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A B S T R A C T

Energy System Models (ESMs) that aim at describing and exploring pathways towards a decarbonized future 
energy system currently account insufficiently for the behavior of households and individuals. To address this 
shortcoming, this study evaluates models’ existing approaches to incorporate behavior considering social science 
insights to advance the models’ behavioral realism. A structured literature review and expert interviews were 
employed, selecting sixteen ESMs and two sectoral energy models for further investigation. Main data sources for 
the analysis were model descriptions and interview notes. The results show a predominant focus of models on 
financial aspects of adoption decisions and energy service use, while there is less consideration of non-economic 
behavioral drivers. Models also often rely on a weak empirical foundation for behavioral drivers. Based on these 
findings, advancing the representation of behavior in ESMs is needed to strengthen the realism of models’ 
explorative and descriptive insights. This analysis outlines concrete strategies to guide such an endeavor. It is 
recommended to consider relevant drivers of energy-related behavior, to employ a data-driven approach which 
relates behavioral outcomes to these drivers, and to define actor heterogeneity according to meaningful 
behavioral differences. In comparison to optimization approaches, the flexibility of simulation modelling pro
vides a wider range of options for incorporating and analyzing behavioral aspects in ESMs. Future interdisci
plinary research should further align social science insights with energy system modelling, building on the 
suggested strategies, to improve the accuracy of model predictions and to facilitate the consideration of 
behavioral aspects in the energy transition.

1. Introduction

Global surface temperature has been rising over the past decades as a 
result of human activities [1]. According to the Intergovernmental Panel 
on Climate Change [1], the fast and profound reduction of anthropo
genic greenhouse gas emissions necessitates a transition towards 
renewable energy sources. Energy System Models (ESMs) have become 
indispensable tools in the planning of this transition [2,3]. Depending on 
a model’s structure and purpose, ESMs can offer normative and pre
scriptive insights into future states of the energy system or describe and 
explore potential future decarbonization strategies and transition 
pathways [4,5].

To bring about the transition towards a decarbonized energy system, 
the importance of both technological advances as well as human 
behavior changes has been emphasized [6–8]. Such findings highlight 

the necessity to consider relevant technological developments as well as 
behavioral dynamics in ESMs to comprehensively explore and describe 
pathways to achieve an energy transition [9,10]. Encouraging the 
incorporation of behavior in ESMs simultaneously raises attention 
regarding the social side of the energy transition, and fosters an 
increased consideration of potential distributional impacts and energy 
justice issues [10,11]. In spite of these benefits, existing ESMs that aim at 
describing and exploring possible transition pathways usually capture 
substantial technological detail, while considering human behavior to a 
limited extent [2,4]. In fact, only few ESMs include non-optimizing 
behavioral strategies beyond cost minimization or utility maximiza
tion [12].

Recent years have seen an increase in publications on the topic of 
behavior in ESMs. Previous review studies do raise attention regarding 
social aspects of energy system modelling, but are usually restricted to a 
sub-set of models and technologies [2,3] or describe generalized 
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approaches for modelling behavior [9,13,14]. This work builds on prior 
studies in explicitly addressing how social science findings regarding 
human behavior can be aligned with concrete behavioral modelling 
strategies. To the best of the authors’ knowledge, it is thereby the first 
investigation to exemplify how social science insights can be combined 
with energy modelling, arriving at concrete guidelines to advance 
models’ behavioral realism.

This study first provides further background information on energy- 
related behavior and energy system modelling. Then, a structured re
view regarding the incorporation of behavioral aspects of households 
and individuals in ESMs is provided. Last, insights are synthesized to 
arrive at a concrete and feasible research agenda for advancing the 
knowledge base at the interface of social science and energy system 
modelling.

2. Energy-related behavior and its drivers

Among the range of actors involved in the energy transition, the 
behavior of households and individuals often does not follow readily 
predictive and cost-optimizing patterns [15]. To elucidate their behav
ioral patterns, previous research has investigated a multitude of pre
dictors of both pro-environmental behavior and, more specifically, 
energy-related behavior. Energy-related behaviors are defined as be
haviors which directly result in end-use energy demand, namely, the 
adoption of energy-related technologies and the use of those technolo
gies (i.e. energy service use) [7]. This study also includes the adoption of 
rooftop solar, albeit officially regarded a supply technology. The main 
focus of this analysis is on behavior in the residential and transport 
sector, as consumer behavior directly impacts emissions in these two 
areas [16]. The following section summarizes insights of reviews and 
meta-analyses to provide an overview of main empirically studied 
drivers of energy-related behavior according to the six categories shown 
in Table 1.

2.1. Pro-environmental drivers

Various pro-environmental drivers of energy-related behavior have 
been investigated. Research has distinguished different types of values 
(e.g. biospheric, altruistic, hedonic, egoistic). Biospheric values, 
emphasizing the intrinsic worth of the environment, tend to be most 
closely correlated with pro-environmental behavior [17]. Lanzini et al. 
[18] and Carrus et al. [19], however, report mixed findings regarding 
the impact of environmental values on behavior. This ambiguity may be 
explained by contextual aspects acting as barriers (e.g. lack of infra
structure), inhibiting the impact of values on pro-environmental actions 
[20].

Beyond peoples’ underlying values, studies confirm the predictive 
qualities of more concrete cognitions, such as pro-environmental atti
tudes, beliefs, (personal) norms, perceived behavioral control (i.e. be
liefs regarding one’s ability to execute a behavior), and behavioral 
intentions [15,18,19,21–27]. Research indicates that, in some cases, 
behavioral intentions mediate the relationship between underlying 
behavioral drivers and behavioral outcomes [26,28]. Pro-environmental 
knowledge and education have also been identified as drivers of 
energy-related behavior [21,22,24,28]. Steg et al. [15] note that 
pro-environmental knowledge alone does not fully explain behavior. For 

instance, individuals might possess adequate pro-environmental 
knowledge, but may yet misjudge the impact of their personal 
behavior on the environment.

The Theory of Planned Behavior (TPB) and its successor, the 
Reasoned Action Approach, provide a framework on which various of 
the previously mentioned pro-environmental drivers are based [29,30]. 
The theories posit beliefs, existing (social and personal) norms, and in
dividuals’ perceived behavioral control to result in intentions, which in 
turn determine behavior. Due to a so-called “intention-behavior gap”, 
however, behavioral intentions may not always lead to actual behavior 
[18,31]. The Norm Activation Model is also frequently mentioned in the 
literature, explaining behavior by personal norms which are activated 
through awareness and feelings of responsibility [32]. The theory’s 
extension, the Value Belief Norm (VBN) theory, accounts for behavior 
through different values (egoistic, biospheric, altruistic) that impact 
beliefs which influence personal norms [33].

2.2. Appraisal of technologies and energy services

Individuals’ and households’ perceptions of technologies and energy 
services can impact behavior. Research has highlighted the appraisal of 
technologies’ costs, performance, quality, and benefits as drivers of 
energy-related behavior [21,24,34]. Studies also indicate affective ap
praisals to influence energy-related behaviors [19]. For instance, 

Abbreviations:

ABM Agent-based modelling
ESM Energy System Model
TPB Theory of Planned Behavior
VBN Value-Belief-Norm Theory

Table 1 
Drivers of energy-related behavior.

Category Drivers Examples of related 
theories

Pro-environmental 
drivers

• Values
• Attitudes
• Beliefs
• (Personal) norms
• Behavioral intentions
• Perceived behavioral 

control
• Pro-environmental 

knowledge and education

• Theory of Planned 
Behavior (TPB)

• Reasoned Action 
Approach

• Norm Activation 
Model

• Value Belief Norm 
Theory (VBN)

Appraisal of 
technologies and 
energy services

• Perceptions of 
(characteristics of) 
technologies

• Cost perceptions
• Well-being perceptions 

(comfort, safety, etc.)
• Emotions

• Technology 
Acceptance Model

• Rogers’ Theory of 
Innovation Adoption

• Bounded Rationality 
Theory

• Prospect Theory
Familiarity • (Past) experience(s)

• Habits
• Lifestyle

• Habit Discontinuity 
Hypothesis

• Self-Regulated 
Behavioral Change 
Model

Socio-demographic 
drivers

• Economic status
• Age
• Education
• Gender
• Dwelling ownership status
• Other (e.g. marital status, 

household size, 
employment)

​

Social drivers • Social norms
• (Direct) social interactions

• Social Network 
Theories

• TPB
• VBN
• Social Practice 

Theory
Contextual drivers • Dwelling characteristics

• Environmental conditions 
(e.g. urban heat island 
effect)

• Infrastructure/spatial 
aspects

• Other (e.g. car availability)

​

Note. A description of the mentioned theories is provided in Appendix C.
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feelings of excitement and enjoyment towards technologies can impact 
technology choices [34,35].

The Technology Acceptance Model incorporates technologies’ 
perceived usefulness and ease of use as main contributors to adoption 
decisions [24,36]. These aspects are expanded by Rogers’ theory of 
innovation adoption, listing various characteristics of technologies that 
influence the perceptions of potential buyers, such as technologies’ 
visibility, complexity, and relative advantage (i.e., relative cost savings 
compared to other technologies) [37]. Adoption decisions are also 
addressed by the concept of bounded rationality, which was proposed to 
explain non-optimal decisions making from a financial perspective [38]. 
The concept is integrated in the Cumulative Prospect Theory, describing 
that when decision making involves risks, people tend to strive for 
minimizing potential losses [39].

Studies on the appraisal of energy services indicate the level of en
ergy prices to impact behavior [40,41]. A meta-analysis by Labandeira 
[42] reports that behavioral changes in response to energy prices tend to 
occur gradually, leading to stronger reactions to energy prices in the 
long-term (i.e. over several years) compared to the short-term (i.e. over a 
period of one year). Gasoline consumption appears to be most sensitive 
to price changes, while heating oil consumption was found to be the 
least impacted by price changes. Research also suggests that people 
might increase their use of energy services after the implementation of 
measures to save energy or use renewable energy [43]. As a result of 
such rebound effects, expected energy savings may be lowered or even 
offset [44].

2.3. Familiarity

Past or current behaviors can impact future behaviors through 
preferences, habits, and lifestyles [18,21,26,35,45,46]. Thereby, pref
erences may be more related to adoption decisions, and habitual 
behavior tends to impact the use of energy services more [7]. It should 
be noted that preferences and habits can change over time. The habit 
discontinuity hypothesis states that such modifications are most likely to 
occur in conjunction with contextual changes, such as renovation 
measures [47]. Habit changes usually also require individuals to be 
motivated to change (see Self-Regulated Behavioral Change Model 
[48]). Regarding lifestyles, Chadwick et al. [21] argue that peoples’ 
broader personal aims, such as striving for independence, influence 
energy-related behaviors. Nevertheless, only few studies to date have 
investigated energy-related lifestyles, resulting in scarce knowledge 
regarding the exact manners in which the notion relates to 
energy-related behavior [49].

2.4. Socio-demographic drivers

For this study, socio-demographic drivers are defined as social and 
demographic characteristics of individuals and households which exert 
a (direct or indirect) impact on their energy-related behavior. Economic 
aspects, in particular, have received substantial attention in research. 
For example, lower income has been associated with relatively lower 
adoption of technologies [22,50]. Low income and being affected by 
energy poverty has also been found to correlate with the under
consumption of energy [51,52]. The overall importance of economic 
aspects driving energy-related behavior is subject to mixed findings 
[22]. Diverging results of studies may partially be explained by people 
showing different behaviors depending on the sector, the type of fuel 
consumption, and the type of transport mode [22,53–55]. For instance, 
Oswald et al. [55] found the consumption of heat and electricity to be 
relatively less affected by income compared to transport behavior.

Other socio-demographic drivers that have frequently been assessed 
in the context of energy-related behavior consist of gender, age, edu
cation level, and (dwelling) ownership status [21,22,27,34,56–59]. For 
instance, elderly people and children tend to require or prefer higher 
indoor temperatures [56]. Regarding energy efficiency renovations, 

homeowners usually have more control and larger incentives compared 
to tenants [58]. Other socio-demographic drivers that have received 
some attention include, amongst others, marital status, household size, 
employment, and car availability [46,58,60]. Overall, findings 
regarding socio-demographic drivers are not always conclusive, sug
gesting that these drivers can partly elucidate energy-related behavior, 
but are alone insufficient to account for all variance in behavior [18,22,
58].

Socio-demographic drivers can represent direct links with energy- 
related behavior, for instance, income directly determines the types of 
technologies one can afford. At the same time, socio-demographic as
pects can also represent proxies for other underlying drivers of behavior. 
Education level, for instance, may relate to energy-related behavior 
through individuals’ accumulated knowledge.

2.5. Social drivers

Individuals do not act in isolation, but shape and are shaped by their 
social surroundings. Perceived social norms serve to guide such social 
interactions [61]. Injunctive norms refer to individuals’ beliefs 
regarding socially approved or disapproved behaviors and descriptive 
norms refer to the observed behaviors of others, which are perceived to 
be a norm [62]. Studies confirm the predictive value of social norms for 
energy-related behavior [21,25–28,54,63,64]. For instance, Bollinger 
and Gillingham [65] report a higher probability of Photovoltaic (PV) 
panel adoption when the number of installations in the same zip code 
area increases. The effect of the two types of norms and the overall 
strength of social influences on behavior may differ depending on the 
kind of energy-related behavior [66,67].

Regarding the conceptualization of social drivers, social network 
theories have frequently been mentioned, focusing on the impact of 
social relationships on behavior [34,63,68]. Social norms are also 
mentioned in the TPB [29] and VBN [33] as one of several drivers of 
behavior. Changes in social norms are captured by the notion of social 
tipping points, describing that small incremental modifications can 
result in self-reinforcing feedback mechanisms of transformation [69].

2.6. Contextual drivers

In this work, contextual drivers are defined as drivers related to 
either the transport or residential sector, which have a direct impact on 
energy-related behavior. Frequently studied contextual drivers encom
pass environmental conditions, the access to technologies, spatial as
pects and infrastructure, building characteristics, car availability, and 
policy-related incentives [15,18,21,24,35,46,54,56]. For example, 
relatively cold outside temperatures have been shown to drive in
vestments in heating technologies [56]. The urban heat island effect, 
characterized by higher temperatures in large cities compared to their 
surroundings [70], can also increase energy-related cooling demand 
while decreasing heating demand of urban areas. In the transport sector, 
infrastructure and spatial aspects can impact modal choices through 
their effects on travelling time and travelling distance [18,35,46]. 
Policy-related incentives, such as subsidies, have also been found to be 
predictors of energy-related behavior [24].

3. Energy system modelling

ESMs usually represent the demand and supply side of the energy 
system on various scales (e.g. regional, national, global) [71,72]. Models 
can be used as tools to either provide a normative and/or prescriptive 
(optimal) outlook of the future energy system or to describe and/or 
explore (realistic) transition pathways [4,5]. Most ESMs are 
optimization-based, calculating a desired future state of the energy 
system. Thus, models display the (theoretically) optimal energy mix at 
the system level for a given target, usually economic (i.e. minimizing 
total system costs), while often employing CO2 reduction ambitions as a 
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constraining factor [9]. If behavioral aspects are included in optimiza
tion models, they tend to be based on a micro-economic foundation, 
assuming behavioral choices to be made with perfect foresight [2,9]. 
Optimization-based ESMs often follow normative or prescriptive pur
poses, elucidating possible future outcomes that can guide or steer a 
transition [5].

In contrast to optimization models, simulation ESMs calculate the 
evolution of the energy system without specifying a desired future state 
[11]. Thus, they usually follow a descriptive or explorative approach, 
aiming at investigating the system’s development under assumed 
real-world conditions [9]. Rather than providing information on 
possible future outcomes, such models place more emphasis on the 
pathways and developments needed to reach a certain future state. 
Agent-Based Models (ABMs) can be considered a sub-category of ESMs 
following an overall simulation approach. For this work, simulation 
models are considered ABMs when they include different agents with 
individual behavioral rules, showing some form of interaction that leads 
to new patterns of emergent behavior [73]. Overall, more options to 
incorporate behavioral aspects exist in simulation ESMs, and especially 
ABMs have focused on defining realistic behavioral rules of heteroge
nous agents and simulating social interaction patterns [9,74,75].

Trutnevyte et al. [13] differentiate three broad strategies for 
including social science findings in ESMs. First, bridging describes ex
changes between modelling and social sciences insights. Second, an 
iterating strategy entails that social science findings directly inform 
models’ input assumptions. Third, merging concerns the structural 
adaptation of existing models according to social science results. This 
analysis focuses on the merging strategy, as this approach allows for the 
most complete and balanced inclusion of human behavior in ESMs and 
provides a basis for examining societal transformation dynamics [13]. 
Following such strategy necessitates the simplification and quantifica
tion of complex social science insights, which is addressed in section 6.

4. Method

This research combined a structured literature search with expert 
interviews. The structured literature search served to retrieve relevant 
ESMs for review and the expert interviews helped to gain insights 
regarding overall benefits and challenges of incorporating behavior in 
ESMs. In the process of retrieving relevant models, the focus was on 
national ESMs. In contrast to aggregated global models, national ESMs 
can represent behavior in reasonable detail and contrary to sub-national 
and sectoral models, national ESMs capture the main components of the 
entire energy system. Sectoral energy models tend be able to capture 
behavior at a higher level of detail compared to models encompassing 
the entire energy system, due to a narrower focus on only one economic 
sector. Thus, a few examples of such sectoral models were added to the 
review to ensure an elaborate illustration of the range of options for 
modelling behavior.

In the literature search, a structured database search was combined 
with a snowballing technique [76]. Scopus and Web of Science were 
used. Articles were included if they described or reviewed one or more 
ESM(s) that (1) incorporate behavioral aspects of households and/or 
individuals related to adoption decisions and/or energy service use in 
the residential and/or transport sector, and (2) model the entire energy 
system. The search terms are displayed in Table 2.

Fig. 1 displays an overview of the search process. After reviewing the 
papers’ title and abstract and subsequently the full text, 20 papers were 
included. Some further models that were not retrieved by the literature 
search were selected based on consultations within the authors’ net
works. Eventually, sixteen ESMs and two sectoral models were selected. 
This number is smaller than the number of included papers, as multiple 
papers revolved around the same ESMs.

A set of comparison criteria was used to assess and contrast the 
methods by which models incorporated behavioral aspects (see Table 3). 
These criteria were created based on frequently studied drivers of 

energy-related behavior (see section 2), the content of the ESMs, and the 
authors’ own expertise and experience. The comparison criteria formed 
the basis for the review of ESMs.

Semi-structured interviews with six experts in the field served to gain 
further insights into benefits and challenges regarding the incorporation 
of behavior in ESMs. The experts’ contacts were retrieved based on 
relevant scientific publications and the authors’ networks. A semi- 
structured interview approach was chosen to allow for sufficient flexi
bility in the conversation while ensuring the main topics of interest to be 
covered [78]. Insights derived from the interviews are integrated in 
section 6. The interview questions as well as a summary of main findings 
can be found in Appendix A and Appendix B. In summary, the present 
analysis is based on model descriptions and documentations (retrieved 
by the structured literature search) as well as insights from expert 
interviews.

5. Review of ESMs

The following section gives an overview of the reviewed ESMs. The 
section then provides further detail regarding the inclusion of individual 
drivers of energy-related behavior identified in section 2 as well as 
general methodological considerations. Table 4 shows the selected 
models and their geographical focus.

Out of the sixteen ESMs chosen for this work, eleven models incor
porate the behavior of households and individuals in both residential 
and transport sector. The remaining five models represent case studies 
which focus on either sector, with more models addressing the transport 
sector. Regarding behavioral outcomes, all models incorporate adoption 
decisions. Less attention is devoted to energy service use, with only half 
of the reviewed ESMs considering this aspect. In the models that do 
consider energy service use, the variable is often used as exogenous 
input. For example, the TIMES Households model derives transport 
demand data from a survey of individuals’ transport behavior. Fig. 2
gives an overview of the review of ESMs according to the comparison 
criteria. Appendix D provides further detail regarding the inclusion of 
behavioral outcomes in each of the ESMs.

5.1. Drivers of behavior in ESMs

5.1.1. Pro-environmental drivers
The review identified only few ESMs that account for pro- 

environmental drivers of behavior. MUSE allows for incorporating 
various decision objectives of actors, amongst those environmental 
goals. As such, environmental decision objectives exert an impact on 
technologies’ rankings that ultimately determine adoption decisions. A 
newer version of BLUE by Verrier et al. [45] accounts for 
pro-environmental values. The authors modify Rogers’ [37] distribution 
of adopter attitudes to distinguish actors with various strengths of 

Table 2 
Search strings used for structured database search.

Date of Search Database Search strings

October 2nd, 2023, 
and January 10th, 
2024

Scopus (TITLE-ABS-KEY (behav*) AND ALL 
(household* OR human* OR consumer* 
OR citizen* OR actor* OR person OR 
people) AND ALL (“energy system model*” 
OR “energy model*” OR esm) AND TITLE- 
ABS-KEY (“energy system*”))

​ Web of 
Science

(behav* (All Fields)) and (household* OR 
human* OR consumer* OR citizen* OR 
actor* OR person OR people (All Fields)) 
and (“energy system model*” OR “energy 
model*” OR ESM (All Fields)) and (“energy 
system*” (All Fields))

Note. As Scopus covers a wider range of journals than Web of Science [77], it was 
necessary to limit the search terms in Scopus to title, abstract, and keywords to 
keep the number of results within a feasible range for review.
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pro-environmental values. Over time, actors are assumed to move to
wards the left of this distribution (i.e. developing stronger 
pro-environmental values), thereby increasing their adoption of 
low-carbon technologies. ENSYSI and IESA-sim determine the sustain
ability of technologies based on their CO2 emissions. This score impacts 
technologies’ overall ratings (which, in turn, determines adoption de
cisions), depending on the importance that an actor category is assumed 
to allocate to sustainability considerations.

5.1.2. Appraisal of technologies and energy services
Most reviewed ESMs account for behavioral aspects regarding 

financial considerations. Adoption decisions can then be determined 
through the costs of technologies (e.g. IESA-sim) or the Net Present 
Value of an investment (e.g. BLUE). In BLUE, PRIMES, ENSYSI, TAM, 
TIMES Households model, CIMS, UK MARKAL-MACRO, and CA-TIMES, 
specific discount rates (also called hurdle rates) are varied to “[give] 
initial investments (…) asymmetrically greater weight than future sav
ings” [[80], p. 215]. For example, MARKAL-MACRO applies a higher 
discount rate for newer technologies to incorporate adoption barriers, 
such as individuals being hesitant to purchase or lacking information.

To deal with actors’ differing sensitivity to costs, BLUE incorporates 
a “heterogeneity parameter” which accounts for changes in 

Fig. 1. Illustration of structured literature search.

Table 3 
Comparison criteria for the selected ESMs.

Category Criterion Description

Behavior Adoption 
decisions

Modelling of households’ and/or 
individuals’ adoption decisions 
regarding energy-related technologies

Energy service 
use

Modelling of households’ and/or 
individuals’ energy use

Drivers of 
behavior

Pro- 
environmental

Drivers related to attitudes, values, 
perceptions, personal norms, and 
knowledge e.g. pro-environmental 
values, pro-environmental attitudes, 
pro-environmental knowledge

Appraisal of 
technologies

Perceptions of technologies impacting 
energy-related behavior, e.g., 
technologies’ complexity, emotions 
elicited by a technology, etc.

Familiarity Drivers related to existing or previous 
behavior of households and/or 
individuals, e.g. habits, lifestyle, (past) 
experiences

Socio- 
demographic

Socio-demographic aspects influencing 
behavior, e.g. income, age, dwelling 
ownership status

Social Inclusion of social drivers of behavior, e. 
g. interactions between actors, social 
norms

Contextual Incorporation of contextual drivers of 
behavior, e.g. (lack of) existing 
infrastructure

Methodological 
aspects

Behavior changes Modelling changes in the drivers of 
behavior over time, e.g. diffusion of pro- 
environmental values among the 
population

Actor 
heterogeneity

Distinguishing actor heterogeneity to 
account for differences in the drivers of 
behavior among households and/or 
individuals

Empirical basis Considering empirical findings through 
informing drivers of behavior with 
empirical data or directly integrating 
empirical data into the model

Modelling 
approach

Models are distinguished depending on: 
1) their overall approach being 

optimization- or simulation-based
2) whether simulation models are 

considered ABMs

Table 4 
Overview of selected models.

Model name Geographical focus Source(s)

TIMES Actor Model (TAM) Germany [79]
PRIMES E.U. [80]
CA-TIMES California [81]
TIMES Households model France [82]
MARKAL-MACRO UK [83]
IESA-sim The Netherlands [84]
ENSYSI The Netherlands [85]
MUSE Global (case study: UK) [86,87]
BLUE UK [45,88]
ENGAGE U.S. [89]
CIMS Canada [90]
UK TIMES UK [91]
ESME UK [92]
TIMES-IR & CA Ireland & California [93]
TIMES-DKEMS Denmark [94]
MoCho TIMES Denmark [95]
Sectoral energy models
HESTIA The Netherlands [96]
ABMoS-DK Denmark [97]
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technologies’ market share as a result of their cost-efficiency. Adjusting 
the parameter towards actors striving for perfect cost-optimization will 
therefore result in only the most cost-efficient technologies being 
adopted. Sensitivity to costs can also be accommodated probabilisti
cally, assigning technologies with the highest Net Present Value the 
highest chance of being adopted (e.g. PRIMES).

Energy service use can be represented by the price elasticity of de
mand (BLUE, PRIMES, CIMS). This measure accounts for changes in 
energy demand as a result of changes in energy prices. MARKAL- 
MACRO addresses behavioral aspects of energy service use through 
demand-response behavior, assuming consumers to participate in 
demand-response for financial reasons.

In addition to financial motivations, ENSYSI and IESA-sim take into 
account actors’ preferences regarding technologies’ complexity, as 
described in Rogers’ theory [37]. Technologies receive a score 
depending on their complexity. The weighed sum of these scores is used 
to establish an overall ranking of technologies, with weights being 
determined depending on the significance that an actor category is 
assumed to assign to certain technology characteristics. In other models, 
non-financial aspects of technologies are monetized (i.e. intangible 
costs), such as representing transport modes’ speed in terms of a “cost of 
time” (PRIMES, ABMoS-DK, MoCho TIMES, CIMS). Overall, in the 
transport sector, models have characterized transport modes based on a 
multitude of dimensions (including time, speed, waiting time, conges
tion time, etc.), which can then be matched with users’ preferences 
regarding travelling time, distance, and trip purpose.

BLUE, CIMS and UK TIMES incorporate consumers’ direct prefer
ences for certain technologies derived from empirical investigations. For 
instance, CIMS uses data from discrete choice surveys to estimate how 
much peoples’ likelihood of adopting a technology increases with a 
technology’s increasing market share. This aspect is implemented 
through decreasing intangible costs of technologies with increasing 
market share.

Individuals’ and households’ attitudes towards innovation are 
incorporated in ENSYSI, IESA-sim, and BLUE. The models use Rogers’ 
[37] theory to specify various actor groups with different propensities 
towards adopting innovative technologies. BLUE includes all five cate
gories specified by Rogers, while IESA-sim and ENSYSI consider only 
four groups and deviate from the original theory in modifying the 
groups’ distances from the mean of the adoption distribution.

5.1.3. Familiarity
There are only a few ESMs that consider existing behavior increasing 

the likelihood of similar choices to be made in the future. In BLUE and 
UK TIMES, familiarity has been determined through empirical data 
regarding adoption preferences for future heating technologies. Based 
on these empirical findings, BLUE determines the rate of replacement of 
currently owned technologies when predicting technologies’ future 
market shares. UK-TIMES follows a slightly different approach, dis
tinguishing household types based on empirical findings regarding 
preferences for heating technologies. According to the data, household 
types are assigned shares of newly installed technologies.

In the transport sector, existing mobility choices derived from sur
veys can be incorporated in the projection of future mobility demand 
(see TIMES-DKEMS, ABMoS-DK). For instance, when determining 
mobility choices, ABMoS-DK distinguishes agents based on existing car 
or bike ownership (derived from the Danish National Travel Survey) to 
establish actor heterogeneity. This aspect, in combination with other 
actor characteristics and trip characteristics, is used to assess future 
modal choices. ABMoS-DK also explicitly considers (habitual) travel 
behavior, since “in case that the derived utilities of alternative choices 
are equal, the agent continues to habitually repeat previous behaviour.” 
[[97] p. 854].

5.1.4. Socio-demographic drivers
The most widely considered socio-demographic characteristic in 

Fig. 2. Comparison of selected models. 
Note: The symbols in the column “behavior in sector(s)” refer to the transport and residential sector. Red crosses signify “not included”, while green ticks stand for 
“included”. “Optim.” denotes optimization and “Sim.” refers to simulation. Actor heterogeneity is rated on a three-point scale: One stands for less than five actor 
groups, two signifies between five and twenty actor groups, and three denotes more than twenty actor groups. Models’ empirical basis is also rated on a three-point 
scale: One describes some behavioral data is used, two denotes that models have been empirically informed, and three means that models directly include 
empirical data.

H.S. Galster et al.                                                                                                                                                                                                                               



Renewable and Sustainable Energy Reviews 214 (2025) 115520

7

models is income (TIMES Households model, PRIMES, ENGAGE, MoCho 
TIMES, MUSE, ABMoS-DK). This focus corresponds with the tendency of 
existing research to investigate socio-demographic drivers related to 
financial capital (see section 2.4). Income can be modeled by using a 
higher discount rate for actors with lower financial budget, leading these 
actors to require higher rates of return from their investment (TIMES 
Household model). Alternatively, MoCho TIMES distinguishes house
holds by income to assign differing intangible costs of transport modes 
depending on the respective income group.

Other socio-demographic drivers in ESMs include the number of 
bedrooms in a dwelling (UK TIMES), dwelling ownership status, and size 
of a household (TIMES Households model, PRIMES). For example, the 
TIMES Households model allows only building owners to make decisions 
regarding dwelling insulation. ABMoS-DK takes into account age, 
gender, and education level as attributes of agents, which determine 
their modal preferences.

A high level of detail regarding agents’ socio-demographic charac
teristics is represented in MUSE. A case study by Sachs et al. [87] on the 
UK building sector describes the parametrization of agents based on a 
multitude of socio-demographic factors determined by the Sinus-Milieus 
model [98]. This distinction of agent categories in MUSE determines 
how agents search for new technologies and make adoption decisions.

5.1.5. Social drivers
Social drivers of energy service use were not addressed by any of the 

reviewed ESMs. Regarding adoption decisions, a total of five models 
account for social influences, mostly indirectly or through external as
sumptions. Mau et al. [90] model descriptive social norms indirectly 
through assuming that an increased market share of hybrid-electric 
vehicles further increases their likelihood of adoption in CIMS. 
ABMoS-DK incorporates social influence indirectly through overall de
velopments in the transport sector. For instance, if all agents use cars, 
overall congestion time increases and future agents become less likely to 
choose cars.

Verrier et al. [45] model the diffusion of pro-environmental values 
across societal groups, assuming this diffusion to occur as a social pro
cess (BLUE). This mechanism is implemented through a “drift rate” that 
governs the speed by which actors’ strength of pro-environmental values 
increases. IESA-sim and ENSYSI consider whether households perceive a 
technology as being evaluated by society as positive, neutral or negative. 
The weighed sum of this aspect and other technology characteristics (i.e. 
costs, CO2 performance, complexity) is used to form a ranking of tech
nologies that determines adoption. MUSE accounts for social influences 
through allowing some agents to transfer assets, thereby assuming 
certain patterns of interaction to occur between agents.

5.1.6. Contextual drivers
Contextual drivers of behavior tend to differ between the residential 

and transport sector. In the transport sector, individual transport choices 
can be modeled as being affected by cost, travel time and trip distance, 
which are matched with characteristics of transport modes to determine 
modal choices (ESME, TIMES-IR & CA). For transport modes that require 
fuel or electricity, PRIMES monetizes the available refueling or 
recharging infrastructure as part of the intangible costs of technologies. 
Regarding spatial aspects, ABMoS-DK and MoCho TIMES consider both 
residential region and urbanization type to account for differences in 
transport choices.

In the residential sector, households’ housing characteristics are 
differentiated by the TIMES Household model, UK TIMES, HESTIA, and 
PRIMES. For instance, the TIMES Households model considers living 
area and dwellings’ insulation quality when determining households’ 
level of energy demand. HESTIA provides the most detailed account of 
contextual characteristics, considering each dwelling in the Netherlands 
according to a variety of characteristics (e.g. location, quality level, year 
of construction).

5.2. Methodological aspects

When including multiple drivers in a model, a key aspect regards 
how these drivers are combined into one behavioral outcome (i.e. an 
adoption decision or the level of energy service use). The reviewed ESMs 
deal with this aspect through establishing a weighed sum (IESA-sim), 
determining intangible costs (e.g. “costs of time” in PRIMES), or through 
defining the order of priority of decision objectives (MUSE) per actor 
group. Most detail is provided in MUSE, including six different options 
for combining agents’ decision objectives (e.g. mean, weighed sum, 
lexical comparison). Few other methodological aspects arose from the 
review, which are described in the following sub-sections.

5.2.1. Behavior changes
Some of the ESMs display approaches to account for behavioral 

modifications over time. Energy consumption changes can be modeled 
as a decrease or increase in demand by a certain fixed factor in response 
to prices (see PRIMES and MARKAL-MACRO). Regarding adoption de
cisions, CIMS indirectly accounts for a change in decision preferences by 
assuming that with growing market shares of technologies, people will 
become increasingly more likely to adopt these technologies. Verrier 
et al. [45] include a parameter called “drift rate” in BLUE: If the rate 
reaches a pre-defined threshold, financial decisions objectives are out
weighed by peoples’ preferences for a range of low-carbon technologies. 
BLUE also assumes that as the market share of technologies increases, 
people will move towards the left of the distribution of adopter attitudes 
and become more innovative.

Some of the ESMs include transport modal shifts, which represent a 
specific aspect of behavioral changes (TIMES Households model, 
PRIMES, TIMES-DKEMS, ESME, MoCho TIMES, TIMES-IR & CA). For 
instance, Daly et al. [93] account for changes in transport mode choices 
in two case studies using TIMES-IR and TIMES-CA. Overall travel de
mand and available travel time per capita are exogenous inputs, which 
are matched with transport modes’ costs and travel times to determine 
modal choices. Pye and Daly [92] build on this approach, incorporating 
a maximum potential shift from car to non-car transport as well as an 
annual rate of shift per transport mode into ESME.

5.2.2. Actor heterogeneity
The incorporation of different actor groups allows for an explicit 

account of behavioral variations, meaning that per actor group, specific 
patterns of behavior (e.g. decision objectives) must be defined. The 
models CIMS, TIMES-IR & CA, and MARKAL-MACRO assume one 
centralized actor and do not consider behavioral differences. Most other 
reviewed models establish two to five actor groups. For example, 
ENSYSI, IESA-sim, and BLUE distinguish individuals by four to five 
adopter attitudes, which differ in the weight they assign to a number of 
adoption decision objectives. PRIMES and MoCho TIMES differentiate 
four to five income groups, with intangible costs or discount rates 
differing per group. UK TIMES categorizes three households types 
depending on the number of bedrooms. Each household type is assumed 
to follow a different adoption pattern. In the transport sector, hetero
geneity can be created by dividing individuals based on trip length, trip 
region and available travel time, which determines preferred mode(s) of 
transport (see ESME).

A more detailed approach to incorporating behavioral heterogeneity 
is exemplified by the TIMES Households model, where 180 household 
groups in the residential sector and 120 household groups in the 
transport sector are created based on various socio-demographic and 
contextual characteristics. Each characteristic is assigned a distinct ef
fect on behavioral outcomes (e.g. the level of income determining im
plicit hurdle rates used for investments and no decision regarding 
insulation being made by tenants). A study by Sachs et al. [87] imple
ments actor heterogeneity in MUSE, incorporating thirteen groups based 
on socio-demographic characteristics in the model’s residential sector 
module. In ABMoS-DK, a desired number of agents can be generated 
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through a probabilistic approach using Monte Carlo Simulation. 
Generated agents are then matched with existing data regarding energy 
demand and demographic characteristics. The most detailed account of 
heterogeneity is provided by HESTIA, since a distinction can be made on 
the basis of contextual and socio-demographic characteristics of indi
vidual Dutch households.

5.2.3. Empirical and theoretical foundation
The extent to which models rely on behavioral data represents a 

continuum, ranging from models not relying on any empirical findings 
to models directly including behavioral data. Models which do not 
incorporate empirical data represent conceptual approaches which can 
show how behavior can possibly be included in ESMs (e.g. IESA-sim and 
ENSYSI). Without supporting assumptions by means of empirical find
ings, however, behavioral realism cannot be guaranteed.

In other ESMs, some empirical evidence is used either in support of 
behavioral assumptions or to establish actor heterogeneity (PRIMES, 
MARKAL-MACRO, TIMES Households model, MUSE, CIMS, ESME, CA- 
TIMES, TIMES-IR & CA, TIMES-DKEMS, MoCho TIMES). For instance, 
the TIMES Households model distinguishes actor categories based on the 
French national housing and transport survey. Discount rates imple
mented in models are often based on prior findings regarding con
sumers’ purchasing behavior [80,83,99]. The studies relied on, 
however, might be conducted in a differing time and place compared to 
the modelling context, which may weaken the data’s relevance.

Few ESMs directly incorporate empirical findings from existing 
studies, usually conducted in the (geographic) modelling context (BLUE, 
CIMS, ABMoS-DK, HESTIA, UK TIMES). Verrier et al. [45] rely on results 
of a qualitative survey regarding peoples’ heating technology prefer
ences (BLUE) and Mau et al. [90] implement data from discrete choice 
surveys regarding preferences for hybrid gas-electric vehicles or 
hydrogen fuel cell vehicles (CIMS). ABMoS-DK incorporates data in the 
form of existing travel behavior from the Danish National Travel Survey. 
Such approach ensures the modeled behavior to be closely aligned with 
the behavioral reality in the modelling context.

The modelling of behavior in most of the ESMs is not explicitly 
guided by theoretical insights. Implicitly, models that account for 
adoption decisions often rely on bounded rationality theory by assuming 
investments not to follow purely cost-optimizing pattern and agents to 
base their decisions on limited information [12]. Besides, some models 
rely on Rogers’ theory of innovation adoption [37] (IESA-sim, BLUE, 
ENSYSI). In contrast to BLUE, IESA-sim and ENSYSI modify and only 
partly implement the original theory, which may alter the theory’s 
fundamental meaning.

5.2.4. Modelling approach
The majority of ESMs selected for the review is optimization-based, 

which is in line with this approach being used most frequently in en
ergy system modelling [71]. Considering only the models which include 
behavior in both sectors (i.e. without considering the case studies), as 
much as half of the models are simulation-based (mostly ABMs), indi
cating a strong reliance on this modelling approach for a holistic 
incorporation of behavior. Optimization ESMs were found to account for 
actors’ behavioral preferences mostly in terms of financial aspects of 
adoption decisions (e.g. varying hurdle rates). More detail regarding 
drivers of behavior (e.g. attitudes and values) as well as social influences 
on behavior was included in simulation-based ESMs, especially ABMs. 
However, while some ABMs include agent interaction in an indirect 
manner (for instance through overall sector developments, see 
ABMoS-DK), no model accounted for direct interactions between actors.

Independent of their overall modelling approach, ESMs can show 
simulating or optimizing patterns in their demand-side modules. For 
instance, ABMs may include cost-optimizing rules for agent decisions 
and energy demand in optimization models may be simulated based on 
technology diffusion curves. To elucidate such level of detail for each of 
the included ESMs, Appendix D provides a description of how adoption 

decisions and energy service use are determined per model.

5.3. Conclusion of review

The review showed that behavior in current ESMs is commonly 
included in terms of the appraisal of technologies and energy services, 
socio-demographic aspects, and contextual drivers. Energy service use 
was considered exclusively with regards to financial and contextual 
aspects. Some more variety in the drivers of behavior was observed for 
the modelling of adoption decisions. Overall, less attention is being 
devoted to the remaining drivers of behavior (pro-environmental, fa
miliarity, social). For instance, social drivers are currently mostly rep
resented indirectly and through external assumption. Thus, the analysis 
implies that there is much space for improvement regarding a holistic 
account of behavioral drivers in ESMs.

Methodologically, the review revealed a scarce reliance of models on 
relevant empirical findings regarding behavior. While most of the 
reviewed models mention some empirical findings guiding their incor
poration of behavioral aspects, there are only a few examples of ESMs 
directly incorporating empirical data of studies conducted in the desired 
modelling context, thereby ensuring accuracy and realism of the 
included behavioral patterns. Most ESMs also acknowledge that 
behavior tends to differ between individuals and households and 
attempt to account for some of this variation by forming various actor 
groups with differing behavioral patterns. Some models address poten
tial changes of behavior over time, albeit usually conceptual in nature 
rather than empirically founded.

Regarding modelling approaches, the high number of reviewed ESMs 
being simulation-based is notable, considering that the vast majority of 
models in the energy sector is optimization-based. This finding may 
confirm the relatively higher suitability of simulation models for 
including behavior due to their flexibility for exploring future states of 
the energy system, rather than focusing on the optimization of (usually) 
system costs. The insights from the review of ESMs are next synthesized 
with the existing social science literature described in section 2 to arrive 
at approaches for advancing the behavioral representation in ESMs.

6. Operationalizing behavioral drivers in ESMs

6.1. Prioritization of relevant and feasible drivers

This investigation identifies various possible approaches for the 
representation of households and individuals in ESMs, summarized in 
Table 5. The different strategies were assessed according to their rele
vance and feasibility. The rating of relevance was established with 
regards to the reviewed social science literature in section 2. The rating 
reflects the importance of a respective behavioral driver for explaining 
energy-related behavior. Feasibility was determined based on the extent 
to which a driver can be measured and quantified, which represents a 
pre-requisite for inclusion in a model. The higher the feasibility, the 
easier it is estimated that a driver can be quantified and incorporated in 
an ESM. It must be noted that judgements of relevance and feasibility 
were made by the authors based on the information compiled in this 
paper. As both of these dimensions represent continua, the ratings 
should not be regarded as definitive but rather as relative judgements of 
the approximate position of the drivers on the continua.

Fig. 3 presents the drivers that were derived from both the social 
science literature as well as the model review according to their esti
mated relevance and feasibility. Rather than displaying drivers’ absolute 
positions, the Figure is presented to provide guidance regarding which 
drivers to prioritize, as drivers that combine a high feasibility and 
relevance (upper right quadrant) can be considered a starting point for 
implementation in ESMs (see Table 5 for more detail on those di
mensions per driver category). If a driver is placed towards the right 
side, it is estimated that the driver can be measured with pre-defined 
questionnaires (e.g. values) or it is commonly measured in surveys 
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Table 5 
Possible approaches to incorporate behavioral drivers in ESMs.

Driver category Behavioral outcome Modelling options Data needs Feasibility Relevance

Pro- 
environmental 
drivers

Adoption of 
technologies 
influenced by pro- 
environmental values, 
attitudes/beliefs, or 
behavioral intentions

• Discount rates/intangible 
costs/ratings based on 
technologies’ actual or 
perceived environmental 
performance (e.g. perceived 
sustainability, CO2 

emissions) and actors’ pro- 
environmental values, atti
tudes/beliefs, or behavioral 
intentions (e.g. BLUE [88], 
IESA-sim, [84])

• Probability to invest in 
technologies depending on 
the technologies’ actual or 
perceived environmental 
performance (e.g. perceived 
sustainability, CO2 

emissions) and actors’ pro- 
environmental values, atti
tudes/beliefs, or behavioral 
intentions (e.g. PRIMES 
[80])

• Self-reported pro- 
environmental values/atti
tudes/beliefs/behavioral 
intentions linked with data 
on technology adoption

• Environmental 
performance of 
technologies/self-reported 
perception of environ
mental performance of 
technologies

Medium (Self-report) 
measures of values, 
attitudes, beliefs, and 
behavioral intentions exist 
(regarding values, see e.g. 
Refs. [100,101]). 
Longitudinal studies indicate 
values be relatively stable 
over time [102]. This 
relative stability makes 
values specifically feasible to 
be included in ESMs, since no 
potential changes must be 
considered.

Medium – High 
Studies confirm the 
predictive qualities of pro- 
environmental drivers. 
Attitudes, beliefs, (personal) 
norms and behavioral control 
may exert their impact on 
energy-related behavior 
through behavioral 
intentions (see TPB). To 
investigate a potential 
intention-behavior gap [18], 
the drivers should directly be 
related to behavioral 
outcomes (i.e. energy service 
use and technology 
adoption). Contextual 
aspects should be taken into 
account when investigating 
values due to potential 
confounding effects [20].

Energy service use 
influenced by pro- 
environmental values, 
attitudes/beliefs, or 
behavioral intentions

• Function of change in energy 
service use as a result of 
actors’ pro-environmental 
values, attitudes/beliefs, or 
behavioral intentions (au
thors’ suggestion)

• Self-reported pro- 
environmental values, atti
tudes/beliefs, or behavioral 
intentions linked with ac
tors’ energy consumption

Appraisal of 
technologies 
and energy 
services

Adoption of 
technologies 
influenced by their 
(perceived) 
characteristics

• Discount rates/intangible 
costs/ratings based on 
selected characteristics of 
technologies (e.g. speed, 
complexity) (e.g. MARKAL- 
MACRO [83], IESA-sim [84] 
, PRIMES [80])

• Assessment of 
characteristics being 
considered important for 
adoption decisions

• Self-reported rating of 
selected characteristics per 
technology linked with data 
on technology adoption

Medium – High 
Ideally, respondents should 
be asked about the 
technology characteristics 
that they consider important 
for their adoption decisions. 
Determining price 
elasticities is usually feasible 
and requires an analysis of 
changes in demand in 
relation to changes in energy 
prices. If data is unavailable, 
previous research can be 
considered (see e.g. 
Ref. [42]).

Medium – High 
The perception of 
technologies and energy 
service use has been shown 
to be a relevant factor for 
energy-related behavior. As 
actors’ perceptions of costs 
and other characteristics of 
technologies and energy 
services may differ between 
technologies and energy 
services [42], one should 
distinguish different 
technologies and energy 
services during data 
collection and analysis.

Actors’ cost 
perceptions (i.e. 
sensitivity to changes 
in energy prices)

• Price elasticity of demand (e. 
g. PRIMES [80])

• Actors’ energy consumption 
over time linked with 
energy prices over time

Familiarity Past/present 
experiences impacting 
(future) technology 
adoption

• Agent decision rules: In case 
of equal cost/utility, choose 
technology which you 
currently own or have 
previously owned (e.g. 
ABMoS-DK [97])

• Using existing market share 
of technologies to predict 
future market share while 
limiting the replacement of 
existing technologies 
according to individuals’ 
stated preferences (e.g. BLUE 
[45])

• Self-reported/actual past 
technology ownership or 
self-reported/actual present 
technology ownership 
linked with self-reported 
future technology choices/ 
preferences

Medium – High 
Data regarding existing and 
past technology ownership 
and energy service use may 
be available in public 
databases

Medium – High 
Familiarity has been shown 
to influence energy-related 
behavior. Specific attention 
should be paid to utilizing 
data collected in the specific 
modelling context, as these 
aspects tend to be strongly 
related to cultural influences 
[103].

Habits impacting 
energy service use

• Keeping energy service use 
constant over time (authors’ 
suggestion)

• Actors’ energy service use 
over time

Socio- 
demographic 
drivers

Adoption decisions or 
energy service use 
driven by socio- 
demographic aspects

Determining patterns of 
adoption decisions/energy 
service use based on: 
• Income
• Gender
• Age
• Education level
• Dwelling ownership status
• Marital status
• Household size
• Employment
• Car availability

• Socio-demographic data 
linked with actors’ data on 
technology adoption and/ 
or energy consumption

High 
Socio-demographic data is 
often available in public 
databases. Depending on the 
context, there may also be 
previous research findings 
linking socio-demographic 
aspects with energy-related 
behavior (e.g. Refs. [22,50]).

Medium 
While socio-demographic 
aspects have been shown to 
exert influence on energy- 
related behavior, mixed 
findings have been reported 
regarding their relative 
importance.

(continued on next page)
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already (e.g. socio-demographic aspects).
When implementing a set of behavioral drivers in an ESM, it is 

important to consider if and how these drivers might relate to each other 
and which potential confounding variables may play a role [20]. For 
instance, studies have shown that behavioral intentions can act as me
diators between other drivers and behavioral outcomes and that modi
fications of social norms can exert an impact on personal norms, 
attitudes, and beliefs [26]. Such relationships should be tested and 
incorporated to safeguard the accuracy of the modeled behavior. Apart 
from the aspects described in section 2, further socio-demographic and 
contextual variables may be relevant to consider depending on the 
sector, the respective modelling context, and the modelling aim. 
Socio-demographic drivers may also represent proxies for other under
lying drivers of behavior. If data is available, mediation analyses can 
provide insights into the mechanisms through which socio-demographic 
aspects may impact energy-related behavior.

6.2. Methodological aspects

When including behavior in an ESM, modelers must find an appro
priate balance between behavioral and technological detail. Some ESMs 
were found to incorporate rich technological information, albeit 
considering behavior in a simplified manner. Other models included 
more behavioral detail, but less technological information. In both 
cases, relevance of the modelling outcomes for policy making should be 
considered, as detailed insights about potential technological de
velopments as well as the effect of energy-related behavior may be 
required. This aspect was also highlighted in the interviews. Based on 
this analysis, MUSE, IESA-sim, ENSYSI, and the TIMES Households 
model present examples of models that simultaneously account for rich 
technological and behavioral detail.

It must be noted that a tradeoff exists between increased behavioral 
detail and augmented modelling complexity. Increasing behavioral 
detail in one sector can also lead to imbalances between other sectors 
which may be modeled in a more aggregated fashion. Therefore, it is 

Table 5 (continued )

Driver category Behavioral outcome Modelling options Data needs Feasibility Relevance

These aspects can be included 
in ESMs following a variety of 
approaches (e.g. defining age 
groups, household sizes, etc.) 
(e.g. TIMES Households Model 
[82]).

Social drivers Social norms 
impacting technology 
adoption

• Injunctive social norms: 
Discount rates/intangible 
costs/ratings based on 
technologies’ perceived 
social desirability (e.g. 
ENSYSI [85])

• Descriptive social norms: 
Determining a function of 
change in adoption of 
technologies on top of 
expected changes due to 
changes in technologies’ 
costs (e.g. CIMS [90])

• Self-reported social 
perceptions of technologies 
(injunctive norms) linked 
with data on technology 
adoption

• Existing technology choices 
of individuals and 
households in a 
neighborhood (descriptive 
norms) linked with data on 
technology adoption

• Rating of visibility of 
others’ technology 
adoption

Medium 
Measurements of social 
norms exists (e.g. 
Ref. [104]). Data of 
descriptive norms may often 
be available in public 
databases (e.g. number of 
purchased technologies, 
choice of transport mode, 
level of energy 
consumption). Data 
collection regarding 
injunctive norms can be 
more labor intensive, as 
self-reports must be collected 
regarding peoples’ perceived 
social desirability of certain 
technology choices or 
patterns of energy service 
use.

Medium – High 
Social influences have been 
shown to be predictive of 
energy-related behavior. 
Since individuals and 
households perceive social 
norms within their 
immediate surroundings, 
data should ideally be 
considered per area or 
neighborhood. The impact of 
social norms may also differ 
between different 
technologies and energy 
services, as the perception of 
descriptive and injunctive 
norms partially depends on 
the visibility of technologies 
and energy service use of 
others.

Social norms 
impacting energy 
service use

• Function of change in energy 
consumption as result of 
(diffusion/change of) social 
norms (authors’ suggestion)

• Self-reported perceptions of 
social norms regarding 
energy consumption 
(injunctive norms) linked 
with actors’ energy 
consumption

• Existing energy 
consumption data of 
individuals and households 
in a neighborhood 
(descriptive norms)

• Data regarding visibility of 
others’ energy 
consumption.

Contextual 
drivers

Adoption decisions or 
energy service use 
influenced by 
contextual aspects (e. 
g. infrastructure)

Determining patterns of 
adoption decisions/energy 
service use based on: 
• Infrastructure (e.g. place of 

residence, coverage of 
transport system)

• Environmental conditions
• Building characteristics
• Policy-related incentives
These aspects can be included 
in ESMs following a variety of 
approaches (e.g. adjusting 
technology preferences based 
on location of residence 
(ABMoS-DK [97]).

• Contextual data linked with 
actors’ technology adoption 
and/or energy service use

High 
Aggregated contextual data 
is often available in public 
databases.

Medium – High 
Contextual drivers have 
frequently been related to 
energy-related behavior

Note. This table does not offer an exhaustive list of all possible drivers and approaches. The final choice of the most suitable behavioral drivers as well as modelling 
approaches will vary depending on the specific model structure, the modelling purpose, the behavior(s) of interest, and the modelling context. Some work has been 
done in mapping more detailed strategies for either the residential or transport sector (e.g. Ref. [105]), which may serve as further inspiration.
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suggested to carefully consider the detail of technological and behav
ioral representations of all included sectors and computational limita
tions to ensure a balanced inclusion of behavioral aspects. Other 
methodological considerations emerged from the review, which are 
described in the following sections.

6.2.1. Longitudinal approach
Some behavioral tendencies are relatively stable, others can undergo 

modifications over time. For instance, while values tend to be relatively 
consistent, attitudes, beliefs, and intentions have been shown to be more 
variable [106]. If previous research indicates drivers to change over 
time, longitudinal data can be helpful to assess the rate and extent of 
such proposed changes. This type of data does imply increased time and 
effort requirements, which need to be weighed against the relative ease 
of cross-sectional data collection.

Regarding specific behavioral change phenomena, previous research 
has proposed rebound effects to be incorporated in models [43,44]. 
Social tipping points have also been suggested to be included in 
modelling efforts due to the notions’ potential for capturing social 
transformation dynamics [107]. However, the fact that social tipping 
points have not yet been extensively researched and consistently 
conceptualized compromises their feasibility of measurement [108]. If 
desired, social tipping points could be explored in models by means of 
various scenarios in which different behavioral change patterns or 
tipping point thresholds can be defined (see e.g. BLUE [88], where such 

approach is shown with pro-environmental values).
Any implementation of behavior changes in models, even if based on 

prior longitudinal findings, requires assumptions about the future to be 
made, which inherently yields uncertainties. Thus, in line with ap
proaches observed in current models, it may be useful to consider the 
modelling of behavior changes as explorative attempts, which can be 
investigated through different behavioral modification scenarios. Based 
on the present review, there are various approaches to be considered for 
such exploration (see Table 6). Specifically ABMs may lend themselves 
for a dynamic accounting of behavioral changes over time due to their 
flexible structure. For instance, learning can be incorporated in ABMs 
relatively easily through defining agent rules and characteristics (e.g. 
ABMoS-DK [97]). Incorporating behavioral change phenomena, how
ever, increases the complexity of model results and should carefully be 
considered in light of model usability, interpretability and 
communicability.

6.2.2. Actor heterogeneity
In line with prior literature, including various actor groups in ESMs is 

important to account for differences in actors’ behaviors [2,10,
109–111]. In principle, if sufficient data is available, any (set of) 
behavioral driver(s) can be used to distinguish actor groups (e.g. in
come, strength of pro-environmental value orientation). Alternatively, 
one can generate a desired set of random agents through a probabilistic 
approach and calibrate these agents with existing empirical data (e.g. 

Fig. 3. Relevance and feasibility of including drivers of energy-related behavior in ESMs.
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ABMoS-DK [97]). A main challenge then lies in establishing useful actor 
categories which can account for meaningful behavioral differences. 
Thus, it is important to assess which drivers are most relevant for 
explaining behavior in the respective modelling context. Accounting for 
heterogeneity also requires behavioral patterns to be defined per agent 
group, which necessitates sufficient empirical findings that can be used 
as a basis for such definition.

A decision regarding the number of actor groups depends on the 
desired behavioral granularity as well as available computational ca
pacity. Thereby, one can start with the implementation of a limited 

number of agents and add more heterogeneity incrementally. This 
process ensures a careful consideration of the tradeoff between 
augmented behavioral detail and the increased complexity of an ESM 
[112,113]. As a high level of complexity can compromise model us
ability, the effect of behavior on the model output should first be un
derstood before incrementally adding actor groups.

6.2.3. Empirical and theoretical foundation
From this review, it emerges that the empirical foundation of the 

behavior of households and individuals in current ESMs is relatively 
weak. This finding may partially be explained by a scarcity of available 
data, as also indicated by the interviewees. While conceptual ESMs still 
allow for exploring the effects of behavior on the energy system, 
empirical findings are essential to ensure behavioral realism [2]. 
Therefore, improving the strength of empirical foundation is of major 
importance for advancing the inclusion of realistic behavior in ESMs.

ESMs included in the review that directly incorporate empirical 
findings rely on cross-sectional data measuring choices, preferences, or 
travel patterns (see section 5.2.3). This data is utilized to derive un
derlying drivers of behavior and establish heterogeneity. Longitudinal 
data is not mentioned, which is likely due to lack of availability and 
increased collection efforts. The collection of behavioral data should be 
matched with the geographic scale of the remaining (technological, 
economical, etc.) data included in an ESM, since behavioral patterns 
might differ between settings, contexts, and cultures [92,103]. Such 
approach implies that ESM results apply to a specific modelling context 
and cannot readily be generalized to other geographic locations.

Any incorporation of behavior in an ESM necessitates a clear 
conceptualization of energy-related behavior and its different pre
dictors. Such conceptualization can be supported by available social 
science theories (for a sub-set of available theories see Table 1 and 
Appendix C). The TPB has frequently been implemented in models due 
to its simplicity and the relative ease with which it can be translated into 
code [114–116]. Regardless of the selected theory or set of theories, a 
central task revolves around the empirical validation of proposed re
lationships between behavioral drivers and outcomes. Empirically 
validated drivers can subsequently be incorporated in ESMs through 
appropriate formalization, operationalization, and quantification of a 
theory’s concepts [116]. Thereby, Muelder and Filatova [116] empha
size the need for informed decision making as well as transparency, since 
differences in the implementation of a theory can result in diverging 
model outcomes.

6.2.4. Modelling approach
According to some of the interviewees, implementing behavior in 

ESMs can be challenging as modelers often have to modify the structure 
of an existing ESM and translate descriptions of behavior, which are 
often qualitative, into mathematical formulations. This finding is in line 
with Trutnevyte et al. [13], stating that merging social science findings 
with existing ESMs tends to be a demanding endeavor. Despite potential 
obstacles, the authors still emphasize that a merging approach has the 
highest potential for improving models’ behavioral realism.

This review has highlighted the value of simulation modelling due to 
providing more diverse options for accounting for behavioral drivers. 
Thereby, ABM might be particularly suitable, as behavioral drivers can 
be included through defining flexible agent rules. For instance, to 
incorporate habits, agents can be set to re-select their current technology 
if a certain (pre-defined) threshold of difference regarding costs or 
utility has not been transgressed (e.g. ABMoS-DK [97]). ABMs can also 
account for interaction dynamics, which makes the approach a partic
ularly suitable technique for endogenously modelling social dynamics 
[2,73,117]. For instance, social norms can be translated into defining 
specific agent network characteristics and the strength of social in
fluences [115].

In addition to focusing on standalone ESMs, the results of different 
models can be compared. Fattahi et al. [4] note that contrasting the 

Table 6 
Possible approaches to incorporate changes in behavior over time in ESMs.

Behavior to be 
represented

Modelling options Supporting data sources

Changes of adoption 
decision patterns

• Modification of existing 
distribution of attitudes/ 
beliefs/behavioral 
intentions among actors 
(e.g. BLUE [88])

• Rate of diffusion of 
certain decision 
objectives (e.g. diffusion 
of pro-environmental 
values; e.g. BLUE [45])

• Determining a change in 
perceived characteristics 
of technologies over 
time (e.g. increasing 
social acceptance of 
technologies with 
increasing market share; 
authors’ suggestion)

• Self-reported (changes 
in) attitudes/beliefs/ 
intentions 
(longitudinal data) 
linked with actors’ 
technology adoption 
and/or energy 
consumption

• Assessment of diffusion 
of (self-reported) 
decision objectives 
among actor groups 
(longitudinal data) 
linked with actors’ 
technology adoption 
and/or energy 
consumption

• Self-reported (rating 
of) characteristics of 
technologies being 
considered important 
for adoption decisions 
(longitudinal data) 
linked with actors’ 
technology adoption 
and/or energy 
consumption

Changes of patterns of 
energy service use

• Diffusion of certain 
consumption patterns 
over time (e.g. 
decreasing energy 
consumption for heating 
over time due to 
increasing awareness of 
energy savings 
measures; authors’ 
suggestion)

• Self-reported or actual 
energy consumption 
patterns over time

Structural overall 
changes of behavioral 
patterns after a 
certain threshold due 
to (changing) social 
norms (i.e. social 
tipping points)

• Determining a threshold 
after which behavior 
structurally changes (i. 
e., social tipping point) 
and determining how 
behavior changes (i.e. 
which driver(s) become 
more prominent; e.g. 
BLUE [45])

• Assessment of trigger 
points/thresholds for 
social tipping points 
regarding energy- 
related behavior linked 
with actors’ technology 
adoption and/or en
ergy consumption

• Qualitative or 
quantitative 
assessment of 
underlying dynamics of 
structural changes in 
energy-related 
behavior (e.g. surveys, 
interviews, 
observations)

Rebound effects (i.e. 
increase in service use 
after a new 
technology/an energy 
saving measure has 
been implemented)

• Rate of decrease of 
expected energy savings 
after implementation of 
a measure which saves 
energy or uses 
renewable energy 
(authors’ suggestion)

• Data on energy 
consumption over time 
linked with actors’ 
technology adoption

H.S. Galster et al.                                                                                                                                                                                                                               



Renewable and Sustainable Energy Reviews 214 (2025) 115520

13

results of (comparable) simulation and optimization ESMs can provide 
insights into differences between an optimal solution and a simulated 
feasible solution. ESMs can also be linked with other models [2,9,118]. 
For instance, behavior-related parameters of optimization models can be 
informed with findings derived from simulation models [105]. Such 
linking processes can be used as long as the models share some key 
characteristics, and may save time and avoid potential complications 
arising from the full integration of behavioral findings into existing 
ESMs [2]. Such soft-linking approach is exemplified by Ramea et al. 
[119], integrating insights derived from a model simulating consumers’ 
vehicle choices into the optimization-based ESM TIMES.

7. Discussion

ESMs differ in their fundamental modelling purpose [4,5]. The in
sights of this work are aimed at improving the behavioral realism of 
models with exploratory and/or descriptive purpose that aim at gener
ating insights into possible transition pathways. ESMs following a 
normative or prescriptive purpose, in contrast, place higher importance 
on outlining a future state of the energy system and it may therefore be 
less relevant to incorporate increased behavioral detail into such ESMs.

The review shows that various drivers impact energy-related 
behavior and that different approaches can be taken to incorporate 
behavioral drivers in ESMs to enable an improved and more realistic 
description and exploration of pathways towards a decarbonized energy 
system. Currently, the most common way to include adoption decisions 
in ESMs is through the present or future costs of technologies, and the 
most frequent manner to account for energy service use is through price 
elasticities of demand [3,42]. Several models further consider 
socio-demographic aspects and contextual drivers of behavior. While 
such ESMs can serve as a starting point, a comprehensive consideration 
of the six categories of empirically-based drivers impacting 
energy-related behavior (i.e. pro-environmental drivers, appraisal of 
technology and energy services, familiarity, socio-demographic drivers, 

social drivers, contextual drivers, see section 2) is lacking. This under
representation confirms the need for advancement and potential for 
expanding the behavioral modelling of households and individuals [2,
3].

For behavior to be incorporated, human cognitions and actions must 
be translated into mathematical formulations that can be implemented 
in models. Despite the overall underrepresentation of many drivers of 
behavior, several ESMs have done innovative work, for instance by ac
counting for pro-environmental values, habits, and social influences [85,
88,97]. These approaches are valuable in providing a starting point to 
further develop the modelling of behavior in ESMs. This work identifies 
a series of steps to be taken when implementing behavior in an ESM (as 
displayed in Fig. 4), building on the merging strategy proposed by 
Trutnevyte et al. [13] (i.e. the structural adaptation of ESMs according 
to social science findings). Based on these steps, Fig. 5 gives an overview 
of state-of-the-art practices and feasible advancements.

The first step for implementing behavior in an ESM consists of data 
collection. Most ESMs represent a reasonable level of detail regarding 
behavioral outcomes (i.e. technologies and energy service uses in resi
dential and transport sector), but do not explicitly incorporate data 
regarding behavioral drivers impacting these outcomes. Partly, this 
observation can be explained by the scarce availability of behavioral 
data, which currently entails a major limitation. Increasing data 
collection efforts can ensure a thorough empirical basis regarding both 
behavioral drivers and outcomes, which is imperative for advancing the 
modelling of behavior in ESMs [2]. This analysis provides guidance 
regarding the relevance and feasibility of including different drivers (see 
Table 5 and Fig. 3), which can be used as a tool to determine prioriti
zation. Ultimately, the choice of behavioral drivers should depend on 
the modelling aim, the modelling context, and data availability. 
Thereby, augmented behavioral detail should carefully be weighed 
against increased model complexity.

The second step, the preparation of the model, requires an analysis of 
empirical data regarding behavioral drivers and behavioral outcomes to 

Fig. 4. Steps for incorporating behavioral aspects in an ESM.
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determine the relationship and the relative impact of the drivers on the 
outcomes. For instance, correlation and regression analyses can be used 
to determine the direction and strength of the relationship between 
drivers and outcomes as well as the relative predictive power of indi
vidual drivers in relation to others. The drivers chosen based on this 
analysis should then guide the characterization of technologies and 
energy services. For instance, if pro-environmental values are incorpo
rated, the (perceived) environmental performance of technologies and 
energy services must be determined. To arrive at one behavioral 
outcome (i.e. an adoption decision or the level energy consumption), 
drivers must be combined. Different methods are available to accom
plish such combination, for instance the formation of a weighed sum or 
ordering drivers by priority (see Table 5).

To account for behavioral heterogeneity, actor groups must be 
defined [2,109,110]. The review shows that it is common practice to 
rely on four to five groups, such as actors with differing incomes or 
pro-environmental values. Particularly distinguishing groups by 
socio-demographic and contextual aspects can provide important in
formation regarding the characteristics and surroundings of households 
and individuals. A greater number of actor groups enables more detailed 
behavioral analyses, but must be weighed against model complexity to 
ensure that the model remains sufficiently simple and understandable. 
More detailed approaches also require sufficient empirical data, allow
ing for a distinction of behavioral patterns and a weighing of different 
drivers between actor groups.

The third step involves the implementation of behavioral data into 
an ESM, for which the use of simulation modelling (e.g. ABM) is sug
gested. Reviewed models that incorporated behavior in the most 
advanced way were simulation-based, confirming this approach to be 
comparably more flexible and suitable for exploring possible future 
states of the energy system [9,74,75]. Several tools are available to 
summarize the information derived from different behavioral drivers 
into modelling the behavioral outcomes, such as rating technology op
tions, determining intangible costs or including price elasticities (see 
Table 5). Model parameters should be calibrated and the model should 
be validated by using historical data regarding behavioral outcomes, as 
exemplified by Ref. [120]. In the last step, model results can be analyzed 
per technology and per actor group and the changing of individual 
model parameters allows for exploring the relative impact of specific 
behavioral drivers on model outcomes.

Such analyses are urgently needed to gain further insights into the 
drivers and pathways to accelerate the energy transition. Behavior has 
been highlighted to be an important enabler of the transition [6,7], and 
an explicit investigation of realistic behavior in ESMs will shed light on 
the relative impact of behavioral drivers on desired behavioral outcomes 
(i.e. the adoption of renewable technologies and changing patterns of 
energy consumption). At the same time, the energy transition exerts 

major impacts on individuals’ livelihoods [121]. A more targeted defi
nition of actor heterogeneity allows for distributional effects to be taken 
into account; for instance, one can analyze potential differences in 
technology adoption rates and energy service use between societal 
groups. In line with energy justice [122], such insights can guide 
informed decisions of policy makers to ensure that no societal group is 
left behind in the energy transition [1,6].

It must be noted that in the process of including behavioral drivers 
into ESMs, more detail is not always better: Augmented behavioral 
detail in ESMs enables a deeper and more realistic analysis of transition 
pathways, but must carefully be weighed against increased re
quirements for model inputs and enlarged complexity of model outputs. 
By nature, ESMs are intended to show a simplified version of the reality 
of the energy system. It is therefore recommend to add behavioral detail 
to an ESM incrementally, ensuring inputs to remain manageable and 
results to be understandable, insightful and communicable.

There are three methodological considerations of the present work, 
arising from the scope of the review requiring choices to be made 
regarding the level of detail of the analysis. Relevant social science 
knowledge served as background of the work and was summarized from 
existing reviews and meta-analyses, rather than carrying out an own 
review effort targeted to the specific analysis. Despite the search process 
combining a systematic approach with interviews, some relevant ESMs 
might have been missed. Regarding the selected ESMs, there were large 
differences in terms of clarity and length of documentation, which might 
have led to some information being omitted from the analysis. While this 
review provides a comprehensive overview, future work could tackle 
these methodological aspects to assess the behavioral modelling of ESMs 
in even more detail.

The review findings show that more work is needed to further lower 
the barriers for explicitly addressing drivers of human behavior in ESMs 
for the purpose of describing and exploring transition pathways [9,10]. 
The suggested approaches (see Table 5) are intended to serve as inspi
ration and guidance for modelers to increase ESMs’ behavioral realism. 
Future work should employ an interdisciplinary approach, which can be 
achieved through increased collaboration and dialogue between social 
scientists and energy modelers. Research should also rely on data-driven 
strategies and a thorough analysis of behavioral drivers and their re
lationships with behavioral outcomes (e.g. through correlation/re
gression analysis). Behavioral data should be collected in the respective 
modelling context to ensure applicability. Actor heterogeneity, which 
tends to exert large impacts on modelling results [120], should carefully 
be determined based on meaningful differences between actors in the 
drivers of energy-related behavior. The analysis has shown that it is 
currently common practice to include at least five actor groups, often 
based on socio-demographic and contextual characteristics. A major 
limitation regards the availability of empirical data, which is needed to 

Fig. 5. State-of-the-art and feasible extensions of the steps for incorporating behavioral aspects in an ESM.
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derive such relevant behavioral patterns and distinguish meaningful 
actor groups. This shortcoming should be tackled by future work 
through targeted data collection efforts that allow for connecting 
behavioral drivers and outcomes on the level of households or 
individuals.

8. Conclusion

To enable a successful energy transition, a holistic assessment of 
drivers and barriers is needed. Energy System Models (ESMs) present 
indispensable tools for investigating transition pathways. Current 
models insufficiently account for realistic human behavior, despite the 
fact that human behavior has been shown to exert a major impact on the 
energy transition [6]. This research presents a multitude of approaches 
to foster the inclusion of human behavior for informing current ESMs 
with insights from social science research. Suggested approaches revolve 
around data-driven strategies, highlighting the importance of empirical 
data collection regarding all behavioral drivers and behavioral out
comes included in a model. The consistent use of data also enables an 
analysis of proposed relations between behavioral drivers and outcomes, 
which is necessary to safeguard models’ behavioral realism. This study 
has further highlighted the value of simulation modelling for repre
senting behavior as well as the importance of accounting for meaningful 
behavioral differences through defining actor heterogeneity.

Based on the analysis, it is recommended to improve the integration 
of realistic behavioral aspects through a strong reliance on empirical 
data regarding both behavioral drivers (i.e. pro-environmental drivers, 
appraisal of technology and energy services, familiarity, socio- 
demographic drivers, social drivers, and contextual drivers) and out
comes (i.e. adoption of technologies and energy service use). Besides the 
appraisal of technologies and energy services, which is commonly 
included in ESMs, next targets may for instance entail descriptive social 
norms as well as socio-demographic and contextual aspects due to 
frequent data availability and relative ease of inclusion. In general, to 
confirm the relevance of any (set of) behavioral drivers, one should start 
with an explicit investigation of the relationships between behavioral 
drivers and outcomes in the respective modelling context (e.g. correla
tion/regression analysis).

When representing individuals’ and households’ behavior in an ESM, 
it is essential to define actor heterogeneity to capture behavioral dif
ferences and analyze distributional impacts of the energy transition. 
Meaningful actor groups can be delimited based on findings from data 
analyses or research interest. Alternatively, representative respondents 
from surveys can form a set of agents which can be incorporated in an 
ESM directly. The availability of empirical data regarding behavior 
presents a major limitation to date, which should be tackled in the future 

through extended (cross-sectional or longitudinal) data collection ef
forts. Future studies should aim to collect data of both behavioral drivers 
and outcomes on the level of households or individuals to be able to 
assess the direct relationships between behavioral drivers and actual 
behavior.

The recommendations of this study are fundamentally intertwined 
with the respective modelling purpose. While ESMs can offer accurate or 
normative forecast of a future energy system without accounting for 
human behavior, an advanced integration of behavior is urgently 
needed to enhance the accuracy of those models that aim to shed light on 
possible transition pathways [10]. An increased focus on behavior in 
energy system modelling also directs attention towards social impacts 
and energy justice issues of the energy transition, which are currently 
often overlooked due to a predominant focus on technological advances 
[11]. Future interdisciplinary work building on the insights of this 
analysis is indispensable to further foster the consideration of behavioral 
aspects in the planning of the energy transition. It is recommended for 
such work to use the outlined series of steps to model relevant and 
feasible drivers of energy-related behavior as a starting point.
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Appendix A 

Semi-structured interview questions

Questions about own model

• How did you decide for the main behavioral parameters ?
• To what extent did you rely on empirical data? What were potential challenges you faced when including data into the model?
• In general, what were the main challenges you faced when incorporating behavior into the model?
• Are there any other behavioral aspects you would still like to include into the model?

Questions about behavior in ESMs in general

• Do you know of any other (national) ESMs including behavior of individuals and/or households?
• In your view, what is needed to advance the modelling of behavior in ESMs?
• What would you recommend to focus on when including behavior into ESMs?
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Appendix B 

Main interview findings

Main challenges regarding the modelling of behavior

• Availability of behavioral data
• Empirical validation of behavior in ESMs
• Uncertainty of human behavior
• Behavior tends to create inertia in the energy system
• Translation of verbal agent descriptions into mathematical formulations
• Thorough understanding of (potentially) complex model results

Aspects to consider when integrating behavior in ESMs

• Important to maintain a balance between behavioral and engineering aspects in the model
• Heterogeneity tends to exert large impact on model results
• Best practices and desirable approaches may depend on modelling context/country

What should be done to improve the integration of behavior in ESMs?

• Improved data availability regarding intangible aspects of behavior
• Inclusion of behavior despite potential uncertainties
• Inclusion of multiple aspects of behavior linked with empirical data
• Empirical validation of model results (e.g. use of historical data)
• Summary of best practices regarding the inclusion of behavior in ESMs
• More realistic accounting of social influence/social interaction in models
• Accounting for changes in behavior over time (requires collection of longitudinal data)

Appendix C 

Social science theories

Table C.1 
Frequently mentioned social science theories in research regarding energy-related behavior.

Theory Discipline Description

Theory of Planned Behavior (TPB) Psychology The TPB by Ajzen [29] relates attitudes, norms, and perceived behavioral control to behavioral intentions, which in turn 
lead to behavior. While intentions are correlated with behavior, they only culminate in actual behavior if a person 
believes they can execute the behavior (i.e. possesses perceived behavioral control).

Reasoned Action Approach (RAA) Psychology The RAA by Fishbein and Ajzen [30] represents an extended version of the TPB. Concretely, the RAA specifies a set of 
beliefs (behavioral beliefs, normative beliefs, control beliefs) which influence attitudes towards a behavior, norms, and 
perceived behavioral control, respectively (as specified in the TPB).

Norm Activation Model Psychology The Norm Activation Model by Schwartz [32] poses that norms create moral obligations and are therefore necessary in 
causing behavior. The author further states that norms are determined by awareness, which leads to feelings of 
responsibility.

Value Belief Norm (VBN) Theory Psychology Stern’s [33] VBN Theory presents an evolution of the Norm Activation Model. It revolves around three types of values 
(egoistic, biospheric, altruistic) impacting individuals’ beliefs. These, in turn, are considered to influence personal norms 
that then determine behavior.

Self-Regulated Behavioral Change 
(SRBC) Model

Psychology The SRBC by Bamberg [48] states that peoples’ motivation to change enables behavioral change processes. Successful 
modifications of behavior are assumed to occur in a four-step process. First, people enter a predecisional stage which 
determines their goal intention. Second, a preactional stage establishes a behavioral intention. Third, during the actional 
stage, people put their behavioral intention to action. Last, a postactional stage establishes the new behavior.

Habit Discontinuity Hypothesis Psychology The habit discontinuity hypothesis describes that habitual behavior is most likely to be modified in conjunction with 
contextual changes [47]. Thus, once contextual conditions are disrupted, new choices and decisions are more likely to 
occur, making habit changes more probable.

Social Network Theories Psychology/ 
Sociology

The family of social network theories (see e.g. Borgatti and Ofem [68]) investigates the impact of social relations on 
behavior. Thus, the focus lies on social network structures, group formations, etc.

(continued on next page)
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Table C.1 (continued )

Theory Discipline Description

Rogers’ Theory of Innovation 
Adoption

Sociology The Theory of Innovation Adoption [37] lists various attributes of technologies which are presumed to influence their 
adoption speed (i.e. relative advantage, compatibility, complexity, trialability, observability). The Theory also 
conceptualizes five adopter attitudes which are assumed to follow a normal distribution (i.e. innovators, early adopters, 
early majority, late majority, laggards).

Social Practice Theory Sociology The Social Practice Theory by Shove et al. [123,124] describes energy demand and supply as being ingrained with the 
reproduction of social practices. Thus, behavior is considered in relation to the social context (including societal 
practices, material arrangements, etc.) in which it is embedded.

Technology Acceptance Model Information 
systems

In line with the TPB, Davis [36] regards behavior to follow from behavioral intentions. According to the author, 
intentions are determined by the acceptance of a certain technology as well as its perceived usefulness and perceived 
ease of use.

Bounded Rationality Theory/ 
Prospect Theory

Behavioral 
Economics

An integral aspect of economic theory centers around the rationality of individuals [125]. Thereby, neoclassical 
economics assumes people to make purely rational choices to “maximize utility subject to given market prices and 
income” ([38] p. 98). The Bounded Rationality Theory originated from the field of behavioral economics as a response to 
the neoclassical perspective, in an attempt to account for human limitations in decision making which result in 
non-optimal outcomes from a financial perspective [125]. Thus, instead of performing a complete cost-benefit analysis, 
the theory poses that people decide based on a subset of criteria, impacted by information available to them and subject 
to various cognitive biases.

Note. This table provides a brief summary of social science theories which are frequently mentioned in the literature regarding energy-related behavior. Thus, it does 
not give an exhaustive list of all theories that can be used to conceptualize energy-related behavior. Studies also often combine and/or modify various theories 
depending on the specific behavior and the specific context at hand.

Appendix D 

Behavioral outcomes in models

Table D.1 
Modelling of adoption decisions and energy consumption in ESMs

Model name Adoption decisions Energy consumption

TIMES Actor 
Model (TAM)

• Investment decisions in energy supply sector
• 3 actor types: citizens, institutional investors, utilities, with different hurdle 

rates to represent different time valuations of money and cost of capital
• Actors have different choices of technologies (e.g. utilities cannot invest in 

citizens’ rooftop PV) and budget restrictions
• Actor-specific hurdle rate is included in the objective function of the model, 

which is used to calculate the total system costs and influences the model’s 
technology choices

• Citizens invest in energy supply technologies in the residential sector (e.g. 
rooftop PV)

• Exogenous

PRIMES Residential sector  

• 5 income groups apply different discount rates for their investment decisions
• Using these discount rates, actors strive for cost-optimization
• Within each group of agents, a probability density function is used to assign 

probabilities to the most cost-efficient technologies. Agents can then, amongst 
others, make decisions among those technologies based on maximization of 
payback period or maximization of LCOE.

Transport sector  

• Agent types can be distinguished through discount rates (not further described)
• Intangible costs of technologies can be included, e.g. lack of availability of 

charging infrastructure for EVs
• The model optimizes for a market equilibrium between demand and supply of 

transport services
• Individual transport users maximize utility (derived from transport activity and 

through consuming goods and services unrelated to transportation) under 
income constraints

Residential sector  

• Demand elasticities: Energy demand can change in response to policies 
or energy price changes

Transport sector  

• Overall transport activity (which determines demand) is projected based 
on macroeconomic drivers

• Modal shift is possible to some degree, explicit options can be included 
in scenarios

CA-TIMES • One central decision maker, cost-optimization
• Higher discount rates for newer (less mature, more uncertain) technologies to 

account for consumers’ hesitance to invest in such technologies
• No distinction is made between behavior in the residential and transport 

sector

• Exogenous

TIMES 
Households 
model

• Minimization of overall system costs
Residential sector 
• 180 household segments distinguished
• Some technology constraints (e.g. only homeowners can invest in insulation)
• Households use different hurdle rates in their investment decisions and face 

different capital constraints

Residential sector  

• Determined per household segment based on: space-living area, insu
lation, income (determining a “service factor” used to calculated final 
demand), household size

(continued on next page)
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Table D.1 (continued )

Model name Adoption decisions Energy consumption

Transport sector 
• 120 household segments distinguished
• Modal shift options constraint based on urban area
• Households use different hurdle rates in their investment decisions and face 

different capital constraints

Transport sector  

• Determined per household segment based on: urban area, activity 
(number of trips), household size

MARKAL- 
MACRO

• One central decision maker, optimization of total system costs
• A higher hurdle rate (25 % instead of 10 %) is used for advanced and new 

technologies, in the residential sector these are all conservation measures, 
solar water heaters, appliances of class A++ and A+, and in the transport sector 
these are all transport demand technologies

• Change in overall demand in response to change in energy prices

IESA-sim • Four adopter attitudes are distinguished: Innovators, early adopters, majority, 
laggards

• Technologies are characterized by four aspects: costs, CO2 emissions, 
complexity, social perceptions. Depending on the adopter attitude, actors assign 
different weights to these aspects

• A weighed sum leads to an overall ranking of technologies being established per 
adopter attitude. The highest-ranking technology fulfilling a certain activity/ 
demand is adopted.

• No distinction is made between behavior in the residential and transport 
sector

• Exogenous

ENSYSI • Four adopter attitudes are distinguished: Innovators, early adopters, majority, 
laggards

• Technologies are characterized by five aspects: costs, societal attitude, 
contribution towards sustainability targets, complexity, investment barrier. 
Depending on the adopter attitude, actors assign different weights to these 
aspects

• A weighed sum leads to an overall ranking of technologies being established per 
adopter attitude. The highest-ranking technology fulfilling a certain activity/ 
demand is adopted.

• No distinction is made between behavior in the residential and transport 
sector

• Exogenous

MUSE • Agents can be assigned different decision objectives (e.g. maximizing comfort of 
technologies, maximizing efficiency, maximizing costs).

• Different decision objectives can be combined in various ways, e.g. mean, 
weighed sum, determining an order of priority

• When selecting technologies, agents follow different search rules, e.g. looking 
for technologies that fulfil a certain end-use or only considering technologies 
with a certain minimum market share. Search rules can also be combined and 
weighed

• Demand is simulated in demand sectors and matched with supply 
sectors

BLUE • Agents are distinguished by five adopter attitudes: innovators, early adopters, 
early majority, late majority, laggards

• In the residential sector, agents make decisions over: heating system 
replacements, investment in microgeneration, investment in highly thermally 
efficient buildings

• In the transport sector, agents make decisions over road transport choices
• Investments per agent type depend on: hurdle rate, sensitivity to costs, 

intangible costs
• Investments are determined by the Net Present Value of technologies in 

combination with the sensitivity to costs

• Different demand elasticities per agent type (low, central, or high)

ENGAGE • Households are divided by their income
• Households buy generic goods that represent the goods that a household owns 

which contribute to energy consumption
• Each year, income is first allocated to meeting energy requirements using the 

existing stock. Then, income is allocated to replacement or extension of stock
• No explicit distinction is made between behavior in the residential and 

transport sector

• Exogenous

CIMS • One central decision maker, the model is focused on simulating technology 
market shares over time

• Technologies are assigned discount rates and intangible costs based on discrete 
choice studies

• An additional parameter determines the overall sensitivity to costs (e.g. if the 
value of the parameter is high, implying a high sensitivity to costs, only 
technologies with the lowest costs gain larger market shares)

• No distinction is made between behavior in the residential and transport 
sector

• Demand elasticities included

UK TIMES Residential sector  

• Three types of households are distinguished based on the number of bedrooms 
(1–3, 4, 5+).

• Technologies are divided into four heater types (gas, electric, heat pumps, solid 
fuel boilers), district heating technologies, conservation measures

• At the end of technologies’ lifetime, households choose heater types based on 
preferences indicated in a survey (i.e. per household groups, market shares of 
technologies derived from a survey are implemented)

• Within a certain household group and per heater type, the model strives for 
cost-optimization

• Exogenous

(continued on next page)
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Table D.1 (continued )

Model name Adoption decisions Energy consumption

ESME Transport sector  

• Cost-optimization approach
• Endogenized modal shift: definition of overall passenger demand that can be 

met by different (competing) transport modes. So model can choose optimal 
configuration of modes

• Transport modes are characterized by costs and travel time
• Constraints: maximum modal shift potential from cars to non-car modes, rate of 

modal shift, overall travel time available to the population (average travel time 
budget for the population is calculated, the average speed of the final mix of 
modes cannot exceed this budget)

• Overall travel demand projected based on transport surveys

TIMES-IR & CA Transport sector  

• Cost-optimization approach
• Endogenized modal shift: definition of overall passenger demand (for long and 

short distances) that can be met by different (competing) transport modes. So 
model can choose optimal configuration of modes

• Transport modes are characterized by costs and travel time
• Constraints: overall travel time available to the population (average travel time 

budget for the population is calculated, the average speed of the final mix of 
modes cannot exceed this budget)

• The model can invest in infrastructure, which leads to a reduction in travel time 
of public transport

• Exogenous travel demand

TIMES-DKEMS • Overall cost optimization
Transport sector 
• Elastic inland passenger modal shift
• Per distance (extra short, short, medium, long), an elasticity of substitution is 

defined
• Total demand is defined per distance, this total demand needs to be met after 

substitution
• Constraint: Maximum shift potential

• Exogenous overall travel demand

MoCho TIMES Transport sector  

• 24 groups of transport users distinguished based on: region of residential 
location, income level, type of residential location

• Intangible costs are assigned to transport modes, differing per group of 
transport users

• Constraints: overall travel time budget for all modes fulfilling overall demand, 
maximum modal shares by 2050

• The model can invest in new infrastructure

• Overall travel demand defined exogenously

Sectoral energy models

Model 
name

Adoption decisions Energy consumption

HESTIA Residential sector  

• “Activation moments” allow for building owners to invest in energy-related technologies of their building. Such 
moment include end of lifetime, renovation/moving, policy

• Depending on these three aspects, for each activated apartment, one of three options is chosen: insulation, 
installation, nothing

• Insulation and installation choices are determined using a probability function, weighing costs and benefits per 
insulation option. Options with the best cost-benefit relations have the highest chance of being chosen.

• Energy demand is determined based on 
dwelling characteristics

ABMoS- 
DK

Transport sector  

• Agents defined based on socio-economic characteristics and region, trip length, urbanization type, annual 
households income.

• Transport modes characterized by costs and value of travel time
• Utility of modes calculated per agent (influenced by characteristics of the mode and characteristics of the agents), 

agents choose mode with highest utility

• Travel demand defined per agent type based 
on transport survey

Data availability

No data was used for the research described in the article.
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[41] van den Broek KL, Walker I, Klöckner CA. Drivers of energy saving behaviour: the 
relative influence of intentional, normative, situational and habitual processes. 
Energy Policy 2019;132:811–9.
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