more informed choices in dynamic environments. 
This is especially important in complex systems where decisions must 

account for potential variability and model limitations. Uncertainty 
management improves the robustness of decisions and reduces the risk 
of overconfidence in model outputs.

5. Conclusions

In this paper we introduce a novel methodology in the realm of 
monitoring and anomaly detection by leveraging an ensemble of ML 
models, quantifying the model confidence, integrating with explain
ability and expert knowledge. Unlike existing frameworks that typically 
rely on a single model and metric for event detection, the ensemble 
approach combines the strengths of multiple models, such as RF, ANN, 
SVR, and XGBoost, to generate more robust and accurate predictions. 
This strategy mitigates the limitations of individual models and en
hances predictive performance.

Ensemble ML models were also integrated into the framework to 
quantify the uncertainties and confidence bound in the predictive models 
for an enhanced detection of events in the data in an objective manner. 
This framework is crucial for risk management and improved operational 
planning, as it enables the identification of anomalies with a quantifiable 
degree of confidence. Furthermore, the incorporation of model explain
ability adds a layer of interpretability, allowing for a deeper under
standing of the factors contributing to predictions. By focusing on both 
prediction accuracy and model transparency, this approach facilitates 
better decision-making in anomaly detection scenarios.

Introducing several metrics for individual and ensemble ML models 
provides a comprehensive view on the monitoring of the geothermal 
systems based on the developed models as each metric has a different 
implication of the detected event, e.g. MSE and RMSE quantifies the 
average magnitude of prediction errors, confidence interval width in
dicates the precision of the model’s predictions, and empirical coverage 
helps validating the model’s prediction and its confidence bound 
coverage for the measured values. This approach goes beyond current 
practice, which often focuses solely on metrics like R2 and RMSE, by 
incorporating additional indicators that provide deeper insights into 
model reliability and event implications.

For the case study, the framework could predict the onset of the ESP 
degradation from 1 month up to 6 months prior to the occurrence of the 
failure with more than 95% confidence and the explainability layer 
together with the predicted trends provided potential cause of the failure 
which was due to the inflow restriction and production decline into the 
geothermal well. Compared to existing monitoring approaches, this 
methodology is more comprehensive due to its combined use of ensemble 
modeling, detailed explainability, and robust uncertainty quantification, 
offering an advanced solution for real-time anomaly detection. The pro
posed framework for real-time monitoring, combining ensemble ML 
models and uncertainty metrics, is inherently generic and can be adapted 
to any geothermal plant with adequate training data and the case study 
presented in the paper serves solely as a demonstration example. The 
results of this research can support the operators and engineers of 
geothermal plants to maintain reliable an efficient operation of the 
geothermal systems, as well as equipment manufacturers and service 
providers to improve the maintenance and inspection of these systems.

To ensure practical usability, the framework should supports infor
mative visualizations such as model predictions with uncertainty 
bounds and feature importance trends over time. These tools highlight 
the key parameters influencing predictions and their temporal changes, 
as illustrated in the manuscript, and needs to be implemented for the 
operators to enable real-time decisions.

While the proposed framework shows promise in using ensemble 
models for monitoring geothermal systems, its conclusions are limited 
by the choice of employed ML models, selected indicators, and expert- 
provided inputs. The system’s performance is heavily influenced by 
the selection of machine learning models, which must be carefully 
tailored to the specific geothermal systems, processes, or equipment 
based on their unique operational conditions. For new systems with 
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limited data or vastly different operating conditions, the framework’s 
applicability may be constrained, highlighting the need for further 
research. Additionally, reliance on sensor data and statistical metrics 
can limit the framework’s ability to fully capture the complexity of real- 
world scenarios, particularly under extreme conditions or significant 
operational variability. Issues such as missing or noisy data further 
impact the framework’s effectiveness, emphasizing the importance of 
robust preprocessing techniques.

To address variability in operating conditions, methods like transfer 
learning could be explored to adapt existing ensemble models to new 
environments. These limitations should be carefully considered when 
interpreting the results and assessing the framework’s broader 
applicability.

For future works, the framework is suggested to be tested on a larger 
well database to estimate remaining useful lifetime of ESP or other vital 
equipment in the geothermal plant, providing therefore predictive 
capability to the monitoring tool. Further integration of the framework 
with the digital twin of geothermal assets can provide confidence in the 
monitoring and detection of anomalous production behavior. While this 
study demonstrates the applicability of the proposed framework through 
a single case study, future work will focus on validating its use across 
diverse geothermal systems, including different pump types in various 
geothermal plants, heat exchangers, and filter clogging scenarios. This 
will help assess its general applicability and further enhance its 
robustness. Benchmarking the proposed framework with other existing 
monitoring approaches from the literature in a geothermal site will be 
another future research topic. Finally, integrating measurement un
certainties in the workflow is foreseen as a next step.
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ANN Artificial neural networks
CNN Convolutional Neural Networks
ESP Electrical Submersible Pumps
GFE Geothermal facilities and equipment
LSTM Long Short-Term Memory
MAD Median Absolute Deviation
ML Machine Learning
MSE Mean squared error
O&M Operation and maintenance
RF Random Forest
RMSE Root mean square error
SME Subject Matter Expert
SVM Support vector machine
SVR Support vector regression

UQ Uncertainty quantification
XGBoost Extreme Gradient Boosting
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