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Abstract

Estimating saturated hydraulic conductivity Ky from particle size distributions (PSD) is very common with empirical for-
mulas, while the use of machine learning for that purpose is not yet widely established. We evaluate the predictive power
of six machine learning algorithms, including tree-based, regression-based and network-based methods in estimating K ¢
from the PSD solely. We use a dataset of 4600 samples from the shallow Dutch subsurface for training and testing. The
extensive dataset provides not only PSD, but also measured conductivities from permeameter tests. Besides training and
testing on the entire data set, we apply the six algorithms to data subsets for the soil types sand, silt and clay. We further
test different feature/target-variable combinations such as reducing the input to PSD-derived grain diameters d;g, d5o and
dgo or estimating porosity from PSD. We test feature importance and compare results to Ky estimates from a selection
of empirical formulas. We find that all algorithm can estimate Ky from PSD at high accuracy (up to R?/NSE of 0.89
for testing data and 0.98 for the entire data set) and outperform empirical formulas. Particularly, tree-based algorithms
are well suited and robust. Reducing information in the feature variables to grain diameters works well for predicting Ky
of sandy samples, but is less robust for silt and clay rich samples. dy( also shows to be the most influential feature here.
An interesting, but not surprising outcome is that PSD is not a suitable predictor for porosity. Overall, our results confirm
that machine learning algorithms are a powerful tool for determining Ky from PSD. This is promising for applications to
e.g. deep-drilling data sets or low-effort and robust K s-estimation of single samples.
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1 Introduction

Saturated hydraulic conductivity (K, also known as Ky
or K,) is the key parameter in groundwater flow and sub-
surface transport processes (Bear 1972). It determines flow
velocities, and thus arrival times and distribution patterns
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of contaminants in soil and sediments. At shallow and
medium depths, hydraulic conductivity impacts ground-
water recharge and the protection of freshwater aquifers
by overlying aquitards. In deeper systems, it is important
for the characterization of aquifers with regard to geother-
mal exploration (Veldkamp et al. 2021). K depends on the
fluid properties as well as the texture and structure of the
porous medium which makes it subject to intrinsic spatial
heterogeneity.

Measuring hydraulic conductivity directly in the field
is timely and expensive, if possible at all. Pumping tests
provide hydraulic conductivity, but only averages of up to
several cubic kilometers of porous material. They are fur-
thermore cost and labour intensive. Other methods, such as
lab-based permeameter tests, require undisturbed samples.
Most direct methods to determine Ky are not well suited for
deep aquifers, where K; is typically estimated from corre-
lations to porosity or from particle size distributions.
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The particle size distribution (PSD) is the size-sorted list
of particle diameters present in a porous material sample.
The PSD is classically obtained through sieve analysis,
where the sample is shifted through a series of sieves with
decreasing gap size while the amount of passing material is
weighed. Novel techniques under use are laser diffraction
which is advantageous in workload, required sample size
and number of sieve sizes determined compared to classical
sieving.

Traditionally, PSD information is translated to hydraulic
conductivity through empirical formulas relating effective
grain size diameters and total porosity to K ;. The first rela-
tion was developed by Hazen in 1892. Many more followed,
e.g. Devlin (2015) compiled a spreadsheet program which
calculates Ky from PSD curves using 15 different methods.
However, the procedure is error prone as each empirical
method was developed for and/or calibrated to a specific
type of material. Multiple studies showed that the empiri-
cal relations are of low accuracy e.g. Vienken and Dietrich
(2011), Cabalar and Akbulut (2016), Chandel and Shankar
(2022).

In recent years, Machine Learning (ML) has been
increasingly applied to geoscientific research (Tahmasebi
et al. 2020). While the application of ML has become popu-
lar for identifying permeability (translatable to hydraulic
conductivity) from image processing, we put it to use for
physical parameter estimation from a numerical dataset of
soil properties. One of the first applications of ML in this
context was the case of the software Rosetta (Schaap et al.
2001) focusing on unsaturated soils where other (structural/
textural) parameters impact flow behaviour compared to
saturated soils. Studies, such as Jorda et al. (2015), Araya
and Ghezzehei (2019), Kotlar et al. (2019), Sihag et al.
(2019) showed excellent predictability of saturated and
near-saturated hydraulic conductivity with ML through the
use of a wide range of input parameters, such as textural
properties of the solid matrix, like sand, clay and silt con-
tent, and structural properties like land use and bulk density.
However, extensive textural and structural information is
not always available, particularly for deeper soils. It remains
unknown how good ML works with only textural informa-
tion, such as the PSD of a sample.

Various algorithms have been applied to predict (satu-
rated) hydraulic conductivity, such as support vector regres-
sion (Mady and Shein 2018), neural network algorithms
(Williams and Ojuri 2021), tree-based regression (Granata
etal. 2022; van Leer et al. 2023) or boosted regression (Jorda
et al. 2015). Most research train one (Williams and Ojuri
2021; van Leer et al. 2023; Jorda et al. 2015) or explore two
types of algorithms (Araya and Ghezzehei 2019; Granata
et al. 2022). However, which type of algorithm is generally
best suited remained unstudied.
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We address these gaps by studying the following research
questions: (i) Can we predict saturated hydraulic conductiv-
ity with PSD data only? (i) Which ML algorithms are best
suited? (iii) How do results depend on the data set size and
composition? And (iv) how do results compare to empirical
formulas?

Our general approach is to apply the PSD as set of fea-
ture variables to six machine learning algorithms for predict-
ing saturated hydraulic conductivity as target variable. The
tested algorithms are: (i) Decision tree (DT), (ii) Random
forest (RF), (iii) Linear Regression (LR), (iv) Support vector
regression (SVR), (v) XGboost (XG) and (vi) Artificial neu-
ral network (ANN). The first five algorithms are ML based
while ANN is a deep learning algorithm. We compare the ML
estimate performance against five selected empirical formu-
las. Additionally, we evaluate the effectiveness of using PSD-
derived variables: particle diameters d¢, dso and dgg (Which
represent the maximum particle diameter of 10%, 50% and
60% material passing) as predictors for Ky to possibly mini-
mize measurement requirements. Finally, we assess if poros-
ity can be predicted through PSD measurements.

We train all ML algorithms on an extensive dataset with
almost 4600 samples, originating from the Toplntegraal
drilling and sampling program of the shallow (30 — 50 m
depth) Dutch subsurface (Buma et al. 2024). We compare
algorithm performance for the entire data set as well as for
soil-type data subsets. Most studies investigating the appli-
cation of ML for predicting Ky of aquifers (rather than of
soil) have a few hundred samples available, either from a
specific location or a collection of literature data. In con-
trast, we can gain novel insights by using this large, consis-
tent data set which originates from many locations all over
the Netherlands while all samples have been analyzed iden-
tically, thus guaranteeing consistency.

2 Methodology
2.1 Data

The dataset under study originates from the Toplntegraal
Program (Buma et al. 2024). As the program is ongoing
with data being added on availability, we used version 1.0
of the dataset, dated April 29th 2024. The published version
can be downloaded from the groundwater portal of TNO
Geological Survey of the Netherlands, but does not contain
the associated PSD data. We make use of 4593 out of the
4621 samples from the dataset which have PSD data avail-
able. This dataset can be found in the Github Repository
(Zech 2024). All samples were taken from the shallow sub-
surface (< 50 m) over a 15 year period and cover about 60%
of the Netherlands. Although they stem from a variety of
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Table 1 Lithoclasses, sorted by the categorization into main lithology

Z - sand L -silt K - clay
Zs1 - sand, weak silty L1 - loam, weak K1 - clay,
sandy weak silty

Zs2 - sand, moderate silty L3 - loam, strong K2 - clay,

sandy moderate silty
K3 - clay,
strong silty

Zs3 - sand, strong silty Ky - clay,

extreme silty

Zsa - sand, extreme silty K1 - clay,
weak sandy
Zy, - sand, clayey K2 - clay,

moderate sandy
K3 - clay,
extreme sandy

p - peat

lithostratigraphical units, the majority of samples belong to
the sandy category due to the nature of Dutch soil.

The PSDs were obtained through the malvern laser dif-
fraction method following the protocol of Baars (2004).
The gravel fraction (> 2mm) was excluded. The samples
were undisturbed and non-mixed on arrival at the labora-
tory. The identification of the particle size distribution was
performed after removal of the organic fraction and of the
carbonate fraction. Distribution of particle sizes were deter-
mined for 35 sieve sizes ranging from 0.01 — 0.1 um to
1680 — 2000 pm.

Each sample is classified for its lithoclass according to
the NEN5104 standard for Dutch soils (NEN2019 2019).
The NEN5104 classification is based on PSD and is com-
pletely determined by the weight of the sand, silt, clay and
organic matter content. All lithoclasses are listed in Table 1.
The function we used can be found in the collection of
python-scripts at Github.

We assign all samples to one of three main soil types
based on their lithoclass: sand Z, silt L or clay K. Table 1
specifies the distribution of lithoclasses to the categories.
These categories form three sub-data sets Top-sand, Top-
Silt and Top-Clay. The latter one also contains the 158 peat
samples for which PSD data could be measured. They have
high amounts of organic matter (more then 50% for 80 out
of 158 samples) which is more determining for Ky than
sand-lutum-silt percentages.

Saturated hydraulic conductivity K of non-cohesive
samples was measured with an Eijkelkamp permeameter
conform to European Standards (CEN ISO/TS 17892-
11). K measurements were assessed on their quality and

Table 2 Descriptive statistics of entire dataset (4593 samples)

insufficient samples were filtered out. Details of the mea-
surement process and data quality checks are provided in
the Supporting Information (SI). Further information on the
TopIntegraal data set can be found in van Leer et al. (2023)
and Buma et al. (2024).

Table 2 provides the descriptive statistics of the dataset
for the key information we use. This contains the distribu-
tion of logo-transformed measured conductivity K¢, statis-
tics on sand, silt and clay content of the samples as well as
d1o and dsg. The mean and median value of sand in Table 2
reflect the dominance of sandy samples in the dataset. Con-
sequently, the median particle size dsg is relatively large and
the mean log;o Ky is high. Note the considerable spread of
hydraulic conductivities (over 8 orders of magnitude) with
values from 1067 [m/d] to 10% [m/d].

Descriptive statistics for the subsets on sand (72.4% of
all samples), clay (17%) and silt (10.6%) are provided in
Tables S2, S3, and S4 in the SI as these subsets are also used
for analysis with ML algorithms.

2.2 Empirical formulas for comparison

A common way to estimate hydraulic conductivities is by
relating its value to PSD-derived quantities (such as djg)
through empirical relationships, see e.g. the summary of 15
methods in Devlin (2015).

Following Vukovic and Soro (1992), most methods can
be written in the general form K; = £%-N-¢(0) - dZy

where ¢(0) is a function of the porosity 6, deg is a form
of effective grain diameter, and /N is a method-specific con-
stant. The factor %g entails the water density p, the gravita-

tional constant g, and the dynamic viscosity p. The choices
of ¢, degr and N are method specific. Most empirical formu-
las come with an application limit, being only applicable to
a certain range of effective grain diameters.

We make use of five empirical methods for compari-
son to the performance of the six ML algorithms: (i) Barr
(Barr 2001), (ii) Alyamani & Sen (Alyamani and Sen 1993)
[both as defined in Devlin (2015)], (iii) Shepherd (Shep-
herd 1989), (iv) Kozeny (Kozeny 1927), and (v) Van Baaren
(Van Baaren 1979). The selection is based on their unlimited
applicability. Specifics on equations and implementations
are provided in the SI. Note that the empirical algorithms
were typically developed for clean sand. Thus, poorer

logio Ky (m/d) dio (um) dso (um) Clay (%) Silt (%) Sand (%)
Min —6.66 0.4 2.7 0 0 0
Max 2.28 680 1059 85.2 82.3 100
Median 0.3 93 181 1.3 3.34 95.34
Mean —0.63 102 202 7.37 15.9 76.8
Standard deviation 2 91 157 12.3 21.9 323
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performance for clayey soils can be expected for methods
without application limit.

2.3 ML model workflow
2.3.1 Algorithms and hyperparameters

We use six well established methods in machine and deep
learning: three tree-based, two regression-based and one lay-
ered deep learning algorithm. The choice was made based
on (i) established popularity (Sarker 2021), (ii) easiness to
implement (using Python packages), (iii) and structural dif-
ferences. The combination of the six selected techniques
allows exploring trade-offs between complexity of the algo-
rithms, training time and accuracy.

Used algorithms are shortly outlined with their specif-
ics and the algorithm-specific hyperparameters which we
tune during the training process. For detailed information
on the principles of the algorithms, the reader is referred
to literature (Hastie et al. 2009; Russell and Norvig 2020;
Tahmasebi et al. 2020). All models are set up using the
scikit-learn library in Python (Pedregosa et al. 2011).
Selected hyperparameters are chosen from availability in
scikit-learn and expected influence on the outcome.
For tuning processes, the popular 10-times cross-validated
grid search technique is used.

Decision tree (DT) is structured like a tree, in which
branches and leaves arise from nodes. The algorithm parti-
tions the dataset recursively based on the most significant
features. The algorithm continues to split the data into
groups till the target variable is sufficiently predicted to an
error margin as defined by the user. Without predefining
the end node, this algorithm is prone to overfitting. Conse-
quently, the hyperparameters we tune are the maximum tree
depth (max-depth) and the minimum number of samples in
each split group (min-samples-split).

Random forest (RF) is an ensemble learning algorithm
that operates on constructing multiple DTs. A multitude of
DTs is drawn randomly by bootstrapping (Breiman 2001)
where each DT selects a range of feature variables. The
predicted outcome of the target variable is constructed by
averaging over all trees and evaluating the process through
aggregation. RF is less prone to overfitting than DT, but
requires a larger training dataset and is subject to higher
computation time. Tuned hyperparameters are the same as
those of DT (max-depth and min-samples-split) as well as
the number of estimators (N-estimators).

XGboost (XG) is a gradient boosting algorithm work-
ing on the ensemble technique like RF. It improves the per-
formance of a predictive model iteratively by adding weak
learners to the ensemble. Boosting is a technique that com-
bines multiple weak learners to form a strong learner. In the
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case of XGBoost the weak learners are decision trees, and
each tree is trained to correct the errors made by the previous
tree. This process continues until the desired level of accu-
racy is achieved. To optimize the loss function, XGBoost
uses a combination of gradient descent and second-order
derivatives. This enables the algorithm to efficiently handle
high-dimensional data and complex relationships between
features. In addition to its efficient optimization techniques,
XGBoost also uses regularization to prevent overfitting
such as the Ridge expression (Chen and Guestrin 2016).
This involves adding penalties to the loss function for com-
plex models, ensuring that the algorithm produces a more
generalizable model that performs well on unseen data. The
downside of the algorithm is the huge amount of hyper-
parameters (35 in the scikit-1learn implementation),
entailing that model fitting is time and computer intensive.
We limit hyperparameter tuning to the maximum tree depth
max-depth and the learning rate while leaving the remaining
hyperparameters on default values.

Linear regression (LR) is a classical mathematical
method where the input variables are linearly fitted to the
output variable by minimizing a cost function character-
izing the difference between the linearly transformed input
and the feature variables. Multiple ways exist to fit the opti-
mization coefficients to the data. We use a cost function with
a Ridge term to reduce over-fitting and to obtain the optimal
cost function. Consequently, we tune the penalty term reg-o
in the Ridge regression as hyperparameter. The higher its
value, the higher the penalty given for increasing complex-
ity in the algorithm.

Support vector regression (SVR) is based on the Sup-
port Vector Machine principle, which trains by finding a
hyperplane that separates the training data and assigns new
data points to a class based on their position within the grid
of a linear problem. To optimize prediction accuracy, the
algorithm fits the error within a certain margin, either by a
hard or soft margin that allows some misclassification. We
tune the optimization parameter C. It compromises between
correct classification of a sample against the maximization
of the decision function’s margin. For larger values of C,
smaller margins will be preferred if this leads to better pre-
dictions. A lower C promotes a larger margin at the cost of
the training efficiency.

SVR can be trained on a non-linear dataset by introduc-
ing kernel functions that transform the data into a higher
dimensional space. We preliminary tested three kernels:
linear, polynomial, and radial. We then focused on SVR
with radial basis function K (z,y) = e(=7l7=y1") We tune
the hyperparameter v which is the inverse of the radius that
the algorithm utilizes to select samples as support vectors.
Thus, low v values use a wider range of support vectors and
vice versa.
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Artificial neural network (ANN) mimics the workings
of the human brain and therefore belongs to the subsection
of Deep Learning. ANN is structured into layers, including
an input, output and a number of hidden layers. Each layer
consists of a number of neurons, where number of neurons
in the input and output layers refer to the number of input
and output parameters. The number of hidden layers and
the number of neurons per hidden layer are hyperparam-
eters. Each neuron represents a parameterized and bounded
function, which receives input data and subsequently pro-
duces output data to pass on (Tahmasebi et al. 2020). The
algorithm is trained through back-propagation, where the
derivative of the loss function (based on the mean square
error between output values and target variables) is updated
for all neurons in the network. It is then used to update the
weight and bias according to the gradient descent technique.

We tested the number of hidden layers (up to three) and
tuned the number of neurons (hidden-layer-size). We fur-
ther tune the Activation which determines how the weighted
sum of the input is transformed into output. We either use
relu (Rectified Linear Unit) which transforms every nega-
tive input value into the value of zero, logistic which returns

the logistic sigmoid functios f(z) = m, or tanh

which returns the hyperbolic tangent of the input value,
resulting in values between + 1 and — 1 (Pedregosa et al.
2011). We tune the learning rate which determines the size
of the change that is made during each backpropagation. It
is either constant or adaptive. The latter adjusts the learning
rate based on the success of the model. The tested ranges for
all hyperparameters and all algorithms are summarized in
Table S6 in the SI.

2.3.2 Standard model application

Standard input features for the algorithms are the PSD val-
ues measured in 35 sieve sizes in cumulative form. The tar-
get variable for training and testing is the log,-transformed
value of the saturated hydraulic conductivity Ky. 4593 sam-
ples of the TopIntegraal data set are included.

Each algorithm is applied with these features on: the
entire data set 7op-All and on three subsets based on the soil
type: Top-Sand, Top-Clay and Top-Silt. Soil type classifica-
tion is according to the NEN 5104 standard for Dutch soils
(NEN2019 2019) as outlined in Sect. 2.1. Descriptive statis-
tics of the subsets are provided in Tables S2, S3, and S4 in
the SI. Each dataset is trained for the six algorithms.

The analysis is conducted with the Python package
scikit-learn (Pedregosa et al. 2011). Python work-
flows are available at Github (Zech 2024). We used the com-
mon 80-20 ratio for split into training data and testing data.
Preliminary tests showed that the initial split does not impact

results. For ANN and SVR, all input variables are standard-
ized. The full ML application workflow is explained in more
detail in Sect. 2 of the S/ including a graphical display of
the workflow and the results of the hyperparameter tuning.

2.3.3 Additional strategies of data evaluation

We trained the six algorithms on other combinations of fea-
ture and target variables to test predictability of conductiv-
ity from PSD derived quantities and links to porosity. We
started from the full data set (7op-All) and calculated d;,
dso and dgo from the PSD. Furthermore, we filtered the data
set to samples where porosity measurements were available
resulting in a reduced data set 7op-Por with 1768 samples.
All samples of Top-Por belong to the sand soil class. Sta-
tistics for the Top-Por data set are available in Table S5 in
the SI.

From the derived information and filtered data set, we
came up with three additional application strategies, based
on the feature and target variable combinations:

e Predict K (target) from dyq, dso, deo (features) for the
Top-All dataset.

e Predict K (target) from dyg, dso, deo and porosity 6
(features) applied to the reduced Top-Por dataset.

e Predict porosity 6 (target) from PSD (features) using the
Top-Por dataset.To allow performance comparison for
the different feature/target combinations on the reduced
Top-Por dataset, we repeated the training and testing of
the standard target/feature combination (K from PSD)
for the reduced Top-Por data set. Technical details and
hyperparameter tuning for all additional ML applica-
tions are again provided in the SI.

2.3.4 Model evaluation

Our standard algorithm performance measure is the Nash-
Sutcliffe model efficiency (NSE):

oy i ()’
NSE( aY) =1 2?21 (Zz _2)23 (1)

where z is the average of z, which we consider as sample
value vector while y is the model output vector.

The NSE relates the variability explained by the model to
the total variability in the sample values. It thus measures
the percentage of variability within the z values that can
be explained by y. A value close to one indicates a useful
model while a value close to or below zero indicates that
the model is not well suited. Note that the NSE reflects the
coefficient of determination (R?) for statistical models, i.e.
for the model performance during the training phase.
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Fig. 1 Performance measure NSE of all six algorithms (in colored bars) for full set of samples (100%), the training data (80%), the testing data
(20%) for the standard features (K¢ from PSD) applied to the data set Top-Al/

sand

silt clay

0.93 0.92 9o 0.87

RF XG ANN SVR DT LR

0.84 0.81 0.80 0.79

XG RF ANN SVR DT LR
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Fig. 2 Performance measure NSE of all six algorithms (in colored bars) for the data subsets on soil types Top-Sand (3326 samples), Top-Silt (485
samples) and Top-Clay (782 samples) for the standard features applied to all samples

3 Results and interpretation
3.1 Performance for standard features

Figure 1 shows a comparison of the performance, in terms
of the measure NSE, of all six algorithms for the Top-All
dataset. We show results for the training data (80%), the
testing data (20%) and all samples (100%). Figure 2 shows
the NSE of all six algorithms applied to the three soil type
subsets with the standard features. The performance refers
to the entire data sets using training and test data combined.
Accompanying figures on algorithm performance compari-
son for the soil type subsets on the training and test data set
are provided in the SI.

All algorithms show good performance for the entire
dataset with high NSE values above 0.83. ANN, RF and
XG perform best. Splitting the dataset into soil categories
decreases performance. This is particularly the case for DT
and LR for silt and clay data where the number of samples is
significantly lower. Surprising is also the comparably poor
performance of ANN for the clay data set. We explain part
of the performance reduction with the smaller size of the
training data. However, this is not impacting all algorithms
equally as RF and XG still show good performance on all
soil class sub sets with NSE values above 0.8.

Figure 3 shows scatter plots of predicted against mea-
sured log-hydraulic conductivity for the Top-A4!/ dataset with
complementary figures for the soil type subset provided in
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the SI. Estimates for DT show clear discrete tree classes.
The best performance of XG and RF in terms of the NSE
(Fig. 1) is clearly supported by narrow distribution of the
scatter around the 1:1 line. Also confidence intervals, rep-
resented by the 5¢th and 95th percentiles, of predictions are
Very narrow.

All algorithms tend to overestimate low conductivi-
ties and slightly underestimate high values. This lack in
predicting the extreme values is related to the fact that
algorithms are based on interpolation. When there are not
enough extreme values in the training data set, these val-
ues are not predicted for the test data set. XG, SVR and
ANN show the least variation around low conductivities.
The density of (measured) samples is lower in the range of
K; € [1071,1073)m/d. This coincides with less accurate
predictions visible also in broader error bands (5¢th and
95th percentiles). All algorithms have the least deviation for
sandy samples, which we relate to the abundance of samples
within this soil category. At the same time, it supports our
hypothesis that conductivity of sandy samples can be very
well predicted purely on PSD information.

3.1.1 Comparison to empirical formulas

When estimating conductivity with a selection of empirical
formulas (Sect. 2.2), we see that they perform less well than
ML algorithms. The NSE of the best performing empirical
formula, the Barr method, is 0.83 which is the same as the
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Fig. 3 Algorithm predicted log-conductivity (y-axis) versus measured data (x-axis) for all six algorithms applied to the full Top-All dataset. The
gray line represents the 1:1 line while black lines represent the 5¢h and 95¢h percentiles of predictions. Colors indicate lithoclasses (Table 1)

NSE of LR being the worst performing ML algorithm with
a NSE of 0.83 for the full data set.

A visual comparison of predicted Ky values for each
sample versus measured values is displayed in Fig. 4a for
the Barr method. The Barr formula generally overestimates
the Ky measurements particularly at the lower end. A simi-
lar display of results for the other tested empirical formulas
is provided in the SI. All formulas tend to either systemati-
cally over- or underestimate K y-values.

Figure 4b shows the scatter of hydraulic conductivities
predicted by the Barr formula (being the best performing
empirical formula) against the K;-values estimated with
RF (being one of the best performing ML algorithms with
a NSE of 0.97 for the fit to the measurements). Notably, the
NSE of 0.89 for the fit of Barr K ¢-values to RF estimates
is higher than the one for the fit to the measured data. This
indicates an overlap in values not being well predicted by
both methods. These are predominantly samples from the
silt and clay soil classes with high measured K ¢-values but
low estimates of Ky (lower right corner in Fig. 4a). This
might indicate a poorer quality of the samples which will be
subject of future research.

3.1.2 Feature importance

We tested the feature importance, i.e. how much each fea-
ture - here each sieve size - contributes to the fitted ML
algorithm’s statistical performance. We made use of the
permutation importance algorithm of scikit-learn
(Pedregosa et al. 2011). This inspection technique involves
random shuffling of the values of a single feature to observe
the degradation of the model’s score. Figure 5 shows the
importance mean and standard deviation of each feature for
the RF algorithm applied to the Top-A/l data set. The higher
the importance mean, the more influence the feature has.
Notably, the small sieve fractions between 2 and 25 um
have the highest impact while the larger sieve sizes contrib-
ute very little to the performance of RF. Thus, the fraction of
the clay and small silt particles determine the conductivity
for the data set predominantly containing sandy samples.
Figure 5 might suggest that it does not really matter how
coarse a sand is for K y. However, in combination with Fig. 3
we rather link this to the fact that Ky of (medium) coarse
sand is spread over less orders of magnitude. The picture
changes for the data set filtered to silt and clay samples (SI,
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the entire Top-All dataset. The gray line represents the 1:1 line. Colors
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Fig.5 Feature importance of each PSD sieve size, for the RF algorithm
applied to the Top-All data set. The height of each bar indicates the
mean importance of feature, black whiskers show standard deviation

Fig. S13), where there is no clear pattern about which sieve
fractions dominate the RF algorithm accuracy.

The small sieve sizes (< 25 pm) show a high importance
in all six tested algorithms (SI, Fig. S14). While DT and XG
show similar patterns as RF (Fig. 5), LR, SVR and ANN
take the higher sieve sizes stronger into account. The strong
impact of small sieve sizes also supports the idea to test only
effective grain diameters as features, where particularly d;g

@ Springer

will be most significant for hydraulic conductivity predic-
tion. The particle size range coincides relatively well with
the arithmetic mean of d( in Table 2, and even better with
the geometric mean d; of all samples, being 43 um.

3.2 Performance for alternative feature-target
combinations

3.2.1 PSD-derived variables on Top-All

Figure 6 shows the performance of all algorithms using only
di0, dso and dgg as feature variables (instead of the entire
PSD) for estimating hydraulic conductivity for the Top-All
dataset. The tree based algorithms, DT and RF, as well as
XG show high performance with NSE values above 0.9,
almost as good as when using the entire PSD (Fig. 3), as is
also visible in the similar scatter of predicted versus mea-
sured log19 Ky values. The low NSE of 0.62 for LR is due to
the poor prediction of low-conductivity values. Also, ANN
and SVR have difficulties predicting very low K ;-values
(< 10~*m/d) resulting in lower NSEs then when using the
entire PSD as feature variable. Note that the number of low
Ky samples is much smaller than the number of sandy sam-
ples, thus the NSEs remain relatively high for all algorithms.

From the soil type perspective, Fig. 6 reveals that d;,
dso and dgo are sufficient to predict Ky for sandy samples
with any of the ML algorithms. Low K values for silty
and clay samples are only well predicted by some of the
algorithms.

3.2.2 Prediction for the Top-Por data set

We studied the impact of having information on porosity on
the reduced data set Top-Por (1768 samples). Performance
measures of the six algorithms for different tested feature-
target combinations are compared in Fig. 7. Further visual-
izations of results are provided in the S/, including scatter
plots and NSE values for performance on training and test-
ing data.

We see that the algorithms perform very similar on the
reduced data set for the standard feature-target combina-
tion. Comparing Fig. 1 (left) vs. Fig. 7 (center) shows only
slightly lower NSE values for the Top-Por data set. The
highest NSE reduction is for ANN, while LR remains the
worst performing algorithm.

When comparing the algorithms’ performances for esti-
mating K¢ from dyo, dso, deo and porosity 8, we see again
that XG and RF outperform the other algorithms, while all
perform fairly good with the lowest NSE of 0.66 for LR.
Notably, all algorithms have relatively similar NSE for the
testing data set with values between 0.57 and 0.71. While
the NSE for the training data is only a little higher for ANN,
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dx & por = K¢ (Top-por)
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resents the 1:1 line while black lines represent the 5" and 95" per-
centiles of predictions. Colors indicate lithoclasses (Table 1)
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Fig. 7 Performance measure NSE of all six algorithms (colored bars)
for the different target-feature variable combinations tested: estimat-
ing K7 from dio, dso, deo and porosity (left), estimating Ky from

SVR and LR (between 0.66 and 0.76), it is above 0.9 for
XG, RF and DT (Fig. S.17). Thus, the better performance
of the tree-based algorithms on the entire 7op-Por data set
(Fig. 7 (left) is due to their better training capability. NSE
values for the combination dx &6 — K are only slightly
lower than those of the standard target-feature combination
(PSD — K) applied to Top-Por. We relate the reduced per-
formance mostly to the smaller data set.

0.94 .92 0.89 0.88

DT SVR ANN LR XG RF DT

0.86

0.83 0.81

LR ANN SVR

the PSD (center, for comparison) and estimating porosity from the
PSD (right) based on the data subset Top-Por for all samples (testing
+ training data)

The benefit of having additional information on porosity
is limited. Scores for the target-feature combination dx &
6 — Ky are almost identical (marginally higher) than those
of dx — K for the Top-Por data set. Thus, in contrast
to empirical formulas, ML algorithms do not benefit from
information on porosity.

Algorithm testing for predicting porosity from PSD (as
often used in practice) showed a relatively poor fit. Of all
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algorithms, only XG and RF have high NSE values above
0.8 for the fit to the entire data. But this is the result of a
high fit to the training data, while the score on the 20% test-
ing data is much lower with 0.41 and 0.39. Thus, predictive
capacity of ML algorithms for this feature-target combina-
tion is very limited.

4 Discussion

Our study is the first to show that PSD data is sufficient to
estimate saturated hydraulic conductivity with high accu-
racy using ML. Considering the challenges associated with
measuring hydraulic conductivity and the limitations in the
use of empirical formulas, the performance of ML is very
promising. While many studies report that ANN is highly
suitable, we find that tree-based algorithms such as Ran-
dom Forest and XGBoost outperform ANN for this type of
application.

We could confirm literature results on the good perfor-
mance of ML algorithms for estimating hydraulic conduc-
tivity from soil structural properties: Rogiers et al. (2012)
for instance, obtained an R? of 0.93 on their entire dataset
of 173 samples using an adapted ANN. Similarly apply-
ing ANN, other authors achieved high R? using a larger
set of feature variables, including carbon content, pH, bulk
density, or the plasticity index (Williams and Ojuri 2021;
Albalasmeh et al. 2022; Yamag et al. 2022). Noticeably,
Trejo-Alonso et al. (2021) were able to predict Ky over a
large range with an R2-value of 0.97 on a dataset totaling
900 samples. They made use of ANN and seven types of
measurement for feature variables: percentage of clay, sand
and silt, bulk density, permanent wilting point, moisture
content, and field capacity. The largest study in this context
was conducted by Araya and Ghezzehei (2019) who made
use of over 27,000 samples from 45 US datasets with pre-
dominantly sandy samples. Using a large set of feature vari-
ables, including bulk density, organic carbon content, clay,
silt and sand fraction, coarse sand fraction, d¢, dso and dgg,
they obtained an overall R2-value of 0.90.

We observed a strong impact of data set size and of the
soil type, i.e. sand, silt, and lutum fraction of the samples.
The entire data set Top-All showed the best algorithm per-
formance, which we partly link to the highest amount of
training data, but also to the broad range of soil types in the
samples providing the best base for training. As described
in Althnian et al. (2021), the representative variation of the
original sample compared to the training sample is most
important for good model performance. The need for large
training datasets holds especially for non-tree algorithms
like ANN and LR. We see that the predictive power of
ANN significantly reduces when applied to small training
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data sets (less then a thousand samples) with high variation.
Tree-based algorithms can deal better with smaller datasets,
but still perform better with an abundance of data, including
all soil types.

All algorithms performed significantly less well for the
data subsets consisting of silty and clay samples. Both sets
are much smaller (less then 800 samples). Specifically, DT
and LR underperform, which we attribute to the relatively
simple mechanism behind the algorithms. They cannot pre-
dict the more non-linear variations in the data, specifically
with a lack of sufficient training data. Boosting and a mul-
titude of decision tree’s (as with XG and RF) improve the
capability to deal with additional variation, similar to how
SVR is superior to LR through its ability to employ non-lin-
ear assumptions. We link the performance reduction for the
clay data set, specifically for ANN, also to the characteristic
of clay samples. Higher clay content and burial depth lead
to higher particle aggregation levels and/or elevated levels
of compaction reducing conductance of water. Both these
processes can not be predicted by PSD data. As van Leer
et al. (2023) explicitly showed, PSD is not the dominant fac-
tor for predicting hydraulic conductivity in aquitards where
most of the clay samples originate from.

Our results on the performance of empirical formulas
with NSE/R?-values ranging between 0.62 and 0.82 agree
with previous studies. For instance, Rogiers et al. (2012)
reported values between 0.62 and 0.75. Typically, Kozeny-
Carman and Hazen are consistently identified as best per-
forming relationships (Chandel and Shankar 2022). Both
come with application restrictions, being only suitable for
coarse sand. These limitations are easily overcome with ML
algorithms.

Tests on feature importance showed that sieve sizes of
1-25 um contribute most to an accurate prediction consis-
tently throughout all tested algorithms. This sieve size coin-
cides roughly with d;¢. Thus, the abundance or lack of very
fine particles determines the ability to conduct flow in the
pore space rather then the median grain size (d5g). This find-
ing is in line with those of Rehman et al. (2022), however in
contrast to them we did not identify a high influence of ds.
The key influence of d; on estimating hydraulic conductiv-
ity is also reflected in many empirical relationships using it
as effective grain diameter, such as the equations of Hazen
(1892) and Kozeny-Carman (Bear 1972).

Our results confirm that predictability of Ky from dyo,
ds0, dgo using ML algorithms is high, particularly for sandy
samples and tree-based algorithms. Model performance
(NSE > 0.87, excluding LR) is slightly higher than obtained
by Rehman et al. (2022) who trained ANN on multiple PSD-
derived variables (ds, d10, dso, dso dso, doo) and deposition
rates, but only to 180 sandy soils samples. Notably, using
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di0, dsp, and dgp is not recommended for clay dominated
samples.

Additional information on porosity does not contribute to
a significant improvement in model performance compared
to only using PSD-derived quantities. It rather limits the
performance when reducing data set size by a lack of poros-
ity measurements. Although porosity is one of the few input
parameters of empirical formulas, it does not significantly
contribute to the estimation of K.

None of the tested algorithms were able to accurately pre-
dict porosity from PSD (for our dataset). While some algo-
rithms managed a good training performance, the testing
performance was poor for all. We did not identify a strong
correlation between PSD and total porosity although this is
typically assumed and porosity values are estimated from
PSD for many empirical formulas (Devlin 2015). However,
effective porosity predictions are often conducted in the
context of gas reservoir exploration at greater depths than
for shallow samples as considered here. But also here, cor-
relation between PSD and total porosity is highly unlikely,
given the importance of compaction which changes porosity
but not PSD, as discussed in Richard et al. (2001).

While we consider our results concerning the use of ML
with PSD data solely and the performance of structurally
different algorithms as general outcomes, there are limita-
tions for application to other data sets. Our results are also
subject to uncertainty. The algorithms were tailored for
application to Dutch aquifer samples which show a rela-
tive abundance of sandy samples. We use cross-validation
during hyperparameter tuning to reduce uncertainty by
limiting overfitting to the training dataset. However, alea-
toric uncertainty related to presence of residual noise in the
dataset (Kendall and Gal 2017) cannot be ruled out despite
extreme care taken to avoid measurement noise (Buma
et al. 2024). The heterogeneity of other parameters within
the subsurface, with varying structural properties, mineral
content, and organic matter across different regions, may
contribute to prediction uncertainty. Since the used dataset
is large (around 4600 points) with a rich sample distribu-
tion, we consider epistemic uncertainty (model performance
variability on unseen test data) to be small. We consider this
also for the clay and silt subsets which may be small in the
context of ML training and testing but still are substantial
(hundreds of samples). However, the dataset might lack
residual anomalies present in other soils. Thus, applica-
tion of the trained algorithms to datasets of non-Dutch soils
require careful consideration.

In this respect, very coarse sands and gravels deserve
special attention since they have so far been underrepre-
sented in the TopIntegraal dataset, as evidenced by Table 2.
For example, only 5% of the sand samples (N=3326) have
sand medians larger than 560 pm. This is caused by physical

constraints to the sample volumes that can be handled in
the lab where the dataset was established. The applied ML
algorithms are not geared towards extrapolation of results
beyond the PSD-ranges of the training data. Therefore,
applicability to very coarse sand and gravel samples could
neither be confirmed nor rejected.

Despite this, the results of this study offer sufficient
potential benefits for water resource management, geother-
mal applications (closed loop, seasonal storage) and envi-
ronmental engineering. These applications tend to compete
for limited subsurface space, notably in fine and medium
coarse sand aquifers. While K is key in determining suit-
ability and potential, the availability of undisturbed core
data as a source of Ky measurement data is limited. Sedi-
ment samples from drillings, on the other hand, are gener-
ally more widely available, e.g. for thousands of wells in
the Dutch national drilling repository. In addition, PSDs are
measured routinely and cheap. The good results obtained
using the ML algorithms indicate that these PSDs can be
used for predicting K¢, thereby significantly contributing
to the parametrization of hydrological models and geother-
mal potential calculations. Because compaction effects are
ignored in the sand subset of the TopIntegraal database,
applicability is still limited to the depth range specified
by the sample depths. Conversion of the results to a depth
domain where the importance of compaction is larger, using
methods that are commonly used in reservoir modeling, will
therefore be an important direction for future research.

5 Summary and conclusion

We studied the application of six machine learning (ML)
algorithms to a soil sample dataset containing textural
and structural information of over 4,500 samples from the
shallow Dutch subsurface. We trained all algorithms with
measured particle size distributions targeted at predicting
hydraulic conductivity measurements from laboratory inves-
tigations. We compared algorithm performances for differ-
ent data-sub sets; we compared ML-estimates of hydraulic
conductivity with five empirical formulas; we assessed the
performance of the algorithm with a reduced set of feature
variables based on PSD-derived variables; and we evaluated
the potential of ML for porosity prediction from PSD. From
our results we draw the following main conclusions as:

e The particle size distribution solely is well suited for
estimating hydraulic conductivity from shallow subsur-
face soil samples (including sand, clay and silt types).

e Tree-based algorithms such as Random Forest and XG-
Boost are best suited for prediction.

@ Springer



434

Stochastic Environmental Research and Risk Assessment (2025) 39:423-435

e PSD-trained
formulas.

e Prediction improves with increasing dataset size. Tree
algorithms are least sensitive to dataset size reduction.

e Sieve sizes in the range of djg are most influential on
model outcomes.

o PSD-derived quantities (dig, ds0,dgo) are well suited
for hydraulic conductivity prediction for sandy samples.
Models trained on these parameters are less appropri-
ate for predictions of hydraulic conductivity of silty and
clay-rich samples. Again tree-based algorithms and XG-
Boost perform best.

e PSD is not a suitable predictor for porosity.Our study
demonstrates as one of the first, the feasibility and ben-
efits of utilizing ML algorithms, particularly tree-based
algorithms for predicting hydraulic conductivity from
PSD data solely. The use of ML can support time-in-
tensive fieldwork and replace inaccurate empirical for-
mulas for estimating hydraulic conductivity. Relying
solely on PSD-data reduces the dependence on other
soil properties.

algorithms outperform the empirical

As within all ML applications, the use of the trained algo-
rithms with other data(sets) has to be carefully evaluated
case-specifically. However, due to the variety within the
Topintegraal dataset used, we expect that the trained algo-
rithms will perform accurately for PSD data from differ-
ent areas. Algorithm application to other datasets from the
Dutch subsurface is work in progress. We see large potential
for application to deep aquifers, which are explored for geo-
thermal potential. There, in-situ measurements of hydraulic
conductivity are infeasible and PSDs from a few samples
are the only source for information.

Other areas of application within the context of the Topin-
tegraal dataset are filling gaps in the data set (i.e. samples
missing a Ky value), quality checking of permeameter test
results, and parametrization of hydrological models.
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