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of contaminants in soil and sediments. At shallow and 
medium depths, hydraulic conductivity impacts ground-
water recharge and the protection of freshwater aquifers 
by overlying aquitards. In deeper systems, it is important 
for the characterization of aquifers with regard to geother-
mal exploration (Veldkamp et al. 2021). Kf  depends on the 
fluid properties as well as the texture and structure of the 
porous medium which makes it subject to intrinsic spatial 
heterogeneity.

Measuring hydraulic conductivity directly in the field 
is timely and expensive, if possible at all. Pumping tests 
provide hydraulic conductivity, but only averages of up to 
several cubic kilometers of porous material. They are fur-
thermore cost and labour intensive. Other methods, such as 
lab-based permeameter tests, require undisturbed samples. 
Most direct methods to determine Kf  are not well suited for 
deep aquifers, where Kf  is typically estimated from corre-
lations to porosity or from particle size distributions.

1  Introduction

Saturated hydraulic conductivity (Kf , also known as Ksat 
or Ks) is the key parameter in groundwater flow and sub-
surface transport processes (Bear 1972). It determines flow 
velocities, and thus arrival times and distribution patterns 
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Abstract
Estimating saturated hydraulic conductivity Kf  from particle size distributions (PSD) is very common with empirical for-
mulas, while the use of machine learning for that purpose is not yet widely established. We evaluate the predictive power 
of six machine learning algorithms, including tree-based, regression-based and network-based methods in estimating Kf  
from the PSD solely. We use a dataset of 4600 samples from the shallow Dutch subsurface for training and testing. The 
extensive dataset provides not only PSD, but also measured conductivities from permeameter tests. Besides training and 
testing on the entire data set, we apply the six algorithms to data subsets for the soil types sand, silt and clay. We further 
test different feature/target-variable combinations such as reducing the input to PSD-derived grain diameters d10, d50 and 
d60 or estimating porosity from PSD. We test feature importance and compare results to Kf  estimates from a selection 
of empirical formulas. We find that all algorithm can estimate Kf  from PSD at high accuracy (up to R2/NSE of 0.89 
for testing data and 0.98 for the entire data set) and outperform empirical formulas. Particularly, tree-based algorithms 
are well suited and robust. Reducing information in the feature variables to grain diameters works well for predicting Kf  
of sandy samples, but is less robust for silt and clay rich samples. d10 also shows to be the most influential feature here. 
An interesting, but not surprising outcome is that PSD is not a suitable predictor for porosity. Overall, our results confirm 
that machine learning algorithms are a powerful tool for determining Kf  from PSD. This is promising for applications to 
e.g. deep-drilling data sets or low-effort and robust Kf -estimation of single samples.
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The particle size distribution (PSD) is the size-sorted list 
of particle diameters present in a porous material sample. 
The PSD is classically obtained through sieve analysis, 
where the sample is shifted through a series of sieves with 
decreasing gap size while the amount of passing material is 
weighed. Novel techniques under use are laser diffraction 
which is advantageous in workload, required sample size 
and number of sieve sizes determined compared to classical 
sieving.

Traditionally, PSD information is translated to hydraulic 
conductivity through empirical formulas relating effective 
grain size diameters and total porosity to Kf . The first rela-
tion was developed by Hazen in 1892. Many more followed, 
e.g. Devlin (2015) compiled a spreadsheet program which 
calculates Kf  from PSD curves using 15 different methods. 
However, the procedure is error prone as each empirical 
method was developed for and/or calibrated to a specific 
type of material. Multiple studies showed that the empiri-
cal relations are of low accuracy e.g. Vienken and Dietrich 
(2011), Cabalar and Akbulut (2016), Chandel and Shankar 
(2022).

In recent years, Machine Learning (ML) has been 
increasingly applied to geoscientific research (Tahmasebi 
et al. 2020). While the application of ML has become popu-
lar for identifying permeability (translatable to hydraulic 
conductivity) from image processing, we put it to use for 
physical parameter estimation from a numerical dataset of 
soil properties. One of the first applications of ML in this 
context was the case of the software Rosetta (Schaap et al. 
2001) focusing on unsaturated soils where other (structural/
textural) parameters impact flow behaviour compared to 
saturated soils. Studies, such as Jorda et al. (2015), Araya 
and Ghezzehei (2019), Kotlar et  al. (2019), Sihag et  al. 
(2019) showed excellent predictability of saturated and 
near-saturated hydraulic conductivity with ML through the 
use of a wide range of input parameters, such as textural 
properties of the solid matrix, like sand, clay and silt con-
tent, and structural properties like land use and bulk density. 
However, extensive textural and structural information is 
not always available, particularly for deeper soils. It remains 
unknown how good ML works with only textural informa-
tion, such as the PSD of a sample.

Various algorithms have been applied to predict (satu-
rated) hydraulic conductivity, such as support vector regres-
sion (Mady and Shein 2018), neural network algorithms 
(Williams and Ojuri 2021), tree-based regression (Granata 
et al. 2022; van Leer et al. 2023) or boosted regression (Jorda 
et  al. 2015). Most research train one (Williams and Ojuri 
2021; van Leer et al. 2023; Jorda et al. 2015) or explore two 
types of algorithms (Araya and Ghezzehei 2019; Granata 
et al. 2022). However, which type of algorithm is generally 
best suited remained unstudied.

We address these gaps by studying the following research 
questions: (i) Can we predict saturated hydraulic conductiv-
ity with PSD data only? (ii) Which ML algorithms are best 
suited? (iii) How do results depend on the data set size and 
composition? And (iv) how do results compare to empirical 
formulas?

Our general approach is to apply the PSD as set of fea-
ture variables to six machine learning algorithms for predict-
ing saturated hydraulic conductivity as target variable. The 
tested algorithms are: (i) Decision tree (DT), (ii) Random 
forest (RF), (iii) Linear Regression (LR), (iv) Support vector 
regression (SVR), (v) XGboost (XG) and (vi) Artificial neu-
ral network (ANN). The first five algorithms are ML based 
while ANN is a deep learning algorithm. We compare the ML 
estimate performance against five selected empirical formu-
las. Additionally, we evaluate the effectiveness of using PSD-
derived variables: particle diameters d10, d50 and d60 (which 
represent the maximum particle diameter of 10%, 50% and 
60% material passing) as predictors for Kf  to possibly mini-
mize measurement requirements. Finally, we assess if poros-
ity can be predicted through PSD measurements.

We train all ML algorithms on an extensive dataset with 
almost 4600 samples, originating from the TopIntegraal 
drilling and sampling program of the shallow (30 − 50 m 
depth) Dutch subsurface (Buma et al. 2024). We compare 
algorithm performance for the entire data set as well as for 
soil-type data subsets. Most studies investigating the appli-
cation of ML for predicting Kf  of aquifers (rather than of 
soil) have a few hundred samples available, either from a 
specific location or a collection of literature data. In con-
trast, we can gain novel insights by using this large, consis-
tent data set which originates from many locations all over 
the Netherlands while all samples have been analyzed iden-
tically, thus guaranteeing consistency.

2  Methodology

2.1  Data

The dataset under study originates from the TopIntegraal 
Program (Buma et  al. 2024). As the program is ongoing 
with data being added on availability, we used version 1.0 
of the dataset, dated April 29th 2024. The published version 
can be downloaded from the groundwater portal of TNO 
Geological Survey of the Netherlands, but does not contain 
the associated PSD data. We make use of 4593 out of the 
4621 samples from the dataset which have PSD data avail-
able. This dataset can be found in the Github Repository 
(Zech 2024). All samples were taken from the shallow sub-
surface (< 50 m) over a 15 year period and cover about 60% 
of the Netherlands. Although they stem from a variety of 
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lithostratigraphical units, the majority of samples belong to 
the sandy category due to the nature of Dutch soil.

The PSDs were obtained through the malvern laser dif-
fraction method following the protocol of Baars (2004). 
The gravel fraction (> 2mm) was excluded. The samples 
were undisturbed and non-mixed on arrival at the labora-
tory. The identification of the particle size distribution was 
performed after removal of the organic fraction and of the 
carbonate fraction. Distribution of particle sizes were deter-
mined for 35 sieve sizes ranging from 0.01 − 0.1   µm to 
1680 − 2000  µm.

Each sample is classified for its lithoclass according to 
the NEN5104 standard for Dutch soils (NEN2019 2019). 
The NEN5104 classification is based on PSD and is com-
pletely determined by the weight of the sand, silt, clay and 
organic matter content. All lithoclasses are listed in Table 1. 
The function we used can be found in the collection of 
python-scripts at Github.

We assign all samples to one of three main soil types 
based on their lithoclass: sand Z, silt L or clay K. Table 1 
specifies the distribution of lithoclasses to the categories. 
These categories form three sub-data sets Top-sand, Top-
Silt and Top-Clay. The latter one also contains the 158 peat 
samples for which PSD data could be measured. They have 
high amounts of organic matter (more then 50% for 80 out 
of 158 samples) which is more determining for Kf  than 
sand-lutum-silt percentages.

Saturated hydraulic conductivity Kf  of non-cohesive 
samples was measured with an Eijkelkamp permeameter 
conform to European Standards (CEN ISO/TS 17892-
11). Kf  measurements were assessed on their quality and 

insufficient samples were filtered out. Details of the mea-
surement process and data quality checks are provided in 
the Supporting Information (SI). Further information on the 
TopIntegraal data set can be found in van Leer et al. (2023) 
and Buma et al. (2024).

Table 2 provides the descriptive statistics of the dataset 
for the key information we use. This contains the distribu-
tion of log10-transformed measured conductivity Kf , statis-
tics on sand, silt and clay content of the samples as well as 
d10 and d50. The mean and median value of sand in Table 2 
reflect the dominance of sandy samples in the dataset. Con-
sequently, the median particle size d50 is relatively large and 
the mean log10 Kf  is high. Note the considerable spread of 
hydraulic conductivities (over 8 orders of magnitude) with 
values from 10−6.7 [m/d] to 102 [m/d].

Descriptive statistics for the subsets on sand (72.4% of 
all samples), clay (17%) and silt (10.6%) are provided in 
Tables S2, S3, and S4 in the SI as these subsets are also used 
for analysis with ML algorithms.

2.2  Empirical formulas for comparison

A common way to estimate hydraulic conductivities is by 
relating its value to PSD-derived quantities (such as d10) 
through empirical relationships, see e.g. the summary of 15 
methods in Devlin (2015).

Following Vukovic and Soro (1992), most methods can 
be written in the general form Kf = ρg

µ · N · ϕ(θ) · d2
eff 

where ϕ(θ) is a function of the porosity θ, deff is a form 
of effective grain diameter, and N is a method-specific con-
stant. The factor ρg

µ  entails the water density ρ, the gravita-
tional constant g, and the dynamic viscosity µ. The choices 
of ϕ, deff and N are method specific. Most empirical formu-
las come with an application limit, being only applicable to 
a certain range of effective grain diameters.

We make use of five empirical methods for compari-
son to the performance of the six ML algorithms: (i) Barr 
(Barr 2001), (ii) Alyamani & Sen (Alyamani and Şen 1993) 
[both as defined in Devlin (2015)], (iii) Shepherd (Shep-
herd 1989), (iv) Kozeny (Kozeny 1927), and (v) Van Baaren 
(Van Baaren 1979). The selection is based on their unlimited 
applicability. Specifics on equations and implementations 
are provided in the SI. Note that the empirical algorithms 
were typically developed for clean sand. Thus, poorer 

Table 1  Lithoclasses, sorted by the categorization into main lithology
Z - sand L - silt K - clay
Zs1 - sand, weak silty Lz1 - loam, weak 

sandy
Ks1 - clay, 
weak silty

Zs2 - sand, moderate silty Lz3 - loam, strong 
sandy

Ks2 - clay, 
moderate silty

Zs3 - sand, strong silty Ks4 - clay, 
extreme silty

Ks3 - clay, 
strong silty

Zs4 - sand, extreme silty Kz1 - clay, 
weak sandy

Zk - sand, clayey Kz2 - clay, 
moderate sandy
Kz3 - clay, 
extreme sandy
p - peat

Table 2  Descriptive statistics of entire dataset (4593 samples)
log10Kf    (m/d) d10 (µm) d50 (µm) Clay (%) Silt (%) Sand (%)

Min −6.66 0.4 2.7 0 0 0
Max 2.28 680 1059 85.2 82.3 100
Median 0.3 93 181 1.3 3.34 95.34
Mean −0.63 102 202 7.37 15.9 76.8
Standard deviation 2 91 157 12.3 21.9 32.3
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case of XGBoost the weak learners are decision trees, and 
each tree is trained to correct the errors made by the previous 
tree. This process continues until the desired level of accu-
racy is achieved. To optimize the loss function, XGBoost 
uses a combination of gradient descent and second-order 
derivatives. This enables the algorithm to efficiently handle 
high-dimensional data and complex relationships between 
features. In addition to its efficient optimization techniques, 
XGBoost also uses regularization to prevent overfitting 
such as the Ridge expression (Chen and Guestrin 2016). 
This involves adding penalties to the loss function for com-
plex models, ensuring that the algorithm produces a more 
generalizable model that performs well on unseen data. The 
downside of the algorithm is the huge amount of hyper-
parameters (35 in the scikit-learn implementation), 
entailing that model fitting is time and computer intensive. 
We limit hyperparameter tuning to the maximum tree depth 
max-depth and the learning rate while leaving the remaining 
hyperparameters on default values.

Linear regression (LR) is a classical mathematical 
method where the input variables are linearly fitted to the 
output variable by minimizing a cost function character-
izing the difference between the linearly transformed input 
and the feature variables. Multiple ways exist to fit the opti-
mization coefficients to the data. We use a cost function with 
a Ridge term to reduce over-fitting and to obtain the optimal 
cost function. Consequently, we tune the penalty term reg-α 
in the Ridge regression as hyperparameter. The higher its 
value, the higher the penalty given for increasing complex-
ity in the algorithm.

Support vector regression (SVR) is based on the Sup-
port Vector Machine principle, which trains by finding a 
hyperplane that separates the training data and assigns new 
data points to a class based on their position within the grid 
of a linear problem. To optimize prediction accuracy, the 
algorithm fits the error within a certain margin, either by a 
hard or soft margin that allows some misclassification. We 
tune the optimization parameter C. It compromises between 
correct classification of a sample against the maximization 
of the decision function’s margin. For larger values of C, 
smaller margins will be preferred if this leads to better pre-
dictions. A lower C promotes a larger margin at the cost of 
the training efficiency.

SVR can be trained on a non-linear dataset by introduc-
ing kernel functions that transform the data into a higher 
dimensional space. We preliminary tested three kernels: 
linear, polynomial, and radial. We then focused on SVR 
with radial basis function K(x, y) = e(−γ|x−y|2). We tune 
the hyperparameter γ which is the inverse of the radius that 
the algorithm utilizes to select samples as support vectors. 
Thus, low γ values use a wider range of support vectors and 
vice versa.

performance for clayey soils can be expected for methods 
without application limit.

2.3  ML model workflow

2.3.1  Algorithms and hyperparameters

We use six well established methods in machine and deep 
learning: three tree-based, two regression-based and one lay-
ered deep learning algorithm. The choice was made based 
on (i) established popularity (Sarker 2021), (ii) easiness to 
implement (using Python packages), (iii) and structural dif-
ferences. The combination of the six selected techniques 
allows exploring trade-offs between complexity of the algo-
rithms, training time and accuracy.

Used algorithms are shortly outlined with their specif-
ics and the algorithm-specific hyperparameters which we 
tune during the training process. For detailed information 
on the principles of the algorithms, the reader is referred 
to literature (Hastie et al. 2009; Russell and Norvig 2020; 
Tahmasebi et  al. 2020). All models are set up using the 
scikit-learn library in Python (Pedregosa et al. 2011). 
Selected hyperparameters are chosen from availability in 
scikit-learn and expected influence on the outcome. 
For tuning processes, the popular 10-times cross-validated 
grid search technique is used.

Decision tree (DT) is structured like a tree, in which 
branches and leaves arise from nodes. The algorithm parti-
tions the dataset recursively based on the most significant 
features. The algorithm continues to split the data into 
groups till the target variable is sufficiently predicted to an 
error margin as defined by the user. Without predefining 
the end node, this algorithm is prone to overfitting. Conse-
quently, the hyperparameters we tune are the maximum tree 
depth (max-depth) and the minimum number of samples in 
each split group (min-samples-split).

Random forest (RF) is an ensemble learning algorithm 
that operates on constructing multiple DTs. A multitude of 
DTs is drawn randomly by bootstrapping (Breiman 2001) 
where each DT selects a range of feature variables. The 
predicted outcome of the target variable is constructed by 
averaging over all trees and evaluating the process through 
aggregation. RF is less prone to overfitting than DT, but 
requires a larger training dataset and is subject to higher 
computation time. Tuned hyperparameters are the same as 
those of DT (max-depth and min-samples-split) as well as 
the number of estimators (N-estimators).

XGboost (XG) is a gradient boosting algorithm work-
ing on the ensemble technique like RF. It improves the per-
formance of a predictive model iteratively by adding weak 
learners to the ensemble. Boosting is a technique that com-
bines multiple weak learners to form a strong learner. In the 
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results. For ANN and SVR, all input variables are standard-
ized. The full ML application workflow is explained in more 
detail in Sect. 2 of the SI including a graphical display of 
the workflow and the results of the hyperparameter tuning.

2.3.3  Additional strategies of data evaluation

We trained the six algorithms on other combinations of fea-
ture and target variables to test predictability of conductiv-
ity from PSD derived quantities and links to porosity. We 
started from the full data set (Top-All) and calculated d10, 
d50 and d60 from the PSD. Furthermore, we filtered the data 
set to samples where porosity measurements were available 
resulting in a reduced data set Top-Por with 1768 samples. 
All samples of Top-Por belong to the sand soil class. Sta-
tistics for the Top-Por data set are available in Table S5 in 
the SI.

From the derived information and filtered data set, we 
came up with three additional application strategies, based 
on the feature and target variable combinations:

	● Predict Kf  (target) from d10, d50, d60 (features) for the 
Top-All dataset.

	● Predict Kf  (target) from d10, d50, d60 and porosity θ 
(features) applied to the reduced Top-Por dataset.

	● Predict porosity θ (target) from PSD (features) using the 
Top-Por dataset.To allow performance comparison for 
the different feature/target combinations on the reduced 
Top-Por dataset, we repeated the training and testing of 
the standard target/feature combination (Kf  from PSD) 
for the reduced Top-Por data set. Technical details and 
hyperparameter tuning for all additional ML applica-
tions are again provided in the SI.

2.3.4  Model evaluation

Our standard algorithm performance measure is the Nash-
Sutcliffe model efficiency (NSE):

NSE(z, y) = 1 −
∑n

i=1 (zi − yi)2

∑n
i=1 (zi − z̄)2 ,� (1)

where z̄ is the average of z, which we consider as sample 
value vector while y is the model output vector.
The NSE relates the variability explained by the model to 
the total variability in the sample values. It thus measures 
the percentage of variability within the z values that can 
be explained by y. A value close to one indicates a useful 
model while a value close to or below zero indicates that 
the model is not well suited. Note that the NSE reflects the 
coefficient of determination (R2) for statistical models, i.e. 
for the model performance during the training phase.

Artificial neural network (ANN) mimics the workings 
of the human brain and therefore belongs to the subsection 
of Deep Learning. ANN is structured into layers, including 
an input, output and a number of hidden layers. Each layer 
consists of a number of neurons, where number of neurons 
in the input and output layers refer to the number of input 
and output parameters. The number of hidden layers and 
the number of neurons per hidden layer are hyperparam-
eters. Each neuron represents a parameterized and bounded 
function, which receives input data and subsequently pro-
duces output data to pass on (Tahmasebi et al. 2020). The 
algorithm is trained through back-propagation, where the 
derivative of the loss function (based on the mean square 
error between output values and target variables) is updated 
for all neurons in the network. It is then used to update the 
weight and bias according to the gradient descent technique.

We tested the number of hidden layers (up to three) and 
tuned the number of neurons (hidden-layer-size). We fur-
ther tune the Activation which determines how the weighted 
sum of the input is transformed into output. We either use 
relu (Rectified Linear Unit) which transforms every nega-
tive input value into the value of zero, logistic which returns 
the logistic sigmoid functios f(x) = 1

1+exp(−x) , or tanh 
which returns the hyperbolic tangent of the input value, 
resulting in values between + 1 and − 1 (Pedregosa et al. 
2011). We tune the learning rate which determines the size 
of the change that is made during each backpropagation. It 
is either constant or adaptive. The latter adjusts the learning 
rate based on the success of the model. The tested ranges for 
all hyperparameters and all algorithms are summarized in 
Table S6 in the SI.

2.3.2  Standard model application

Standard input features for the algorithms are the PSD val-
ues measured in 35 sieve sizes in cumulative form. The tar-
get variable for training and testing is the log10-transformed 
value of the saturated hydraulic conductivity Kf . 4593 sam-
ples of the TopIntegraal data set are included.

Each algorithm is applied with these features on: the 
entire data set Top-All and on three subsets based on the soil 
type: Top-Sand, Top-Clay and Top-Silt. Soil type classifica-
tion is according to the NEN 5104 standard for Dutch soils 
(NEN2019 2019) as outlined in Sect. 2.1. Descriptive statis-
tics of the subsets are provided in Tables S2, S3, and S4 in 
the SI. Each dataset is trained for the six algorithms.

The analysis is conducted with the Python package 
scikit-learn (Pedregosa et  al. 2011). Python work-
flows are available at Github (Zech 2024). We used the com-
mon 80–20 ratio for split into training data and testing data. 
Preliminary tests showed that the initial split does not impact 
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the SI. Estimates for DT show clear discrete tree classes. 
The best performance of XG and RF in terms of the NSE 
(Fig. 1) is clearly supported by narrow distribution of the 
scatter around the 1:1 line. Also confidence intervals, rep-
resented by the 5th and 95th percentiles, of predictions are 
very narrow.

All algorithms tend to overestimate low conductivi-
ties and slightly underestimate high values. This lack in 
predicting the extreme values is related to the fact that 
algorithms are based on interpolation. When there are not 
enough extreme values in the training data set, these val-
ues are not predicted for the test data set. XG, SVR and 
ANN show the least variation around low conductivities. 
The density of (measured) samples is lower in the range of 
Kf ∈ [10−1, 10−3]m/d. This coincides with less accurate 
predictions visible also in broader error bands (5th and 
95th percentiles). All algorithms have the least deviation for 
sandy samples, which we relate to the abundance of samples 
within this soil category. At the same time, it supports our 
hypothesis that conductivity of sandy samples can be very 
well predicted purely on PSD information.

3.1.1  Comparison to empirical formulas

When estimating conductivity with a selection of empirical 
formulas (Sect. 2.2), we see that they perform less well than 
ML algorithms. The NSE of the best performing empirical 
formula, the Barr method, is 0.83 which is the same as the 

3  Results and interpretation

3.1  Performance for standard features

Figure 1 shows a comparison of the performance, in terms 
of the measure NSE, of all six algorithms for the Top-All 
dataset. We show results for the training data (80%), the 
testing data (20%) and all samples (100%). Figure 2 shows 
the NSE of all six algorithms applied to the three soil type 
subsets with the standard features. The performance refers 
to the entire data sets using training and test data combined. 
Accompanying figures on algorithm performance compari-
son for the soil type subsets on the training and test data set 
are provided in the SI.

All algorithms show good performance for the entire 
dataset with high NSE values above 0.83. ANN, RF and 
XG perform best. Splitting the dataset into soil categories 
decreases performance. This is particularly the case for DT 
and LR for silt and clay data where the number of samples is 
significantly lower. Surprising is also the comparably poor 
performance of ANN for the clay data set. We explain part 
of the performance reduction with the smaller size of the 
training data. However, this is not impacting all algorithms 
equally as RF and XG still show good performance on all 
soil class sub sets with NSE values above 0.8.

Figure  3 shows scatter plots of predicted against mea-
sured log-hydraulic conductivity for the Top-All dataset with 
complementary figures for the soil type subset provided in 

Fig. 2  Performance measure NSE of all six algorithms (in colored bars) for the data subsets on soil types Top-Sand (3326 samples), Top-Silt (485 
samples) and Top-Clay (782 samples) for the standard features applied to all samples

 

Fig. 1  Performance measure NSE of all six algorithms (in colored bars) for full set of samples (100%), the training data (80%), the testing data 
(20%) for the standard features (Kf  from PSD) applied to the data set Top-All
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3.1.2  Feature importance

We tested the feature importance, i.e. how much each fea-
ture - here each sieve size - contributes to the fitted ML 
algorithm’s statistical performance. We made use of the 
permutation importance algorithm of scikit-learn 
(Pedregosa et al. 2011). This inspection technique involves 
random shuffling of the values of a single feature to observe 
the degradation of the model’s score. Figure  5 shows the 
importance mean and standard deviation of each feature for 
the RF algorithm applied to the Top-All data set. The higher 
the importance mean, the more influence the feature has.

Notably, the small sieve fractions between 2 and 25 µm 
have the highest impact while the larger sieve sizes contrib-
ute very little to the performance of RF. Thus, the fraction of 
the clay and small silt particles determine the conductivity 
for the data set predominantly containing sandy samples. 
Figure 5 might suggest that it does not really matter how 
coarse a sand is for Kf . However, in combination with Fig. 3 
we rather link this to the fact that Kf  of (medium) coarse 
sand is spread over less orders of magnitude. The picture 
changes for the data set filtered to silt and clay samples (SI, 

NSE of LR being the worst performing ML algorithm with 
a NSE of 0.83 for the full data set.

A visual comparison of predicted Kf  values for each 
sample versus measured values is displayed in Fig. 4a for 
the Barr method. The Barr formula generally overestimates 
the Kf  measurements particularly at the lower end. A simi-
lar display of results for the other tested empirical formulas 
is provided in the SI. All formulas tend to either systemati-
cally over- or underestimate Kf -values.

Figure 4b shows the scatter of hydraulic conductivities 
predicted by the Barr formula (being the best performing 
empirical formula) against the Kf -values estimated with 
RF (being one of the best performing ML algorithms with 
a NSE of 0.97 for the fit to the measurements). Notably, the 
NSE of 0.89 for the fit of Barr Kf -values to RF estimates 
is higher than the one for the fit to the measured data. This 
indicates an overlap in values not being well predicted by 
both methods. These are predominantly samples from the 
silt and clay soil classes with high measured Kf -values but 
low estimates of Kf  (lower right corner in Fig.  4a). This 
might indicate a poorer quality of the samples which will be 
subject of future research.

Fig. 3  Algorithm predicted log-conductivity (y-axis) versus measured data (x-axis) for all six algorithms applied to the full Top-All dataset. The 
gray line represents the 1:1 line while black lines represent the 5th and 95th percentiles of predictions. Colors indicate lithoclasses (Table 1)
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will be most significant for hydraulic conductivity predic-
tion. The particle size range coincides relatively well with 
the arithmetic mean of d10 in Table 2, and even better with 
the geometric mean d10 of all samples, being 43 µm.

3.2  Performance for alternative feature-target 
combinations

3.2.1  PSD-derived variables on Top-All

Figure 6 shows the performance of all algorithms using only 
d10, d50 and d60 as feature variables (instead of the entire 
PSD) for estimating hydraulic conductivity for the Top-All 
dataset. The tree based algorithms, DT and RF, as well as 
XG show high performance with NSE values above 0.9, 
almost as good as when using the entire PSD (Fig. 3), as is 
also visible in the similar scatter of predicted versus mea-
sured log10Kf  values. The low NSE of 0.62 for LR is due to 
the poor prediction of low-conductivity values. Also, ANN 
and SVR have difficulties predicting very low Kf -values 
(< 10−4m/d) resulting in lower NSEs then when using the 
entire PSD as feature variable. Note that the number of low 
Kf  samples is much smaller than the number of sandy sam-
ples, thus the NSEs remain relatively high for all algorithms.

From the soil type perspective, Fig. 6 reveals that d10, 
d50 and d60 are sufficient to predict Kf  for sandy samples 
with any of the ML algorithms. Low Kf  values for silty 
and clay samples are only well predicted by some of the 
algorithms.

3.2.2  Prediction for the Top-Por data set

We studied the impact of having information on porosity on 
the reduced data set Top-Por (1768 samples). Performance 
measures of the six algorithms for different tested feature-
target combinations are compared in Fig. 7. Further visual-
izations of results are provided in the SI, including scatter 
plots and NSE values for performance on training and test-
ing data.

We see that the algorithms perform very similar on the 
reduced data set for the standard feature-target combina-
tion. Comparing Fig. 1 (left) vs. Fig. 7 (center) shows only 
slightly lower NSE values for the Top-Por data set. The 
highest NSE reduction is for ANN, while LR remains the 
worst performing algorithm.

When comparing the algorithms’ performances for esti-
mating Kf  from d10, d50, d60 and porosity θ, we see again 
that XG and RF outperform the other algorithms, while all 
perform fairly good with the lowest NSE of 0.66 for LR. 
Notably, all algorithms have relatively similar NSE for the 
testing data set with values between 0.57 and 0.71. While 
the NSE for the training data is only a little higher for ANN, 

Fig. S13), where there is no clear pattern about which sieve 
fractions dominate the RF algorithm accuracy.

The small sieve sizes (< 25 µm) show a high importance 
in all six tested algorithms (SI, Fig. S14). While DT and XG 
show similar patterns as RF (Fig. 5), LR, SVR and ANN 
take the higher sieve sizes stronger into account. The strong 
impact of small sieve sizes also supports the idea to test only 
effective grain diameters as features, where particularly d10 

Fig. 5  Feature importance of each PSD sieve size, for the RF algorithm 
applied to the Top-All data set. The height of each bar indicates the 
mean importance of feature, black whiskers show standard deviation

 

Fig. 4  Predicted log-conductivity of Barr formula (y-axis) versus mea-
sured data (top) and versus values predicted by RF (bottom) applied to 
the entire Top-All dataset. The gray line represents the 1:1 line. Colors 
indicate lithoclasses (Table 1)
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The benefit of having additional information on porosity 
is limited. Scores for the target-feature combination dX  & 
θ → Kf  are almost identical (marginally higher) than those 
of dX → Kf  for the Top-Por data set. Thus, in contrast 
to empirical formulas, ML algorithms do not benefit from 
information on porosity.

Algorithm testing for predicting porosity from PSD (as 
often used in practice) showed a relatively poor fit. Of all 

SVR and LR (between 0.66 and 0.76), it is above 0.9 for 
XG, RF and DT (Fig. S.17). Thus, the better performance 
of the tree-based algorithms on the entire Top-Por data set 
(Fig. 7 (left) is due to their better training capability. NSE 
values for the combination dX&θ → Kf  are only slightly 
lower than those of the standard target-feature combination 
(PSD → Kf ) applied to Top-Por. We relate the reduced per-
formance mostly to the smaller data set.

Fig. 7  Performance measure NSE of all six algorithms (colored bars) 
for the different target-feature variable combinations tested: estimat-
ing Kf  from d10, d50, d60 and porosity (left), estimating Kf  from 

the PSD (center, for comparison) and estimating porosity from the 
PSD (right) based on the data subset Top-Por for all samples (testing 
+ training data)

 

Fig. 6  Measured log-conductivity (x-axis) versus algorithm predicted 
Kf  values (y-axis) based on d10, d50 and d60 as feature variables for 
all six algorithms applied to the full Top-All dataset. The gray line rep-

resents the 1:1 line while black lines represent the 5th and 95th per-
centiles of predictions. Colors indicate lithoclasses (Table 1)
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data sets (less then a thousand samples) with high variation. 
Tree-based algorithms can deal better with smaller datasets, 
but still perform better with an abundance of data, including 
all soil types.

All algorithms performed significantly less well for the 
data subsets consisting of silty and clay samples. Both sets 
are much smaller (less then 800 samples). Specifically, DT 
and LR underperform, which we attribute to the relatively 
simple mechanism behind the algorithms. They cannot pre-
dict the more non-linear variations in the data, specifically 
with a lack of sufficient training data. Boosting and a mul-
titude of decision tree’s (as with XG and RF) improve the 
capability to deal with additional variation, similar to how 
SVR is superior to LR through its ability to employ non-lin-
ear assumptions. We link the performance reduction for the 
clay data set, specifically for ANN, also to the characteristic 
of clay samples. Higher clay content and burial depth lead 
to higher particle aggregation levels and/or elevated levels 
of compaction reducing conductance of water. Both these 
processes can not be predicted by PSD data. As van Leer 
et al. (2023) explicitly showed, PSD is not the dominant fac-
tor for predicting hydraulic conductivity in aquitards where 
most of the clay samples originate from.

Our results on the performance of empirical formulas 
with NSE/R2-values ranging between 0.62 and 0.82 agree 
with previous studies. For instance, Rogiers et  al. (2012) 
reported values between 0.62 and 0.75. Typically, Kozeny-
Carman and Hazen are consistently identified as best per-
forming relationships (Chandel and Shankar 2022). Both 
come with application restrictions, being only suitable for 
coarse sand. These limitations are easily overcome with ML 
algorithms.

Tests on feature importance showed that sieve sizes of 
1–25 µm contribute most to an accurate prediction consis-
tently throughout all tested algorithms. This sieve size coin-
cides roughly with d10. Thus, the abundance or lack of very 
fine particles determines the ability to conduct flow in the 
pore space rather then the median grain size (d50). This find-
ing is in line with those of Rehman et al. (2022), however in 
contrast to them we did not identify a high influence of d50. 
The key influence of d10 on estimating hydraulic conductiv-
ity is also reflected in many empirical relationships using it 
as effective grain diameter, such as the equations of Hazen 
(1892) and Kozeny-Carman (Bear 1972).

Our results confirm that predictability of Kf  from d10, 
d50, d60 using ML algorithms is high, particularly for sandy 
samples and tree-based algorithms. Model performance 
(NSE ≥ 0.87, excluding LR) is slightly higher than obtained 
by Rehman et al. (2022) who trained ANN on multiple PSD-
derived variables (d5, d10, d30, d50 d60, d90) and deposition 
rates, but only to 180 sandy soils samples. Notably, using 

algorithms, only XG and RF have high NSE values above 
0.8 for the fit to the entire data. But this is the result of a 
high fit to the training data, while the score on the 20% test-
ing data is much lower with 0.41 and 0.39. Thus, predictive 
capacity of ML algorithms for this feature-target combina-
tion is very limited.

4  Discussion

Our study is the first to show that PSD data is sufficient to 
estimate saturated hydraulic conductivity with high accu-
racy using ML. Considering the challenges associated with 
measuring hydraulic conductivity and the limitations in the 
use of empirical formulas, the performance of ML is very 
promising. While many studies report that ANN is highly 
suitable, we find that tree-based algorithms such as Ran-
dom Forest and XGBoost outperform ANN for this type of 
application.

We could confirm literature results on the good perfor-
mance of ML algorithms for estimating hydraulic conduc-
tivity from soil structural properties: Rogiers et al. (2012) 
for instance, obtained an R2 of 0.93 on their entire dataset 
of 173 samples using an adapted ANN. Similarly apply-
ing ANN, other authors achieved high R2 using a larger 
set of feature variables, including carbon content, pH, bulk 
density, or the plasticity index (Williams and Ojuri 2021; 
Albalasmeh et  al. 2022; Yamaç et  al. 2022). Noticeably, 
Trejo-Alonso et al. (2021) were able to predict Kf  over a 
large range with an R2-value of 0.97 on a dataset totaling 
900 samples. They made use of ANN and seven types of 
measurement for feature variables: percentage of clay, sand 
and silt, bulk density, permanent wilting point, moisture 
content, and field capacity. The largest study in this context 
was conducted by Araya and Ghezzehei (2019) who made 
use of over 27,000 samples from 45 US datasets with pre-
dominantly sandy samples. Using a large set of feature vari-
ables, including bulk density, organic carbon content, clay, 
silt and sand fraction, coarse sand fraction, d10, d50 and d60, 
they obtained an overall R2-value of 0.90.

We observed a strong impact of data set size and of the 
soil type, i.e. sand, silt, and lutum fraction of the samples. 
The entire data set Top-All showed the best algorithm per-
formance, which we partly link to the highest amount of 
training data, but also to the broad range of soil types in the 
samples providing the best base for training. As described 
in Althnian et al. (2021), the representative variation of the 
original sample compared to the training sample is most 
important for good model performance. The need for large 
training datasets holds especially for non-tree algorithms 
like ANN and LR. We see that the predictive power of 
ANN significantly reduces when applied to small training 
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constraints to the sample volumes that can be handled in 
the lab where the dataset was established. The applied ML 
algorithms are not geared towards extrapolation of results 
beyond the PSD-ranges of the training data. Therefore, 
applicability to very coarse sand and gravel samples could 
neither be confirmed nor rejected.

Despite this, the results of this study offer sufficient 
potential benefits for water resource management, geother-
mal applications (closed loop, seasonal storage) and envi-
ronmental engineering. These applications tend to compete 
for limited subsurface space, notably in fine and medium 
coarse sand aquifers. While Kf  is key in determining suit-
ability and potential, the availability of undisturbed core 
data as a source of Kf  measurement data is limited. Sedi-
ment samples from drillings, on the other hand, are gener-
ally more widely available, e.g. for thousands of wells in 
the Dutch national drilling repository. In addition, PSDs are 
measured routinely and cheap. The good results obtained 
using the ML algorithms indicate that these PSDs can be 
used for predicting Kf , thereby significantly contributing 
to the parametrization of hydrological models and geother-
mal potential calculations. Because compaction effects are 
ignored in the sand subset of the TopIntegraal database, 
applicability is still limited to the depth range specified 
by the sample depths. Conversion of the results to a depth 
domain where the importance of compaction is larger, using 
methods that are commonly used in reservoir modeling, will 
therefore be an important direction for future research.

5  Summary and conclusion

We studied the application of six machine learning (ML) 
algorithms to a soil sample dataset containing textural 
and structural information of over 4,500 samples from the 
shallow Dutch subsurface. We trained all algorithms with 
measured particle size distributions targeted at predicting 
hydraulic conductivity measurements from laboratory inves-
tigations. We compared algorithm performances for differ-
ent data-sub sets; we compared ML-estimates of hydraulic 
conductivity with five empirical formulas; we assessed the 
performance of the algorithm with a reduced set of feature 
variables based on PSD-derived variables; and we evaluated 
the potential of ML for porosity prediction from PSD. From 
our results we draw the following main conclusions as:

	● The particle size distribution solely is well suited for 
estimating hydraulic conductivity from shallow subsur-
face soil samples (including sand, clay and silt types).

	● Tree-based algorithms such as Random Forest and XG-
Boost are best suited for prediction.

d10, d50, and d60 is not recommended for clay dominated 
samples.

Additional information on porosity does not contribute to 
a significant improvement in model performance compared 
to only using PSD-derived quantities. It rather limits the 
performance when reducing data set size by a lack of poros-
ity measurements. Although porosity is one of the few input 
parameters of empirical formulas, it does not significantly 
contribute to the estimation of Kf .

None of the tested algorithms were able to accurately pre-
dict porosity from PSD (for our dataset). While some algo-
rithms managed a good training performance, the testing 
performance was poor for all. We did not identify a strong 
correlation between PSD and total porosity although this is 
typically assumed and porosity values are estimated from 
PSD for many empirical formulas (Devlin 2015). However, 
effective porosity predictions are often conducted in the 
context of gas reservoir exploration at greater depths than 
for shallow samples as considered here. But also here, cor-
relation between PSD and total porosity is highly unlikely, 
given the importance of compaction which changes porosity 
but not PSD, as discussed in Richard et al. (2001).

While we consider our results concerning the use of ML 
with PSD data solely and the performance of structurally 
different algorithms as general outcomes, there are limita-
tions for application to other data sets. Our results are also 
subject to uncertainty. The algorithms were tailored for 
application to Dutch aquifer samples which show a rela-
tive abundance of sandy samples. We use cross-validation 
during hyperparameter tuning to reduce uncertainty by 
limiting overfitting to the training dataset. However, alea-
toric uncertainty related to presence of residual noise in the 
dataset (Kendall and Gal 2017) cannot be ruled out despite 
extreme care taken to avoid measurement noise (Buma 
et al. 2024). The heterogeneity of other parameters within 
the subsurface, with varying structural properties, mineral 
content, and organic matter across different regions, may 
contribute to prediction uncertainty. Since the used dataset 
is large (around 4600 points) with a rich sample distribu-
tion, we consider epistemic uncertainty (model performance 
variability on unseen test data) to be small. We consider this 
also for the clay and silt subsets which may be small in the 
context of ML training and testing but still are substantial 
(hundreds of samples). However, the dataset might lack 
residual anomalies present in other soils. Thus, applica-
tion of the trained algorithms to datasets of non-Dutch soils 
require careful consideration.

In this respect, very coarse sands and gravels deserve 
special attention since they have so far been underrepre-
sented in the TopIntegraal dataset, as evidenced by Table 2. 
For example, only 5% of the sand samples (N=3326) have 
sand medians larger than 560 µm. This is caused by physical 
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	● PSD-trained algorithms outperform the empirical 
formulas.

	● Prediction improves with increasing dataset size. Tree 
algorithms are least sensitive to dataset size reduction.

	● Sieve sizes in the range of d10 are most influential on 
model outcomes.

	● PSD-derived quantities (d10, d50, d60) are well suited 
for hydraulic conductivity prediction for sandy samples. 
Models trained on these parameters are less appropri-
ate for predictions of hydraulic conductivity of silty and 
clay-rich samples. Again tree-based algorithms and XG-
Boost perform best.

	● PSD is not a suitable predictor for porosity.Our study 
demonstrates as one of the first, the feasibility and ben-
efits of utilizing ML algorithms, particularly tree-based 
algorithms for predicting hydraulic conductivity from 
PSD data solely. The use of ML can support time-in-
tensive fieldwork and replace inaccurate empirical for-
mulas for estimating hydraulic conductivity. Relying 
solely on PSD-data reduces the dependence on other 
soil properties. 

As within all ML applications, the use of the trained algo-
rithms with other data(sets) has to be carefully evaluated 
case-specifically. However, due to the variety within the 
Topintegraal dataset used, we expect that the trained algo-
rithms will perform accurately for PSD data from differ-
ent areas. Algorithm application to other datasets from the 
Dutch subsurface is work in progress. We see large potential 
for application to deep aquifers, which are explored for geo-
thermal potential. There, in-situ measurements of hydraulic 
conductivity are infeasible and PSDs from a few samples 
are the only source for information.

Other areas of application within the context of the Topin-
tegraal dataset are filling gaps in the data set (i.e. samples 
missing a Kf  value), quality checking of permeameter test 
results, and parametrization of hydrological models.
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