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Gut microbe–host interactions in post-COVID syndrome: a debilitating or 
restorative partnership?
Torsten P. M. Scheithauer , Roy C. Montijn, and Arnout Mieremet
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ABSTRACT
Post-COVID syndrome (PCS) patients have reported a wide range of symptoms, including fatigue, 
shortness of breath, and diarrhea. Particularly, the presence of gastrointestinal symptoms has led 
to the hypothesis that the gut microbiome is involved in the development and severity of PCS. The 
objective of this review is to provide an overview of the role of the gut microbiome in PCS by 
describing the microbial composition and microbial metabolites in COVID-19 and PCS. Moreover, 
host–microbe interactions via the microbiota-gut-brain (MGB) and the microbiota-gut-lung (MGL) 
axes are described. Furthermore, we explore the potential of therapeutically targeting the gut 
microbiome to support the recovery of PCS by reviewing preclinical model systems and clinical 
studies. Overall, current studies provide evidence that the gut microbiota is affected in PCS; 
however, diversity in symptoms and highly individual microbiota compositions suggest the need 
for personalized medicine. Gut-targeted therapies, including treatments with pre- and probiotics, 
have the potential to improve the quality of life of affected individuals.
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Introduction

People infected with severe acute respiratory syn
drome coronavirus-2 (SARS-CoV-2) developed 
coronavirus disease 2019 (COVID-19) with vari
able degrees of severity and duration. Some indivi
duals developed long-lasting symptoms, which is 
a condition called post-COVID syndrome (PCS), 
long COVID, or post-acute sequelae of COVID-19 
(PASC). Definitions of PCS vary between countries 
and institutes, with the one from the World Health 
Organization (WHO) being most widely accepted. 
It is stated as the continuation or development of 
new symptoms 3 months after the onset of 
COVID-19 by a SARS-CoV-2 infection with symp
toms that last for at least 2 months and cannot be 
explained by an alternative diagnosis.1,2 About 10% 
of the patients regress to PCS after a SARS-CoV-2 
infection, which is estimated to affect 65 million 
patients worldwide, underscoring the significant 
global health challenge in this field.3 PCS patients 
have reported highly diverse symptoms including, 
among many others, fatigue, shortness of breath, 
post-exertional malaise (PEM), postural orthostatic 
tachycardia syndrome (POTS), mast cell activation 

syndrome (MCAS), and various manifestations in 
the gastrointestinal tract such as abdominal pain 
and diarrhea (Figure 1a).4 It has also been shown 
that PCS may lead to prolonged cognitive 
impairments.5,6 The pathogenesis of PCS is still 
elusive, and fundamental studies are in their early 
stages, with multiple, potentially overlapping 
mechanisms identified for this disease.3

Gastrointestinal symptoms are highly prevalent 
in both COVID-19 and PCS. A meta-analysis 
reported that 12% of individuals with COVID- 
19 experienced gastrointestinal symptoms, 
whereas 22% experienced such symptoms in the 
case of PCS.7 These findings suggest that the gut 
microbiota might be involved in PCS,3,8 in paral
lel to its involvement in functional gastrointest
inal disorders9,10 (Figure 1b). Indeed, a recent 
study showed that the gut microbiota composi
tion was associated with PCS symptoms.11 The 
gut microbiome is a collection of various types of 
microorganisms living in the (human) intestine.12 

Most research focused on bacterial interactions in 
this ecosystem, however, it became evident that 
viruses, including the bacteriophages, and fungi, 
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influence the host’s health and are important for 
the microbiota composition. As such, the gut 
microbiome can be regarded as an organ on its 
own due to its complexity and involvement in 
various body functions. The microbiota exhibits 
great interindividual variations and differences 
between age groups,13 adding to its complexity 
for analyses.14

In physiological conditions, the gut micro
biome orchestrates metabolism, immune func
tions, and creating resilience against 
opportunistic infections.15 In general, a high gut 
microbiome diversity is associated with a healthy 
lifestyle and a resilient microbiota that can pro
tect against invading pathogens.16 Lower bacterial 
diversity is considered a hallmark of gut micro
biota dysbiosis, a term that is not well defined but 
is frequently used in the field of microbiota 
research. Factors discussed to induce gut micro
biota dysbiosis include antibiotic use, exposure to 
pesticides, chronic stress, and strict hygiene. 
Moreover, associations have been discovered 
between diet and gut microbiome signatures 
linked to general health. Diet factors linked to 
an altered gut microbiome associated with 

decreased general health were low levels of fibers, 
high carbohydrate intake, and high glycemic 
load.17–21

A low bacterial diversity is negatively asso
ciated with multiple clinical markers such as 
blood glucose, inflammation, and liver 
dysfunction.22 A reduced bacterial diversity has 
been observed in various chronic inflammatory 
diseases, such as obesity, diabetes, and inflam
matory bowel disease. Notably, Mendelian ran
domization has demonstrated causal 
relationships between the gut microbiome com
position and myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS), a disorder exhibit
ing manifold symptomatic overlaps with PCS.23 

Yet, it is unclear how the gut microbiome is 
affected in PCS.

The objective of this review is to provide an 
overview of the role of the gut microbiome in 
PCS by describing host–microbe interactions 
and the influence of microbial metabolites in 
the body via the microbiota-gut-brain (MGB) 
and microbiota-gut-lung (MGL) axes. 
Furthermore, we aim to explore gut microbiome 
targeted therapies to support the recovery of 

Figure 1. The gut microbiota and symptoms of the post-covid syndrome.
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PCS by reviewing both preclinical model sys
tems and clinical studies.

The gastrointestinal tract and the gut 
microbiome during COVID-19

Although the lung was considered as the main 
target organ of SARS-CoV-2 since infection is pri
marily inducing severe respiratory complications, 
various reports suggested that other organs are 
involved as well.24 The gastrointestinal tract has 
been hypothesized to act as an alternative route 
for viral transmission.25,26 This is based on the 
high expression levels of angiotensin-converting 
enzyme 2 (ACE2) in the gastrointestinal tract, the 
presence of gastrointestinal symptoms in COVID- 
19 patients, and the lasting detection of virus par
ticles in feces. Infection with SARS-CoV-2 is 
mediated by ACE2 and transmembrane protease, 
serine 2 (TMPRSS2) for viral entry and 
replication.27 ACE2 is localized at the cell mem
brane or can adopt a soluble form to enter the 
circulation. The function of ACE2 is to convert 
angiotensin II to angiotensin (1–7). ACE2 expres
sion has been identified in various organs, includ
ing the respiratory and gastrointestinal tract with 
the highest levels of protein expression in the small 
intestine and in the colon29,30 Consequently, 
ACE2-mediated SARS-CoV-2 entry into the host 
enteric cells has been detected, underscoring viral 
transmission in the gastrointestinal tract.31 The 
viral infection leads to epithelial barrier damage, 
which contributes to inflammatory processes that 
may lead to symptoms such as diarrhea. However, 
it is rather unclear whether the virus can actively 
replicate in the human intestine.32,33

The immune system plays a crucial role in clear
ing SARS-CoV-2 particles from the body. 
Following the initial infection with the virus, the 
innate immune system launches a response toward 
virally infected cells via pathogen recognition 
receptors (PRRs). Recognition of viral particles 
triggers an interferon response, leading to an 
inflammatory cascade, and, in turn, controlled cell 
death of infected tissues.34,35 This is followed by the 
adaptive immune response, involving the produc
tion of highly specific antibodies capable of effi
ciently binding to viruses and aiding in the 
clearance of viral particles from the body.36 

Intestinal immunoglobulin A (IgA) is the primary 
effector molecule that can prevent, among other 
antiviral molecules, the accumulation of viral par
ticles in the intestine as part of the mucosal 
immune system. It is produced by B cells in the 
intestine and secreted into the lumen, where it can 
bind and limit the entry of microorganisms into the 
host. In stool samples of severe COVID-19 
patients, elevated IgA reactive to SARS-CoV-2 has 
been detected.37

The interaction between the gut microbiome 
and the gastrointestinal system, covering the 
epithelium, immune system, and mucosal barrier, 
is dynamic and adaptive via continuous feedback 
mechanisms38–41 In healthy situations, these inter
actions occur bidirectionally forming a symbiosis 
and gut microbes are well tolerated by the host’s 
immune system. Altered host-microbe interactions 
in the gastrointestinal tract can be developed in 
diseased states, for example during viral infection, 
fungal overgrowth, or upon higher prevalence of 
opportunistic bacteria, leading to activated 
immune response mediated by lymphocytes resi
dent in the epithelium.

As a result of SARS-CoV-2 infection in the 
human gastrointestinal tract, differences in the gut 
microbiome have been detected42 based on the ana
lysis of fecal material of individuals during or shortly 
after the infection. In adults, during or shortly after 
a SARS-CoV-2 infection, there has been a reduction 
in bacterial diversity, a decrease in short-chain fatty 
acids (SCFAs) producing bacteria, and an increase 
in opportunistic pathogens compared to people 
without acute SARS-CoV-2 infection, as extensively 
reviewed by Zhang et al.42 Several mechanisms have 
been postulated to grasp SARS-CoV-2-induced gut 
dysbiosis in COVID-19, including the presence of 
intestinal inflammation, dysregulation of ACE2, and 
direct viral infection of bacteria.25 Gut dysbiosis 
prior to infection might lead to more severe 
COVID-19 outcomes.43 Gut dysbiosis has been 
observed in several diseases, such as obesity and 
diabetes,44 both diseases related to a reduced 
immune response45 and a worse outcome of 
COVID-19.46 Thus, gut dysbiosis might play an 
important role in COVID-19. In children, compar
able alterations in the gut microbiome have been 
detected, although studies were limited by smaller 
sample sizes.42,47 Moreover, the gut mycobiome and 

GUT MICROBES 3



virome showed compositional changes during 
COVID-19, with an increased presence of Candida 
albicans, Candida auris, Aspergillus flavus, and 
depletion of multiple bacteriophages.42

Recovery from acute infection is associated with 
the restoration of the gut microbiome, although the 
process may be more protracted than anticipated 
and may not be fully restored in all recovered 
patients.48 Interestingly, the gut microbiota of per
sons recovered from acute SARS-CoV-2 infection, 
that did not show any symptoms of PCS, was 
indistinguishable from that of uninfected controls 
at 6 months.49 Antibiotics were commonly pre
scribed to patients with COVID-19, even though 
they are ineffective against virus infections. Yet, 
a meta-analysis by Nandi et al. 50 documented an 
overuse of antibiotics in patients with COVID-19. 
Antibiotics have a profound impact on the compo
sition of the gut microbiome,51,52 although addi
tional potential mechanisms are a negative effect 
on the epithelial barrier and a spread of resistant 
micro-organisms.53 The administration of antibio
tics during SARS-CoV-2 infection or prior use of 
antibiotics within 3 years before COVID-19 nega
tively affected resilience to symptoms, leading to 
more severe clinical outcomes, including hospital 
admission and 30-day mortality.54 Nevertheless, an 
association between antibiotic use and the devel
opment of PCS has not been observed.55 More 
research on the relationship between the use of 
antibiotics, the gut microbiome composition, resi
lience to severe acute infection, and the develop
ment of PCS is warranted.

Gut microbiome composition during PCS

To evaluate the gut microbiome in PCS, we 
summarized the findings of human studies 
reporting 16S or shotgun metagenomic sequen
cing data on the gut microbiome composition 
(Table 1). Since the definition of the PCS is not 
well aligned, we followed the definitions as indi
cated per reported study, although these can 
vary, and uniformity is desired. Five out of six 
studies reported reduced bacterial diversity in 
PCS. The abundance of opportunistic pathogens 
was positively correlated with persistent PCS 
symptoms, while beneficial bacteria exhibited 
the most significant inverse correlations with 

PCS symptoms. Yet, no longitudinal studies 
exist that compared samples from the same indi
vidual before and after infection. Current studies 
compared the gut microbiota of patients with 
PCS to that of SARS-CoV-2 infected controls or 
uninfected controls. As not all studies have found 
a significant association between the gut micro
biota and PCS,58 the highly diverse symptoms of 
PCS and individual microbiota suggest the need 
for more homogeneous study cohorts. Therefore, 
only associations can be drawn between the gut 
microbiota and the severity of PCS. No causative 
explanations can be given at this stage.

Nevertheless, the outcomes of the first studies 
indicate reduced bacterial diversity in the gut 
microbiome of individuals with PCS.11,49,56–59 

Importantly, it resembles various characteristics 
of a dysbiotic gut ecosystem, including an increase 
in opportunistic pathogens and a decrease in ben
eficial commensals. Persistent PCS symptoms were 
positively correlated with pathogens like 
Streptococcus anginosus, Streptococcus vestibularis, 
Streptococcus gordonii, and Clostridium disporicum 
in the fecal microbiome. In addition, Clostridium 
innocuum and Actinomyces naeslundii correlated 
with fatigue and neuropsychiatric symptoms.49 

Beneficial bacteria, such as Faecalibacterium praus
nitzii, serve as important sources of the SCFA 
butyrate, which is produced by the fermentation 
of dietary fibers in the large intestine.60 Butyrate 
has been shown to improve the host’s metabolism 
and immune response. The abundance of 
F. prausnitzii, as well as other beneficial bacteria 
like Bifidobacterium pseudocatenulatum, Roseburia 
inulinivorans, and Roseburia hominis, were nega
tively correlated with PCS at 6 months.49,61

Profound insight on the relation between inter
individual PCS symptoms and the gut microbiome 
has been obtained by Su et al.11 They revealed that 
the gut microbiome was the top factor explaining 
variance in PCS symptoms, followed by COVID-19 
vaccination, COVID-19 history, and demographics. 
Furthermore, three types of gut microbiota (enter
otypes) in PCS were identified, all different from 
that of healthy volunteers. The symptoms of insom
nia, fatigue, and difficulty concentrating showed the 
most significant difference between PCS entero
types. This further highlights the role of a dysbiotic 
gut microbiome in the manifestation of PCS.

4 T. P. M. SCHEITHAUER ET AL.
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Bacteria are, next to enteric viruses, the most 
abundant microorganism in the gut microbiota 
and thus, have been much in focus in recent 
years. However, alterations in the mycobiome 
have been related to several host conditions, such 
as irritable bowel syndrome and neurological 
disorders.61,62 In the fecal mycobiome, an increase 
of fungal pathogens from the genera Candida and 
Aspergillus has been detected.63 This is regarded as 
mycobiota dysbiosis, which induces systemic 
immunogenic activation of pathways related to 
antifungal immunity.64 This has been observed in 
hospitalized patients with severe COVID-19, 
whereas the long-lasting effects for people with 
PCS have not yet been fully understood.65 Fungal 
infections are related to neurodegenerative diseases 
suggesting a role also in neurological symptoms of 
PCS, however, causative relationship is not 
drawn.66

Importantly, correlation alone does not provide 
enough evidence for causation. A causative role of 
a gut dysbiosis has been made in mice, where fecal 
transplants from stressed mice induced similar 
symptoms in the recipient mouse via 
a neuroinflammatory pathway.67 The transfer of 
gut microbiota from individuals with PCS into 
germ-free mice induced lung inflammation, wor
sened the outcomes of a challenge with Klebsiella 
pneumoniae, and reduced the cognitive perfor
mance of the mice.68 The donor material exhibited 
a higher abundance of Enterobacteriaceae strains 
with antibiotic resistance, which is a family of var
ious opportunistic bacteria, and lower levels of 
SCFAs in feces compared to healthy controls. 
Treatment with the probiotic Bifidobacterium 
longum 51A resulted in reduced memory impair
ment and weight loss induced by viral infection, 
suggesting potential gut-targeting treatments for 
PCS. These animal studies established causative 
relationships between the gut microbiota and the 
development of neurocognitive symptoms as seen 
in PCS. Importantly, this interaction is bilateral: 
neurological impairment, including depression, 
can cause dysbiosis in the gut, whereas gut dysbio
sis can promote depression.

Debilitating symptoms in PCS could be 
a result of continuous infections due to 
a persistent viral reservoir.69 Natarajan et al. 70 

analyzed the fecal RNA shedding up to 10 

months after COVID-19 diagnosis in 113 indivi
duals. Fecal SARS-CoV-2 RNA was detected in 
49.2% of individuals within the first week after 
diagnosis. Furthermore, 12.7% and 3.8% shed 
virus RNA in feces after 4 and 7 months, respec
tively, suggesting that the virus can survive the 
harsh conditions, including the influence of bile 
acids, in the intestine. Viral RNA correlated with 
intestinal symptoms, such as abdominal pain, 
nausea, and vomiting, partly explaining some of 
the lasting symptoms of PCS.70 However, there 
was no significant correlation between fecal or 
respiratory viral load and PCS development.28,71 

Some individuals with PCS may not fully clear 
infectious material after an acute infection. 
Instead, viral material persisted in intestinal tis
sues as a ‘reservoir.’ Viral protein expression 
from this reservoir could modulate the host 
immune response and contribute to the pathol
ogy of PCS.69 Viral persistence might result from 
inhibiting effects of SARS-CoV-2 on the inter
feron cascade, a crucial antiviral response, poten
tially leading to virus production in epithelial 
cells.72 A stable gut ecosystem, which usually 
comes along a high microbiota diversity, provides 
a strong barrier to invading pathogens, including 
viral pathogens.15,73 Interestingly, both the pri
mary bile acid chenodeoxycholinic acid (CDCA) 
and the secondary bile acid ursodeoxycholic acid 
(UDCA) appear to play a role in the presence of 
virus particles in feces. These can modulate the 
binding of the virus to receptors and thereby 
affect entry into the host.74 Dysbiosis in the gut 
microbiome affects the mucosal barrier and 
increases the production of pro-inflammatory 
cytokines during acute infections, which may be 
related to the development and severity of 
PCS.75–77

The assessment of anti-viral responses in 
patients with PCS is challenging and has not been 
reported. For example, the intestinal antibody 
response exhibits a high interindividual 
variation,78,79 potential due to specific eating pat
terns, stool consistency, and gut transit time. Thus, 
measurements of fecal antibodies need a great 
number of human subjects to present meaningful 
results. Furthermore, in this patient group, only 
fecal measurements are feasible. Reaching other 
sides in the intestine, for example, via endoscopy, 
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might be too invasive for vulnerable patients. These 
measurements are easier to assess in vitro or in 
animal studies. However, in both, a PCS model 
that captures all most symptoms, particularly neu
rological ones, does not exist yet.

Altered profile of gut-derived metabolites in 
PCS

Host–microbe interactions are orchestrated by 
secretion, interaction, and response to signal mole
cules, which can serve as biomarkers for a systems 
biology approach. Characteristically, microbial 
metabolites are linked to the maintenance of core 
functions in the body such as digestion and 
immune system development.80 In contrast, an 
imbalanced production of metabolites due to 
microbial dysbiosis or affected uptake of metabo
lites can lead to various diseases.81 Typical classes 
of metabolites of the gut microbiota include but are 
not limited to SCFAs,82 bile acids, gases, trypto
phan and indole derivatives, choline metabolites, 
vitamins, neurotransmitters, and other lipids.80,81

The serum metabolome of individuals with 
PCS differed from that of healthy controls 2 
years after infection.83 The metabolomics 
approach identified 53 molecules that were sig
nificantly different between acute COVID-19 
patients and healthy controls. Of those, 27 
remained different in a PCS patient group ana
lyzed 2 years after initial infection. Focusing on 
the SCFAs propionic and butyric acids, these 
were found significantly increased during 
COVID-19, potentially due to a leaky gut as 
observed by Lunjani et al.,84 and in turn, 
a leakage of SCFAs into the blood circulation 
from the intestines. Butyrate-producing bacteria, 
including Bifidobacterium pseudocatenulatum 
and Faecalibacterium prausnitzii showed the lar
gest inverse correlations with PACS at 6  
months.49,85 Of interest, there was no difference 
for these SCFAs between healthy controls and 
PCS patients after 2 years in the study by López- 
Hernández et al.,83 suggesting that the leaky gut 
had resolved after 2 years as these SCFA levels 
were normalized in their study population. 
Pathway analysis on the altered metabolic 
serum profiles between controls and PCS 

patients suggested differences in the biosynthesis 
of phospholipids, gluconeogenesis, the glucose- 
alanine cycle, the Warburg effect, and taurine 
and hypotaurine metabolism.

Targeted measurements of gut microbiome- 
derived metabolites in the serum of patients with 
PCS, which were compared to healthy volunteers, 
are reported in an explorative study by Sadlier et al.86 

A disruption in metabolites with immunomodula
tory properties (S1P, 12-HETE), energy metabolism 
(mannose, glutamate, succinate), and tryptophan 
pathway (serotonin, quinolinate) was observed, 
which indicates that the functionality of the gut 
microbiome is affected in PCS. All these metabolites 
are involved in specific pathways of the host, thus, 
a change in these (gut-derived) metabolites might 
influence the host’s function. Yano et al.87 did show 
that indigenous bacteria from the gut microbiota 
regulate host serotonin biosynthesis87–89 They sug
gest that altering the microbiota could improve ser
otonin-related disease symptoms. Conversely, 
dysbiosis observed in COVID-19 and PCS could 
cause serotonin-related disease symptoms including 
psychological symptoms such as anxiety, depressed 
mood, insomnia, cognitive decline, and physical 
symptoms such as chronic fatigue, disturbed sleep, 
loss of appetite, headaches, as well as stomach pains. 
These symptoms have also been reported by PCS 
patients.

The fecal metabolome, that includes all meta
bolites produced by the gut microbiota, has not 
yet been explored in PCS; however, studies in 
COVID-19 patients suggest disruption during 
infection. Analysis of fecal metabolites showed 
significantly lower fecal concentrations of SCFAs 
and L-isoleucine in patients with COVID-19 
before and after disease resolution.90 Moreover, 
Lv et al. 91 compared the fecal metabolites of 56 
COVID-19 patients with matched healthy con
trols and found increased levels of nutrients, 
such as sucrose, which should have been meta
bolized and absorbed in the higher intestinal 
tract. These metabolites might provide mechan
istic insights into disturbed digestion, leading to 
symptoms such as diarrhea. Furthermore, harm
ful metabolites like oxalate were increased in 
COVID-19 patients. Fecal oxalate metabolism 
has been linked to cardiovascular diseases,92 
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offering initial mechanistic insights into how the 
microbiota can influence cardiovascular symp
toms in PCS.

Disrupted host–microbe interactions in the gut 
during PCS

It has been demonstrated that the gut microbiota 
plays a pivotal role in influencing almost all of the 
host’s body functions, albeit to varying degrees.93 

Host–microbe interactions in the gut are affected in 
PCS as observed by the alterations in the composition 
of the gut microbiome. Specifically, the altered gut 
microbe composition influences host processes 
mediated by microbial metabolites. These fuel local 
and systemic signaling pathways and act as immuno
modulatory components. The bacteria in the gut are 
a major source of immune-modulatory molecules 
such as lipopolysaccharide (LPS), SCFAs, and the 
anti-inflammatory molecule desaminotyrosine,94 

thereby it is capable of shaping the immune response 
in the gut.39 This was demonstrated in germ-free 
animals and microbiota-depleted mice (via antibiotic 
treatment), which, as a result, were more susceptible 
to infections, attributed not only to the absence of the 
microbiota but also to deficiencies in the immune 
response.95,96

Giron et al. 97 suggested that fungal translocation 
from the gut and lung partly contributes to the 
inflammation found in PCS. First, they observed 
higher levels of zonulin, an important tight junction 
protein between cells, in the blood circulation of 
individuals with PCS compared to infected controls 
without lasting symptoms, indicating increased gut 
permeability in PCS.98 Second, they found elevated 
beta-glucan, a membrane compound of fungi, levels 
in PCS, correlating with various inflammatory mar
kers such as IL-6 and the number of symptoms. 
Third, they noted that the inflammation induced by 
beta-glucans interfered with the tryptophan catabo
lism pathway,99 some metabolites of this pathway 
have established neurotoxic properties. Moreover, 
Kusakabe et al. 64 found that gut fungal pathobionts 
contribute to immune activation during inflamma
tory diseases, offering potential mycobiota-immune 
therapeutic strategies for PCS. Overall, these studies 
elegantly demonstrated that the mycobiome likely 
influences the development of PCS and provided 
insights into new treatment strategies.97

A SARS-CoV-2 infection is associated with a so- 
called ‘cytokine storm’, characterized by the 
uncontrolled release of high levels of pro- 
inflammatory cytokines such as IL-6, which nega
tively affects the function of several tissues.100 

Cytokine expression and immune cell activation 
remained elevated 8 months after infection in indi
viduals with PCS, whereas they were lower in 
infected individuals without lasting symptoms.101 

Translocation of pro-inflammatory compounds 
from the intestine into the blood circulation is 
a plausible mechanism to explain chronic (low- 
grade) inflammation,102,103 however, it has been 
challenging to prove due lack of sensitive 
techniques.104

Signaling through the microbiome-gut-brain 
and microbiome-gut-lung axes in PCS

The relationship of the microbiome in the GI tract 
and the communication through circulating meta
bolites with the brain is termed the microbiota-gut- 
brain (MGB) axis. In essence, the MGB axis is an 
interorgan communication pathway that functions 
in both directions and involves immune and neural 
systems.105 The MGB axis is connected to the neu
ronal system through the central nervous system, 
enteric nervous system, and autonomic nervous 
system.106 This has been reported to link the gut 
microbiota via its metabolites to the cognitive and 
emotional centers of the brain.107 In addition, 
microbial metabolites play a critical role in main
taining the homeostasis of both gut and systemic 
immunity.108

The metabolism of the essential amino acid tryp
tophan is a central pathway integrating microbial 
metabolism to that of the host. In the gut, tryptophan 
metabolism can be categorized into three distinct 
routes, which are the serotonin, kynurenine, and 
indole pathways.109 The diverse tryptophan metabo
lites, either catabolized by eukaryotic or prokaryotic 
cells in the gut, act on various signaling pathways 
which upon dysregulation contribute to diseases of 
the gastrointestinal, immune, or neuronal system. 
This indicates the importance of tryptophan metabo
lism in physiological conditions in a symbiotic gut 
microbe–host interaction network. The uptake of 
gut-derived metabolite tryptophan,110 as a precursor 
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for serotonin, has been reduced and associated with 
PCS symptoms.111,112

Interestingly, deletion of ACE2 in mice reduced 
tryptophan uptake, suggesting an influence of ACE 
activity and amino acid uptake,113 which in turn 
affected serotonin levels in the brain of mice.114 

Particularly, the expression of ACE2 in the small 
intestine might be important for amino acid uptake 
and, simultaneously, an important route for SARS- 
CoV-2 to enter the host.115 Other mechanisms 
where the gut microbiome has been shown to be 
involved are in the development of depression, 
a major symptom of PCS,116,117 through the synth
esis of glutamate, butyrate, serotonin, and gamma 
amino butyric acid (GABA); all of those key neu
rotransmitters linked to depressive disorders.118 

Interestingly, other viral infections, such as 
Epstein–Barr virus (EBV), also affect the MGB 
axis highlighting the importance of viral infections 
in the development of neurological disorders.119 

The mechanisms in the MGB axis in PCS are cur
rently poorly understood. Gut-derived substances 
such as toxins, produced by opportunistic patho
gens, have been suggested to influence and damage 
cerebral blood vessels.120 The fungal pathogen 
Candida albicans is associated with chronic brain 
diseases such as Alzheimer’s disease,121 although, 
causative evidence is lacking.

Another systemic effect initiated by the gut 
microbiome involves the respiratory system and is 
termed the microbiota-gut-lung (MGL) axis.122 In 
healthy persons, the lungs are colonized by transi
ent microbiota that are rapidly cleared by the 
immune system. Interestingly, a disturbed trypto
phan metabolism has been noted in chronic 
inflammatory lung diseases.123 It appears that tryp
tophan is needed to mount an inflammatory 
response in the lung.124 A functional imbalance of 
ACE2 expression in the (small) intestine, reduced 
tryptophan uptake and, in turn, reduced the 
immune response in the lung. This mechanism 
might also apply to the development of PCS, how
ever, it has not been tested yet. The airway system is 
continuously exposed to the external environment 
which relies on effective clearance by the immune 
system.125 Modulation of the immune system 
through gut-derived metabolites is a key compo
nent of the MGL axis. Examples of some mechan
isms by which the gut microbiota arms the lung to 

combat viral respiratory infections are described by 
Sencio et al.126 They showed how the gut micro
biota affects the lung’s synthesis of type 
I interferons (IFNs), which are widely recognized 
for their ability to regulate viral infections like 
SARS-CoV-2. Both SCFAs, which are the bypro
duct of the fermentation of dietary fiber by com
mensal bacteria, and desaminotyrosine, which is 
produced from the metabolism of flavonoids and 
amino acids, affected the IFN response in the MGL. 
It is plausible that any alteration in the microbiota 
composition and function can alter the beneficial 
crosstalk between the gut and the lungs. Other 
proposed mechanisms have been described as com
ponents of the MGL axis. First, the interconnection 
of mucosal tissues via immune cell 
migration, second, the paracrine communication 
via secreted cytokines and growth factors, and, 
third, distant exposure to microbial-associated 
molecular patterns (MAMPs) via initial absorption 
in the gut epithelium;127 all three potentially 
involved in PCS but not tested yet. Other viral 
infections, such as influenza, were related to the 
MGL axis, highlighting the importance of immune 
training via the gut.126

A functional relationship between the (gut) 
microbiota and the lung has been indicated, as 
respiratory symptoms during acute SARS-CoV-2 
infection have been associated with altered gut 
microbiota.128 The lung harbors its own low but 
diverse microbial biomass.129 Changes in the lung 
microbiome, such as an enrichment of fungal cul
tures like Candida, have been linked to COVID-19 
severity.130 Similarly, Candida species were 
increased in the gut microbiome,64 suggesting 
a disturbed anti-fungal response of the immune 
system or a connection between the gut and lung. 
Moreover, a decreased abundance of butyrate- 
producing bacteria might influence symptoms 
related to lung function. Animal studies have 
shown that (oral) butyrate administration in mice 
reduced the severity of lung diseases, mainly by 
regulating inflammation.131 While a direct interac
tion between the gut and the lung is plausible132 in 
PCS, given the literature on other respiratory dis
eases, it has not been tested how the MGL axis 
relates to persistent symptoms seen in PCS. Due 
to the complexity of interactions within the MGB 
and MGL axes, and other interorgan 
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communication pathways such as the microbiota- 
gut-liver axis,133 exact mechanisms remain unclear 
regarding physiology and pathology during PCS 
which warrants more research.

Targeting the gut microbiome for alleviation of 
PCS

A dysbiotic microbiota has been related to various 
diseases, including PCS. Although causal roles of the 
gut microbiota have only been assigned to specific 
diseases such as recurrent Clostridium difficile infec
tion, targeting a dysbiotic microbiota may help to 
partially prevent or alleviate the severity of diseases 
such as PCS. Preclinical models, including various 
in vitro platforms and animal studies, are powerful 
tools to screen the application of novel treatments. 
In a personalized approach, this could unlock the 
possibility of finding the right intervention for the 
right person. In this section, we provide an overview 
of preclinical model systems and tested interven
tions, followed by an overview of clinical studies 
effectively modulating the gut microbiome in PCS.

Overview of preclinical model systems and 
interventions in PCS

A wide variety of preclinical model systems for the 
gut microbiome exist, ranging from basic models 
based on microbiomes derived from fecal samples 
to advanced host–microbe interaction models and 
in vivo animal models.134 Specifically for PCS, no 
in vitro models are available to test interventions in 
this patient group. PCS is a complex disease that 
manifests in multiple organs and appears to be inter
twined between these organs. In vitro systems may 
only grasp small parts of these intertwined systems, 
such as gut microbiota dysbiosis and leaky gut syn
drome, but have the advantage of high throughput 
screening of multiple compounds or development of 
personalized therapies (Figure 2).

To test interventions on gut microbiome dysbio
sis, fecal material from patients with PCS can be 
used and cultured ex vivo or dysbiosis can be 
induced experimentally via antibiotic treatment of 
the fecal material. In vitro fermentation models can 
be used to test whether a gut-targeted treatment, 
such as dietary fibers, can influence the abundance 

Figure 2. Intestinal in vitro models applicable to screen for interventions in PCS.
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of specific pathogens, including bacteria and 
viruses. For example, 2’-fucosyllactose inhibited 
the growth of Clostridioides difficile in a complex 
microbiota used in a fermentation model.135 The 
interaction of SARS-CoV-2 with the gut micro
biota has not been explored yet. It has been sug
gested that the virus may act as a bacteriophage, 
a virus that targets bacteria; however, evidence for 
this concept is limited.136 To this stage, no COVID- 
19 treatments have been reported in an in vitro 
fermentation model of human-derived gut 
microbiota.

In vitro mono-cell cultures with Caco-2 cells, 
a well-studied epithelial cell line, combined with 
SARS-CoV-2 show that the virus rapidly infects 
these cells due to its expression of various entry 
proteins.137,138 Infection with the virus effectively 
disrupted the epithelial barrier in vitro and enabled 
the virus to enter the host’s blood circulation.139 

Blocking these entry sides with pharmacological 
treatments140 may prevent recurrent SARS-CoV-2 
infection originating from the intestinal virus 
reservoir. Mono-cell cultures are readily available, 
easy to grow, and therefore, provide an option for 
high-throughput screening of novel drugs. These 
models save time and resources as well as reduce 
the use of experimental animals, making these 
in vitro cultures important tools for emerging 
pathogens. Natural ingredients, such as curcumin, 
have been shown to reduce cytokine secretion 
in vitro after SARS-CoV-2 infection,141 providing 
evidence to reduce the severity of the cytokine 
release through natural compounds.

Complex cultures with different cell types pro
vide more intricate and physiologically relevant 
insights. However, this complexity increases the 
variability of the results and logistical readiness 
of the model, reducing its usage within high- 
throughput screening. Interestingly, infection of 
a complex gut-on-a-chip model with different 
cell types showed that SARS-CoV-2 efficiently 
infected epithelial cells with a high viral load 
and inflammatory response but did not infect 
endothelial cells that grew behind the epithelial 
barrier. However, prolonged infection damaged 
both cell types, leading to the invasion of the 
virus into the host.139 These models provide 
mechanistic insight into the “cytokine storm” 
induced by SARS-CoV-2.

The combination of in vitro fermentation mod
els and cell culture models provides valuable 
insight regarding host–microbe interaction. 
Beneficial bacteria can produce the SCFAs formate, 
acetate, propionate, and butyrate142 that collec
tively improve the epithelial barrier function143 

and therefore, may alleviate the impact of the 
SARS-CoV-2-induced barrier disruption. 
Particularly, treatment with butyrate-producing 
bacteria might reduce the severity of COVID-19 
infections by improving barrier function, as buty
rate is the preferred fuel of colonocytes and is 
a main regulator of epithelial tight junctions.144 

Indeed, direct application of butyrate in human 
derived intestinal tissue reduced cytokine expres
sion and the number of infected cells.145 

Combining viable gut microbiota with epithelial 
tissues and SARS-CoV-2 virus has not been 
explored yet but would give valuable insights into 
the activity of the virus in the intestine.

Animal models are the most complex pre-clinical 
models that can be used to validate results from 
in vitro screenings and to test novel treatments 
before their use in humans. However, the gut 
microbiota of animals, particularly the widely used 
murine models, differs from that of humans and is 
not always translatable to humans.146 Similarly, not 
all animal models are susceptible to SARS-CoV-2 
infection.147 The virus can bind to human ACE2, 
but not to murine ACE2. Genetically modifying 
mice increased their susceptibility to the virus. 
Despite these challenges, several insights were 
gained from animal studies.148 It has been suggested 
that the gut microbiota regulates intestinal ACE2 
expression. Germ-free mice had higher intestinal 
ACE2 expression than conventional mice,149 poten
tially due to the lack of intestinal butyrate produc
tion of the gut microbiota. Butyrate can reduce 
ACE2 expression.145 A reduction in butyrate- 
producing bacteria may directly be related to an 
overexpression and, therefore, a higher entry chance 
of the virus, although this has not been tested in 
humans yet.

ACE2 expressing probiotics are promising treat
ment options.150 Mechanistically, they compete 
with the intestinal ACE2 binding sites, leading to 
the binding of SARS-CoV-2 to probiotics instead of 
intestinal tissue. Butyrate administration protected 
against SARS-CoV-2-induced lung tissue damage in 

GUT MICROBES 11



golden hamsters,151 which expressed ACE2.152 

These findings suggest that the gut microbiota has 
a major influence on COVID-19. Fecal transplanta
tion, an experimental procedure to exchange 
a healthy microbiota with a dysbiotic microbiota, 
in PCS might be an option to improve the condition 
of these patients,153 however, care has to be taken 
with this vulnerable patient group. They are suscep
tible to (intestinal) infections.3 Importantly, infec
tions have been reported after fecal transplants.154 

Extensive screening of the donor material might be 
needed to avoid adverse effects.155

Overview of clinical studies modulating the gut 
microbiome in PCS

Clinical intervention studies are needed to unra
vel the relationship between the gut microbiota 
and PCS. Various clinical studies have been per
formed using probiotics, prebiotics, synbiotics, 
and postbiotics to modulate a dysbiotic gut 
microbiome156–158 Specifically in PCS, the first 
randomized, double-blind, placebo-controlled 
trial was conducted by Lau et al.159 Inclusion 
criteria were the presence of at least one of 14 
PACS symptoms for 4 weeks or more after con
firmed SARS-CoV-2 infection. Intervention was 
performed by oral administration of a synbiotic 
preparation SIM01 containing probiotic strains 
(e.g. Bifidobacterium adolescentis, 
Bifidobacterium bifidum, and Bifidobacterium 
longum) combined with prebiotic compounds 
galactooligosaccharide, xylooligosaccharide, and 
resistant dextrin. After 6 months of treatment 
with the synbiotic preparation, alleviation of 
PCS symptoms was identified.159 For example, 
gastrointestinal upset was significantly improved 
compared to the placebo group, suggesting that 
indeed the gut targeted treatment improved gas
trointestinal symptoms. However, the quality of 
life was not significantly improved, suggesting 
that it can only alleviate parts of the disease. In 
other complex diseases such as diabetes, only 
parts of the disease improved after symbiotic 
treatment,160 suggesting that these interventions 
can be used as support but do not replace other 
treatments. Adverse events included mainly 

gastrointestinal symptoms such as diarrhea and 
bloating, however, both were comparable between 
placebo and synbiotic. The placebo consisted of 
a low dose of vitamin C, which was not present in 
the symbiotic, and a starch filler, which may 
explain some of the gastrointestinal symptoms 
in the placebo group. Overall, synbiotics appear 
to be safe in patients with PCS and have bene
ficial effects.

Therapeutic mechanisms can only be derived 
from other studies that tested effects of synbiotics 
on gastrointestinal health. For example, different 
types of synbiotics improved symptom scores of 
patients with irritable bowel disease,161 potentially 
via improving microbiota symbiosis with the host 
and beneficial effects of prebiotics on stool consis
tency. Although more research is warranted, the 
study by Lau et al. 159 demonstrated the potential 
and impact of interventions targeting the gut 
microbiome in PCS.

Conclusion and perspectives

The COVID-19 pandemic has had a profound 
impact on society, leaving some individuals with 
long-lasting symptoms. PCS is a heterogeneous con
dition that is not only challenging to diagnose but 
also difficult to treat due to various nonspecific 
symptoms. Gastrointestinal discomfort is 
a common symptom in PCS, suggesting that SARS- 
CoV-2 disturbs gut homeostasis. Gut health is an 
important factor that affects various aspects of the 
body, where dysbiosis can lead to debilitating effects 
in the human body. Experimental research uncov
ered alterations in the gut microbiome of patients 
with PCS, including differences in composition and 
functionality. This is suggested to affect systemic 
processes via metabolites, microbe translocation, 
and through the MGB and MGL axes.

Providing gut-targeted therapies might help alle
viate some of the symptoms in PCS. However, 
caution must be taken since these interventions 
improve parts of the disease, but do not cure PCS. 
The first study with synbiotics demonstrated that 
this treatment improved symptom scores.159 More 
studies are needed to unravel the role of the host– 
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microbe interactions in PCS with the aim to pro
vide urgently needed personalized treatment stra
tegies and to activate the restorative capabilities of 
the gut microbiome in PCS.

List of abbreviations

COVID-19 coronavirus disease 2019
PCS post-COVID syndrome
PASC post-acute sequelae of COVID-19
PEM post exertional malaise
POTS postural orthostatic tachycardia 

syndrome
MCAS mast cell activation syndrome
SARS-CoV-2 severe acute respiratory syndrome 

coronavirus-2
ME/CFS Myalgic encephalomyelitis/chronic 

fatigue syndrome
ACE2 angiotensin-converting enzyme 2
TMPRSS2 transmembrane protease, serine 2
SCFA short-chain fatty acid
RNA ribonucleic acid
MGB microbiota-gut-brain
MGL microbiota-gut-lung
MAMP microbial-associated molecular 

pattern
LPS lipopolysaccharide
IgA immunoglobulin A
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