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Energy system modelling energy system currently account insufficiently for the behavior of households and individuals. To address this
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shortcoming, this study evaluates models’ existing approaches to incorporate behavior considering social science
insights to advance the models’ behavioral realism. A structured literature review and expert interviews were
employed, selecting sixteen ESMs and two sectoral energy models for further investigation. Main data sources for
the analysis were model descriptions and interview notes. The results show a predominant focus of models on
financial aspects of adoption decisions and energy service use, while there is less consideration of non-economic
behavioral drivers. Models also often rely on a weak empirical foundation for behavioral drivers. Based on these
findings, advancing the representation of behavior in ESMs is needed to strengthen the realism of models’
explorative and descriptive insights. This analysis outlines concrete strategies to guide such an endeavor. It is
recommended to consider relevant drivers of energy-related behavior, to employ a data-driven approach which
relates behavioral outcomes to these drivers, and to define actor heterogeneity according to meaningful
behavioral differences. In comparison to optimization approaches, the flexibility of simulation modelling pro-
vides a wider range of options for incorporating and analyzing behavioral aspects in ESMs. Future interdisci-
plinary research should further align social science insights with energy system modelling, building on the
suggested strategies, to improve the accuracy of model predictions and to facilitate the consideration of
behavioral aspects in the energy transition.

the necessity to consider relevant technological developments as well as
behavioral dynamics in ESMs to comprehensively explore and describe
pathways to achieve an energy transition [9,10]. Encouraging the
incorporation of behavior in ESMs simultaneously raises attention
regarding the social side of the energy transition, and fosters an
increased consideration of potential distributional impacts and energy
justice issues [10,11]. In spite of these benefits, existing ESMs that aim at
describing and exploring possible transition pathways usually capture
substantial technological detail, while considering human behavior to a

1. Introduction

Global surface temperature has been rising over the past decades as a
result of human activities [1]. According to the Intergovernmental Panel
on Climate Change [1], the fast and profound reduction of anthropo-
genic greenhouse gas emissions necessitates a transition towards
renewable energy sources. Energy System Models (ESMs) have become

indispensable tools in the planning of this transition [2,3]. Depending on limited extent [2,4]. In fact, only few ESMs include non-optimizing

a model’s structure and purpose, ESMs can offer normative and pre- behavioral strategies beyond cost minimization or utility maximiza-
scriptive insights into future states of the energy system or describe and tion [12]

explore potential future decarbonization strategies and transition
pathways [4,5].

To bring about the transition towards a decarbonized energy system,
the importance of both technological advances as well as human
behavior changes has been emphasized [6-8]. Such findings highlight

Recent years have seen an increase in publications on the topic of
behavior in ESMs. Previous review studies do raise attention regarding
social aspects of energy system modelling, but are usually restricted to a
sub-set of models and technologies [2,3] or describe generalized
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Abbreviations:

ABM Agent-based modelling
ESM Energy System Model

TPB Theory of Planned Behavior
VBN Value-Belief-Norm Theory

approaches for modelling behavior [9,13,14]. This work builds on prior
studies in explicitly addressing how social science findings regarding
human behavior can be aligned with concrete behavioral modelling
strategies. To the best of the authors’ knowledge, it is thereby the first
investigation to exemplify how social science insights can be combined
with energy modelling, arriving at concrete guidelines to advance
models’ behavioral realism.

This study first provides further background information on energy-
related behavior and energy system modelling. Then, a structured re-
view regarding the incorporation of behavioral aspects of households
and individuals in ESMs is provided. Last, insights are synthesized to
arrive at a concrete and feasible research agenda for advancing the
knowledge base at the interface of social science and energy system
modelling.

2. Energy-related behavior and its drivers

Among the range of actors involved in the energy transition, the
behavior of households and individuals often does not follow readily
predictive and cost-optimizing patterns [15]. To elucidate their behav-
ioral patterns, previous research has investigated a multitude of pre-
dictors of both pro-environmental behavior and, more specifically,
energy-related behavior. Energy-related behaviors are defined as be-
haviors which directly result in end-use energy demand, namely, the
adoption of energy-related technologies and the use of those technolo-
gies (i.e. energy service use) [7]. This study also includes the adoption of
rooftop solar, albeit officially regarded a supply technology. The main
focus of this analysis is on behavior in the residential and transport
sector, as consumer behavior directly impacts emissions in these two
areas [16]. The following section summarizes insights of reviews and
meta-analyses to provide an overview of main empirically studied
drivers of energy-related behavior according to the six categories shown
in Table 1.

2.1. Pro-environmental drivers

Various pro-environmental drivers of energy-related behavior have
been investigated. Research has distinguished different types of values
(e.g. biospheric, altruistic, hedonic, egoistic). Biospheric values,
emphasizing the intrinsic worth of the environment, tend to be most
closely correlated with pro-environmental behavior [17]. Lanzini et al.
[18] and Carrus et al. [19], however, report mixed findings regarding
the impact of environmental values on behavior. This ambiguity may be
explained by contextual aspects acting as barriers (e.g. lack of infra-
structure), inhibiting the impact of values on pro-environmental actions
[20].

Beyond peoples’ underlying values, studies confirm the predictive
qualities of more concrete cognitions, such as pro-environmental atti-
tudes, beliefs, (personal) norms, perceived behavioral control (i.e. be-
liefs regarding one’s ability to execute a behavior), and behavioral
intentions [15,18,19,21-27]. Research indicates that, in some cases,
behavioral intentions mediate the relationship between underlying
behavioral drivers and behavioral outcomes [26,28]. Pro-environmental
knowledge and education have also been identified as drivers of
energy-related behavior [21,22,24,28]. Steg et al. [15] note that
pro-environmental knowledge alone does not fully explain behavior. For
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Table 1
Drivers of energy-related behavior.

Category Drivers Examples of related
theories
Pro-environmental e Values e Theory of Planned
drivers o Attitudes Behavior (TPB)
o Beliefs e Reasoned Action
o (Personal) norms Approach
e Behavioral intentions e Norm Activation
e Perceived behavioral Model
control e Value Belief Norm
e Pro-environmental Theory (VBN)
knowledge and education
Appraisal of e Perceptions of e Technology

(characteristics of)
technologies

Cost perceptions
Well-being perceptions

technologies and
energy services

Acceptance Model
Rogers’ Theory of
Innovation Adoption
Bounded Rationality

.
.

(comfort, safety, etc.) Theory
e Emotions e Prospect Theory
Familiarity e (Past) experience(s) e Habit Discontinuity
e Habits Hypothesis
o Lifestyle o Self-Regulated
Behavioral Change
Model
Socio-demographic e Economic status
drivers o Age
e Education
e Gender

Dwelling ownership status
Other (e.g. marital status,
household size,
employment)

Social norms

(Direct) social interactions

Social Network
Theories

TPB

VBN

Social Practice
Theory

Social drivers

Contextual drivers

Dwelling characteristics
Environmental conditions
(e.g. urban heat island
effect)
Infrastructure/spatial
aspects

Other (e.g. car availability)

Note. A description of the mentioned theories is provided in Appendix C.

instance, individuals might possess adequate pro-environmental
knowledge, but may yet misjudge the impact of their personal
behavior on the environment.

The Theory of Planned Behavior (TPB) and its successor, the
Reasoned Action Approach, provide a framework on which various of
the previously mentioned pro-environmental drivers are based [29,30].
The theories posit beliefs, existing (social and personal) norms, and in-
dividuals’ perceived behavioral control to result in intentions, which in
turn determine behavior. Due to a so-called “intention-behavior gap”,
however, behavioral intentions may not always lead to actual behavior
[18,31]. The Norm Activation Model is also frequently mentioned in the
literature, explaining behavior by personal norms which are activated
through awareness and feelings of responsibility [32]. The theory’s
extension, the Value Belief Norm (VBN) theory, accounts for behavior
through different values (egoistic, biospheric, altruistic) that impact
beliefs which influence personal norms [33].

2.2. Appraisal of technologies and energy services

Individuals’ and households’ perceptions of technologies and energy
services can impact behavior. Research has highlighted the appraisal of
technologies’ costs, performance, quality, and benefits as drivers of
energy-related behavior [21,24,34]. Studies also indicate affective ap-
praisals to influence energy-related behaviors [19]. For instance,



H.S. Galster et al.

feelings of excitement and enjoyment towards technologies can impact
technology choices [34,35].

The Technology Acceptance Model incorporates technologies’
perceived usefulness and ease of use as main contributors to adoption
decisions [24,36]. These aspects are expanded by Rogers’ theory of
innovation adoption, listing various characteristics of technologies that
influence the perceptions of potential buyers, such as technologies’
visibility, complexity, and relative advantage (i.e., relative cost savings
compared to other technologies) [37]. Adoption decisions are also
addressed by the concept of bounded rationality, which was proposed to
explain non-optimal decisions making from a financial perspective [38].
The concept is integrated in the Cumulative Prospect Theory, describing
that when decision making involves risks, people tend to strive for
minimizing potential losses [39].

Studies on the appraisal of energy services indicate the level of en-
ergy prices to impact behavior [40,41]. A meta-analysis by Labandeira
[42] reports that behavioral changes in response to energy prices tend to
occur gradually, leading to stronger reactions to energy prices in the
long-term (i.e. over several years) compared to the short-term (i.e. over a
period of one year). Gasoline consumption appears to be most sensitive
to price changes, while heating oil consumption was found to be the
least impacted by price changes. Research also suggests that people
might increase their use of energy services after the implementation of
measures to save energy or use renewable energy [43]. As a result of
such rebound effects, expected energy savings may be lowered or even
offset [44].

2.3. Familiarity

Past or current behaviors can impact future behaviors through
preferences, habits, and lifestyles [18,21,26,35,45,46]. Thereby, pref-
erences may be more related to adoption decisions, and habitual
behavior tends to impact the use of energy services more [7]. It should
be noted that preferences and habits can change over time. The habit
discontinuity hypothesis states that such modifications are most likely to
occur in conjunction with contextual changes, such as renovation
measures [47]. Habit changes usually also require individuals to be
motivated to change (see Self-Regulated Behavioral Change Model
[48]). Regarding lifestyles, Chadwick et al. [21] argue that peoples’
broader personal aims, such as striving for independence, influence
energy-related behaviors. Nevertheless, only few studies to date have
investigated energy-related lifestyles, resulting in scarce knowledge
regarding the exact manners in which the notion relates to
energy-related behavior [49].

2.4. Socio-demographic drivers

For this study, socio-demographic drivers are defined as social and
demographic characteristics of individuals and households which exert
a (direct or indirect) impact on their energy-related behavior. Economic
aspects, in particular, have received substantial attention in research.
For example, lower income has been associated with relatively lower
adoption of technologies [22,50]. Low income and being affected by
energy poverty has also been found to correlate with the under-
consumption of energy [51,52]. The overall importance of economic
aspects driving energy-related behavior is subject to mixed findings
[22]. Diverging results of studies may partially be explained by people
showing different behaviors depending on the sector, the type of fuel
consumption, and the type of transport mode [22,53-55]. For instance,
Oswald et al. [55] found the consumption of heat and electricity to be
relatively less affected by income compared to transport behavior.

Other socio-demographic drivers that have frequently been assessed
in the context of energy-related behavior consist of gender, age, edu-
cation level, and (dwelling) ownership status [21,22,27,34,56-59]. For
instance, elderly people and children tend to require or prefer higher
indoor temperatures [56]. Regarding energy efficiency renovations,
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homeowners usually have more control and larger incentives compared
to tenants [58]. Other socio-demographic drivers that have received
some attention include, amongst others, marital status, household size,
employment, and car availability [46,58,60]. Overall, findings
regarding socio-demographic drivers are not always conclusive, sug-
gesting that these drivers can partly elucidate energy-related behavior,
but are alone insufficient to account for all variance in behavior [18,22,
58].

Socio-demographic drivers can represent direct links with energy-
related behavior, for instance, income directly determines the types of
technologies one can afford. At the same time, socio-demographic as-
pects can also represent proxies for other underlying drivers of behavior.
Education level, for instance, may relate to energy-related behavior
through individuals’ accumulated knowledge.

2.5. Social drivers

Individuals do not act in isolation, but shape and are shaped by their
social surroundings. Perceived social norms serve to guide such social
interactions [61]. Injunctive norms refer to individuals’ beliefs
regarding socially approved or disapproved behaviors and descriptive
norms refer to the observed behaviors of others, which are perceived to
be a norm [62]. Studies confirm the predictive value of social norms for
energy-related behavior [21,25-28,54,63,64]. For instance, Bollinger
and Gillingham [65] report a higher probability of Photovoltaic (PV)
panel adoption when the number of installations in the same zip code
area increases. The effect of the two types of norms and the overall
strength of social influences on behavior may differ depending on the
kind of energy-related behavior [66,67].

Regarding the conceptualization of social drivers, social network
theories have frequently been mentioned, focusing on the impact of
social relationships on behavior [34,63,68]. Social norms are also
mentioned in the TPB [29] and VBN [33] as one of several drivers of
behavior. Changes in social norms are captured by the notion of social
tipping points, describing that small incremental modifications can
result in self-reinforcing feedback mechanisms of transformation [69].

2.6. Contextual drivers

In this work, contextual drivers are defined as drivers related to
either the transport or residential sector, which have a direct impact on
energy-related behavior. Frequently studied contextual drivers encom-
pass environmental conditions, the access to technologies, spatial as-
pects and infrastructure, building characteristics, car availability, and
policy-related incentives [15,18,21,24,35,46,54,56]. For example,
relatively cold outside temperatures have been shown to drive in-
vestments in heating technologies [56]. The urban heat island effect,
characterized by higher temperatures in large cities compared to their
surroundings [70], can also increase energy-related cooling demand
while decreasing heating demand of urban areas. In the transport sector,
infrastructure and spatial aspects can impact modal choices through
their effects on travelling time and travelling distance [18,35,46].
Policy-related incentives, such as subsidies, have also been found to be
predictors of energy-related behavior [24].

3. Energy system modelling

ESMs usually represent the demand and supply side of the energy
system on various scales (e.g. regional, national, global) [71,72]. Models
can be used as tools to either provide a normative and/or prescriptive
(optimal) outlook of the future energy system or to describe and/or
explore (realistic) transition pathways [4,5]. Most ESMs are
optimization-based, calculating a desired future state of the energy
system. Thus, models display the (theoretically) optimal energy mix at
the system level for a given target, usually economic (i.e. minimizing
total system costs), while often employing CO, reduction ambitions as a



H.S. Galster et al.

constraining factor [9]. If behavioral aspects are included in optimiza-
tion models, they tend to be based on a micro-economic foundation,
assuming behavioral choices to be made with perfect foresight [2,9].
Optimization-based ESMs often follow normative or prescriptive pur-
poses, elucidating possible future outcomes that can guide or steer a
transition [5].

In contrast to optimization models, simulation ESMs calculate the
evolution of the energy system without specifying a desired future state
[11]. Thus, they usually follow a descriptive or explorative approach,
aiming at investigating the system’s development under assumed
real-world conditions [9]. Rather than providing information on
possible future outcomes, such models place more emphasis on the
pathways and developments needed to reach a certain future state.
Agent-Based Models (ABMs) can be considered a sub-category of ESMs
following an overall simulation approach. For this work, simulation
models are considered ABMs when they include different agents with
individual behavioral rules, showing some form of interaction that leads
to new patterns of emergent behavior [73]. Overall, more options to
incorporate behavioral aspects exist in simulation ESMs, and especially
ABMs have focused on defining realistic behavioral rules of heteroge-
nous agents and simulating social interaction patterns [9,74,75].

Trutnevyte et al. [13] differentiate three broad strategies for
including social science findings in ESMs. First, bridging describes ex-
changes between modelling and social sciences insights. Second, an
iterating strategy entails that social science findings directly inform
models’ input assumptions. Third, merging concerns the structural
adaptation of existing models according to social science results. This
analysis focuses on the merging strategy, as this approach allows for the
most complete and balanced inclusion of human behavior in ESMs and
provides a basis for examining societal transformation dynamics [13].
Following such strategy necessitates the simplification and quantifica-
tion of complex social science insights, which is addressed in section 6.

4. Method

This research combined a structured literature search with expert
interviews. The structured literature search served to retrieve relevant
ESMs for review and the expert interviews helped to gain insights
regarding overall benefits and challenges of incorporating behavior in
ESMs. In the process of retrieving relevant models, the focus was on
national ESMs. In contrast to aggregated global models, national ESMs
can represent behavior in reasonable detail and contrary to sub-national
and sectoral models, national ESMs capture the main components of the
entire energy system. Sectoral energy models tend be able to capture
behavior at a higher level of detail compared to models encompassing
the entire energy system, due to a narrower focus on only one economic
sector. Thus, a few examples of such sectoral models were added to the
review to ensure an elaborate illustration of the range of options for
modelling behavior.

In the literature search, a structured database search was combined
with a snowballing technique [76]. Scopus and Web of Science were
used. Articles were included if they described or reviewed one or more
ESM(s) that (1) incorporate behavioral aspects of households and/or
individuals related to adoption decisions and/or energy service use in
the residential and/or transport sector, and (2) model the entire energy
system. The search terms are displayed in Table 2.

Fig. 1 displays an overview of the search process. After reviewing the
papers’ title and abstract and subsequently the full text, 20 papers were
included. Some further models that were not retrieved by the literature
search were selected based on consultations within the authors’ net-
works. Eventually, sixteen ESMs and two sectoral models were selected.
This number is smaller than the number of included papers, as multiple
papers revolved around the same ESMs.

A set of comparison criteria was used to assess and contrast the
methods by which models incorporated behavioral aspects (see Table 3).
These criteria were created based on frequently studied drivers of
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Table 2
Search strings used for structured database search.

Date of Search Database Search strings

October 2nd, 2023, (TITLE-ABS-KEY (behav*) AND ALL
and January 10th, (household* OR human* OR consumer*
2024 OR citizen* OR actor* OR person OR
people) AND ALL (“energy system model*”
OR “energy model*” OR esm) AND TITLE-
ABS-KEY (“energy system*”))
(behav* (All Fields)) and (household* OR
human* OR consumer* OR citizen* OR
actor* OR person OR people (All Fields))
and (“energy system model*” OR “energy
model*” OR ESM (All Fields)) and (“energy
system*” (All Fields))

Scopus

Web of
Science

Note. As Scopus covers a wider range of journals than Web of Science [77], it was
necessary to limit the search terms in Scopus to title, abstract, and keywords to
keep the number of results within a feasible range for review.

energy-related behavior (see section 2), the content of the ESMs, and the
authors’ own expertise and experience. The comparison criteria formed
the basis for the review of ESMs.

Semi-structured interviews with six experts in the field served to gain
further insights into benefits and challenges regarding the incorporation
of behavior in ESMs. The experts’ contacts were retrieved based on
relevant scientific publications and the authors’ networks. A semi-
structured interview approach was chosen to allow for sufficient flexi-
bility in the conversation while ensuring the main topics of interest to be
covered [78]. Insights derived from the interviews are integrated in
section 6. The interview questions as well as a summary of main findings
can be found in Appendix A and Appendix B. In summary, the present
analysis is based on model descriptions and documentations (retrieved
by the structured literature search) as well as insights from expert
interviews.

5. Review of ESMs

The following section gives an overview of the reviewed ESMs. The
section then provides further detail regarding the inclusion of individual
drivers of energy-related behavior identified in section 2 as well as
general methodological considerations. Table 4 shows the selected
models and their geographical focus.

Out of the sixteen ESMs chosen for this work, eleven models incor-
porate the behavior of households and individuals in both residential
and transport sector. The remaining five models represent case studies
which focus on either sector, with more models addressing the transport
sector. Regarding behavioral outcomes, all models incorporate adoption
decisions. Less attention is devoted to energy service use, with only half
of the reviewed ESMs considering this aspect. In the models that do
consider energy service use, the variable is often used as exogenous
input. For example, the TIMES Households model derives transport
demand data from a survey of individuals’ transport behavior. Fig. 2
gives an overview of the review of ESMs according to the comparison
criteria. Appendix D provides further detail regarding the inclusion of
behavioral outcomes in each of the ESMs.

5.1. Drivers of behavior in ESMs

5.1.1. Pro-environmental drivers

The review identified only few ESMs that account for pro-
environmental drivers of behavior. MUSE allows for incorporating
various decision objectives of actors, amongst those environmental
goals. As such, environmental decision objectives exert an impact on
technologies’ rankings that ultimately determine adoption decisions. A
newer version of BLUE by Verrier et al. [45] accounts for
pro-environmental values. The authors modify Rogers’ [37] distribution
of adopter attitudes to distinguish actors with various strengths of
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found through
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|

Fig. 1. Illustration of structured literature search.

Table 3 Table 4
Comparison criteria for the selected ESMs. Overview of selected models.
Category Criterion Description Model name Geographical focus Source(s)
Behavior Adoption Modelling of households’ and/or TIMES Actor Model (TAM) Germany [79]
decisions individuals’ adoption decisions PRIMES E.U. [80]
regarding energy-related technologies CA-TIMES California [81]
Energy service Modelling of households’” and/or TIMES Households model France [82]
use individuals’ energy use MARKAL-MACRO UK [83]
Drivers of Pro- Drivers related to attitudes, values, IESA-sim The Netherlands [84]
behavior environmental perceptions, personal norms, and ENSYSI The Netherlands [85]
knowledge e.g. pro-environmental MUSE Global (case study: UK) [86,871]
values, pro-environmental attitudes, BLUE UK [45,88]
pro-environmental knowledge ENGAGE u.s. [89]
Appraisal of Perceptions of technologies impacting CIMS Canada [90]
technologies energy-related behavior, e.g., UK TIMES UK [91]
technologies’ complexity, emotions ESME UK [92]
elicited by a technology, etc. TIMES-IR & CA Ireland & California [93]
Familiarity Drivers related to existing or previous TIMES-DKEMS Denmark [94]
behavior of households and/or MoCho TIMES Denmark [95]
individuals, e.g. habits, lifestyle, (past) Sectoral energy models
experiences HESTIA The Netherlands [96]
Socio- Socio-demographic aspects influencing ABMoS-DK Denmark [97]
demographic behavior, e.g. income, age, dwelling
ownership status
Social Inclusion of social drivers of behavior, e. pro-environmental values. Over time, actors are assumed to move to-
8 interactions between actors, social wards the left of this distribution (i.e. developing stronger
Contextual E?Crz;oraﬁon of contextual drivers of pro-environmental values), thereby increasing their adoption of
behavior, e.g. (lack of) existing low-carbon technologies. ENSYSI and IESA-sim determine the sustain-
infrastructure ability of technologies based on their CO2 emissions. This score impacts
Methodological Behavior changes Modelling changes in the drivers of technologies’ overall ratings (which, in turn, determines adoption de-
aspects behavior over time, e.g. diffusion of pro- isi d ding on the importance that an actor category is assumed
environmental values among the cisions), depen g . P . . gory
population to allocate to sustainability considerations.
Actor Distinguishing actor heterogeneity to

account for differences in the drivers of
behavior among households and/or
individuals
Considering empirical findings through
informing drivers of behavior with
empirical data or directly integrating
empirical data into the model
Models are distinguished depending on:
1) their overall approach being
optimization- or simulation-based
2) whether simulation models are
considered ABMs

heterogeneity

Empirical basis

Modelling
approach

5.1.2. Appraisal of technologies and energy services

Most reviewed ESMs account for behavioral aspects regarding
financial considerations. Adoption decisions can then be determined
through the costs of technologies (e.g. IESA-sim) or the Net Present
Value of an investment (e.g. BLUE). In BLUE, PRIMES, ENSYSI, TAM,
TIMES Households model, CIMS, UK MARKAL-MACRO, and CA-TIMES,
specific discount rates (also called hurdle rates) are varied to “[give]
initial investments (...) asymmetrically greater weight than future sav-
ings” [[80], p. 215]. For example, MARKAL-MACRO applies a higher
discount rate for newer technologies to incorporate adoption barriers,
such as individuals being hesitant to purchase or lacking information.

To deal with actors’ differing sensitivity to costs, BLUE incorporates
a “heterogeneity parameter” which accounts for changes in
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. Behavior Drivers of Behavior
Behavior

Model

Methodological Aspects

n sector(s) Adoption Energy Pro- Appraisal of

Socio- Actor Behavior Empirical

. A /X X /X X X X - X - e -
e WA S L X L L L X L v L ® am -
CA-TIMES MA e X X e X X X X - X - Optim. -
TES Households  pia ol v V4 X W4 X v X 4 Yy V4 s Optim. -
MARKALMACRO [ 4 V4 4 X V4 X X X X - X ] Optim. -
IESA-sim MA J x ‘/ J x x ‘/ x # x - Simul. ABM
ENSYSI A J x ‘/ J x x ‘/ x # x - Simul. ABM
we & L X L L X L L L/ mm o
BLUE MA e V4 V4 e e X V4 X 1Y) 4 o s I Simul. ABM
ENGAGE MRA e X X e X e X X - X - Simul. No ABM
cims A e e X e X X V4 X - X ] Simul. No ABM
wws A4 4 X X L L L X X 4 X wmm oo -
B v/ X 4 X X X 4 ¥ 4 wm oo -
TIMES-IR & CA -* J x x J x x x ‘/ - ‘/ ] Optim. -
TIMES-DKEMS R J ‘/ x J x X x J * J s s Optim. -
MoCho TIMES =% J / x J x ‘/ x / fﬂ ‘/ sl Optim. -
HESTIA A V4 4 X X X V4 X 4 1Y) X WEEE  smu ABM
ABMoS-DK R e V4 X e e 4 V4 Ve [YYS 4 e sl ABM

Fig. 2. Comparison of selected models.

Note: The symbols in the column “behavior in sector(s)” refer to the transport and residential sector. Red crosses signify “not included”, while green ticks stand for
“included”. “Optim.” denotes optimization and “Sim.” refers to simulation. Actor heterogeneity is rated on a three-point scale: One stands for less than five actor
groups, two signifies between five and twenty actor groups, and three denotes more than twenty actor groups. Models’ empirical basis is also rated on a three-point
scale: One describes some behavioral data is used, two denotes that models have been empirically informed, and three means that models directly include

empirical data.

technologies’ market share as a result of their cost-efficiency. Adjusting
the parameter towards actors striving for perfect cost-optimization will
therefore result in only the most cost-efficient technologies being
adopted. Sensitivity to costs can also be accommodated probabilisti-
cally, assigning technologies with the highest Net Present Value the
highest chance of being adopted (e.g. PRIMES).

Energy service use can be represented by the price elasticity of de-
mand (BLUE, PRIMES, CIMS). This measure accounts for changes in
energy demand as a result of changes in energy prices. MARKAL-
MACRO addresses behavioral aspects of energy service use through
demand-response behavior, assuming consumers to participate in
demand-response for financial reasons.

In addition to financial motivations, ENSYSI and IESA-sim take into
account actors’ preferences regarding technologies’ complexity, as
described in Rogers’ theory [37]. Technologies receive a score
depending on their complexity. The weighed sum of these scores is used
to establish an overall ranking of technologies, with weights being
determined depending on the significance that an actor category is
assumed to assign to certain technology characteristics. In other models,
non-financial aspects of technologies are monetized (i.e. intangible
costs), such as representing transport modes’ speed in terms of a “cost of
time” (PRIMES, ABMoS-DK, MoCho TIMES, CIMS). Overall, in the
transport sector, models have characterized transport modes based on a
multitude of dimensions (including time, speed, waiting time, conges-
tion time, etc.), which can then be matched with users’ preferences
regarding travelling time, distance, and trip purpose.

BLUE, CIMS and UK TIMES incorporate consumers’ direct prefer-
ences for certain technologies derived from empirical investigations. For
instance, CIMS uses data from discrete choice surveys to estimate how
much peoples’ likelihood of adopting a technology increases with a
technology’s increasing market share. This aspect is implemented
through decreasing intangible costs of technologies with increasing
market share.

Individuals’ and households’ attitudes towards innovation are
incorporated in ENSYSI, IESA-sim, and BLUE. The models use Rogers’
[37] theory to specify various actor groups with different propensities
towards adopting innovative technologies. BLUE includes all five cate-
gories specified by Rogers, while IESA-sim and ENSYSI consider only
four groups and deviate from the original theory in modifying the
groups’ distances from the mean of the adoption distribution.

5.1.3. Familiarity

There are only a few ESMs that consider existing behavior increasing
the likelihood of similar choices to be made in the future. In BLUE and
UK TIMES, familiarity has been determined through empirical data
regarding adoption preferences for future heating technologies. Based
on these empirical findings, BLUE determines the rate of replacement of
currently owned technologies when predicting technologies’ future
market shares. UK-TIMES follows a slightly different approach, dis-
tinguishing household types based on empirical findings regarding
preferences for heating technologies. According to the data, household
types are assigned shares of newly installed technologies.

In the transport sector, existing mobility choices derived from sur-
veys can be incorporated in the projection of future mobility demand
(see TIMES-DKEMS, ABMoS-DK). For instance, when determining
mobility choices, ABMoS-DK distinguishes agents based on existing car
or bike ownership (derived from the Danish National Travel Survey) to
establish actor heterogeneity. This aspect, in combination with other
actor characteristics and trip characteristics, is used to assess future
modal choices. ABMoS-DK also explicitly considers (habitual) travel
behavior, since “in case that the derived utilities of alternative choices
are equal, the agent continues to habitually repeat previous behaviour.”
[[97] p. 854].

5.1.4. Socio-demographic drivers
The most widely considered socio-demographic characteristic in



H.S. Galster et al.

models is income (TIMES Households model, PRIMES, ENGAGE, MoCho
TIMES, MUSE, ABMoS-DK). This focus corresponds with the tendency of
existing research to investigate socio-demographic drivers related to
financial capital (see section 2.4). Income can be modeled by using a
higher discount rate for actors with lower financial budget, leading these
actors to require higher rates of return from their investment (TIMES
Household model). Alternatively, MoCho TIMES distinguishes house-
holds by income to assign differing intangible costs of transport modes
depending on the respective income group.

Other socio-demographic drivers in ESMs include the number of
bedrooms in a dwelling (UK TIMES), dwelling ownership status, and size
of a household (TIMES Households model, PRIMES). For example, the
TIMES Households model allows only building owners to make decisions
regarding dwelling insulation. ABMoS-DK takes into account age,
gender, and education level as attributes of agents, which determine
their modal preferences.

A high level of detail regarding agents’ socio-demographic charac-
teristics is represented in MUSE. A case study by Sachs et al. [87] on the
UK building sector describes the parametrization of agents based on a
multitude of socio-demographic factors determined by the Sinus-Milieus
model [98]. This distinction of agent categories in MUSE determines
how agents search for new technologies and make adoption decisions.

5.1.5. Social drivers

Social drivers of energy service use were not addressed by any of the
reviewed ESMs. Regarding adoption decisions, a total of five models
account for social influences, mostly indirectly or through external as-
sumptions. Mau et al. [90] model descriptive social norms indirectly
through assuming that an increased market share of hybrid-electric
vehicles further increases their likelihood of adoption in CIMS.
ABMoS-DK incorporates social influence indirectly through overall de-
velopments in the transport sector. For instance, if all agents use cars,
overall congestion time increases and future agents become less likely to
choose cars.

Verrier et al. [45] model the diffusion of pro-environmental values
across societal groups, assuming this diffusion to occur as a social pro-
cess (BLUE). This mechanism is implemented through a “drift rate” that
governs the speed by which actors’ strength of pro-environmental values
increases. IESA-sim and ENSYSI consider whether households perceive a
technology as being evaluated by society as positive, neutral or negative.
The weighed sum of this aspect and other technology characteristics (i.e.
costs, CO, performance, complexity) is used to form a ranking of tech-
nologies that determines adoption. MUSE accounts for social influences
through allowing some agents to transfer assets, thereby assuming
certain patterns of interaction to occur between agents.

5.1.6. Contextual drivers

Contextual drivers of behavior tend to differ between the residential
and transport sector. In the transport sector, individual transport choices
can be modeled as being affected by cost, travel time and trip distance,
which are matched with characteristics of transport modes to determine
modal choices (ESME, TIMES-IR & CA). For transport modes that require
fuel or electricity, PRIMES monetizes the available refueling or
recharging infrastructure as part of the intangible costs of technologies.
Regarding spatial aspects, ABMoS-DK and MoCho TIMES consider both
residential region and urbanization type to account for differences in
transport choices.

In the residential sector, households’ housing characteristics are
differentiated by the TIMES Household model, UK TIMES, HESTIA, and
PRIMES. For instance, the TIMES Households model considers living
area and dwellings’ insulation quality when determining households’
level of energy demand. HESTIA provides the most detailed account of
contextual characteristics, considering each dwelling in the Netherlands
according to a variety of characteristics (e.g. location, quality level, year
of construction).
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5.2. Methodological aspects

When including multiple drivers in a model, a key aspect regards
how these drivers are combined into one behavioral outcome (i.e. an
adoption decision or the level of energy service use). The reviewed ESMs
deal with this aspect through establishing a weighed sum (IESA-sim),
determining intangible costs (e.g. “costs of time” in PRIMES), or through
defining the order of priority of decision objectives (MUSE) per actor
group. Most detail is provided in MUSE, including six different options
for combining agents’ decision objectives (e.g. mean, weighed sum,
lexical comparison). Few other methodological aspects arose from the
review, which are described in the following sub-sections.

5.2.1. Behavior changes

Some of the ESMs display approaches to account for behavioral
modifications over time. Energy consumption changes can be modeled
as a decrease or increase in demand by a certain fixed factor in response
to prices (see PRIMES and MARKAL-MACRO). Regarding adoption de-
cisions, CIMS indirectly accounts for a change in decision preferences by
assuming that with growing market shares of technologies, people will
become increasingly more likely to adopt these technologies. Verrier
et al. [45] include a parameter called “drift rate” in BLUE: If the rate
reaches a pre-defined threshold, financial decisions objectives are out-
weighed by peoples’ preferences for a range of low-carbon technologies.
BLUE also assumes that as the market share of technologies increases,
people will move towards the left of the distribution of adopter attitudes
and become more innovative.

Some of the ESMs include transport modal shifts, which represent a
specific aspect of behavioral changes (TIMES Households model,
PRIMES, TIMES-DKEMS, ESME, MoCho TIMES, TIMES-IR & CA). For
instance, Daly et al. [93] account for changes in transport mode choices
in two case studies using TIMES-IR and TIMES-CA. Overall travel de-
mand and available travel time per capita are exogenous inputs, which
are matched with transport modes’ costs and travel times to determine
modal choices. Pye and Daly [92] build on this approach, incorporating
a maximum potential shift from car to non-car transport as well as an
annual rate of shift per transport mode into ESME.

5.2.2. Actor heterogeneity

The incorporation of different actor groups allows for an explicit
account of behavioral variations, meaning that per actor group, specific
patterns of behavior (e.g. decision objectives) must be defined. The
models CIMS, TIMES-IR & CA, and MARKAL-MACRO assume one
centralized actor and do not consider behavioral differences. Most other
reviewed models establish two to five actor groups. For example,
ENSYSI, IESA-sim, and BLUE distinguish individuals by four to five
adopter attitudes, which differ in the weight they assign to a number of
adoption decision objectives. PRIMES and MoCho TIMES differentiate
four to five income groups, with intangible costs or discount rates
differing per group. UK TIMES categorizes three households types
depending on the number of bedrooms. Each household type is assumed
to follow a different adoption pattern. In the transport sector, hetero-
geneity can be created by dividing individuals based on trip length, trip
region and available travel time, which determines preferred mode(s) of
transport (see ESME).

A more detailed approach to incorporating behavioral heterogeneity
is exemplified by the TIMES Households model, where 180 household
groups in the residential sector and 120 household groups in the
transport sector are created based on various socio-demographic and
contextual characteristics. Each characteristic is assigned a distinct ef-
fect on behavioral outcomes (e.g. the level of income determining im-
plicit hurdle rates used for investments and no decision regarding
insulation being made by tenants). A study by Sachs et al. [87] imple-
ments actor heterogeneity in MUSE, incorporating thirteen groups based
on socio-demographic characteristics in the model’s residential sector
module. In ABMoS-DK, a desired number of agents can be generated
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through a probabilistic approach using Monte Carlo Simulation.
Generated agents are then matched with existing data regarding energy
demand and demographic characteristics. The most detailed account of
heterogeneity is provided by HESTIA, since a distinction can be made on
the basis of contextual and socio-demographic characteristics of indi-
vidual Dutch households.

5.2.3. Empirical and theoretical foundation

The extent to which models rely on behavioral data represents a
continuum, ranging from models not relying on any empirical findings
to models directly including behavioral data. Models which do not
incorporate empirical data represent conceptual approaches which can
show how behavior can possibly be included in ESMs (e.g. IESA-sim and
ENSYSI). Without supporting assumptions by means of empirical find-
ings, however, behavioral realism cannot be guaranteed.

In other ESMs, some empirical evidence is used either in support of
behavioral assumptions or to establish actor heterogeneity (PRIMES,
MARKAL-MACRO, TIMES Households model, MUSE, CIMS, ESME, CA-
TIMES, TIMES-IR & CA, TIMES-DKEMS, MoCho TIMES). For instance,
the TIMES Households model distinguishes actor categories based on the
French national housing and transport survey. Discount rates imple-
mented in models are often based on prior findings regarding con-
sumers’ purchasing behavior [80,83,99]. The studies relied on,
however, might be conducted in a differing time and place compared to
the modelling context, which may weaken the data’s relevance.

Few ESMs directly incorporate empirical findings from existing
studies, usually conducted in the (geographic) modelling context (BLUE,
CIMS, ABMoS-DK, HESTIA, UK TIMES). Verrier et al. [45] rely on results
of a qualitative survey regarding peoples’ heating technology prefer-
ences (BLUE) and Mau et al. [90] implement data from discrete choice
surveys regarding preferences for hybrid gas-electric vehicles or
hydrogen fuel cell vehicles (CIMS). ABMoS-DK incorporates data in the
form of existing travel behavior from the Danish National Travel Survey.
Such approach ensures the modeled behavior to be closely aligned with
the behavioral reality in the modelling context.

The modelling of behavior in most of the ESMs is not explicitly
guided by theoretical insights. Implicitly, models that account for
adoption decisions often rely on bounded rationality theory by assuming
investments not to follow purely cost-optimizing pattern and agents to
base their decisions on limited information [12]. Besides, some models
rely on Rogers’ theory of innovation adoption [37] (IESA-sim, BLUE,
ENSYSI). In contrast to BLUE, IESA-sim and ENSYSI modify and only
partly implement the original theory, which may alter the theory’s
fundamental meaning.

5.2.4. Modelling approach

The majority of ESMs selected for the review is optimization-based,
which is in line with this approach being used most frequently in en-
ergy system modelling [71]. Considering only the models which include
behavior in both sectors (i.e. without considering the case studies), as
much as half of the models are simulation-based (mostly ABMs), indi-
cating a strong reliance on this modelling approach for a holistic
incorporation of behavior. Optimization ESMs were found to account for
actors’ behavioral preferences mostly in terms of financial aspects of
adoption decisions (e.g. varying hurdle rates). More detail regarding
drivers of behavior (e.g. attitudes and values) as well as social influences
on behavior was included in simulation-based ESMs, especially ABMs.
However, while some ABMs include agent interaction in an indirect
manner (for instance through overall sector developments, see
ABMoS-DK), no model accounted for direct interactions between actors.

Independent of their overall modelling approach, ESMs can show
simulating or optimizing patterns in their demand-side modules. For
instance, ABMs may include cost-optimizing rules for agent decisions
and energy demand in optimization models may be simulated based on
technology diffusion curves. To elucidate such level of detail for each of
the included ESMs, Appendix D provides a description of how adoption
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decisions and energy service use are determined per model.
5.3. Conclusion of review

The review showed that behavior in current ESMs is commonly
included in terms of the appraisal of technologies and energy services,
socio-demographic aspects, and contextual drivers. Energy service use
was considered exclusively with regards to financial and contextual
aspects. Some more variety in the drivers of behavior was observed for
the modelling of adoption decisions. Overall, less attention is being
devoted to the remaining drivers of behavior (pro-environmental, fa-
miliarity, social). For instance, social drivers are currently mostly rep-
resented indirectly and through external assumption. Thus, the analysis
implies that there is much space for improvement regarding a holistic
account of behavioral drivers in ESMs.

Methodologically, the review revealed a scarce reliance of models on
relevant empirical findings regarding behavior. While most of the
reviewed models mention some empirical findings guiding their incor-
poration of behavioral aspects, there are only a few examples of ESMs
directly incorporating empirical data of studies conducted in the desired
modelling context, thereby ensuring accuracy and realism of the
included behavioral patterns. Most ESMs also acknowledge that
behavior tends to differ between individuals and households and
attempt to account for some of this variation by forming various actor
groups with differing behavioral patterns. Some models address poten-
tial changes of behavior over time, albeit usually conceptual in nature
rather than empirically founded.

Regarding modelling approaches, the high number of reviewed ESMs
being simulation-based is notable, considering that the vast majority of
models in the energy sector is optimization-based. This finding may
confirm the relatively higher suitability of simulation models for
including behavior due to their flexibility for exploring future states of
the energy system, rather than focusing on the optimization of (usually)
system costs. The insights from the review of ESMs are next synthesized
with the existing social science literature described in section 2 to arrive
at approaches for advancing the behavioral representation in ESMs.

6. Operationalizing behavioral drivers in ESMs
6.1. Prioritization of relevant and feasible drivers

This investigation identifies various possible approaches for the
representation of households and individuals in ESMs, summarized in
Table 5. The different strategies were assessed according to their rele-
vance and feasibility. The rating of relevance was established with
regards to the reviewed social science literature in section 2. The rating
reflects the importance of a respective behavioral driver for explaining
energy-related behavior. Feasibility was determined based on the extent
to which a driver can be measured and quantified, which represents a
pre-requisite for inclusion in a model. The higher the feasibility, the
easier it is estimated that a driver can be quantified and incorporated in
an ESM. It must be noted that judgements of relevance and feasibility
were made by the authors based on the information compiled in this
paper. As both of these dimensions represent continua, the ratings
should not be regarded as definitive but rather as relative judgements of
the approximate position of the drivers on the continua.

Fig. 3 presents the drivers that were derived from both the social
science literature as well as the model review according to their esti-
mated relevance and feasibility. Rather than displaying drivers’ absolute
positions, the Figure is presented to provide guidance regarding which
drivers to prioritize, as drivers that combine a high feasibility and
relevance (upper right quadrant) can be considered a starting point for
implementation in ESMs (see Table 5 for more detail on those di-
mensions per driver category). If a driver is placed towards the right
side, it is estimated that the driver can be measured with pre-defined
questionnaires (e.g. values) or it is commonly measured in surveys
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Table 5

Possible approaches to incorporate behavioral drivers in ESMs.
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Driver category

Behavioral outcome

Modelling options

Data needs

Feasibility

Relevance

Pro-
environmental
drivers

Appraisal of
technologies
and energy
services

Familiarity

Socio-
demographic
drivers

Adoption of
technologies
influenced by pro-
environmental values,
attitudes/beliefs, or
behavioral intentions

Energy service use
influenced by pro-
environmental values,
attitudes/beliefs, or
behavioral intentions

Adoption of
technologies
influenced by their
(perceived)
characteristics

Actors’ cost
perceptions (i.e.
sensitivity to changes
in energy prices)

Past/present
experiences impacting
(future) technology
adoption

Habits impacting
energy service use

Adoption decisions or
energy service use
driven by socio-
demographic aspects

Discount rates/intangible
costs/ratings based on
technologies’ actual or
perceived environmental
performance (e.g. perceived
sustainability, COy
emissions) and actors’ pro-
environmental values, atti-
tudes/beliefs, or behavioral
intentions (e.g. BLUE [88],
IESA-sim, [84])

Probability to invest in
technologies depending on
the technologies’ actual or
perceived environmental
performance (e.g. perceived
sustainability, CO»
emissions) and actors’ pro-
environmental values, atti-
tudes/beliefs, or behavioral
intentions (e.g. PRIMES
(80D

Function of change in energy
service use as a result of
actors’ pro-environmental
values, attitudes/beliefs, or
behavioral intentions (au-
thors’ suggestion)

Discount rates/intangible
costs/ratings based on
selected characteristics of
technologies (e.g. speed,
complexity) (e.g. MARKAL-
MACRO [83], IESA-sim [84]
, PRIMES [80])

Price elasticity of demand (e.
g. PRIMES [80])

Agent decision rules: In case
of equal cost/utility, choose
technology which you
currently own or have
previously owned (e.g.
ABMoS-DK [97])

Using existing market share
of technologies to predict
future market share while
limiting the replacement of
existing technologies
according to individuals’
stated preferences (e.g. BLUE
[451)

Keeping energy service use
constant over time (authors’
suggestion)

Determining patterns of
adoption decisions/energy
service use based on:

Income

Gender

Age

Education level

Dwelling ownership status
Marital status

Household size
Employment

Car availability

o Self-reported pro-
environmental values/atti-
tudes/beliefs/behavioral
intentions linked with data
on technology adoption
Environmental
performance of
technologies/self-reported
perception of environ-
mental performance of
technologies

Self-reported pro-
environmental values, atti-
tudes/beliefs, or behavioral
intentions linked with ac-
tors’ energy consumption

Assessment of
characteristics being
considered important for
adoption decisions
Self-reported rating of
selected characteristics per
technology linked with data
on technology adoption
Actors’ energy consumption
over time linked with
energy prices over time

Self-reported/actual past
technology ownership or
self-reported/actual present
technology ownership
linked with self-reported
future technology choices/
preferences

Actors’ energy service use
over time

Socio-demographic data
linked with actors’ data on
technology adoption and/
or energy consumption

Medium (Self-report)
measures of values,
attitudes, beliefs, and
behavioral intentions exist
(regarding values, see e.g.
Refs. [100,101]).
Longitudinal studies indicate
values be relatively stable
over time [102]. This
relative stability makes
values specifically feasible to
be included in ESMs, since no
potential changes must be
considered.

Medium - High

Ideally, respondents should
be asked about the
technology characteristics
that they consider important
for their adoption decisions.
Determining price
elasticities is usually feasible
and requires an analysis of
changes in demand in
relation to changes in energy
prices. If data is unavailable,
previous research can be
considered (see e.g.

Ref. [42]).

Medium - High

Data regarding existing and
past technology ownership
and energy service use may
be available in public
databases

High

Socio-demographic data is
often available in public
databases. Depending on the
context, there may also be
previous research findings
linking socio-demographic
aspects with energy-related
behavior (e.g. Refs. [22,50]).

Medium - High

Studies confirm the
predictive qualities of pro-
environmental drivers.
Attitudes, beliefs, (personal)
norms and behavioral control
may exert their impact on
energy-related behavior
through behavioral
intentions (see TPB). To
investigate a potential
intention-behavior gap [18],
the drivers should directly be
related to behavioral
outcomes (i.e. energy service
use and technology
adoption). Contextual
aspects should be taken into
account when investigating
values due to potential
confounding effects [20].

Medium - High

The perception of
technologies and energy
service use has been shown
to be a relevant factor for
energy-related behavior. As
actors’ perceptions of costs
and other characteristics of
technologies and energy
services may differ between
technologies and energy
services [42], one should
distinguish different
technologies and energy
services during data
collection and analysis.
Medium - High
Familiarity has been shown
to influence energy-related
behavior. Specific attention
should be paid to utilizing
data collected in the specific
modelling context, as these
aspects tend to be strongly
related to cultural influences
[103].

Medium

While socio-demographic
aspects have been shown to
exert influence on energy-
related behavior, mixed
findings have been reported
regarding their relative
importance.

(continued on next page)
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Table 5 (continued)
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Driver category Behavioral outcome

Modelling options

Data needs

Feasibility

Relevance

Social norms
impacting technology
adoption

Social drivers

Social norms
impacting energy
service use

Contextual Adoption decisions or
energy service use
influenced by
contextual aspects (e.

g. infrastructure)

drivers

These aspects can be included
in ESMs following a variety of
approaches (e.g. defining age
groups, household sizes, etc.)
(e.g. TIMES Households Model
[82D.

Injunctive social norms:
Discount rates/intangible
costs/ratings based on
technologies’ perceived
social desirability (e.g.
ENSYSI [85])

Descriptive social norms:
Determining a function of
change in adoption of
technologies on top of
expected changes due to
changes in technologies’
costs (e.g. CIMS [90])

Function of change in energy
consumption as result of
(diffusion/change of) social
norms (authors’ suggestion)

Determining patterns of
adoption decisions/energy
service use based on:

e Infrastructure (e.g. place of
residence, coverage of
transport system)
Environmental conditions
Building characteristics

e Policy-related incentives
These aspects can be included
in ESMs following a variety of
approaches (e.g. adjusting
technology preferences based
on location of residence
(ABMoS-DK [97]).

Self-reported social
perceptions of technologies
(injunctive norms) linked
with data on technology
adoption

Existing technology choices
of individuals and
households in a
neighborhood (descriptive
norms) linked with data on
technology adoption
Rating of visibility of
others’ technology
adoption

Self-reported perceptions of
social norms regarding
energy consumption
(injunctive norms) linked
with actors’ energy
consumption

Existing energy
consumption data of
individuals and households
in a neighborhood
(descriptive norms)

Data regarding visibility of
others’ energy
consumption.

Contextual data linked with
actors’ technology adoption
and/or energy service use

Medium

Measurements of social
norms exists (e.g.

Ref. [104]). Data of
descriptive norms may often
be available in public
databases (e.g. number of
purchased technologies,
choice of transport mode,
level of energy
consumption). Data
collection regarding
injunctive norms can be
more labor intensive, as
self-reports must be collected
regarding peoples’ perceived
social desirability of certain
technology choices or
patterns of energy service
use.

High

Aggregated contextual data
is often available in public
databases.

Medium - High

Social influences have been
shown to be predictive of
energy-related behavior.
Since individuals and
households perceive social
norms within their
immediate surroundings,
data should ideally be
considered per area or
neighborhood. The impact of
social norms may also differ
between different
technologies and energy
services, as the perception of
descriptive and injunctive
norms partially depends on
the visibility of technologies
and energy service use of
others.

Medium - High
Contextual drivers have
frequently been related to
energy-related behavior

Note. This table does not offer an exhaustive list of all possible drivers and approaches. The final choice of the most suitable behavioral drivers as well as modelling
approaches will vary depending on the specific model structure, the modelling purpose, the behavior(s) of interest, and the modelling context. Some work has been
done in mapping more detailed strategies for either the residential or transport sector (e.g. Ref. [105]), which may serve as further inspiration.

already (e.g. socio-demographic aspects).

When implementing a set of behavioral drivers in an ESM, it is
important to consider if and how these drivers might relate to each other
and which potential confounding variables may play a role [20]. For
instance, studies have shown that behavioral intentions can act as me-
diators between other drivers and behavioral outcomes and that modi-
fications of social norms can exert an impact on personal norms,
attitudes, and beliefs [26]. Such relationships should be tested and
incorporated to safeguard the accuracy of the modeled behavior. Apart
from the aspects described in section 2, further socio-demographic and
contextual variables may be relevant to consider depending on the
sector, the respective modelling context, and the modelling aim.
Socio-demographic drivers may also represent proxies for other under-
lying drivers of behavior. If data is available, mediation analyses can
provide insights into the mechanisms through which socio-demographic
aspects may impact energy-related behavior.

10

6.2. Methodological aspects

When including behavior in an ESM, modelers must find an appro-
priate balance between behavioral and technological detail. Some ESMs
were found to incorporate rich technological information, albeit
considering behavior in a simplified manner. Other models included
more behavioral detail, but less technological information. In both
cases, relevance of the modelling outcomes for policy making should be
considered, as detailed insights about potential technological de-
velopments as well as the effect of energy-related behavior may be
required. This aspect was also highlighted in the interviews. Based on
this analysis, MUSE, IESA-sim, ENSYSI, and the TIMES Households
model present examples of models that simultaneously account for rich
technological and behavioral detail.

It must be noted that a tradeoff exists between increased behavioral
detail and augmented modelling complexity. Increasing behavioral
detail in one sector can also lead to imbalances between other sectors
which may be modeled in a more aggregated fashion. Therefore, it is
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Fig. 3. Relevance and feasibility of including drivers of energy-related behavior in ESMs.

suggested to carefully consider the detail of technological and behav-
ioral representations of all included sectors and computational limita-
tions to ensure a balanced inclusion of behavioral aspects. Other
methodological considerations emerged from the review, which are
described in the following sections.

6.2.1. Longitudinal approach

Some behavioral tendencies are relatively stable, others can undergo
modifications over time. For instance, while values tend to be relatively
consistent, attitudes, beliefs, and intentions have been shown to be more
variable [106]. If previous research indicates drivers to change over
time, longitudinal data can be helpful to assess the rate and extent of
such proposed changes. This type of data does imply increased time and
effort requirements, which need to be weighed against the relative ease
of cross-sectional data collection.

Regarding specific behavioral change phenomena, previous research
has proposed rebound effects to be incorporated in models [43,44].
Social tipping points have also been suggested to be included in
modelling efforts due to the notions’ potential for capturing social
transformation dynamics [107]. However, the fact that social tipping
points have not yet been extensively researched and consistently
conceptualized compromises their feasibility of measurement [108]. If
desired, social tipping points could be explored in models by means of
various scenarios in which different behavioral change patterns or
tipping point thresholds can be defined (see e.g. BLUE [88], where such
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approach is shown with pro-environmental values).

Any implementation of behavior changes in models, even if based on
prior longitudinal findings, requires assumptions about the future to be
made, which inherently yields uncertainties. Thus, in line with ap-
proaches observed in current models, it may be useful to consider the
modelling of behavior changes as explorative attempts, which can be
investigated through different behavioral modification scenarios. Based
on the present review, there are various approaches to be considered for
such exploration (see Table 6). Specifically ABMs may lend themselves
for a dynamic accounting of behavioral changes over time due to their
flexible structure. For instance, learning can be incorporated in ABMs
relatively easily through defining agent rules and characteristics (e.g.
ABMoS-DK [97]). Incorporating behavioral change phenomena, how-
ever, increases the complexity of model results and should carefully be
considered in light of model wusability, interpretability and
communicability.

6.2.2. Actor heterogeneity

In line with prior literature, including various actor groups in ESMs is
important to account for differences in actors’ behaviors [2,10,
109-111]. In principle, if sufficient data is available, any (set of)
behavioral driver(s) can be used to distinguish actor groups (e.g. in-
come, strength of pro-environmental value orientation). Alternatively,
one can generate a desired set of random agents through a probabilistic
approach and calibrate these agents with existing empirical data (e.g.
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Table 6
Possible approaches to incorporate changes in behavior over time in ESMs.

Behavior to be
represented

Modelling options Supporting data sources

Changes of adoption .
decision patterns

Modification of existing
distribution of attitudes/
beliefs/behavioral
intentions among actors
(e.g. BLUE [88])

Rate of diffusion of
certain decision

o Self-reported (changes
in) attitudes/beliefs/
intentions
(longitudinal data)
linked with actors’
technology adoption
and/or energy

objectives (e.g. diffusion consumption
of pro-environmental o Assessment of diffusion
values; e.g. BLUE [45]) of (self-reported)

Determining a change in
perceived characteristics
of technologies over
time (e.g. increasing
social acceptance of
technologies with
increasing market share;
authors’ suggestion)

decision objectives
among actor groups
(longitudinal data)
linked with actors’
technology adoption
and/or energy
consumption
Self-reported (rating
of) characteristics of
technologies being
considered important
for adoption decisions
(longitudinal data)
linked with actors’
technology adoption
and/or energy
consumption
Self-reported or actual
energy consumption
patterns over time

Diffusion of certain
consumption patterns
over time (e.g.
decreasing energy
consumption for heating
over time due to
increasing awareness of
energy savings
measures; authors’
suggestion)
Determining a threshold
after which behavior
structurally changes (i.
e., social tipping point)
and determining how
behavior changes (i.e.
which driver(s) become
more prominent; e.g.
BLUE [45])

Changes of patterns of
energy service use

Structural overall
changes of behavioral
patterns after a
certain threshold due
to (changing) social
norms (i.e. social
tipping points)

Assessment of trigger
points/thresholds for
social tipping points
regarding energy-
related behavior linked
with actors’ technology
adoption and/or en-
ergy consumption
Qualitative or
quantitative
assessment of
underlying dynamics of
structural changes in
energy-related
behavior (e.g. surveys,
interviews,
observations)

Data on energy
consumption over time
linked with actors’
technology adoption

Rate of decrease of
expected energy savings
after implementation of
a measure which saves
energy or uses
renewable energy
(authors’ suggestion)

Rebound effects (i.e.
increase in service use
after a new
technology/an energy
saving measure has
been implemented)

ABMoS-DK [97]). A main challenge then lies in establishing useful actor
categories which can account for meaningful behavioral differences.
Thus, it is important to assess which drivers are most relevant for
explaining behavior in the respective modelling context. Accounting for
heterogeneity also requires behavioral patterns to be defined per agent
group, which necessitates sufficient empirical findings that can be used
as a basis for such definition.

A decision regarding the number of actor groups depends on the
desired behavioral granularity as well as available computational ca-
pacity. Thereby, one can start with the implementation of a limited
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number of agents and add more heterogeneity incrementally. This
process ensures a careful consideration of the tradeoff between
augmented behavioral detail and the increased complexity of an ESM
[112,113]. As a high level of complexity can compromise model us-
ability, the effect of behavior on the model output should first be un-
derstood before incrementally adding actor groups.

6.2.3. Empirical and theoretical foundation

From this review, it emerges that the empirical foundation of the
behavior of households and individuals in current ESMs is relatively
weak. This finding may partially be explained by a scarcity of available
data, as also indicated by the interviewees. While conceptual ESMs still
allow for exploring the effects of behavior on the energy system,
empirical findings are essential to ensure behavioral realism [2].
Therefore, improving the strength of empirical foundation is of major
importance for advancing the inclusion of realistic behavior in ESMs.

ESMs included in the review that directly incorporate empirical
findings rely on cross-sectional data measuring choices, preferences, or
travel patterns (see section 5.2.3). This data is utilized to derive un-
derlying drivers of behavior and establish heterogeneity. Longitudinal
data is not mentioned, which is likely due to lack of availability and
increased collection efforts. The collection of behavioral data should be
matched with the geographic scale of the remaining (technological,
economical, etc.) data included in an ESM, since behavioral patterns
might differ between settings, contexts, and cultures [92,103]. Such
approach implies that ESM results apply to a specific modelling context
and cannot readily be generalized to other geographic locations.

Any incorporation of behavior in an ESM necessitates a clear
conceptualization of energy-related behavior and its different pre-
dictors. Such conceptualization can be supported by available social
science theories (for a sub-set of available theories see Table 1 and
Appendix C). The TPB has frequently been implemented in models due
to its simplicity and the relative ease with which it can be translated into
code [114-116]. Regardless of the selected theory or set of theories, a
central task revolves around the empirical validation of proposed re-
lationships between behavioral drivers and outcomes. Empirically
validated drivers can subsequently be incorporated in ESMs through
appropriate formalization, operationalization, and quantification of a
theory’s concepts [116]. Thereby, Muelder and Filatova [116] empha-
size the need for informed decision making as well as transparency, since
differences in the implementation of a theory can result in diverging
model outcomes.

6.2.4. Modelling approach

According to some of the interviewees, implementing behavior in
ESMs can be challenging as modelers often have to modify the structure
of an existing ESM and translate descriptions of behavior, which are
often qualitative, into mathematical formulations. This finding is in line
with Trutnevyte et al. [13], stating that merging social science findings
with existing ESMs tends to be a demanding endeavor. Despite potential
obstacles, the authors still emphasize that a merging approach has the
highest potential for improving models’ behavioral realism.

This review has highlighted the value of simulation modelling due to
providing more diverse options for accounting for behavioral drivers.
Thereby, ABM might be particularly suitable, as behavioral drivers can
be included through defining flexible agent rules. For instance, to
incorporate habits, agents can be set to re-select their current technology
if a certain (pre-defined) threshold of difference regarding costs or
utility has not been transgressed (e.g. ABMoS-DK [97]). ABMs can also
account for interaction dynamics, which makes the approach a partic-
ularly suitable technique for endogenously modelling social dynamics
[2,73,117]. For instance, social norms can be translated into defining
specific agent network characteristics and the strength of social in-
fluences [115].

In addition to focusing on standalone ESMs, the results of different
models can be compared. Fattahi et al. [4] note that contrasting the
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results of (comparable) simulation and optimization ESMs can provide
insights into differences between an optimal solution and a simulated
feasible solution. ESMs can also be linked with other models [2,9,118].
For instance, behavior-related parameters of optimization models can be
informed with findings derived from simulation models [105]. Such
linking processes can be used as long as the models share some key
characteristics, and may save time and avoid potential complications
arising from the full integration of behavioral findings into existing
ESMs [2]. Such soft-linking approach is exemplified by Ramea et al.
[119], integrating insights derived from a model simulating consumers’
vehicle choices into the optimization-based ESM TIMES.

7. Discussion

ESMs differ in their fundamental modelling purpose [4,5]. The in-
sights of this work are aimed at improving the behavioral realism of
models with exploratory and/or descriptive purpose that aim at gener-
ating insights into possible transition pathways. ESMs following a
normative or prescriptive purpose, in contrast, place higher importance
on outlining a future state of the energy system and it may therefore be
less relevant to incorporate increased behavioral detail into such ESMs.

The review shows that various drivers impact energy-related
behavior and that different approaches can be taken to incorporate
behavioral drivers in ESMs to enable an improved and more realistic
description and exploration of pathways towards a decarbonized energy
system. Currently, the most common way to include adoption decisions
in ESMs is through the present or future costs of technologies, and the
most frequent manner to account for energy service use is through price
elasticities of demand [3,42]. Several models further consider
socio-demographic aspects and contextual drivers of behavior. While
such ESMs can serve as a starting point, a comprehensive consideration
of the six categories of empirically-based drivers impacting
energy-related behavior (i.e. pro-environmental drivers, appraisal of
technology and energy services, familiarity, socio-demographic drivers,

DATA COLLECTION

| Basis for determining
Characteristics of technologies

Behavioral drivers* q
and energy services

MODEL PREPARATION

Data analysis
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social drivers, contextual drivers, see section 2) is lacking. This under-
representation confirms the need for advancement and potential for
expanding the behavioral modelling of households and individuals [2,
31.

For behavior to be incorporated, human cognitions and actions must
be translated into mathematical formulations that can be implemented
in models. Despite the overall underrepresentation of many drivers of
behavior, several ESMs have done innovative work, for instance by ac-
counting for pro-environmental values, habits, and social influences [85,
88,97]. These approaches are valuable in providing a starting point to
further develop the modelling of behavior in ESMs. This work identifies
a series of steps to be taken when implementing behavior in an ESM (as
displayed in Fig. 4), building on the merging strategy proposed by
Trutnevyte et al. [13] (i.e. the structural adaptation of ESMs according
to social science findings). Based on these steps, Fig. 5 gives an overview
of state-of-the-art practices and feasible advancements.

The first step for implementing behavior in an ESM consists of data
collection. Most ESMs represent a reasonable level of detail regarding
behavioral outcomes (i.e. technologies and energy service uses in resi-
dential and transport sector), but do not explicitly incorporate data
regarding behavioral drivers impacting these outcomes. Partly, this
observation can be explained by the scarce availability of behavioral
data, which currently entails a major limitation. Increasing data
collection efforts can ensure a thorough empirical basis regarding both
behavioral drivers and outcomes, which is imperative for advancing the
modelling of behavior in ESMs [2]. This analysis provides guidance
regarding the relevance and feasibility of including different drivers (see
Table 5 and Fig. 3), which can be used as a tool to determine prioriti-
zation. Ultimately, the choice of behavioral drivers should depend on
the modelling aim, the modelling context, and data availability.
Thereby, augmented behavioral detail should carefully be weighed
against increased model complexity.

The second step, the preparation of the model, requires an analysis of
empirical data regarding behavioral drivers and behavioral outcomes to

MODEL CALIBRATION
AND VALIDATION

Model implementation

Pro-environmental drivers & Environmental performance * Find relations between ¢ Derive relevant parameters * How do the behavioral drivers
Appraisal of Technologies Costs behavioral drivers and from data analysis. influence energy service use
and Energy Services Technological performance behavioral outcomes based « Use a simulation model. and_techr?ology adoption?
/A Familiarity B Frefibuscunersiib on the collected data. « Calibrate parameters with . mh:::tc:)rrl]v:;seravjetrv?cr;355’;
# Socio-demographics Contextual aspects (e.g. roof available (historical) data. anZtechnoIogyg;,doption?
mfi Context mA size and orientation, charging
#% Social drivers points, bus stops) Through regression analysis, determine Include the parameter “descriptive Determine the importance of

&% Visibility
=== Etc.

—g—

Behavioral outcomes*

Residential sector
Insulation/ energy label
Heat supply technology
(boiler/heat pump/ other)
PV panels
Electricity use (KWhe/y)
Gas use (m3/y)

Transport sector

« Car (ICE/HEV/EV)

* Modal choice (car/train/local
public
transport/cycling/walking)

* Travelled distance/mode

*1deally: Longitudinal data or cross-sectional data with past adoptions and self-

reported future intentions/preferences

EXAMPLE

You would like to investigate the impact of descriptive social norms on energy-
related behavior. To this end, collect data of others’ behaviors (i.e. adopted
technologies and use of energy services, if possible spatially disaggregated).
Moreover, determine the visibility of others’ behaviors (if behaviors are visible to
others, they are more likely to be perceived a social norm).

the relationship between the (visible)
energy-related behavior of others and
the likelihood of individuals carrying
out the same behaviors (i.e. descriptive
social norms).

Actor heterogeneity

* Determine actors based on
survey data (each case = one
agent), or

* Form groups based on data
analysis or research interest,
or

* Generate population of
random agents based on
defined characteristics

EXAMPLE

Form actor groups based on the extent
to which individuals are surrounded by
visible energy-related behaviors of
others.

social norms” derived from data
analysis, which increases the likelihood
of actors surrounded by the visible
energy-related behavior of others to
carry out the same behavior.

Model validation

* Simulate projected energy
service use and technology
adoption for a historical time
period and compare with
available (historical) data.

* Check whether population
characteristics assumed in the
model match with population
structure of the respective
geographical area.

Simulate the adoption of technologies

and use of energy services for a

historical time period, including the

parameter “descriptive social norms”.

Check whether the results match the

data.

Fig. 4. Steps for incorporating behavioral aspects in an ESM.
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descriptive social norms for the
adoption of technologies and the use of
energy services.

* How does the use of energy
services and adoption of
technologies differ between
actor groups?

* Which behavioral drivers
explain the differences
between actor groups?

EXAMPLE

Determine the extent to which
descriptive social norms impact
individuals’ own behavior d di
on the respective actor group and the
visibility of others’ energy-related
behavior.
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DATA COLLECTION

* Models most commonly include the appraisal of technologies
and energy services, socio-demographic drivers and contextual
aspects (which reflects in the characterization of technologies
and energy services)

All models include a relatively detailed set of behavioral
outcomes (i.e. possible technologies to adopt and energy
services to use)

STATE-OF-THE-ART
.

MODEL PREPARATION

Most models do not analyze
the relationship between
behavioral drivers &
behavioral outcomes

Most models include around
five actor groups
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MODEL CALIBRATION
AND VALIDATION

Relevant parameters are not
always based on data analysis
Most models are simulation-
based

Calibration & validation
procedures are described for
some of the models

Model results are usually
derived for technology
adoption and energy service
use.

Differences between actor
groups are rarely analyzed.

Data regarding various behavioral drivers can be collected (see
Table 4 and Table 5). The inclusion behavioral drivers should be
reflected in the characterization of technologies and energy
services.

w
=
=
(7]
<
i
(s

Regression/correlation
analyses can be used to
assess proposed relationships
between behavioral
outcomes and behavioral
drivers

Actor groups should reflect
meaningful behavioral

Relevant parameters should
reflect behavioral drivers that
were found to significantly
relate to behavioral outcomes
Each behavioral parameter
should be calibrated &
validated

The inclusion of relevant actor
groups and behavioral drivers
enables a more nuanced
analysis of behavioral impacts
on the energy transition and
distributional impacts of the
energy transition on actor
groups

differences

Fig. 5. State-of-the-art and feasible extensions of the steps for incorporating behavioral aspects in an ESM.

determine the relationship and the relative impact of the drivers on the
outcomes. For instance, correlation and regression analyses can be used
to determine the direction and strength of the relationship between
drivers and outcomes as well as the relative predictive power of indi-
vidual drivers in relation to others. The drivers chosen based on this
analysis should then guide the characterization of technologies and
energy services. For instance, if pro-environmental values are incorpo-
rated, the (perceived) environmental performance of technologies and
energy services must be determined. To arrive at one behavioral
outcome (i.e. an adoption decision or the level energy consumption),
drivers must be combined. Different methods are available to accom-
plish such combination, for instance the formation of a weighed sum or
ordering drivers by priority (see Table 5).

To account for behavioral heterogeneity, actor groups must be
defined [2,109,110]. The review shows that it is common practice to
rely on four to five groups, such as actors with differing incomes or
pro-environmental values. Particularly distinguishing groups by
socio-demographic and contextual aspects can provide important in-
formation regarding the characteristics and surroundings of households
and individuals. A greater number of actor groups enables more detailed
behavioral analyses, but must be weighed against model complexity to
ensure that the model remains sufficiently simple and understandable.
More detailed approaches also require sufficient empirical data, allow-
ing for a distinction of behavioral patterns and a weighing of different
drivers between actor groups.

The third step involves the implementation of behavioral data into
an ESM, for which the use of simulation modelling (e.g. ABM) is sug-
gested. Reviewed models that incorporated behavior in the most
advanced way were simulation-based, confirming this approach to be
comparably more flexible and suitable for exploring possible future
states of the energy system [9,74,75]. Several tools are available to
summarize the information derived from different behavioral drivers
into modelling the behavioral outcomes, such as rating technology op-
tions, determining intangible costs or including price elasticities (see
Table 5). Model parameters should be calibrated and the model should
be validated by using historical data regarding behavioral outcomes, as
exemplified by Ref. [120]. In the last step, model results can be analyzed
per technology and per actor group and the changing of individual
model parameters allows for exploring the relative impact of specific
behavioral drivers on model outcomes.

Such analyses are urgently needed to gain further insights into the
drivers and pathways to accelerate the energy transition. Behavior has
been highlighted to be an important enabler of the transition [6,7], and
an explicit investigation of realistic behavior in ESMs will shed light on
the relative impact of behavioral drivers on desired behavioral outcomes
(i.e. the adoption of renewable technologies and changing patterns of
energy consumption). At the same time, the energy transition exerts
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major impacts on individuals’ livelihoods [121]. A more targeted defi-
nition of actor heterogeneity allows for distributional effects to be taken
into account; for instance, one can analyze potential differences in
technology adoption rates and energy service use between societal
groups. In line with energy justice [122], such insights can guide
informed decisions of policy makers to ensure that no societal group is
left behind in the energy transition [1,6].

It must be noted that in the process of including behavioral drivers
into ESMs, more detail is not always better: Augmented behavioral
detail in ESMs enables a deeper and more realistic analysis of transition
pathways, but must carefully be weighed against increased re-
quirements for model inputs and enlarged complexity of model outputs.
By nature, ESMs are intended to show a simplified version of the reality
of the energy system. It is therefore recommend to add behavioral detail
to an ESM incrementally, ensuring inputs to remain manageable and
results to be understandable, insightful and communicable.

There are three methodological considerations of the present work,
arising from the scope of the review requiring choices to be made
regarding the level of detail of the analysis. Relevant social science
knowledge served as background of the work and was summarized from
existing reviews and meta-analyses, rather than carrying out an own
review effort targeted to the specific analysis. Despite the search process
combining a systematic approach with interviews, some relevant ESMs
might have been missed. Regarding the selected ESMs, there were large
differences in terms of clarity and length of documentation, which might
have led to some information being omitted from the analysis. While this
review provides a comprehensive overview, future work could tackle
these methodological aspects to assess the behavioral modelling of ESMs
in even more detail.

The review findings show that more work is needed to further lower
the barriers for explicitly addressing drivers of human behavior in ESMs
for the purpose of describing and exploring transition pathways [9,10].
The suggested approaches (see Table 5) are intended to serve as inspi-
ration and guidance for modelers to increase ESMs’ behavioral realism.
Future work should employ an interdisciplinary approach, which can be
achieved through increased collaboration and dialogue between social
scientists and energy modelers. Research should also rely on data-driven
strategies and a thorough analysis of behavioral drivers and their re-
lationships with behavioral outcomes (e.g. through correlation/re-
gression analysis). Behavioral data should be collected in the respective
modelling context to ensure applicability. Actor heterogeneity, which
tends to exert large impacts on modelling results [120], should carefully
be determined based on meaningful differences between actors in the
drivers of energy-related behavior. The analysis has shown that it is
currently common practice to include at least five actor groups, often
based on socio-demographic and contextual characteristics. A major
limitation regards the availability of empirical data, which is needed to
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derive such relevant behavioral patterns and distinguish meaningful
actor groups. This shortcoming should be tackled by future work
through targeted data collection efforts that allow for connecting
behavioral drivers and outcomes on the level of households or
individuals.

8. Conclusion

To enable a successful energy transition, a holistic assessment of
drivers and barriers is needed. Energy System Models (ESMs) present
indispensable tools for investigating transition pathways. Current
models insufficiently account for realistic human behavior, despite the
fact that human behavior has been shown to exert a major impact on the
energy transition [6]. This research presents a multitude of approaches
to foster the inclusion of human behavior for informing current ESMs
with insights from social science research. Suggested approaches revolve
around data-driven strategies, highlighting the importance of empirical
data collection regarding all behavioral drivers and behavioral out-
comes included in a model. The consistent use of data also enables an
analysis of proposed relations between behavioral drivers and outcomes,
which is necessary to safeguard models’ behavioral realism. This study
has further highlighted the value of simulation modelling for repre-
senting behavior as well as the importance of accounting for meaningful
behavioral differences through defining actor heterogeneity.

Based on the analysis, it is recommended to improve the integration
of realistic behavioral aspects through a strong reliance on empirical
data regarding both behavioral drivers (i.e. pro-environmental drivers,
appraisal of technology and energy services, familiarity, socio-
demographic drivers, social drivers, and contextual drivers) and out-
comes (i.e. adoption of technologies and energy service use). Besides the
appraisal of technologies and energy services, which is commonly
included in ESMs, next targets may for instance entail descriptive social
norms as well as socio-demographic and contextual aspects due to
frequent data availability and relative ease of inclusion. In general, to
confirm the relevance of any (set of) behavioral drivers, one should start
with an explicit investigation of the relationships between behavioral
drivers and outcomes in the respective modelling context (e.g. correla-
tion/regression analysis).

When representing individuals’ and households’ behavior in an ESM,
it is essential to define actor heterogeneity to capture behavioral dif-
ferences and analyze distributional impacts of the energy transition.
Meaningful actor groups can be delimited based on findings from data
analyses or research interest. Alternatively, representative respondents
from surveys can form a set of agents which can be incorporated in an
ESM directly. The availability of empirical data regarding behavior
presents a major limitation to date, which should be tackled in the future

Appendix A

Semi-structured interview questions

Questions about own model

e How did you decide for the main behavioral parameters ?
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through extended (cross-sectional or longitudinal) data collection ef-
forts. Future studies should aim to collect data of both behavioral drivers
and outcomes on the level of households or individuals to be able to
assess the direct relationships between behavioral drivers and actual
behavior.

The recommendations of this study are fundamentally intertwined
with the respective modelling purpose. While ESMs can offer accurate or
normative forecast of a future energy system without accounting for
human behavior, an advanced integration of behavior is urgently
needed to enhance the accuracy of those models that aim to shed light on
possible transition pathways [10]. An increased focus on behavior in
energy system modelling also directs attention towards social impacts
and energy justice issues of the energy transition, which are currently
often overlooked due to a predominant focus on technological advances
[11]. Future interdisciplinary work building on the insights of this
analysis is indispensable to further foster the consideration of behavioral
aspects in the planning of the energy transition. It is recommended for
such work to use the outlined series of steps to model relevant and
feasible drivers of energy-related behavior as a starting point.
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e To what extent did you rely on empirical data? What were potential challenges you faced when including data into the model?
e In general, what were the main challenges you faced when incorporating behavior into the model?
e Are there any other behavioral aspects you would still like to include into the model?

Questions about behavior in ESMs in general

e Do you know of any other (national) ESMs including behavior of individuals and/or households?
e In your view, what is needed to advance the modelling of behavior in ESMs?
e What would you recommend to focus on when including behavior into ESMs?
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Appendix B

Main interview findings

Main challenges regarding the modelling of behavior

Availability of behavioral data

Empirical validation of behavior in ESMs

Uncertainty of human behavior

Behavior tends to create inertia in the energy system

Translation of verbal agent descriptions into mathematical formulations
Thorough understanding of (potentially) complex model results

Aspects to consider when integrating behavior in ESMs

e Important to maintain a balance between behavioral and engineering aspects in the model
e Heterogeneity tends to exert large impact on model results
e Best practices and desirable approaches may depend on modelling context/country

What should be done to improve the integration of behavior in ESMs?

Improved data availability regarding intangible aspects of behavior

Inclusion of behavior despite potential uncertainties

Inclusion of multiple aspects of behavior linked with empirical data

Empirical validation of model results (e.g. use of historical data)

Summary of best practices regarding the inclusion of behavior in ESMs

More realistic accounting of social influence/social interaction in models

Accounting for changes in behavior over time (requires collection of longitudinal data)

Appendix C

Social science theories

Table C.1
Frequently mentioned social science theories in research regarding energy-related behavior.

Theory Discipline Description

Theory of Planned Behavior (TPB) Psychology The TPB by Ajzen [29] relates attitudes, norms, and perceived behavioral control to behavioral intentions, which in turn
lead to behavior. While intentions are correlated with behavior, they only culminate in actual behavior if a person
believes they can execute the behavior (i.e. possesses perceived behavioral control).

Reasoned Action Approach (RAA) Psychology The RAA by Fishbein and Ajzen [30] represents an extended version of the TPB. Concretely, the RAA specifies a set of
beliefs (behavioral beliefs, normative beliefs, control beliefs) which influence attitudes towards a behavior, norms, and
perceived behavioral control, respectively (as specified in the TPB).

Norm Activation Model Psychology The Norm Activation Model by Schwartz [32] poses that norms create moral obligations and are therefore necessary in
causing behavior. The author further states that norms are determined by awareness, which leads to feelings of
responsibility.

Value Belief Norm (VBN) Theory Psychology Stern’s [33] VBN Theory presents an evolution of the Norm Activation Model. It revolves around three types of values

(egoistic, biospheric, altruistic) impacting individuals’ beliefs. These, in turn, are considered to influence personal norms
that then determine behavior.

Self-Regulated Behavioral Change Psychology The SRBC by Bamberg [48] states that peoples’ motivation to change enables behavioral change processes. Successful
(SRBC) Model modifications of behavior are assumed to occur in a four-step process. First, people enter a predecisional stage which
determines their goal intention. Second, a preactional stage establishes a behavioral intention. Third, during the actional
stage, people put their behavioral intention to action. Last, a postactional stage establishes the new behavior.

Habit Discontinuity Hypothesis Psychology The habit discontinuity hypothesis describes that habitual behavior is most likely to be modified in conjunction with
contextual changes [47]. Thus, once contextual conditions are disrupted, new choices and decisions are more likely to
occur, making habit changes more probable.

Social Network Theories Psychology/ The family of social network theories (see e.g. Borgatti and Ofem [68]) investigates the impact of social relations on

Sociology behavior. Thus, the focus lies on social network structures, group formations, etc.

(continued on next page)
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Table C.1 (continued)
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Theory Discipline Description
Rogers’ Theory of Innovation Sociology The Theory of Innovation Adoption [37] lists various attributes of technologies which are presumed to influence their
Adoption adoption speed (i.e. relative advantage, compatibility, complexity, trialability, observability). The Theory also
conceptualizes five adopter attitudes which are assumed to follow a normal distribution (i.e. innovators, early adopters,
early majority, late majority, laggards).

Social Practice Theory Sociology The Social Practice Theory by Shove et al. [123,124] describes energy demand and supply as being ingrained with the
reproduction of social practices. Thus, behavior is considered in relation to the social context (including societal
practices, material arrangements, etc.) in which it is embedded.

Technology Acceptance Model Information In line with the TPB, Davis [36] regards behavior to follow from behavioral intentions. According to the author,

systems intentions are determined by the acceptance of a certain technology as well as its perceived usefulness and perceived
ease of use.

Bounded Rationality Theory/ Behavioral An integral aspect of economic theory centers around the rationality of individuals [125]. Thereby, neoclassical

Prospect Theory Economics economics assumes people to make purely rational choices to “maximize utility subject to given market prices and

income” ([38] p. 98). The Bounded Rationality Theory originated from the field of behavioral economics as a response to
the neoclassical perspective, in an attempt to account for human limitations in decision making which result in

non-optimal outcomes from a financial perspective [125]. Thus, instead of performing a complete cost-benefit analysis,
the theory poses that people decide based on a subset of criteria, impacted by information available to them and subject

to various cognitive biases.

Note. This table provides a brief summary of social science theories which are frequently mentioned in the literature regarding energy-related behavior. Thus, it does
not give an exhaustive list of all theories that can be used to conceptualize energy-related behavior. Studies also often combine and/or modify various theories

depending on the specific behavior and the specific context at hand.
Appendix D

Behavioral outcomes in models

Table D.1
Modelling of adoption decisions and energy consumption in ESMs

Model name Adoption decisions

Energy consumption

.

TIMES Actor Investment decisions in energy supply sector

Model (TAM) e 3 actor types: citizens, institutional investors, utilities, with different hurdle
rates to represent different time valuations of money and cost of capital
Actors have different choices of technologies (e.g. utilities cannot invest in
citizens’ rooftop PV) and budget restrictions
Actor-specific hurdle rate is included in the objective function of the model,
which is used to calculate the total system costs and influences the model’s
technology choices
Citizens invest in energy supply technologies in the residential sector (e.g.
rooftop PV)
PRIMES Residential sector

e 5 income groups apply different discount rates for their investment decisions

o Using these discount rates, actors strive for cost-optimization

e Within each group of agents, a probability density function is used to assign
probabilities to the most cost-efficient technologies. Agents can then, amongst
others, make decisions among those technologies based on maximization of
payback period or maximization of LCOE.

Transport sector

Agent types can be distinguished through discount rates (not further described)
Intangible costs of technologies can be included, e.g. lack of availability of
charging infrastructure for EVs

The model optimizes for a market equilibrium between demand and supply of
transport services

Individual transport users maximize utility (derived from transport activity and
through consuming goods and services unrelated to transportation) under
income constraints

CA-TIMES e One central decision maker, cost-optimization
e Higher discount rates for newer (less mature, more uncertain) technologies to
account for consumers’ hesitance to invest in such technologies
e No distinction is made between behavior in the residential and transport
sector
TIMES e Minimization of overall system costs
Households Residential sector
model e 180 household segments distinguished

e Some technology constraints (e.g. only homeowners can invest in insulation)
e Households use different hurdle rates in their investment decisions and face
different capital constraints

17

e Exogenous

Residential sector

e Demand elasticities: Energy demand can change in response to policies
or energy price changes
Transport sector

e Overall transport activity (which determines demand) is projected based
on macroeconomic drivers

e Modal shift is possible to some degree, explicit options can be included
in scenarios

e Exogenous

Residential sector
e Determined per household segment based on: space-living area, insu-

lation, income (determining a “service factor” used to calculated final
demand), household size

(continued on next page)
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Model name

Adoption decisions

Energy consumption

MARKAL-
MACRO

IESA-sim

ENSYSI

MUSE

BLUE

ENGAGE

CIMS

UK TIMES

Transport sector

120 household segments distinguished

Modal shift options constraint based on urban area

Households use different hurdle rates in their investment decisions and face
different capital constraints

One central decision maker, optimization of total system costs

A higher hurdle rate (25 % instead of 10 %) is used for advanced and new
technologies, in the residential sector these are all conservation measures,
solar water heaters, appliances of class A" " and A", and in the transport sector
these are all transport demand technologies

Four adopter attitudes are distinguished: Innovators, early adopters, majority,
laggards

Technologies are characterized by four aspects: costs, CO2 emissions,
complexity, social perceptions. Depending on the adopter attitude, actors assign
different weights to these aspects

A weighed sum leads to an overall ranking of technologies being established per
adopter attitude. The highest-ranking technology fulfilling a certain activity/
demand is adopted.

No distinction is made between behavior in the residential and transport
sector

Four adopter attitudes are distinguished: Innovators, early adopters, majority,
laggards

Technologies are characterized by five aspects: costs, societal attitude,
contribution towards sustainability targets, complexity, investment barrier.
Depending on the adopter attitude, actors assign different weights to these
aspects

A weighed sum leads to an overall ranking of technologies being established per
adopter attitude. The highest-ranking technology fulfilling a certain activity/
demand is adopted.

No distinction is made between behavior in the residential and transport
sector

Agents can be assigned different decision objectives (e.g. maximizing comfort of
technologies, maximizing efficiency, maximizing costs).

Different decision objectives can be combined in various ways, e.g. mean,
weighed sum, determining an order of priority

When selecting technologies, agents follow different search rules, e.g. looking
for technologies that fulfil a certain end-use or only considering technologies
with a certain minimum market share. Search rules can also be combined and
weighed

Agents are distinguished by five adopter attitudes: innovators, early adopters,
early majority, late majority, laggards

In the residential sector, agents make decisions over: heating system
replacements, investment in microgeneration, investment in highly thermally
efficient buildings

In the transport sector, agents make decisions over road transport choices
Investments per agent type depend on: hurdle rate, sensitivity to costs,
intangible costs

Investments are determined by the Net Present Value of technologies in
combination with the sensitivity to costs

Households are divided by their income

Households buy generic goods that represent the goods that a household owns
which contribute to energy consumption

Each year, income is first allocated to meeting energy requirements using the
existing stock. Then, income is allocated to replacement or extension of stock
No explicit distinction is made between behavior in the residential and
transport sector

One central decision maker, the model is focused on simulating technology
market shares over time

Technologies are assigned discount rates and intangible costs based on discrete
choice studies

An additional parameter determines the overall sensitivity to costs (e.g. if the
value of the parameter is high, implying a high sensitivity to costs, only
technologies with the lowest costs gain larger market shares)

No distinction is made between behavior in the residential and transport
sector

Residential sector

.

e Three types of households are distinguished based on the number of bedrooms
(1-3, 4, 5+).

e Technologies are divided into four heater types (gas, electric, heat pumps, solid
fuel boilers), district heating technologies, conservation measures

o At the end of technologies’ lifetime, households choose heater types based on
preferences indicated in a survey (i.e. per household groups, market shares of
technologies derived from a survey are implemented)

e Within a certain household group and per heater type, the model strives for
cost-optimization

18

Transport sector

e Determined per household segment based on: urban area, activity
(number of trips), household size

e Change in overall demand in response to change in energy prices

e Exogenous

e Exogenous

e Demand is simulated in demand sectors and matched with supply
sectors

o Different demand elasticities per agent type (low, central, or high)

e Exogenous

e Demand elasticities included

e Exogenous

(continued on next page)
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Table D.1 (continued)

Model name Adoption decisions Energy consumption

ESME Transport sector e Overall travel demand projected based on transport surveys

Cost-optimization approach

Endogenized modal shift: definition of overall passenger demand that can be

met by different (competing) transport modes. So model can choose optimal

configuration of modes

Transport modes are characterized by costs and travel time

Constraints: maximum modal shift potential from cars to non-car modes, rate of

modal shift, overall travel time available to the population (average travel time

budget for the population is calculated, the average speed of the final mix of

modes cannot exceed this budget)

TIMES-IR & CA Transport sector e Exogenous travel demand

Cost-optimization approach
Endogenized modal shift: definition of overall passenger demand (for long and
short distances) that can be met by different (competing) transport modes. So
model can choose optimal configuration of modes
Transport modes are characterized by costs and travel time
Constraints: overall travel time available to the population (average travel time
budget for the population is calculated, the average speed of the final mix of
modes cannot exceed this budget)
The model can invest in infrastructure, which leads to a reduction in travel time
of public transport
Overall cost optimization e Exogenous overall travel demand
Transport sector
e Elastic inland passenger modal shift
e Per distance (extra short, short, medium, long), an elasticity of substitution is
defined
e Total demand is defined per distance, this total demand needs to be met after
substitution
o Constraint: Maximum shift potential
MoCho TIMES Transport sector e Overall travel demand defined exogenously

TIMES-DKEMS

24 groups of transport users distinguished based on: region of residential
location, income level, type of residential location

Intangible costs are assigned to transport modes, differing per group of
transport users

Constraints: overall travel time budget for all modes fulfilling overall demand,
maximum modal shares by 2050

The model can invest in new infrastructure

Sectoral energy models

Model Adoption decisions Energy consumption
name
HESTIA Residential sector e Energy demand is determined based on

dwelling characteristics
e “Activation moments” allow for building owners to invest in energy-related technologies of their building. Such
moment include end of lifetime, renovation/moving, policy
Depending on these three aspects, for each activated apartment, one of three options is chosen: insulation,
installation, nothing
Insulation and installation choices are determined using a probability function, weighing costs and benefits per
insulation option. Options with the best cost-benefit relations have the highest chance of being chosen.
ABMoS- Transport sector e Travel demand defined per agent type based
DK on transport survey
o Agents defined based on socio-economic characteristics and region, trip length, urbanization type, annual
households income.
e Transport modes characterized by costs and value of travel time
o Utility of modes calculated per agent (influenced by characteristics of the mode and characteristics of the agents),
agents choose mode with highest utility
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