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Abstract 

 

This work presents the latest advancements in leveraging artificial intelligence (AI) and digital twin (DT) 

technologies to automate the operation of electron microscopes, with a particular focus on exploring the 

feasibility of automated electron microscope alignment. 

 

The alignment of electron microscopes is a laborious process, demanding significant time and expert 

knowledge. This time-intensive operation not only affects the actual experimental time available for 

microscope operators to investigate nanomaterials. 

 

In our approach, we employ DT and AI methodologies to automate and expedite these alignment 

procedures, aiming to streamline the operation of electron microscopes, reduce manual effort, and 

enhance the efficiency of both routine operations and the calibration of new microscope installations. 



D1.2 

Proof of Concept Demonstration and Evaluation – 

Use Case Electron Microscopy 

public 

 

 

 

    

Version Status Date Page 

M36 public 2024.05.07 5/36 

 

Table of Contents 

 

1. Electron Microscopy ................................................................................................................................... 8 

1.1 Transmission Electron Microscope .............................................................................................................8 

1.2 Ronchigram ................................................................................................................................................9 

2. Advancements in the Digital Twin ............................................................................................................ 12 

2.1 Dependency on sample’s material ...........................................................................................................12 

2.2 Defining a distance-to-goal metric ...........................................................................................................14 

2.3 Flexible STEM imaging ..............................................................................................................................15 

3. Exploration of Bayesian optimisation for microscope alignment .............................................................. 16 

4. Strategies to improve the explainability of Reinforcement Learning ........................................................ 19 

5. Accelerating Investigation through the use of Supervised Learning .......................................................... 23 

5.1 On Reinforcement and Supervised Learning ............................................................................................23 

5.2 Supervised learning for ASIMOV ..............................................................................................................25 

6. Advancements in productization .............................................................................................................. 29 

6.1 Systems architecture creation ..................................................................................................................30 

6.2 Existing standards ....................................................................................................................................31 

7. Terms, Abbreviations and Definitions ....................................................................................................... 34 

8. Bibliography ............................................................................................................................................. 35 

 

  



D1.2 

Proof of Concept Demonstration and Evaluation – 

Use Case Electron Microscopy 

public 

 

 

 

    

Version Status Date Page 

M36 public 2024.05.07 6/36 

 

Table of Figures 

Figure 1: Illustration of the components of an electron microscope [3] ..................................................... 9 

Figure 2: Visualizations of a Ronchigram obtained on amorphous carbon in underfocus (UF) and 

overfocus (OF) as a function of astigmatism (A1) and axial coma (B2). [4] ............................................ 10 

Figure 3: Ronchigram and the amplitude of its Fourier transform as a function of defocus (x-axis) and 2-

fold astigmatism the real part (y-axis). (a) Simulated data with amorphous Carbon (aC) materials. (b) 

Measured data on a sample with amorphous Carbon and some Gold nanoparticles ............................ 13 

Figure 4: Ronchigram and the amplitude of its Fourier transform as a function of defocus (x-axis) and 2-

fold astigmatism the real part (y-axis). (a) Simulated data with Si100 crystals. (b) Simulated data with 

Si110 crystals, (c) Measured data on a sample with Si110 region. ........................................................ 14 

Figure 5: The radius of the largest circle with small (less than π/4) phase error. Each row shows an 

example of aberration configurations. ..................................................................................................... 15 

Figure 6: An example of a STEM detector with multiple rings and multiple segments on each ring. The 

total intensity on each segment is reported as a single number which then is used for a specific STEM 

imaging mode .......................................................................................................................................... 16 

Figure 7: The feature extraction process of the Ronchigram. The first row displays four synthetic 

Ronchigrams which contain, respectively, no aberrations (fully calibrated), underfocus, astigmatism with 

slight underfocus, and astigmatism with severe underfocus. The second row displays the same four 

images after taking the Fourier transform in dB scale. The third row displays the eigenvectors of a 

Gaussian covariance matrix fitted to the second row of images. The sizes of the eigenvectors in the figure 

(given by the eigenvalues) are used to construct the cost function used for GP/BO. ............................. 17 

Figure 8: Left: Cost landscape generated using elliptical features based on Fourier transform of synthetic 

Ronchigrams. The optimum is highlighted using the blue diamond. Right: Gaussian process estimate of 

the cost landscape using 7 noisy measurements. The numbers indicate the sequential order of the next 

measurement locations that BO proposes. ............................................................................................. 18 

Figure 9: Consistent Q-values map in simulated data (left image) and on microscope data (right). ...... 19 

Figure 10: Consistent Q-values map in simulated data (left image) and on microscope data (right). .... 20 

Figure 11:  Inconsistent action map in simulated data (left image) and on microscope data (right). ...... 21 

Figure 12: A consistent model having a correct Q-map (left) and a matching policy (right) in 2D .......... 21 

Figure 13: Illustration of diverging policies ((0,0,0) = goal, red dot = end state). .................................... 22 

Figure 14: Maximum and Sum of Q-values not being consistent in a 3D example. ............................... 22 

Figure 15: Annotated pseudo V map for real microscope data, where number 8 indicates that the model 

chose to stop. .......................................................................................................................................... 26 

Figure 16: Quivers indicating the direction of the action taken by the model on real data. .................... 26 

Figure 17: Above are the FFT of 3 synthetic images for the (0,0) optimal position, below is a similar (0,0) 

set from real data. These are not the same, and the model behaves differently for both. ...................... 26 



D1.2 

Proof of Concept Demonstration and Evaluation – 

Use Case Electron Microscopy 

public 

 

 

 

    

Version Status Date Page 

M36 public 2024.05.07 7/36 

 

Figure 18: Example paths taking by model trained on synthetic data and deployed on real data. A green 

point indicated the model stopped by choice. ......................................................................................... 27 

Figure 19: Training curves show all models manage to overtrain, most of them within 10-12 epochs. Only 

the no-FFT models take more iterations. ................................................................................................ 28 

Figure 20: Real data test performance against the number of training epochs on synthetic data .......... 28 

Figure 21: Simplified process of developing products containing innovative components. .................... 29 

Figure 22: The ASIMOV reference architecture [8] overlayed with information about the current TFS 

architecture. ............................................................................................................................................. 31 

Figure 23: The Platform Stack Architectural Framework created by the Digital Twin Consortium [9]. ... 32 

Figure 24: Blueprint of an AI/ML workflow created by the AI Infrastructure Alliance [10]. ...................... 33 

  



D1.2 

Proof of Concept Demonstration and Evaluation – 

Use Case Electron Microscopy 

public 

 

 

 

    

Version Status Date Page 

M36 public 2024.05.07 8/36 

 

1. Electron Microscopy  

1.1 Transmission Electron Microscope 

The process of forming images in Transmission Electron Microscopy (TEM) closely resembles that of an 

optical light microscope, with the primary distinction being the utilization of electrons as the light source 

and the consequent substitution of glass lenses with electromagnetic coils.  

 

In TEM, high voltages are employed to accelerate electrons toward the specimen, allowing for higher 

resolution images compared to optical light microscopes. These electrons are emitted from either a 

thermionic gun or a field emission gun (FEG) and subsequently pass through a series of condenser 

lenses to generate a beam with specified size, intensity, and convergence. In TEM mode, a parallel 

coherent beam is created, ensuring uniform illumination of the sample. Conversely, in Scanning 

Transmission Electron Microscopy (STEM) mode, the beam is focused into a fine probe that scans across 

the specimen [1]. 

 

Following the formation of the desired electron beam, it interacts with the specimen positioned in a 

dedicated holder, located between the two pole pieces of the objective lens. The objective lens then 

focuses the transmitted electrons into a diffraction pattern in the back focal plane, where they recombine 

to produce an enlarged image of the specimen in the objective lens's image plane. An ideal lens system 

is anticipated to image a single point source as a point. 

 

Scherzer [2], however, demonstrated that for round symmetric electromagnetic lenses, aberrations are 

unavoidable. These aberrations contribute to blurring of the image and therefore a loss in resolution. For 

both the condenser- and objective lenses, stigmators are therefore present which apply an asymmetric, 

correcting field to minimize the effect of the aberrations. 

 

Beneath the objective lens, a series of intermediate and projector lenses work in tandem to generate a 

magnified image, either of the sample in real space or the corresponding diffraction pattern in reciprocal 

space. Visualization of this image can be accomplished using devices such as a Charged Coupled Device 

(CCD) or a direct electron detector. The comprehensive assembly of a transmission electron microscope 

is depicted in Figure 1. 
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Figure 1: Illustration of the components of an electron microscope [3] 

 

1.2 Ronchigram 

In the context of STEM, the use of Ronchigram images plays a crucial role in determining optimal 

parameters to minimize aberrations and enhance spatial resolution. The term "Ronchigram" draws 

inspiration from the "Ronchi test," a standardized method for shaping optical lenses devoid of aberrations. 

This involves introducing a diffraction grating into the optical lens's focus, enabling the identification of 

lens imperfections through the resulting interference pattern. 

 

However, the application of Ronchi's grating in TEM proves impractical. The accelerated electrons' high 

frequency necessitates grating spacings in the order of a few picometers for interference to occur, posing 

a significant challenge in construction.  
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Instead, TEM relies on the atomic arrangement in amorphous materials, offering a nearly random 

distribution of atomic potentials. This arrangement approximates a noisy grating, simulating the Ronchi 

test and generating interference patterns that unveil aberrations in electromagnetic lenses. 

 

Crucial elements within the Ronchigram, exploitable for correcting lower-order aberrations, include its 

symmetry and magnification. In a focused state, the Ronchigram's central region exhibits high local 

magnification, representing the aberration-free segment of the electron beam. Moving away from the 

center along the optical axis introduces aberrations, resulting in reduced local magnification (Figure 2, 

center row). A maximally magnified central region serves as an initial indicator of optimal defocus.  

 

Asymmetric aberrations disrupt the rotational symmetry of the Ronchigram, with two-fold astigmatism 

elongating the high magnification region unidirectionally, producing distinct streaks (refer to Figure 2, 

bottom row). Axial coma shifts the Ronchigram's center, and higher-order aberrations further compromise 

its symmetry (refer to Figure 2, top row). 

 

 

Figure 2: Visualizations of a Ronchigram obtained on amorphous carbon in underfocus (UF) and 

overfocus (OF) as a function of astigmatism (A1) and axial coma (B2). [4] 
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If we want to train a reinforcement learning agent to correct the lower order aberrations, it is 

essential that we have large amounts of labeled Ronchigram images. Obtaining such images would 

require substantial microscope time which is expensive. To alleviate the need for physical system time 

we will therefore explore Digital Twinning (DT) as an alternative to create labeled Ronchigram data. 
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2. Advancements in the Digital Twin 

2.1 Dependency on sample’s material 

 

The Ronchigram is a diffraction pattern which conveys information about both, properties of the electron 

beam and, the sample in the microscope. This means that although we are interested in electron beam 

aberrations for the current application, the sample affects the appearance of the Ronchigram. Therefore, 

it is essential to develop and test our aberration correction solution on relevant samples/materials.    

the initial use case, the interacting of the electron wave with amorphous materials was simulated to 

generate the dataset of Ronchigram images for training the neural network (NN) model. We have 

extended our simulation to support crystalline materials in the desired crystal orientation. Consequently, 

new datasets for training AI were generated and compared to the measured data of crystalline samples. 

Figure 3 and Figure 4 show the response of a Ronchigram (and its Fourier transform; FT) to the change 

in aberrations for amorphous and crystalline materials. Although there are clear differences between 

simulated and real data the trend in the shape of FT images as a function of aberrations (defocus and 

astigmatism) is similar. As in the case of the amorphous materials, the challenging task for the AI model 

is to learn the trend and ignore the dissimilarities. However, in the case of crystalline materials the pattern 

of frequencies observed in the FT image are more complicated due to the structured diffraction rather 

than the random diffraction of sample. In such a case augmenting the training data, e.g., by random 

rotations, could potentially help the generalization to the real-world data.  
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Figure 3: Ronchigram and the amplitude of its Fourier transform as a function of defocus (x-axis) and 2-

fold astigmatism the real part (y-axis). (a) Simulated data with amorphous Carbon (aC) materials. (b) 

Measured data on a sample with amorphous Carbon and some Gold nanoparticles 
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Figure 4: Ronchigram and the amplitude of its Fourier transform as a function of defocus (x-axis) and 2-

fold astigmatism the real part (y-axis). (a) Simulated data with Si100 crystals. (b) Simulated data with 

Si110 crystals, (c) Measured data on a sample with Si110 region. 

 

2.2 Defining a distance-to-goal metric 

 

One of the methods for tunning aberrations in TEM that we have explored is to use a supervised learning 

network to predict all aberrations simultaneously. However, this is a complicated task, and it requires 

multiple Ronchigram images as input to the NNs. Alternatively, we can change the task of the NNs to 

predict the distance to the best aberration state, i.e., the distance-to-goal, which is a scalar and requires 

only a single image. To tune the aberrations, an optimization algorithm should work on top of SV 

minimizing the inferred distance-to-goal. This method is discussed in detail in chapter 3. Here, the 

different flavours of the distance-to-goal metric which are generated by the DT are discussed. 

 

We have employed two types of metrics for distance-to-goal, based on: 

 

• Explicit use of aberration coefficients:  

Here the known individual aberration coefficients from simulated data are used, e.g., in L2 form, 

to calculate the distance. When higher order aberrations are present, we use a scaled aberration 

distance, which follows the same scaling as in aberration function itself. In this metric, effectively, 

the higher order aberrations are scaled with a smaller number. 

 

• Implicit use of aberration coefficients: 

The effect of combined aberrations is calculated during the simulation by a metric which is then 

used for training. Specifically, the radius of the largest circle with phase error of less than pi/4 is 
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calculated (see Figure 6), which subsequently, is translated to a more convenient metric; the 

Rayleigh resolution (in Angstrom) of the wave with aperture size equal to the above circle. From 

this type, more metrics which measure the beam quality can also be used. The main difference 

between explicit and implicit metrics arises from the combined effect of aberrations. In reality the 

effect of some aberrations can cancel out each other, which is not reflected in the explicit metric, 

while the implicit metrics represent the observed effect of combined aberrations, and thus, the 

final resolution of the STEM image more truthfully.  

 

 

Figure 5: The radius of the largest circle with small (less than π/4) phase error. Each row shows an 

example of aberration configurations. 

2.3 Flexible STEM imaging 

 

Additionally, we have enabled producing STEM images with the simulator. In STEM imaging multiple 

Ronchigram patterns, each from one spot on the sample, are generated. For instance, in HAADF (high-

angle annular dark-field) a ring-shape detector will collect the intensity in part of the Ronchigram and the 

resulting reported number produces one pixel in the STEM image. There are, however, other modes of 

STEM imaging depending on the detector shape and the post processing of the data it collects. To enable 

all these modes for the future, a flexible detector definition was added. Figure 6 shows an example of a 

STEM detector. Moreover, the simulation of STEM is far more computationally expensive than a single 

Ronchigram. Therefore, we will further develop methods for faster calculations. 

 

Currently, we work with the Ronchigram data for aberration estimation, however, enabling STEM imaging 

enables more applications, e.g., the use of STEM data for aberration estimation. Moreover, the final 



D1.2 

Proof of Concept Demonstration and Evaluation – 

Use Case Electron Microscopy 

public 

 

 

 

    

Version Status Date Page 

M36 public 2024.05.07 16/36 

 

quality of the electron beam in STEM mode is measured by the resolution of the STEM image. By enabling 

STEM simulation, we can predict the resolution given the estimated aberrations and compare this to the 

real data. 

 

 

 

Figure 6: An example of a STEM detector with multiple rings and multiple segments on each ring. The 

total intensity on each segment is reported as a single number which then is used for a specific STEM 

imaging mode 

 

3. Exploration of Bayesian optimisation for microscope alignment 

We have applied Bayesian optimization (BO) with a Gaussian process (GP) estimator and expected 

improvement acquisition function to the aberration calibration problem. The to-be-optimized function is a 

cost function which is constructed based on manual features constructed from the Fourier transform of 

the Ronchigram images. Ronchigrams of amorphous carbon under the presence of defocus, two-fold 

astigmatism, and low higher-order aberrations have Fourier transforms which are generally elliptical in 

shape. When both defocus and two-fold astigmatism are low, we obtain a small circle in Fourier transform. 

This motivates a cost function which penalizes the two axes that describe an elliptical fit of the Fourier 

transform shape. Specifically, we interpret the Fourier shape as a 2-dimensional Gaussian and find the 

ellipse axes through the eigenvalues of the Guassian covariance matrix. The feature extraction process 

is summarized in Figure 7. 
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Figure 7: The feature extraction process of the Ronchigram. The first row displays four synthetic 

Ronchigrams which contain, respectively, no aberrations (fully calibrated), underfocus, astigmatism with 

slight underfocus, and astigmatism with severe underfocus. The second row displays the same four 

images after taking the Fourier transform in dB scale. The third row displays the eigenvectors of a 

Gaussian covariance matrix fitted to the second row of images. The sizes of the eigenvectors in the 

figure (given by the eigenvalues) are used to construct the cost function used for GP/BO. 

 

This combined GP/BO approach effectively deals with two important properties of the EM calibration 

problem: the smoothness of the ellipse features, and the fact that individual observations are non-Markov. 

 

The Gaussian process estimator exploits the smoothness of the ellipse parameters and creates an 

extremely sample-efficient estimate. Specifically, we use a standard squared-exponential kernel function 

which assumes that the cost function has some smoothness. The degree of smoothness is a 

hyperparameter in the GP, which can be tuned based on the data using marginal likelihood. 

 

The fact that the individual observations are non-Markov implies that from a single image, we can 

generally not uniquely determine the state of the microscope. Bayesian optimization uses the full history 

of observations to restore the Markov property. Specifically, we use the GP estimate which characterizes 

our belief of the cost landscape in terms of an expected value and an expected covariance, given the 

observations. From this estimate, we can determine which areas of the cost landscape are most 

promising depending on how we expect that area to perform. This expectation is captured in a so-called 
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acquisition function. We use the standard expected improvement acquisition function, multiplied by a 

factor that prioritizes the neighbourhood of the best setting so far. 

 

Since we cannot directly measure the aberrations on a real TEM, a stopping condition based on the 

measurements is required. In this approach, we use the fact that we know the ellipse features that 

correspond to the calibrated image. For this reason, we stop the automated calibration process once the 

measured cost is sufficiently low. 

 

Calibration performance (of C1 and A1x) on simulated data is extremely fast and consistent. Empirically, 

in 493 out of 500 attempts, we achieved calibration settings that are within a Euclidean distance of 20 

nm. In all attempts, we stop the process within a Euclidean distance of 30 nm. Additionally, the average 

number of samples needed before we reach the stopping condition is 6.5, with a standard deviation of 

3.8. In Figure 8 we show an example run. Notice that initially, the extremes are explored. Afterwards, the 

most promising regions are exploited. After 7 observations, the stopping condition is reached. 

 

Figure 8: Left: Cost landscape generated using elliptical features based on Fourier transform of 

synthetic Ronchigrams. The optimum is highlighted using the blue diamond. Right: Gaussian process 

estimate of the cost landscape using 7 noisy measurements. The numbers indicate the sequential order 

of the next measurement locations that BO proposes. 
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4. Strategies to improve the explainability of Reinforcement Learning 

Understanding the behaviour of a black-box AI software is desirable. In the development phase 

researchers can learn to take the right decision towards improving the solution by making the right 

development choices. In value-iteration approaches, like DQN, visualising the q-values and the actions 

taken allows to understand and characterize the learned policy; the learned policy can then be analysed, 

and this information can in turn be used to set new requirements. 

 

In the first generation (correction of C1 and positive A1x values), the models, generated through training 

on the provided data, were successfully applied to the electron microscope for the first time. Visualization 

of the sum and maximum of the Q-values, and the corresponding actions was performed to comprehend 

the policy. While not flawless, this approach served as a tangible proof of concept, indicating that the 

agent was indeed learning. In Figure 9 and Figure 10, we showcase simulated and experimental Q-maps, 

the brightest yellow spots indicate the goal, while darker areas indicate further position from goal. Such 

maps could be used for example to assess the impact of different pre-processing methods on the learned 

policy. 

 

 

 

 

Figure 9: Consistent Q-values map in simulated data (left image) and on microscope data (right). 
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 . 

 

Figure 10: Consistent Q-values map in simulated data (left image) and on microscope data (right). 

 For the second generation (correction of C1 and A1x), of models, Q-values were in agreement between 

simulation and experimental data. However, the actions were showing a wrong policy. In this case we 

could for instance recognize diverging actions (Figure 11). From there we learnt that a state can have a 

certain value while the decision taken upon it can still be wrong. This can be due to many reasons. In this 

specific case, the actions seemed contradictory, sometimes diverging, and sometimes converging from 

very similar positions. We learned that the visualizations showed a symmetry problem in the state-space, 

thereby illustrating the the individual images are non-Markov. A solution needs to be introduced to 

reestablish the Markov property by including additional information; e.g. introducing multiple images per 

state (Figure 12). 
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Figure 11:  Inconsistent action map in simulated data (left image) and on microscope data (right). 

 

Figure 12: A consistent model having a correct Q-map (left) and a matching policy (right) in 2D 

In the third and current iteration (correction of C1, A1x and A1y), a different set of problems is again 

encountered and analysed through the Q-values and the resulting policies. Provided that the size of the 

problem space increases, the RL has a much harder time to learn converging policies. Here we have 

seen that employing dense rewards has proven beneficial for facilitating AI training convergence.  

 

However, real-world testing reveals that while the distance to the goal is learned, the actions tend to 

deviate from the optimal solution (Figure 13). Although the sum of Q-values appears accurate, the 

behaviour in terms of actions requires more in-depth analysis. Additionally, the lack of correlation between 

max(Q-values) and sum(Q-values), a behaviour observed in correct models, suggests the need for further 

investigation to extract accurate information (Figure 14). Below several examples illustrating Q-values 
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and policies are described to provide more context on the analysis that were carried out based on this 

information source. 

 

 

Figure 13: Illustration of diverging policies ((0,0,0) = goal, red dot = end state). 

 

 

 

 

Figure 14: Maximum and Sum of Q-values not being consistent in a 3D example. 
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The Q-values produced by the trained models and the actions taken in the resulting policy are of high 

value for detecting working models for deployments and help the researcher and other profiles 

understand the model being used. They are as well invaluable tools for detecting problems. Q-values and 

policies that do not look as expected point to problems in the design, in the method and/or in the 

processing pipelines. The hard part is understanding what kind of problem is causing the wrong Q-maps 

and policies.  

 

5. Accelerating Investigation through the use of Supervised Learning 

 

Steps are being made to generalise the solution for full 3D, trying a variety of methods, which include 

supervised learning, continuous learning and in general methods oriented to splitting the problem into 

more manageable pieces. Extending the problem into multiple dimensions is one of the difficulties 

especially in RL where the curse of dimensionality is a known factor. In the current situation, dependency 

of the input variables is assumed, making the splitting of the problem less trivial. In supervised learning, 

labelling allows for more information to be present for the AI per taken step. Given the discrete and limited 

nature of the dataset this approach could work. 

 

 

5.1 On Reinforcement and Supervised Learning 

One of the problems in Reinforcement learning is that the process is both very data inefficient next to 

being unstable. This means that training sessions are not only long, but also plentiful in order to find good 

hyperparameters. This hinders rapid prototyping of ideas. To speed up this process, we have transformed 

our use-case in such a way that we can use classical super-vised learning. Although not perfect, this 

does allow us to quickly iterate over ideas and implementations and sift out future directions efficiently.  

 

The primary starting point for this approach is the observations in the work “Reinforcement Learning 

Upside Down: Don’t Predict Rewards – Just Map Them to Actions”. [5] Our approach is simpler. Informally 

you can think of the difference between Supervised Learning (SV) and Reinforcement Learning (RL) as 

the following: 

 

• In SV you task an algorithm with learning a direct association between a state and a label. The 

label is an instruction independent of the specific learning algorithm. 

• In RL the reward is a consequence. This is the value of all the steps you just took and might take 

from here on. Data is not provided, that the algorithm must collect actively. 
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This begs the question why we would do RL in the first place. To quickly recap, RL exists for situations 

where: 

• It is near impossible to iterate over all states. Think of all the possible states in the game of Go. 

• It is very hard, if not impossible, to predefine an optimal action for a state at that time, without 

considering its relation to a future goal. 

 

 

In basic RL settings there are too many states and an optimal policy is unknown. To reiterate: 

• There is a (sparse) reward for a taken sequence of states. The reward is a consequence tied in 

to what the agent did as action in those states.  

• Data is not available in the traditional SV sense: (image, label) or (chess position, best move). 

Both the data and this link must be ascertained. 

• Data must be learned to be collected. Be it on or off policy.  

• Agents simultaneously learn to collect what data that will lead to learned optimal actions all 

leading to a maximized discounted return. 

 

Imagine an environment that provides pairs {𝑥𝑖 , 𝑦𝑖} where 𝒙𝒊 is the i-th state and 𝒚𝒊 is the action which will 

maximize the expected return. This link resembles supervised learning and in RL you wouldn’t know this 

association, but would have to learn a policy: 

π(𝒔): 𝑺 → 𝑨 

If we further examine the relation between {𝒙𝒊, 𝒚𝒊} in SV and {𝒔𝑡 , 𝒂𝑡} in RL in terms of the discounted 

expected return, then for this example: 

𝐺𝑡 = ∑ γ𝑘𝑅𝑡+𝑘+1

∞

𝑘=1

, 

and: 

𝒚 =  𝝅∗(𝑠𝒕)  =  𝑎𝑟𝑔𝑚𝑎𝑥 𝔼𝐴∼𝝅∗ [∑ 𝑮𝒕 | 𝑺𝑡 = 𝒔, 𝑨𝑡 = 𝒂],  

where π∗(𝑠) is the optimal policy. But as long as you don’t know this optimal policy function, you can’t 

establish the mapping between states and actions (or labels) and thus can’t reduce an RL problem to 

supervised learning. 

 

However, when using the digital twin for training, there are two more conditions that are set: 

• The datasets generated by both the digital twin and our real microscopes are finite in practice 

and easy iterable.  

• We have a known ersatz optimal policy function. In this use-case we take the shortest path to 

goal as (fixed) policy. This is also the policy corresponding to the least amount of knob changes 
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on the control panel, virtual or otherwise. This policy is easily derived from the labels the digital 

twin provides us, or estimated from the current software stack on the microscope. 

This turns our RL problem into SV. Obviously, this comes at a cost of having a fixed policy. An RL 

algorithm has much more freedom to discover hidden and novel solutions, to ‘beat the system’ in away. 

In return we obtain a very fast way to test (encoder) architectures and sift out methods to help bridging 

the domain between real and synthetic data. 

 

For completeness, can you turn an SV problem into RL? This is possible by definition.  

Let there be a set of pairs {𝑥𝑖 , 𝑦𝑖} where 𝒙𝒊 is the i-th state and 𝒚𝒊 is some label and 𝑓( ) a model. A run-

of-the-mill loss function would then be ℒ(𝒚, 𝒚̂), where 𝑦̂ = 𝑓(𝒙). 

 

Minimizing this loss is equivalent to maximizing the expected reward, which means that it is possible to 

construct trajectories in the following fashion: 

𝑻 = {(𝒙, 𝑓(𝒙)|𝑓(𝒙) − 𝒚)0, … , (𝒙, 𝑓(𝒙)|𝑓(𝒙) − 𝒚)𝑛}, 

 

where 𝒙 is the state, 𝑓(𝒙) is the action provided by the model and 𝒚̂ − 𝒚 is the inverted reward. Over 

these trajectories you could deploy q-learning [6] [7]. 

 

 

5.2 Supervised learning for ASIMOV 

As architecture for supervised learning for ASIMOV prototyping, a fixed dataset is collected from the 

digital twin, spooled through the environment to do all needed image (pre) processing and then trained 

supervised using either a shaping reward (distance to origin) and regression or using the optimal action 

in the shortest-path sense with binary cross entropy, i.e. classical classification. Shortcomings have been 

extensively covered in the previous section. An annotated result may be seen in Figure 15 and Figure 

16.  However, problems arising from the differences between real and synthetic images continue to hurt 

performance, as visually shown in Figure 17.  
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Figure 15: Annotated pseudo V map for real 

microscope data, where number 8 indicates that 

the model chose to stop. 

 

 

 

 

Figure 16: Quivers indicating the direction of the 

action taken by the model on real data. 

 

 

 

Figure 17: Above are the FFT of 3 synthetic images for the (0,0) optimal position, below is a similar (0,0) 

set from real data. These are not the same, and the model behaves differently for both. 
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With training regimes running under 20 minutes, this setup does allow to do a sweep over architectures 

and hyper parameters. Examples of the training and validation curves can be seen in Error! Reference 

source not found. and Figure 20. 

All models are trained on synthetic data and tested against real data. As training and validation sets come 

from the digital twin they have an identical distribution and therefor the validation curves are not 

informative. As is evident, there are no clear winners. By far most models end up with roughly 65% 

performance. This is measured as taking the optimal labelled action for that image state. Also clear is 

that the model overtrains extremely fast. Best performance on the test set is reached in under 10 epochs 

for most cases. Similar behavior is seen in the training curves on synthetic data. However, this method 

allows to very quickly test and iterate over ideas and prototypes. Performance is roughly identical to RL 

based methods. The downside is that there will never be more advanced sequence based models in this 

setting. Also, there is no free lunch in the sense that no single architecture or layer outperforms all. 

 

 

 

Figure 18: Example paths taking by model trained on synthetic data and deployed on real data. A green 

point indicated the model stopped by choice. 
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Figure 20: Real data test performance against the number of training epochs on synthetic data 

  

Figure 19: Training curves show all models manage to overtrain, most of them within 10-12 epochs. Only 

the no-FFT models take more iterations. 
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6. Advancements in productization 

There are system engineering challenges that must be addressed when productizing a proof-of-concept 

solution. We consider different phases in the development of a product: Proof-of-Concept, Prototype, 

Initial Product, Mature Product. In Proof-of-Concept development typical questions drive the 

development: how feasible is the basic solution? Can we achieve the required qualities (e.g., speed and 

accuracy)? In Prototype development the focus is on the integration of the basic solution in the product 

context. The challenges are in finding out how to control/manage the qualities (e.g., reproducibility, speed, 

response time), and in flexibility (e.g., changing the purpose of the solution or use case, ease of evolution 

of the future product). Product development is aiming to productize the prototype and has different type 

of challenges, rooted in the final goal of creating business (i.e. generating money). Topics such as 

manufacturing, maintainability, deployment, and footprint come to the foreground. The Scaling-to-series 

deals with scaling up in manufacturing and roll-out of products. The challenges are e.g., in large scale 

deployment of (probably) fast changing AI solutions in the field, and in business-related challenges such 

as customer acceptance. Note that each phase requires a significant increase in company effort (e.g., a 

factor of 3 to 5). 

 

The phase of the ASIMOV work at Thermo Fisher Scientific, may currently be characterized as Prototype. 

This phase involves various analysis steps e.g., stakeholder analysis, feature specification, and mapping 

to the TEM reference architecture; and secondly, synthesis steps e.g., systems architecture creation, 

initial system design, and business case creation.   

 

Figure 21: Simplified process of developing products containing innovative components. 
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A generic research question to be answered in ASIMOV is: “how is systems architecting / systems 

engineering changed by the involvement of digital twins and AI components?” A second research 

question is: “is the DT-AI combination posing extra challenges?” The output of the research could be new 

approaches or methods to address the specific challenges. 

 

The TFS productization efforts will be a use case to investigate the two questions. This entails a close 

look at the systems architecting and systems engineering activities and identifying new or different 

actions, compared to regular development. The above-mentioned analytic and synthetic steps provide a 

framework to guide the investigation. 

 

6.1 Systems architecture creation 

The verification and validation of the ASIMOV reference architecture will provide feedback to the TFS 

architecture, and vice versa. This entails the mapping of the TFS solution and design decisions to the 

reference architecture, and comparisons with the UUV case solutions, which will generate new insights. 

An overlay of the TFS proof-of-concept architecture on the ASIMOV reference architecture is shown in 

Figure 22. It is clear that the current architecture adheres to the generic reference, although some parts 

are not yet covered. In later stages of development these will likely be added.   
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Figure 22: The ASIMOV reference architecture [8] overlayed with information about the current TFS 

architecture. 

 

 

6.2 Existing standards 

External frameworks, such as the 'Platform Stack Architectural Framework’ recently published by the 

Digital Twin Consortium may serve as guideline for organizing and prioritizing the systems architecting 

activities. The structure shown in Figure 23 is a basic setup for generic digital twins, combining various 

viewpoints in one diagram. The framework provides further decomposition of the required capabilities 

and best practices and guidelines towards implementation. 
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Figure 23: The Platform Stack Architectural Framework created by the Digital Twin Consortium [9]. 

Another framework that may serve as a guideline is the AI/ML workflow published by the AI Infrastructure 

Alliance, see Figure 24. This workflow shows the key steps involved in a typical AI/ML workflow, and how 

the required capabilities link together [10].  

 

We can map the (S)TEM use case to this framework in the following way, where the relevant framework 

blocks are mentioned between square brackets in the text. In the (S)TEM use case, input data are either 

images generated by the digital twin [Synthetic Data Generation] or experimental data from the 

microscope stored on the server [Network FS]. There is no cleaning or validation of data needed, but a 

transformation step to get experimental data to the right format. The [transformation] ensures 

normalization of the sizes and resolution of the images. [Labels] are created by the applications, and not 

afterwards in the data pipeline. In the (S)TEM use case, features are not used. During the [training stage], 

[experiment] and [train] are applicable. There is no [tuning], as there is no network used where a head 

needs to be tuned. During training, [metadata storage] relates to storing hyperparameters, training 

parameters, and versioning of evaluation data. [Logging] is used for training and evaluation, based for 

example of figures like visualizing Q-map values, but also on metrics like the accuracy. [Deployment] is 

first on offline acquired experimental data and if the results there are good, also on the real microscope. 
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Figure 24: Blueprint of an AI/ML workflow created by the AI Infrastructure Alliance [10]. 
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7. Terms, Abbreviations and Definitions 

 

Table 1 - Terms, Abbreviations and Definitions 

ABBREVIATION EXPLANATION 

AI Artificial Intelligence 

DT Digital Twin 

EM Electron Microscopy 

RL Reinforcement Learning 

SV Supervised Learning 

STEM Scanning Transmission Electron Microscopy 

TEM Transmission Electron Microscopy 

HAADF High Angle Annular Dark Field 

C1 Defocus 

A1 Two-fold Astigmatism 

A1x X component of two-fold astigmatism 

aC Amorphous carbon 

FEG Field Emission Gun 

CCD Charge-Coupled Device 

NN Neural Network 

BO Bayesian Optimization 

GP Gaussian Processes 

UUV Unmanned Utility Vehicle 
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