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ARTICLE INFO ABSTRACT

Keywords: As infrastructure continues to age and traffic levels intensify, there is a growing need for efficient methods to
Bayesian updating verify the reliability of many existing structures. Field testing offers the possibility to assess the current condition
Laboratory testing of a structure. Specifically, in a proof load test, substantial loads are applied to evaluate the structure’s resistance
{;S;: ft{eos;ing to future loads that could compromise structural safety. However, to prevent excessive test loads and their po-
Reliability tential damage, it is desirable to assess structural reliability by monitoring the response under more moderate

loads. This study merges laboratory and in-situ testing results through a Bayesian update of the structural reli-
ability after each successful load application. Two case studies are presented where laboratory testing on
structurally similar elements and analytical modelling provide ample evidence to justify test load reductions of
20 % and 25 %. The proposed method offers a systematic framework to link the structure’s response during
testing to structural reliability and address the uncertainties in resistance, loads and measurements. Nonetheless,
the representativeness of the data in terms of structural similarity and uncertainties related to measurements
continue to be significant factors. Despite these challenges, incorporating monitoring data during proof load
testing is expected to reduce target loads in most cases.

to reflect the current state of the structure. In addition, the reliability
requirements for the design of new structures are higher than those used
for the assessment of existing structures, following from an economic
motive [1,2]. In this article, comparisons will be made of the required
target loads at reliability levels suitable for the assessment of existing
structures

Inspections, structural assessments, and maintenance are essential to
ensure sufficiently reliable bridges and viaducts. As the infrastructure
ages and endures increased traffic loads and environmental challenges,
accurate reliability assessment methods are needed to address these
evolving conditions. In case no signs of deterioration are present, the
typical desk study may confirm sufficient reliability if there are no
reasons to suspect internal damage. However, wear is often present, and
it is difficult to tell if it impairs structural reliability. Fortunately, tests
can be carried out on the structure to gather supplementary data. Tests
on reinforced concrete structures commonly entail measuring the

1. Introduction

Buildings and civil engineering works are expected to meet specific
reliability requirements throughout their entire design life. Reliability
assessment of an existing structure becomes relevant when the structure
displays performance issues, the loads have significantly increased, or its
original design life has passed. A design that may have been sufficient in
the past may not be adequate today. Over time, degradation may have
taken place, and the traffic loads have predominantly increased. Typi-
cally, assessing reliability requires in-depth information about the
structural model, failure mechanisms, the description of loads and their
combination. Moreover, for existing structures, assumptions regarding
the uncertainties made in the past may no longer be true today as the
knowledge about resistance and load models has evolved. Therefore, the
original design reliability, based on prior knowledge, should be updated
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Nomenclature

List of abbreviations

CDF Cumulative distribution function
cov Coefficient of variation

DIC Digital image correlation

FEM Finite element method

FORM  First-order reliability method

LHS Latin hypercube sampling
LM1 Load model 1 (Eurocode)

MCMC Markov chain Monte Carlo

MCS Monte Carlo simulation

PLT Proof load test

SORM  Second-order reliability method
WIM Weigh-in-motion

List of symbols

Coq Time-independent variability of traffic load
E Load effect

Epr, Load effect during proof load testing
E; Young’s modulus of reinforcing steel
fe Concrete compressive strength

fy Yield stress of reinforcement

Fx(-) CDF of random variable X

Gpr, Dead load effect

GspL, Superimposed dead load effect

I Indicator of performance

maqpr, Mean proof load effect

mx Mean of resistance ratio

M Moment, mean (sample)

Mg Moment due to dead load

n Sample size

N Number of samples (MCS)

p Load of an individual axle in proof load test
px(9) Probability density function of X

Py Failure probability

Q Time-variant part of traffic load

Qwiv  Characteristic traffic load following from WIM data
Qx.1v1 Characteristic traffic load following from Eurocode LM1
Qp1, Target load (proof load)

R Resistance

Sx Standard deviation of resistance ratio

S Standard deviation (sample)

T Student’s t-distributed random variable

U Standard normally distributed random variable
Var(-) Variance (operator)

Vx Coefficient of variation of resistance ratio
Whax Maximum nominal crack width

Wmaxw  Maximum weighted nominal crack width

X Data vector (Bayesian)

X Random variable, resistance ratio (R/Epr)

Z Limit state function

Zpy, Limit state function for proof load testing

o Influence coefficients vector

B Reliability index

£ Steel strain

0 Model parameters vector (Bayesian)

OF Model uncertainty of the load effect

Ok pL, Model uncertainty of the proof load effect
Or Model uncertainty of the resistance

u Mean (population)

v Degrees of freedom (Student’s t-distribution)
o Standard deviation (population)

() Standard normal CDF

geometry, drilling cores or scanning reinforcement. In some instances,
elaborate setups that subject the structure to significant loads may be
employed to test its resistance. The latter is referred to as proof load
testing; by resisting a large load, the structure can prove to have suffi-
cient resistance. However, applying the often large loads is resource-
intensive and imposes a risk on the structure, equipment and
personnel. To avoid excessively large loads, all relevant information
about the structure should be considered, even when uncertain. Given
this uncertainty, employing probabilistic techniques is necessary. Uti-
lising all information, rather than often conservative design rules, can
avoid excessive target loads. By rationally selecting the appropriate load
level, proof load testing can effectively demonstrate the structure’s
resistance to anticipated future traffic loads [3-7].

The current research on the probabilistic substantiation of proof load
testing aims to develop a comprehensive structural reliability updating
framework [8]. This article presents a novel reliability updating method
that integrates information from two distinct sources: (1) the survival of
the applied load during the proof load test and (2) the data following
from monitoring relevant indicators during the test, coupled to labora-
tory experiments giving the uncertain relation between these indicators
and structural resistance [9]. Highly representative tests can signifi-
cantly enhance the state of information, and thereby reduce resistance
model uncertainty. Alternatively, tests on less representative specimens
can be used, but will result in greater uncertainty. While the proof load is
carefully increased in controlled increments to avoid unnecessary
damage, the structural performance assessment may be based on in-
dicators such as displacements and crack widths. These indicators, while
not immediately indicative of overall structural health, are interpreted
in the light of structural behaviour observed in laboratory experiments

on structural elements similar to those present in the proof loaded
bridge. For example, strains may be interpreted via sectional analysis to
identify a critical value. In this way, stop criteria can prevent unwanted
damage [10], but the indicator value may also provide valuable infor-
mation on structural performance.

To probabilistically interpret the information from indicators, first
the theoretical background on structural reliability, statistical inference,
and their relation to proof load testing is described. Then, the reliability
updating method on the basis of proof load testing and monitoring data
is presented. To illustrate the method’s application, two case studies
utilising laboratory measurements and analytical modelling are pro-
vided. The article rounds off with a discussion of the results, challenges,
and conclusions.

2. Theoretical background
2.1. Structural reliability

The proposed method (Section 3) relies on the principle of structural
reliability updating, which requires reliability assessment. A structural
reliability assessment is based on a probabilistic model that includes a
limit state function and the definition of random variables describing the
load and resistance parameters and the modelling uncertainties. Reli-
ability methods are used to calculate the reliability (or failure proba-
bility) of a structure or a structural component. The limit state function
plays a central role as it expresses the boundary between safe and unsafe
combinations of resistance and load effect. Negative values of the limit
state function indicate failure, irrespective of the magnitude. An
example of a typical limit state function involving just two random
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variables is:

Z=g(X)=g[R,E)=R—-E @

where R is the resistance and E is the load effect. The load effect may
comprise the bending moment, shear force, axial load, and so on. Often,
the combined effects of multiple loads are considered [11-13]. The state
of information concerning the resistance and load effect varies between
structures. Various sources of information can be utilised, ranging from
literature to in-situ material testing and site-specific traffic data [8]. The
Eurocode standards also allow for design assisted by testing and guid-
ance is provided regarding the sampling process and statistical
post-processing [14].

Commonly, the number of random variables is larger than just two,
and the limit state function is more difficult to compute. There may be a
very large number of random variables, and instead of having expres-
sions in closed or analytic form available, complex finite element
method (FEM) models may be needed to evaluate the limit state func-
tions. For this reason, different reliability computation methods have
been developed, and all have their pros and cons depending on the
application. The calculation procedure for the proposed method
(Section 3.5) makes use of the Markov chain Monte Carlo (MCMC)
sampling [15], which in turn is based on Monte Carlo simulation (MCS).
MCS is a straightforward method applicable to many reliability prob-
lems but is computationally expensive [16]. In an MCS, the random
variables present in the problem formulation (X) are repeatedly sampled
and may be used to evaluate the limit state function. The probability of
failure is obtained by calculating the fraction of failures that occur:

M=

P :%’ ) 1[g(x;) < 0] 2

]
-

where 1[-] denotes the indicator function; it is 1 when the condition
within brackets is true and 0 otherwise. The number of samples is
denoted by N, and the random vector containing the values of each
sample is x;. The corresponding reliability index may be calculated via:

p=0(1-P)= 0 (R) ®

where ®1(.) is the inverse of the standard normal cumulative distri-
bution function (CDF) (i.e., mean = 0, standard deviation = 1). Reli-
ability requirements are commonly formulated in terms of the reliability
index and a reference period to account for the time-dependent nature of
random processes. One way to unify reliability requirements for design
and assessment is through the adoption of annual reliability targets [17,
18].

When the failure probability is small, many samples are required to
estimate the reliability index accurately. Improved sampling methods
[19-23] or other reliability methods are beneficial in such circum-
stances. After simplification, common reliability methods can be used in
the proposed reliability updating method (Section 3.5). For example,
using the first-order reliability method (FORM), a computationally
efficient method with easily understandable output: the reliability index
(#) and influence coefficients (o), indicating the relative importance of
the random variables [24,25]. Further improvement of the reliability
index is possible with the second-order reliability method (SORM) [26,
27] which utilises the second-order derivatives of the limit state function
in the design point. After eigenvalue analysis or calculating de-
terminants [28], they yield a correction factor to the FORM failure
probability. Slightly different versions of the same idea were introduced
by various authors, offering a small increase in accuracy [29,30].

2.2. Statistical inference

2.2.1. Principles
Deriving the statistical descriptions of the random variables within
the limit state function is necessary to enable the reliability assessment.
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These random variables represent uncertainties in material properties,
loads, and modelling approaches. When tests are performed in the lab-
oratory, the number of specimens is usually limited due to cost, time,
and material availability constraints. Therefore, the number of tests and
resulting data points is usually small and cannot be expected to capture
the inherent variability fully. This also applies to calculating the resis-
tance ratio distribution based on laboratory tests (Section 3.3.1). Both
frequentist and Bayesian approaches can be used to infer the statistical
descriptions and account for the limited number of tests. The frequentist
approach solely uses the sample statistics of the observed data. The
prediction distribution allows for the inclusion of statistical uncertainty
due to small sample sizes and known and unknown standard deviations.
On the other hand, the Bayesian approach also allows for incorporating
prior knowledge to deliver posterior distributions that incorporate both
data and subjective knowledge. The calculation of the posterior proba-
bility distributions typically requires numerical methods, such as Mar-
kov chain Monte Carlo (MCMC) sampling [15].

2.2.2. Prediction distribution

Given n observations of an unknown random variable X, the pre-
diction distribution describes the probability distribution of the next-to-
be-observed value X, 1. Generally, two situations are distinguished: one
where the standard deviation is known, and the other where it must be
estimated from the data. If the observations X; come from the same
normally distributed population, are independent and identically
distributed (i.i.d.), it follows that [31,32]:

_ Xn+1 -M

=2t "
oy/1+1/n

where U is a standard normally distributed random variable, M = (X; +
X5 + -+ + X;)/n is the sample mean, and ¢ is the population standard
deviation. Only when data is observed, random variable M becomes a
realisation of the sample mean (denoted with lowercase m). The nor-
malising term follows from considering the variance of the difference in
the numerator, i.e. Var(X,.1 — M) = Var(X,;1) + Var(M) = 6% + 6%/
n= 62(1 + 1/n). Taking its square root gives the denominator in Eq. (4).
Intuitively, it may be understood as the standard deviation following
from random variable X, ; and the, typically smaller, standard devia-
tion of the sample mean of values 1 to n. Solving Eq. (4) for X, gives:

Xp1 = M+Usy/1+1/n 5)

where the right-hand side may be interpreted as the prediction distri-
bution of X and follows a normal distribution. It should be realised that
X1 will not actually follow the prediction distribution, but Eq. (5) al-
lows for incorporating the uncertainty about the mean, similar to the
posterior predictive distribution in Bayesian inference (Section 2.2.3).
The ‘penalty’ incurred by estimating the population mean with the
sample mean is contained in the increased standard deviation and di-
minishes with an increasing number of observations n.

In case the standard deviation of X is not known and needs to be
inferred from the data as well, Student’s t-distribution emerges [33]. The
t-distribution is wider than the normal distribution, reflecting the more
significant uncertainty when the standard deviation is unknown. If, once
again, the i.i.d. observations X; from the same normally distributed
population are considered, it follows that [31]:

~.17(0,1) 4

_ Xn+l -M

=M T ot

Syi+ijn '

where T is a (standard) t-distributed random variable with v =n - 1
degrees of freedom and S is the sample standard deviation including
Bessel’s bias correction for the variance:

©

)
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The same normalisation consideration holds for the denominator in
Eq. (6) as in Eq. (4). Solving Eq. (6) for X, gives:

Xp1 =M+TS\/I+1/n 8)

where the right-hand side may be interpreted as the prediction distri-
bution of X and follows a shifted and scaled t-distribution. Compared to
Eq. (5), another ‘penalty’ is introduced by using the random variable T
instead of U, because the t-distribution is typically wider. In some cases,
an intermediate approach is followed where n is artificially increased
when (prior) information suggests a similar standard deviation as
calculated from the dataset. In addition, knowledge about the type of
distribution may also be incorporated. It is typical to assume a
lognormal distribution for material properties and, thus, apply the above
procedure to log-transformed values [14,34].

2.2.3. Bayesian inference

The Bayesian inference process enables the integration of prior
knowledge to improve the statistical description of data. It is a system-
atic process in which prior beliefs are updated according to the available
information (or evidence, or data), resulting in posterior beliefs. In a
Bayesian inference context, usage of the t-distribution is equivalent to
adopting a non-informative prior for the parameters of the normal dis-
tribution. However, in many cases, a non-informative prior is too
generic and does not adequately represent prior knowledge or con-
straints known about the parameters, leading to overly conservative
posterior estimates. In such scenarios, incorporating more informative
priors by leveraging expert judgement and historical data leads to more
realistic outcomes [35]. Bayesian inference can be used to update beliefs
about important parameters in the structural reliability analysis. The
reliability of the structure may be re-evaluated each time new infor-
mation becomes available, resulting in Bayesian reliability updating
[36-38]. In a sequential updating, scheme the posterior distribution
following from the previously acquired data is used as a prior for the
next iteration [39,40].

In Bayesian inference, the distribution of a random variable X itself
may be updated, or the parameters of its assumed model. In the latter
hierarchical model, the distribution parameters are modelled as random
variables with specific distributions as well. The prior distributions may
then be specified by providing values for the hyperparameters, e.g. the
mean and standard deviation of the mean of X. In this scenario, the
model parameters are the mean and standard deviation of X, collected in
0 = (ux, 0x), and may be updated through Bayes’ theorem:

p(x(0)p(8)

POX) =7 0)p(0) do ©

where 0 is a vector containing the model parameters (random variables),
X is a vector containing the data, p(6 | x) is the posterior distribution, p
(x| 0) is the likelihood of observing the data given the model parame-
ters, p(0) is the prior distribution, and the denominator is called the
marginal likelihood and acts a normalising constant. If prior information
about the parameters to be inferred is not available, a non-informative
prior may be used. In the typical case with the mean and the standard
deviation as model parameters, the non-informative prior is obtained by
the following (improper) probability density functions [41]:

plux) =1 (10a)

plox) =1/ox (10b)
from which the prior distribution follows as p(8) = p(ux) p(cx) = 1/0x.
Because the resulting prior distribution is improper, it cannot be
sampled directly. Instead, a calculation procedure is required that draws
its random values in a different way, such as Markov chain Monte Carlo
(MCMC) [42,43] or Importance Sampling [19]. When the often multi-
dimensional posterior distribution p(6 | x) has been obtained, it can be
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used to update the probability distribution of X itself, i.e. the posterior
predictive distribution or Bayes’ distribution [44]:

PR () = / px(x/6)p(0x) do (11a)
P () — / Fy(x]0)p(0]x) d6 (11b)

where px(-) denotes the probability density function and Fx(-) the cu-
mulative distribution function of random variable X.

2.3. Reliability following from proof load testing

In proof load testing, the so-called target load plays a central role, as it
is specifically chosen to simulate today’s and future usage conditions
and account for a degree of uncertainty. The magnitude of the target
load controls the desired reliability of the structure, as higher reliability
demands require higher loads during testing. If a structure withstands
the target load without signs of distress [45], it is deemed sufficiently
reliable for continued operation after the test. Selecting the target load
based on reliability considerations may be done in different ways,
depending on how much information is available about the structure.
For a reliability assessment of a bridge or viaduct, at minimum, a sta-
tistical description of expected traffic loads is required. By assuming that
the resistance of the tested bridge or viaduct is at least equal to the
permanent load effects and the target load effect (R > G + Qpy), the limit
state function, including model uncertainties, may be written as [5]:

Z = OppLQpL — O5C0oQ 12)

where O py, is the model uncertainty of the load effect pertaining to the
proof load testing situation (Section 3.2), Qpy, is the target load, 6 is the
model uncertainty of the load effect for the regular traffic load situation
(correlated with Ogpr), Coq accounts for the time-independent vari-
ability of the traffic load, and Q is the time-variant part of the traffic
load. Evaluating the limit state function in Eq. (12) is referred to as the
lower-bound approach, as it provides the most conservative estimate of
the posterior resistance distribution [46]. A comparison with target
loads obtained through this relatively straightforward method is pre-
sented in the case studies (Sections 4 and 5).

Alternatively, the distribution function of the resistance may be
explicitly considered. This procedure effectively leads to truncating the
left tail of the distribution to exclude the possibility that the resistance is
lower than the load effect produced during the test [47]. However, this
truncation is not abrupt but rather gradual, owing to some uncertainty
about the actual load effect created by the applied load [48]. In prin-
ciple, this resistance relates to the specific loading position and method
of application. On a structural level, the effect of the applied load on a
particular component or cross-section is more valuable. Therefore, the
limit state, in principle, considers a resistance and load effect, not the
applied load itself. The update of the resistance distribution may also be
achieved via the application of Bayes’ theorem, and an indicator like-
lihood function providing the value O for resistances lower than the
target load and 1 otherwise. With the proof load effect described by a
random variable, this procedure also results in an appropriate posterior
distribution for the resistance. The prior distribution may then be
formulated using a mean value based on the mean annual traffic load
and a relatively large coefficient of variation to reflect the large degree
of uncertainty about the resistance. When a resistance distribution is
available, possibly updated by in-service proven strength, it is also
possible to evaluate the reliability during the proof load testing situation
[46].
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3. Reliability updating method
3.1. Reliability updating using two information sources

After each load increment in the proof load test, the estimation of the
resistance on the basis of measurements forms the first source of infor-
mation (Fig. 1, point 1). The proposed method relates the observed in-
situ response, through the use of indicator values, to the response
observed in laboratory tests on similar structural elements or derived
from suitable analytical models. The indicator value is measured in situ
and on representative specimens in the lab. For example, strains derived
from horizontal displacement measurements at the bottom of a beam or
slab can serve as critical indicators for structural performance. By uti-
lising the same indicators in both laboratory and in-situ testing, it is
possible to determine the mean and standard deviation of the structure’s
resistance. Instead of a mean and standard deviation, the prediction
distribution of R may be established via other statistical approaches,
including Bayesian inference (Section 2.2).

If a structure can withstand a specific proof load, it also means that
its resistance (R) is equal to or greater than the load effect during the test
(Section 2.3). Considering the uncertainty of the proof load test, the
gradual truncation of the resistance is the second source of information
(Fig. 1, point 2). The information from the two sources is processed in
the presented order and allows for variable load increments to deter-
mine the reliability of the structure. Generally, as the applied load in-
creases, the structural reliability also tends to increase. A flowchart
outlining the steps in the proposed proof load testing assessment method
is provided in Fig. 2.

3.2. Probabilistic model for reliability updating

Structural reliability may be assessed by evaluating a limit state
function (Section 2.1). The primary limit state considers the situation in
which the regular traffic loads act on the bridge. The proposed function
aligns with the guidelines from the Probabilistic Model Code [34] and
fib Bulletin 80 [49]:

Z = xR — 05(Gow + Gspr, + CogQ) a3

where 6y is the uncertainty associated with resistance calculation, R is
the resistance, 0 is the model uncertainty of the load effect calculation,
Gpy, is the dead load effect, Ggpy, is the superimposed dead load effect,
Coq is the time-invariant part of the live load effect, and Q is the time-
variant part of the live load effect (i.e. traffic load effect). The reli-
ability of the bridge prior to proof load testing could be evaluated if
distributions were assigned to all random variables, including R.
Because of the low information state, the distribution of R would
incorporate a large variability and thus result in low reliability. Instead
of employing a conventional structural resistance model, the resistance
R will be estimated by combining in-situ measurements with insights
gained from laboratory experiments or analytical modelling. This also
affects how the variability of 60g, the uncertainty associated with

fe, fr EpL

1. Prediction of mean

R and standard deviation
from measured indicator
value / during the test

er

m,
EPL /2. Truncation of the

resistance distribution

Fig. 1. General principle of updating the resistance distribution from two
sources of information.
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resistance calculation, should be quantified (Section 3.4).

Instead of directly assigning a distribution to resistance R, it will be
expressed as a function of the proof load effect via the factor X. Each
time the structure withstands a new load level in a proof load test, the
distribution function of R can be updated to reflect the information
obtained via measurements, in addition to the truncation (Section 3.1).
The revised distribution of R can be expressed as the product of a
resistance ratio X and the load effect produced during the last successful
load test cycle (R = X Ep). Given a certain observed indicator value I, the
distribution of X may be obtained — as determined before proof load
testing (Section 3.3). During a proof load test, the traffic load will be
absent, and instead, the test load is present. Thus, the limit state function
describing the proof load testing situation is:

Zp1, = OgXEp;, — Ep;, = (0gX — 1)EpoxfrX — 1 (14)

where Epy, = 0g(Gpy, + Gspr) + 0g,p1.Qpr, with Qpy, denoting the load effect
created by the proof load and ¢ py. its corresponding model uncertainty.
By assuming that the proof load is withstood, it directly follows that Zp,
> 0 and thus 6grX > 1. The conditionality can be satisfied in a Bayesian
updating process by obtaining the joint posterior distribution of 6 = (6,

X) as:
P(0|Zp1, >0)op(Zpr, >010)p(0) (15)

where the likelihood p(Zp;, > 0 | 0) acts as an indicator function, or
potential [50,51], and p(0) is the prior probability. In a Monte Carlo
simulation, this process involves differentiating between samples that
either withstand or fail the proof load test (Section 3.5). After this up-
date, the marginal distributions should not be sampled independently
because the interdependence of variable combinations significantly in-
fluences the outcomes. Returning to the original traffic load situation,
Eq. (13), with R = X Epy, and denoting the updated variables as g’ and X’
gives:

Z=0rX [QE (GDL + GSDL) + 9E.PLQPL]—95 (GDL + Gspr + COQQ) 16)

and can be used to evaluate the structural reliability after a successful
test cycle.

The chosen probabilistic formulation accounts for model un-
certainties in both the load effect caused by regular loads (6g) and the
load effect specific to the load applied in the proof load test (0g,p1). The
statistical characterisation of these uncertainties is specific to the
application. In particular, the model uncertainty pertaining to the proof
load can address various factors, such as the method of load application,
the number and configuration of tested positions and lanes, and the
considered failure mode. It should be realised that the model un-
certainties 0g and 0g py, are likely correlated, given that the same math-
ematical principles and models are employed to calculate both load
effects.

3.3. Distribution of the resistance ratio (X)

3.3.1. Using laboratory test data

When laboratory data are available, the relationship between mea-
surements or indicator values and the resistance ratio (X = R/E) can be
inferred from these tests. The laboratory tests should be conducted on
similar elements and in a configuration comparable to the in-situ proof
load test. The laboratory measurements are processed for each load step
to analyse the resistance ratio distribution as the indicator values in-
crease. Each specimen has a resistance (R) that corresponds to the load
effect at the moment that the limit state is reached (failure). During each
load step, the load effect (E) can be calculated, resulting in a corre-
sponding resistance ratio. Typically, an estimation of the self-weight is
required to calculate the load effect from both permanent and applied
loads (E). This procedure results in a resistance ratio versus indicator
value (I) curve for each specimen (for example, see Fig. 5 in Section 4.2).
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Start assessment of existing structure
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via proof load testing

Regular testing preparations: identify
failure modes, loading locations, etc.

Perform tests on representative
elements / simulate analytical model

A 4

Prepare probabilistic model for
reliability updating (Section 3.2)

!

Statistical inference of laboratory

4

A 4

Apply a load increment on the

signs of distress

data / analytical model via indicators
(Section 2.2 and 3.3)

structure; abort test if structure shows

\ 4

Interpret the measurements via
indicators and update probabilistic
model (Section 3.3 and 3.4)

y

Calculate reliability of the structure
(Section 2.1 and 3.5)

l A 4

Abort test if the risk associated with
the next load increment is too large

(Section 6)
7}

Reliability target reached

Insufficient reliability
demonstrated thus far

Assessment via proof load testing
finished

Fig. 2. Flowchart outlining the steps in the proposed proof load testing assessment method.

The resistance ratio is modelled as a random variable due to the inherent
uncertainties in both the resistance and the indicator value at a given
load level. Moreover, the uncertainty typically decreases as the in-
dicator’s value increases. To reduce noise and erratic responses, the
maximum indicator value observed up to each load step is used. The
same post-processing practice should be followed during in-situ tests for
consistency. When the specimen has failed, the resistance ratio is 1,
indicating that the resistance is at least equal to the current load effect
but not higher.

Once the resistance ratio curves have been obtained for the labora-
tory tests, statistical post-processing may be performed to infer the
statistical description for a range of indicator values. Given a certain
indicator value, the data points (X;) are obtained as the resistance ratios
from each specimen. Interpolation of the resistance ratio curves is
required to obtain intermediate values. Then, the data points can be
analysed using established sample testing methodologies (Section 2.2).
Because the prediction distribution of X is used, the actual variation is
more significant than indicated by the standard deviation alone.
Bayesian inference can also be employed instead of the prediction
equation. However, this may be impractical since the inference process
needs to be repeated for a range of indicator values. A better approach
would also include the trend of model parameters with varying indicator

values combined with a nuanced treatment of measurement error
(Section 3.4). An application of the prediction equation and an expo-
nential model for the trend in the resistance ratio is provided in Section
4.2,

3.3.2. Using an analytical model

In cases where laboratory measurements are unavailable, computer
simulations can be utilised as an alternative. Instead of calculating the
typical design resistance, the aim is to determine the resistance ratio
distribution, which cannot be directly obtained through conventional
methods. A regular resistance model is developed, but the parameters
are random variables. To obtain the statistical distribution of the resis-
tance ratio, it is necessary to integrate over all random variables
included in the resistance model. There are several methods to accom-
plish this integration. The most straightforward method is Monte Carlo
simulation (MCS) [16]. However, often a complex numerical (FEM)
model is used for the resistance calculation. In these cases, the appli-
cation of Latin hypercube sampling (LHS) can be beneficial as this
method allows for a more efficient representation of the random space
with fewer samples [23,52].

By using LHS, numerous resistance ratio versus measurement value
(indicator) curves are generated. These curves may then be statistically
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analysed for a range of indicator values. By assuming a normal distri-
bution, a mean and standard deviation curve of the resistance ratio
versus indicator value can be produced. Because the random space is
directly integrated, there is no need to account for statistical uncer-
tainty. Only if the number of simulations is small (e.g. fewer than 30) an
approach similar to the post-processing of laboratory experiments
should be followed (Section 3.3.1). The additional uncertainty inherent
in analytical modelling, as compared to physical testing, can be reflected
in a larger coefficient of variation for the resistance model uncertainty
(Og; see Section 3.4). An application of this approach, in which analytical
modelling of the bending resistance is performed, is presented in Section
S.

3.4. Resistance model and measurement uncertainty

In the described probabilistic framework, 0g accounts for uncertainty
in the resistance calculation introduced by the proposed method. This
uncertainty is small when the laboratory specimens closely resemble the
actual structure or when the mechanical model has been validated for
accuracy. Conversely, significant uncertainty is expected if the struc-
tures differ substantially, the mechanical model is overly simplistic,
measurement errors are significant, or there are inconsistencies in data
post-processing. Practical applications of the proposed method will
provide valuable insights into appropriate model uncertainty values as
the application in real-world scenarios can highlight the difference be-
tween laboratory and in-situ observations [53].

When dealing with a small number of laboratory tests, statistical
methods like Student’s t-distribution or Bayesian inference effectively
account for the inherent statistical uncertainty and variability in the
data. The statistical uncertainty would be incorporated directly in the
resistance R, thus separated from the modelling uncertainty 6g. Stu-
dent’s t-distribution is particularly useful when the sample size is small,
and the standard deviation is unknown. It is wider than the normal
distribution, reflecting the increased uncertainty that comes with fewer
laboratory measurements. Bayesian inference, on the other hand, offers
a flexible way of incorporating prior knowledge and can account for
measurement noise as well. To capture the noise, the data points may be
viewed under an assumed distribution for the measurement error by
adjusting the likelihood calculation. Assuming the likelihood model (X)
and noise (¢) are both normally distributed and independent, their
combined variance may be used to define a substitute random variable.
The likelihood of observing the data points may then be calculated using
the probability density function of the substitute random variable rather
than X directly [54,55].

Measurement errors can significantly influence results, especially
with small values, such as minor crack widths or small strains. As the
magnitude of the values increases, the relative impact of measurement
errors typically decreases. In addition, the error also depends on the
parameter being measured and whether it can be directly measured or
must be inferred. Typically, larger measurement errors are anticipated
when estimating crack widths using digital image correlation (DIC)
compared to direct strain measurements. Measuring strains on a con-
crete surface is more susceptible to errors than taking strain measure-
ments directly on the reinforcement. The moderate load values in the
proposed method will typically result in small indicator values, and thus,
the large uncertainty should be appropriately accounted for. While
Bayesian methods are well-suited for treating noise, other analytical
approaches can also enhance model accuracy by incorporating physi-
cally expected trends with increasing indicator values, thereby
providing a nuanced understanding of the data (see, for instance, Sec-
tion 4.2).

3.5. Calculation procedure

In order to compute the structural reliability after a successful proof
load test, the knowledge of surviving the applied load needs to be
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incorporated, see Eq. (15). To obtain the posterior distribution p(6 | Zpy,
> 0), several calculation methods can be employed. In the direct
Bayesian Monte Carlo (BMC) method, the prior distributions are directly
sampled. Each sample is used in the simulation to determine if the
random values (0) result in the survival of the proof load test (likelihood
evaluation). During the simulation, all parameter sets that produce the
desired outcome are stored and collectively describe the posterior dis-
tribution [56,57]. In Markov chain Monte Carlo (MCMC), a Markov
chain is constructed to obtain samples from the posterior distribution.
Algorithms like Metropolis-Hastings [42,43] and Gibbs sampling [58]
can generate such sequences (Section 2.2.3). In this work, the MCMC
method is adopted because of its versatility. Owing to its Monte Carlo
nature, the chain’s current state is directly used to evaluate the reli-
ability of the structure with the posterior distribution. For each chain
state, O = (0, X), the sample is supplemented by random realizations of
the remaining random variables to evaluate the limit state function, i.e.
Eq. (16).

A computationally attractive alternative is using the SORM (Section
2.1), which can account for the non-linearity present in the limit state
function. Because the survival condition, Zp, > 0, cannot be incorpo-
rated directly, an approximation must be made. This is achieved by
introducing a substitute random variable Y = 0gX, which follows Stu-
dent’s t-distribution when X is described by a t-distribution and a
lognormal distribution otherwise. The variances of the original random
variables may be combined such that Var(Y) = Var(6g) + Var(X). Then,
the distribution of Y is left-truncated to the set [1, oo ) to impose the
survival of the proof load test. Applying this alternative procedure re-
sults in an error in the reliability index of approximately 0.1 within the
range of common target values (as experienced in the case studies,
Sections 4 and 5).

4. Shear resistance assessment supported by laboratory tests
4.1. Description

In order to illustrate the practical application of the method proposed
in Section 3, the reliability of a hypothetical shear-critical reinforced
concrete slab bridge is considered. The case exemplifies older Dutch slab
bridges that lack shear reinforcement. For simplicity, the slab is
designed to match the exact width of a single traffic lane (Fig. 3). Nor-
mally, a slab bridge would include several lanes, along with sidewalks
and railings. The single-lane slab bridge, assumed to experience heavy
traffic primarily from trucks, represents a relatively conservative
scenario.

Deep beams representing sections of such a slab were tested in the
laboratory to evaluate their shear resistance. The reliability of the bridge
under consideration can be assessed using the resistance data and the
measurements obtained from load tests. However, because the bridge is
fictional and no actual in-situ measurements were performed, these
values must be estimated to demonstrate the application of the proposed
method. The laboratory measurements employed in this case study were
initially designed to examine the shear behaviour of reinforced concrete
beams lacking shear reinforcement [59]. The tests are a continuation of
the study into the parameters that play a role in the transition between
flexural and shear failure of reinforced concrete beams without rein-
forcement [60]. For this case study, H-variants (H121, H401, H403,
H404, H602) from the test series were selected because their dimensions
correspond to those of the studied concrete slab. The strips, or deep
beams, tested in the laboratory had a length of 9 m, a width of 0.3 m and
a height of 1.2 m. They were subjected to a load via a single jack posi-
tioned near the midpoint of the span, leading to shear failure near the
supports (see Fig. 4). Given the specified lane width of 3.6 m, the slab
comprises 3.6 / 0.3 = 12 strips.

Because the experiments have already been conducted, providing a
resistance distribution based on the test results (i.e. five V, values)
would be directly possible. Supplemented by the knowledge that the



R. de Vries et al.

Traffic axle loads_

Concrete slab
Asphalt layer

free 1)

Sh
Imaginary \»

concrete strip

Engineering Structures 330 (2025) 119863

Lane width
(b)=3.6m

Span length
(LY=9m

Fig. 3. Hypothetical reinforced concrete slab used as a case study [9].

Fig. 4. Photos of (a) the test set-up and (b) the typical crack pattern at failure [61].

structure survives the proof load, this information would give an alter-
native strategy for reliability updating. However, this alternative pro-
cedure does not account for the in-situ observations. By using these
observations, a distinction can be made between structures performing
well, exhibiting small crack widths, and those performing poorly,
showing larger crack widths. In addition, the use of a resistance ratio
allows laboratory results from similar structural elements to be applied
to other structures that are not entirely identical. However, the validity
of this approach and the increase in resistance model uncertainty
become relevant factors (Section 3.4).

4.2. Laboratory data post-processing

The digital image correlation (DIC) method was used to monitor and
analyse the development of cracks in the concrete during the tests [62].
DIC allows for the determination of the nominal crack width at various
locations. The nominal crack width results from the consolidation of
several smaller cracks that are closely clustered, forming a single sig-
nificant crack. The concept of virtual gauge length which is used in DIC,
requires the area captured in photographs to be sufficiently large to
facilitate the nominal crack width calculations. In this study, the optimal
gauge length was found to be 0.8 d, where d represents the depth from
the top of the beam to the centre of the longitudinal reinforcement [63].
At each selected location, the nominal crack width is calculated at the
level of the reinforcement. To assign greater importance to the cracks
near the supports, a weighted crack width calculation is introduced,
multiplying the nominal crack width by the factor Vd/M, where Vand M
refer to the shear force and bending moment at the specific location,
respectively. Both the maximum nominal crack width (Wpay) and the
maximum weighted nominal crack width (Wmax,w) are computed. These
maximum values refer to the (weighted) crack widths occurring at any
point along the beam’s length. Finally, the resistance ratio X = R/Epy,

= Vu/V for each indicator value was plotted against each load step
(Fig. 5).

The data was post-processed to derive the sample mean and standard
deviation for each indicator value (Fig. 6). It may be observed that the
standard deviation is generally smaller for the maximum weighted
nominal crack width indicator (Wmax,w), suggesting it as the preferable
metric for subsequent modelling and field testing. Data points where the
weighted nominal crack is less than 0.08 mm displayed noticeably high
mean and standard deviation values. The high values are likely due to
noise affecting the DIC measurements at very small displacements.
Generally, the mean and standard deviation exhibited some variability
across different values of the indicator wyaxw. An exponential model
was applied to the data to address the erratic behaviour (Fig. 6):

1.5exp( — 3w, +0.88 w, < 0.85mm
) = (3 STPL W) 088 o SOS3TD

(17a)

_ ;0.53exp( — 2.1Wmaxw) — 0.05 Wpayw < 1.1 mm
Sva v (Winaxar) = {0 Wmaxw > 1.1 mm

(17b)

Egs. (17a) and (17b) effectively capture the trend towards a mean
value of 1 and a standard deviation of O as the load increases. It also
becomes clear that for values of wpayw > 1.1 mm, the method offers no
advantages compared to using the lower-bound approximation [5] as
the resistance ratio becomes a deterministic value of 1. It should be
noted that measurement uncertainty is not explicitly considered here
(Section 3.4) since the possibly underestimated uncertainty (low stan-
dard deviation) is corrected by the adopted exponential model for small
crack width values (Fig. 6). In addition, the use of Student’s t-distribu-
tion is equivalent to the assumption of a non-informative prior for the
mean and standard deviation. If Bayesian inference was performed,
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Fig. 5. Shear resistance ratio versus (a) the maximum nominal crack width and (b) the maximum weighted nominal crack width [9].
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Fig. 6. Mean and standard deviation of the shear resistance ratio versus (a) the maximum nominal crack width and (b) the maximum weighted nominal crack width.

low-informative priors would be used, leading to somewhat lower
dispersion.

4.3. Assumed load testing results

The bridge considered in this case study is theoretical and has not
been tested. However, indicator values that would normally be acquired
during testing are needed to apply the proposed method. Meaningful
target loads can be based on the characteristic value of the traffic load
multiplied by a certain factor. Given a target load, the tests performed in
the laboratory may also be used to estimate likely indicator values
(Table 1). In real-world applications, this step would not be required.
The discussion (Section 6) describes the sensitivity to the assumed load
testing results. It should be noted that measurements performed on the
in-situ structure will already include the superimposed dead load (Gspy)

Table 1
Expected indicator readings given a proof load.

thus the measurements will begin from a different starting value. To
compensate for this difference, the values should be increased by the
crack widths provided in Table 1 for the case Gpp, + Gspr. Although the
value is small in the current application, this step is important to align
the measurements between the laboratory tests and the structure being
monitored during the load test.

4.4. Probabilistic model and reliability analysis

To enable the update of structural reliability, a probabilistic model
specific to the considered structure is required. The mean and coefficient
of variation of the random variables in Table 2 are based on the Prob-
abilistic Model Code [34] and fib Bulletin 80 [49]. The coefficient of
variation used for model uncertainty of the shear resistance (Vyg = 0.15)
is deemed appropriate for structures without shear reinforcement [64].

Test load level Expected shear force [kN]

Loads acting on structure

Maximum crack width, weighted by position (Wmax,w) [mm]

H121 H401 H403 H404 H602 Average
Gpr, 30.0 0 0 0 0 0 0
- GpL + GspL 34.9 0.004 0.002 0.002 0.002 0.010 0.004
1 G+ 1.0Q« 73.0 0.069 0.058 0.019 0.010 0.016 0.034
2 G+ 1.2Q 80.6 0.069 0.058 0.023 0.010 0.029 0.038
3 G+ 1.4Q« 88.2 0.069 0.071 0.026 0.016 0.058 0.048
4 G+ 1.6Q 95.9 0.069 0.135 0.158 0.032 0.087 0.096
5 G+ 1.8Qx« 103 0.074 0.174 0.244 0.052 0.256 0.160
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Table 2
Overview of random variables in the limit state function.
Var. Description Distribution =~ Mean cov
Or Model uncertainty of the resistance Lognormal 1 0.15
X Resistance to current load effect ratio Student’s t (varies) (varies)
Og Model uncertainty of the load effect Lognormal 1 0.10
GpL Dead load effect Normal 356 kN 0.05
Gspr,  Superimposed dead load effect Normal 59.3kN  0.10
Coq Time-independent uncertainty of the =~ Lognormal 1.1 0.10
traffic load, including dynamic
effects
Q Traffic load effect, annual maximum Gumbel 390 kN 0.035
Ogp.  Model uncertainty of the proof load Lognormal 1 0.10
effect; correlation p(6g, Ogpr) = 0.7
Qpr, Load effect achieved by proof load Normal (varies) 0.02

The statistical description of the traffic load effect (Q) is based on
weigh-in-motion (WIM, [65]) measurement data recorded in the
Netherlands. This data was analysed to provide extreme value distri-
butions for the annual maximum bending moment at midspan and shear
force near the supports of a single-span structure [5]. The corresponding
1000-year characteristic load effect is obtained as Qi wmm = F61(0.999)
according to the Eurocode where P61(~) indicates the inverse CDF of Q.
The mean test load levels (mqp1) are related to the characteristic load
effect via a factor (1.0-1.8) in the following analyses. The mean and
standard deviation of the resistance ratio for each load level is calculated
using Egs. (17a) and (17b) based on the average indicator values from
Table 1. The corresponding coefficient of variation is obtained as Vy
= sx/my (Table 3). Finally, by making use of the probabilistic model
specified in Table 2, reliability calculations are performed using the
method outlined in Section 3. The calculated reliability indices are
provided in Table 4.

The results presented in Table 4 clearly show that the proposed
method provides higher annual reliability values compared to the lower-
bound approach, i.e. Eq. (12). This difference signifies the advantage of
integrating additional information from indicators that reflect structural
performance. The value of this additional information is particularly
significant when the test loads are relatively low, illustrated by an in-
crease in the reliability index of about 1.5 with moderate loads. In
addition, Table 4 provides the reliability during the proof load test,
indicating the risk associated with applying the target load. A reliability
index of 1.8, corresponding to a failure probability of approximately
0.036, suggests the structure is indeed likely to survive the applied load.
The reliability during testing is also updated with each increment in the
load level, enabling continuous assessment of risk during the test
(Section 6).

Table 3
Mean and coefficient of variation of the resistance ratio (X) for each load test
cycle.

WIM Mean PL Mean PL Indicator Mean of COV of
char. effect, effect, value resistance resistance
load strip (mq, lane (mq, (Wmax,w) ratio (my) ratio (Vx)
factor pL,s) [KN] pr) [kN] [mm]
(mqpL/
Qi,wiv)
1.0 38.1 457 0.034 2.23 0.198
1.2 45.7 549 0.038 2.22 0.198
1.4 53.3 640 0.048 2.18 0.197
1.6 61.0 732 0.096 2.00 0.191
1.8 68.7 823 0.0160 1.81 0.182
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Table 4
Calculated reliability indices given different levels of loading, during and after
proof load testing (PLT).

WIM LM1 characteristic ~ Reliability Annual reliability after
characteristic load load factor (mgp/  during PLT successful PLT
factor (m,
; (mq,pr/Qx, Qi,Lm1) Proposed Lower-
WIM method bound
1.0 0.78 1.80 2.99 0.53
1.2 0.93 1.79 3.77 1.89
1.4 1.09 1.78 4.55 3.04
1.6 1.24 1.71 5.23 4.03
1.8 1.40 1.61 5.83 4.85

5. Bending resistance assessment supported by a calculation
model

5.1. De Beek viaduct

In this case study, proof load levels relating to the bending resistance
of the reinforced concrete slab viaduct De Beek in the Netherlands will
be examined. The viaduct from 1963 passes over the A67 highway near
Ommel, but the viaduct itself is part of the secondary road network. The
highway traffic passes beneath the viaduct’s two central spans, each
with a length of 15.4 m. Additional spans on either side have a length of
10.8 m. The cross-section height varies parabolically along the longi-
tudinal direction from 0.47 m to 0.87 m, measured in the heart of the
deck. The bridge is constructed as a continuous slab and thus experi-
ences support moments above its middle three supports (Fig. 7). The
sidewalks, added during a later phase of construction, are assumed to
offer no significant contribution to the structural resistance (but can
influence the stiffness). A pilot proof load test of the first span has
already been performed for both bending and shear mechanisms, but
only bending will be considered in this case study. Thus, in contrast to
the previous case study (Section 4), in-situ test results and measure-
ments are available [66]. A calculation model for the bending resistance
will be used to interpret the measurements during testing because lab-
oratory tests on similar bridge decks are not available.

In 2015, an inspection and assessment of the bridge took place and it
was concluded that the bridge had insufficient resistance [67]. During
the inspection, cracks at the bottom of the concrete slab were found.
Afterwards, the detected cracks were filled to prevent water ingress.
Later that year, further investigation and a pilot proof load test were
performed, confirming that the resistance of span 1 was sufficient for
two traffic lanes, both calculated and tested. For span 2, the resistance
was only deemed sufficient if plastic redistribution would be allowed to
take place, but this typically results in unwanted cracking. The bridge
inspection and assessment led to a traffic restriction that reduced the
original two lanes to one central lane, only allowing traffic from one
direction at a time [68].

5.2. Traffic load effect

The viaduct was designed for two lanes, with traffic in opposite di-
rections. The width of the carriageway is 7.44 m. After subtracting the
width of the curbs, the remaining lane width is 3.5 m for each direction.
To obtain the most accurate statistical description of the load effect,
additional traffic simulations were performed using WIM data recorded
in the Netherlands. In this way, the specific continuous slab configura-
tion with traffic moving in opposite directions can be taken into account.
The viaduct crosses the A67 highway but is part of the secondary road
network. However, only WIM data recorded at highway locations is
available in the Netherlands. Using the highway measurements likely
results in overestimating the true load effect for this particular location.
However, because the viaduct is situated in a rural area, tractors and
slurry tanks also make use of it. Although the number of heavy
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Fig. 7. Schematic (a) side view and (b) cross-section of the De Beek viaduct with the bending proof load test location indicated by the arrows. Reinforcement

diameters and spacings provided in mm, other measurements provided in m.

agricultural vehicles is small, they may exert relatively large axle loads
on the viaduct. Therefore, no reduction of the traffic load effect
following the highway WIM data was applied.

From the WIM measurements, only the first lane data was used in the
traffic simulations (i.e. where the trucks predominantly drive). The
simulation uses a time-discretisation method in which the vehicle axle
loads are placed on the bridge according to the time they were originally
recorded. The linear load effect, i.e. the bending moment, was calculated
through the superposition of the load effects caused by each individual
axle. This calculation may be effectively performed using influence
lines, which express the load effect at a certain location, given a unity
axle load (Fig. 8). The influence lines were derived using a 1D finite
element analysis utilising many small Euler-Bernoulli beam elements to
account for the varying deck height in the longitudinal direction.

By analysing the bending moment caused by permanent and traffic
loads it follows that the maximum combined load effect can be expected
around x = 4.5 m. To identify the difference in the bending moment
following from one lane and two lanes in opposite directions, both sit-
uations were analysed. The load effect in the two-lane configuration is
not simply the one-lane load effect multiplied by a factor 2 because it is
very unlikely that, in both directions, a heavy truck is present at the
same time. However, the variability in the load effect increases
considerably, as shown by the more gradually descending right tail of
the distribution in the two-lane configuration (Fig. 9). The Gumbel

distribution for the weekly maxima was found by fitting the right tail of
the weekly extremes for the WIM highway locations (A16L, A27L, A50L
and A67L) directly. The yearly distributions we found by modifying the
Gumbel distribution location parameter as py; = pwk + In(52) § where
52 is the number of weeks in the year, and f is the scale parameter of the
Gumbel distribution (which remains unchanged). The assessment of the
first span will be performed for the two-lane configurations, for which
the annual load effect is found to follow a Gumbel distribution with a
mean value of 1301 kNm and a variation coefficient of 0.058.

5.3. Proof load test and measurements

In November 2015, proof load tests were performed on the first span
of the viaduct De Beek using load levels described by relevant Dutch
guidelines and standards [69-71]. The load was applied as the Eurocode
LM1 tandem with two axles at a distance of 1.2 m with a wheelbase of
2 m and a wheel print size of 0.4 m x 0.4 m. The axle load was varied to
achieve a load effect corresponding to various load levels (Table 5). The
corresponding load effects caused by the tandem axle loads are calcu-
lated using the influence lines derived in Section 5.2. The bending
moment caused by the LM1 tandem is obtained as M = 3.75 P where P is
the load of an individual axle. The load test situation mimics the situa-
tion in which a heavy vehicle passes the bridge in a two-lane configu-
ration. Due to the eccentric placement of the load, the bending moment
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Table 5
Overview of test loads, load effects and measured steel strains.
Cycle Description Pyor [KN] P [kN] M [KNm] £ [10’6]
1 Unfactored tandem 600 300 1125 165
2 Service level 1000 500 1875 340
3 RBK usage 1400 700 2625 570
4 Intermediate 1700 850 3188 790
5 Eurocode design 1750 875 3281 830

varies in the transverse direction of the deck. In this case study, the deck
will be treated as a beam for simplicity, but the relative increase of
strains near the edge will be taken into account (see Section 5.4.1).

During the test, various measurements were performed, including
displacements, concrete surface strains and reinforcement strains. At a
number of locations, the concrete cover was removed to inspect the
reinforcement and attach strain gauges [68]. If the reinforcement cannot
be accessed directly, stop-criteria expressed in concrete surface strains
may prove beneficial [72]. In this case study, the maximum steel strain
measured at 0.86 m from the edge of the deck (see Fig. 7) is of primary
interest since yielding of the reinforcement is undesired for durability
reasons. In the longitudinal direction, the strains are measured at a
distance of 4.05 m from the support and are considered representative of
the section between the axle loads (3.7-4.9 m), as the moment remains
nearly constant throughout this range.

5.4. Analytical resistance model

5.4.1. Modified sectional analysis

If no tests have been performed on representative specimens, it is
possible to use an analytical model to interpret measurements during the
test. The resistance model may range from simple to complex, e.g. cross-
sectional analysis [73,74], strip model [75,76], linear finite element
model, non-linear finite element model [77,78]. In the considered case,
the proof load test has already been performed, and therefore, the
measurements can be used to correct a relatively simple sectional
analysis model. This calculation is performed by gradually incrementing
the strains across the section according to a linear strain distribution and
finding the compression zone depth for which the axial force and
bending moments in the section are in balance. The result is often pre-
sented as a moment-curvature (M-x) diagram. In this case study, the
bottom steel strain (&) is utilised instead of the curvature (x) because the
steel strain was measured during testing.

For the sectional analysis of the De Beek bridge deck, a width of b
= 9.4 m is used, along with an equivalent deck height of h = 0.47 m at
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the location where the maximum moment is deemed to occur
(x = 4.5 m, Section 5.2). The reinforcement, as schematically presented
in Fig. 7, listed from bottom to top, corresponds to the longitudinal
reinforcement areas A por,1 = 3506 mm?/m, Aspot,2= 1753 mm?/m and
As,top = 1753 mm?/m. Thorenfeldt’s model [79] is used for the concrete
compressive stress-strain curve, and no concrete tensile strength
contribution is assumed. The analysis is first performed using mean
values for the geometry and material properties (Table 6) to establish
the model correction.

Analysis of the measurement data reveals that the recorded strains
must be adjusted to compare the numerically obtained response with the
observed measurements. If a linear response up to and between load
cycles 1 and 2 is assumed, the microstrain increment corresponding to
1875 — 1125 = 750 kNm is 340 — 165 = 175 (Table 5). Then, a micro-
strain of 1125/750-175 = 263 would be expected for the first cycle,
which is about 100 higher than recorded. However, the corrected model
is non-linear, as a result of Eq. (18), and the required adjustment has
been determined as 85 iteratively.

The moment caused by the self-weight of the deck and the super-
imposed loads is estimated as Mg =747 kNm [66]. The corrected
cross-sectional analysis model results in a corresponding bottom steel
strain e, = 154 - 107°. The calculated steel strains need to be lowered
compared to the original model to align with the measured response
(Fig. 10). This increase in stiffness could be caused by the contribution of
the sidewalks. In addition, the measurements show a gradual decrease in
stiffness that is not present in the modelled response. Therefore, a power
law is included to increase the steel strain proportionally to the re-
inforcement’s yield strain (ey; mean value ey, = fym / Esm = 1417 - 1079).
The adopted expression for the modified steel strain is:

* C:
& = [c1+ca(es/ey)”] & (18)
Table 6
Overview of the random variables in the mechanical model.
Var. Description Distribution Mean cov
c Concrete cover thickness Gamma 30 mm 0.17
h Height of the cross-section Lognormal 470 mm 0.10
E Young’s modulus of reinforcing Lognormal 205 GPa 0.02
steel
fe Concrete compressive strength Log-t(n=6) 57.5MPa’ 0.10%
fy Yield stress of the reinforcement Log-t(n=3) 290.5MPa" 0.034"
C2 Non-linearity of moment-strain Lognormal 0.41 0.10

relation

@ Sample statistics are reported. The log-t prediction distribution accounts for
the small number of samples and will effectively lead to higher variability.
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Fig. 10. Comparison of the moment-strain diagram following from modelling
and measurements.

where c; accounts for the difference in stiffness, c5 controls the degree of
non-linearity and cs specifies the shape of the curve. An optimal fit for
this case study is obtained with ¢; = 0.75, c; = 0.41 and c3 = 4.1. As a
result, the modified model predicts a lower (local) yield moment, but the
ultimate resistance remains the same. In this way, the model accounts
for eccentric loading with increased strains towards the side of the
bridge deck where the load is applied.

5.4.2. Sampling of the mechanical model

Since no laboratory measurements are available, the uncertainty
regarding the structural response must be included in an alternative
manner. To this end, the mechanical model can be set up using random
variables for the parameters (Table 6). The distribution types and co-
efficients of variation (COV) follow fib [49] and JCSS [34]. A larger COV
value is adopted for the height of the cross-section since it is an equiv-
alent value for the actual height, which varies along the longitudinal and
transverse directions. The steel area of the reinforcement is not included
because its variability is minimal. Material testing was performed on the
concrete and the reinforcing steel [67]. It is expected that concrete
compressive strength and yield stress of the reinforcement would follow
a lognormal distribution when many measurements are available.
Therefore, the prediction distribution, Eq. (8), is used to describe the
logarithm of these material properties. The resulting log-t distributed
random variables for the concrete compressive strength (f.) and the
yield stress of the reinforcement (fy) are:

f. = exp (4.05 410106 T, 1y/1+1 /6) [MPa (19a)
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£, = exp (5.76 410.0346 T, 5 /111 /3) [MPa] (19b)
where random variable T, follows Student’s t-distribution with v degrees
of freedom. The sample mean and standard deviation values have been
calculated from the log-transformed measurement data (i.e. taking the
natural logarithm of each value). The uncertainty about the non-
linearity of the modified sectional analysis model is included in the
probabilistic description by using a lognormal distribution for the
parameter cy in Eq. (18), which controls the degree of non-linearity.

Latin hypercube sampling [23,52] was used to simulate responses
according to the probabilistic model (Table 6). Compared to the more
common Monte Carlo simulation [16], Latin hypercube sampling better
represents the output distribution when using a small number of sam-
ples. Although the mechanical model is not computationally demanding
in this case study, a more complex (FEM) model will require consider-
able computation time. The calculated moment-strain curves and the
resistance ratios for 100 samples are displayed in Fig. 11. Because the
yielding of reinforcement is undesired, the yield moment resistance (My)
is used instead of the ultimate bending resistance (M,) to calculate the
ratio X = My/M. The sample yield moment is obtained by calculating the
sample yield stress (ey = fy / Es) and subsequently interpolating the
moment-strain curve to find the corresponding moment. In Fig. 12, the
calculated mean and standard deviation of the resistance ratio are
plotted against the bottom steel strain. In contrast to the approach in
Section 4.2, the statistics of the resistance ratio X can be directly ob-
tained from the curves. The mean and standard deviation relations are
discretised using a strain interval of 50-107% and can be linearly
interpolated in the subsequent reliability analysis.
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Fig. 12. Mean and standard deviation of the simulated resistance ratio.
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Fig. 11. Simulation result displayed as moment-strain (a) and resistance ratio-strain curves (b).
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5.5. Probabilistic model and reliability analysis

The probabilistic model described in Section 3.2 is now employed to
perform the reliability analysis. The mean values and variation co-
efficients of the random variables are specified in Table 7 and are based
on the Probabilistic Model Code [34] and fib Bulletin 80 [49]. A sta-
tistical description of the traffic load effect was obtained in Section 5.2.
The statistics for the resistance ratio depend on the indicator value — as
discussed in Section 5.4.2. In this case, the indicator is the steel strain in
the bottom reinforcement near the edge of the deck (&s). In contrast to
the previous case study (Section 4), the resistance ratio (X) follows a
normal distribution, not Student’s t-distribution, because the resistance
model is based on a stochastic model. The coefficient of variation used
for the model uncertainty of the resistance (Vyg = 0.15) is twice the
value generally used for bending [64]. This increased value reflects the
greater uncertainty associated with the use of a basic sectional analysis
model for a bridge deck subjected to eccentric loading (Section 5.4.1).

For each of the load levels used in the proof load test, the mean and
coefficient of variation of the resistance ratio are calculated (Table 8).
The load levels may also be related to the WIM and LM1 characteristic
traffic load effects to enable comparisons with the previous case study
(Section 4). For each of these load levels, the reliability during and after
surviving the proof load test has been calculated (Table 9). Similar to the
previous case study, using the indicator data results in markedly higher
reliability indices at low load levels than the lower-bound method, i.e.
Eq. (12). The reliability during testing is relatively high but decreases
rapidly with higher test loads, underlining the need for risk assessment
during the proof load test between load steps (Section 6).

6. Discussion

In the data post-processing of the shear resistance case study (Section
4.2), the model deviates from the calculated values for Wmaxw
< 0.08 mm. This region is important for the subsequent reliability cal-
culations and greatly influences the outcomes. As described in Section
3.4, measurement errors play a significant role with small indicator
values and various strategies are discussed to account for them. The
power-law model was chosen because analytical resistance models show
a similar decreasing trend (Section 5.4). Further data inspection reveals
very high resistance ratios in the small-value region with a positive
distribution skew. Thus, the adoption of a conservative model in this
region effectively mitigates measurement-error issues. Additional cal-
culations using Bayesian inference to statistically describe the resistance
ratio resulted in higher reliability indices (up to 0.5), thereby confirming
the effectiveness of the chosen approach.

Attention must be given to ensuring the similarity between the in-

Table 7
Overview of random variables in the limit state functions.

Var. Description Distribution =~ Mean Ccov

Or Model uncertainty of the Lognormal 1 0.15
resistance

X Resistance to current load effect Normal (varies) (varies)
ratio

Og Model uncertainty of the load Lognormal 1 0.10
effect

Gpy, Dead load effect Normal 604 kNm 0.05

GspL Superimposed dead load effect Normal 143 kNm 0.10

Coq Time-independent uncertainty of Lognormal 1.1 0.10
the traffic load, including dynamic
effects

Q Traffic load effect, annual Gumbel 1301 kNm 0.058
maximum

Opp.  Model uncertainty of the proof Lognormal 1 0.10
load effect; correlation p(0g, Og,pL)
=07

Qpr. Load effect achieved by proof load ~ Normal (varies) 0.02
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Table 8
Mean and coefficient of variation of the resistance ratio (X) for each load test
cycle.

Cycle  Description Measured Indicator Mean of COV of
steel strain value (g5) ratio ratio
109 [10°° () (V)
1 Unfactored 165 419 2.42 0.090
tandem
2 Service level 340 594 1.76 0.082
3 RBK usage 570 824 1.36 0.068
4 Intermediate 790 1044 1.17 0.056
5 Eurocode 830 1084 1.15 0.054
design
Table 9

Calculated reliability indices given different levels of loading, during and after
proof load testing (PLT).

WIM LM1 characteristic ~ Reliability Annual reliability after

characteristic load  load factor (mqp/  during PLT successful PLT

fact

ac )0 r (mop/ Qs Qi) Proposed Lower-

WIM method bound
0.67 0.46 4.78 3.58 -1.70
1.12 0.76 3.18 3.99 1.95
1.57 1.06 1.79 5.00 4.12
1.91 1.29 0.91 5.78 5.27
1.96 1.33 0.80 5.92 5.40

situ tested structure and the results from laboratory tests or analytical
models. In the shear resistance case study, it is assumed that the
response of the bridge slab is similar to the response of the strips tested
in the laboratory. However, still a relatively large coefficient of variation
was assigned to the model uncertainty to account for the remaining
differences (e.g., transverse load distribution, boundary conditions, edge
and size effects). With analytical models, it is crucial to evaluate whether
they can reliably provide correct indicator values (such as crack widths,
strains, etc.), as these models often primarily consider the resistance of
structural members. Experience with the proposed method in practice
can establish suitable model uncertainty values.

In reality, the tested structure may exhibit a very different response
than assumed in both case studies. If the structure’s condition is above
average, smaller indicator values are anticipated and therefore the
reliability increases. Conversely, for structures that show large indicator
values under small loads, lower reliability is expected. The results
include reliability indices that will likely be observed in practical ap-
plications, but may differ from case to case. The same holds for the
relation between the target load, the statistical description of the traffic
load effect and the load effect calculated from standards. For example,
the required target load for the bending resistance assessment of the
viaduct is relatively low when expressed by the unfactored LM1 char-
acteristic load (Section 5.5). This result stems from the detailed statis-
tical analysis of the traffic load effect, indicating that the LM1
characteristic load may be rather conservative for the two-lane situation
with opposite driving directions.

The proposed method also provides the opportunity to calculate the
reliability during the proof load test. Although no standards or guide-
lines specify minimum reliability levels for load testing, case-specific
risk analysis can help determine optimal values. Such an analysis can
take into account the load-testing conditions (e.g., absence of traffic,
restricted areas), allowing for informed decisions on whether to
continue with higher load levels or stop the test. This approach offers a
risk-optimal alternative to pre-determined stop criteria but requires
additional analysis and calculation effort.

The value of the current study lies in the proposed method for proof
load testing rather than the calculated reliability values and target loads.
Future research and practical applications can further refine the
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framework, providing valuable insights into model uncertainties and
measurement techniques. Real-world validation is recommended to
establish the robustness of the adopted models and data post-processing
procedures. Large-scale implementation would benefit from research
into generally applicable indicators, resistance ratio curves, identifica-
tion of application criteria and possibly (FEM) modelling guidelines.

7. Conclusions

The proposed proof load testing method involves updating the
resistance distribution using two sources of information: (1) the
observed in-situ response, which is related to the resistance via indicator
values and associated resistance ratios, and (2) the survival of the
applied load during the proof load test. Although the prediction of the
resistance on the basis of the in-situ response is associated with
considerable uncertainty, this information is still valuable and can be
accounted for probabilistically. A Bayesian procedure for updating the
resistance distribution given the two information sources is presented,
along with a method for calculating the posterior reliability using the
Markov chain Monte Carlo (MCMC) technique. In addition, the proba-
bility of failure during the test is calculated using the most current data,
offering a risk-optimal alternative to pre-determined stop criteria.

The application of the proposed method was demonstrated through
two case studies. The first case study considered a hypothetical shear-
critical concrete bridge using laboratory data, while the second exam-
ined the bending resistance of an existing viaduct in the Netherlands
using an analytical model. These case studies illustrated how the
framework could be applied in real-world scenarios, and the potential
gains in reliability when monitoring data is included in the assessment.
The two case studies in which in-situ measurement data was included
allowed for test load reductions of 20 % and 25 %. The proposed
method’s versatility was highlighted by using laboratory experiments in
the first case study and an analytical model in the second to establish the
relationship between indicator values and resistance ratios. In cases with
complex mechanical behaviour where tests or analytical models are less
representative of the in-situ structure, smaller test load reductions
should be expected due to the increased uncertainty.

Advanced probabilistic models and calculation techniques were
utilised to account for uncertainties in resistance, material properties,
load effects, and measurement errors. Laboratory data post-processing,
including the consideration of weighted crack widths, provided insight
into the resistance ratios for different target loads. The impact of model
uncertainty and measurement errors was addressed, particularly for
small indicator values. Alternatively, analytical models can be used to
derive similar insights, ensuring the model closely matches the in-situ
conditions.

The suggested method offers a more comprehensive and accurate
approach to evaluating existing infrastructure using proof load testing.
Using in-situ measurements, the procedure also enables the calculation
of failure probability during the test, allowing for risk-based decisions
on whether to proceed or stop. Practical applications of the method can
determine whether similar reductions in test loads, as found in the
current study, are feasible. If so, proof load testing can become more
economically attractive and less time-consuming, minimising the traffic
disruption involved in bridge testing.
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