ELSEVIER

Contents lists available at ScienceDirect

# Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser





# A review of macroeconomic modelling tools for analysing industrial transformation

Ahmed M. Elberry <sup>a,b,\*</sup>, Rafael Garaffa <sup>c</sup>, André Faaij <sup>b,d</sup>, Bob van der Zwaan <sup>a,b,e</sup>

- a Faculty of Science (HIMS). University of Amsterdam. PO Box 94157, 1090 GD. Amsterdam, the Netherlands
- <sup>b</sup> TNO Energy and Materials Transition, P.O. Box 37154, 1030 AD, Amsterdam, the Netherlands
- <sup>c</sup> Joint Research Centre, European Commission, 41092, Seville, Spain
- <sup>d</sup> Copernicus Institute of Sustainable Development, Utrecht University, 3584 CB, Utrecht, the Netherlands
- e School of Advanced International Studies (SAIS), Johns Hopkins University, 40126, Bologna, Italy

#### ARTICLE INFO

# Keywords: Macroeconomic models Energy system models CGE models Circular economy Industrial transformation Technological change

#### ABSTRACT

This research presents a thorough evaluation of macroeconomic modelling tools in the context of analysing industrial transformation. It emphasizes the need to link macroeconomic models with energy system models to accurately depict industrial transformation. The study begins with a broad survey of macroeconomic modelling tools. A detailed database of 61 tools is then compiled, providing a critical analysis of the tools' structures and features. From this broad spectrum, the focus is narrowed to Computable General Equilibrium (CGE) models. The study develops a multi-criteria analysis framework, applied specifically to four CGE modelling tools, which encompasses 19 criteria categorized under four main pillars: Industrial/Sectoral representation, Technological change, Employment, and Environment. This framework critically evaluates these tools' suitability in analysing industrial transformation, highlighting the diversity of their capabilities and limitations. Although the GEM-E3 model demonstrates a high level of alignment with the framework's criteria, none of the four tools achieves a full score in any category, indicating potential areas for improvement. The broader analysis of the database's tools reveals issues such as limited accessibility, inadequate representation of social aspects, and insufficient geographical coverage. Additionally, the study notes a general lack of transparent information concerning the full features of macroeconomic modelling tools in public literature. Concluding with recommendations for further research, the study underscores the complexities in macroeconomic modelling and the need for comprehensive tools that effectively address the multifaceted aspects of industrial transformation. Such advancements will assist in making informed decisions towards a transformation that is both environmentally and economically sustainable.

## 1. Introduction

The year 2050 is approaching in which the Paris Agreement's carbon neutrality objective should be achieved [1], so accelerating the energy transition is imperative. One of the most challenging sectors to decarbonize in the energy system is industry, which was responsible for a quarter of global  $\rm CO_2$  emissions in 2021 [2]. Technological advancements have long been a driving force behind the evolution of industry. From economies-of-scale, automation, and artificial intelligence to the rise of the internet of things, technology has fundamentally altered the way in which we not only work but also produce goods and services. However, industrial transformation is not solely driven by technological advancements; it involves a complex interplay of economic, social, and

environmental factors. The switch from fossil fuels to renewable fuels, is a definitive example of industrial transformation. This shift triggers growth in renewable energy technologies, such as wind turbines while diminishing other conventional industries such as, coal mining. Concurrently, the labour market adjusts to the expansion of job opportunities in renewable energy-related sectors and their contraction in fossil fuel industries. The impact on global trade can be significant, posing challenges for fossil fuel exporters while offering new export opportunities for countries that are excelling in renewable technologies. These ripple effects also extend to industries that supply materials and components for these technologies. Furthermore, governmental policies (e.g. renewable subsidies), which often guide such transformations, may change economic incentives and investment strategies across various industries. Industrial transformation can therefore have far-reaching

<sup>\*</sup> Corresponding author. Faculty of Science (HIMS), University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, the Netherlands. *E-mail address:* a.m.a.i.elberry@uva.nl (A.M. Elberry).

| Abbrevia | ations                                        | GTAP   | Global Trade Analysis Project                          |
|----------|-----------------------------------------------|--------|--------------------------------------------------------|
|          |                                               | I–O    | Input-output                                           |
| AEEI     | Autonomous Energy Efficiency Improvement      | IEA    | International Energy Agency                            |
| AHP      | Analytic Hierarchy Process                    | IGSM   | MIT Integrated Global System Modeling                  |
| CGE      | Computable General Equilibrium                | ILO    | International Labour Organization                      |
| CI       | Consistency Index                             | LULUC  | Land-Use and Land-Use Change                           |
| CR       | Consistency Ratio                             | MAGNET | Modular Applied General Equilibrium Tool               |
| DSGE     | Dynamic Stochastic General Equilibrium        | MCA    | Multi-Criteria Analysis                                |
| EPPA     | Economic Projection and Policy Analysis       | MESM   | MIT Earth System Model                                 |
| ESM      | Energy System Model                           | OECD   | Organisation for Economic Co-operation and Development |
| GEM-E3   | General Equilibrium Model for Economy-Energy- | RI     | Random Index                                           |
|          | Environment                                   | SDGs   | The United Nations Sustainable Development Goals       |

effects that extend from changes in investment patterns, productivity, and international trade, to impacts on employment dynamics and environment.

Macroeconomic modelling can be employed to inform on the potential impacts of industrial transformation and assist in determining the optimal technological choices to be made therein, while taking into account its social, economic, and environmental dimensions. Due to the intricacy involved in analysing economic systems, macroeconomic models tend to use simplifying assumptions, which can result in certain limitations. One such limitation is the lack of detailed technical data about the energy system, which can lead to challenges in accurately gauging the influence of the energy transition on the economy. In contrary, bottom-up Energy System Models (ESMs) can provide highly disaggregated technological details [3]. However, as partial equilibrium models, they often disregard the interactions of the energy system with the rest of the economy, and thereby fail to inform on key socio-economic aspects, such as economic growth, employment, and households' consumption. Linking macroeconomic models with ESMs is therefore a way to partly overcome the drawbacks of each of these model types [4,5]. This linkage is particularly relevant for analysing industrial transformation since production factors and energy requirements may vary substantially according to the industrial activity e.g. the iron and steel industry is an energy-intensive industry, whereas vehicle manufacturing is typically capital-intensive. In addition, the integrated approach proffered by macroeconomic model-ESM coupling can help in identifying potential synergies and trade-offs between different policy objectives, such as economic growth and emissions reduction. In turn, this can provide valuable insights for designing policies that foster an industrial transformation, which is both economically sound and environmentally sustainable.

This study distinguishes between 'modeling tools' and 'models'. The term 'modeling tools' refers to specific implementations of macroeconomic models, such as the Modular Applied GeNeral Equilibrium Tool (MAGNET), which are used for examining specific scenarios. These tools are practical applications of broader model types. In contrast, 'models' refer to the theoretical frameworks or types, such as CGE (Computable General Equilibrium) or macroeconometric models, which provide the foundational methodologies and structures for these tools. Our analysis predominantly focuses on the practical applications and effectiveness of modelling tools in the context of industrial transformation. The literature on macroeconomic modelling can be broadly classified into three categories: general methodological comparisons, tool specific analyses, and regional or country specific studies. The first category comprises studies that compare the methodologies used in macroeconomic modelling in general (CGE versus macroeconometric), without a specific focus on a particular tool. Examples include studies [6-9] that evaluated different models for their effectiveness in analysing specific policies (e.g. energy taxes). Other studies have also contributed to the understanding of macroeconomic models of specific type and its application in assessing climate change. Bergman, for instance, discussed

environmental policy in relation to CGE models [10]. An et al. and Babatunde et al. have systemically reviewed the applications of CGE modelling in evaluating the impacts of low-carbon policies [11,12].

Second category includes research that delve into specific macroeconomic modeling tools, examining their approaches in addressing particular topics. For example, Faehn et al. reviewed the key approaches used by seventeen tools in representing the emissions abatement technologies [13]. In a similar manner, Hafner et al. compared eleven tools of different types with relevance to the transition in the power sector [14]. The incorporation of R&D and innovation policies in three tools of different spatial scales were examined by Akcigit et al. [15]. The final category features research that examines similar topics, but with a specific focus on a particular country or region. For instance, a number of studies examine the ability of different tools in proving insights specific to Ireland [18], Australia [19], Europe [20], and the United States [21] with regard to the macroeconomic impacts of environmental policies.

This research aligns with the second category but introduces a novel focus by specifically comparing macroeconomic modeling tools within the context of industrial transformation assessment. Initially, the study identifies and reviews 61 macroeconomic modelling tools in use by different stakeholders and organizations and documents all results in a comprehensive online database. From this comprehensive analysis, we create a shortlist of four CGE modeling tools which are then evaluated using a comparison framework. The framework is designed to provide an in-depth comparison of these tools based on their ability to address the multifaceted aspects of industry while also considering their adaptability for linking with ESMs.

The remainder of this paper is divided into three main sections. Section 2 describes the methodologies that we apply in our analysis. Section 3 reports and discusses the results of our review. Section 4 summarizes the study's conclusions and provides recommendations for further research. In each of these sections, we illustrate key macroeconomic terms, and expand on the types of macroeconomic models, as well as the limitations of macroeconomic modelling in general.

# 2. Methodology

We here describe the methodology used in creating the database for macroeconomic modelling tools (section 2.1). We also explain the process of creating the comparison framework that includes multiple criteria aimed at evaluating the suitability of macroeconomic modelling tools for examining industrial transformation. This framework serves as a foundation for conducting a multi-criteria analysis (MCA) on a subset of tools that we refer to as the 'shortlist' in the rest of this paper. Fig. 1 outlines the key stages of the research methodology.

# 2.1. Database of macroeconomic modelling tools

The creation of the database is aimed at comprehensively gathering

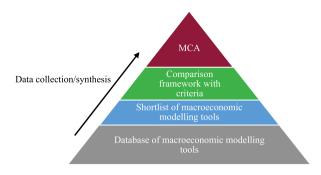



Fig. 1. A pyramid chart of the key stages of the research methodology.

data about available macroeconomic modelling tools. We started the research by conducting a literature survey utilizing a broad set of portals: Google scholar, ResearchGate, ScienceDirect, SpringerLink, Semantic Scholar, Google books, along with websites of organizations such as the World Bank and the Organisation for Economic Co-operation and Development (OECD). After identifying the tools, we collected data about each tool with respect to the attributes displayed in Table 1. These attributes can be divided into two categories: generic and specific. Generic attributes focus on practical overall information such as type of the model, which can be CGE, Macroeconometric, Input-output (I-O), and Dynamic Stochastic General Equilibrium (DSGE). Specific attributes, on the other hand, address more detailed information that is particularly relevant to the scope of this paper, such as the number of Sectors/Activities represented in the modelling tool (which indicates how many sectors are responsible for producing goods and services in the economy).

We compiled the data that we gathered into an online database by utilizing a Google spreadsheet. To gain a deeper understanding of the commonalities and disparities among the tools, we processed the data and generated systematic displays such as visualizations and tabulations, utilizing the Python programming language.

#### 2.2. Framework development and MCA for the shortlisted tools

After a thorough review of the database, we decided that only Computable General Equilibrium (CGE) modelling tools would be considered for analysis, despite the presence of other model types. The reason for this lies in the specific requirements of our research, particularly the need for a detailed representation of the industrial sector, and the flexibility to model both supply and demand over extended periods of time. CGE models excel in these areas, which make them well-suited for analysing industrial transformation [16-18]. While other types of models may have their own advantages in analysing specific aspects of the economy, comparing pros and cons of different types of models is beyond the scope of this paper. In selecting the shortlisted CGE modelling tools, we based our decision on a variety of factors, including literature availability, accessibility by third parties, and the presence of active software support and updates. We narrowed down the focus to tools that had the most prominent features with regard to our scope of analysis, i.e. industrial transformation.

We created a comparison framework for the shortlisted tools, which served as a foundation for identifying the appropriate criteria needed for the MCA. This framework places considerable emphasis on the flexibility of the tools to be linked with ESMs, which play a crucial role in understanding the technical aspects of the industrial transformation as elaborated in section 1. The framework includes 19 criteria, which are classified into four categories, namely 'Industrial/Sectoral

**Table 1**Attributes of the database.

| Attribute                               | Description                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Analysis                        | Two major categories of analysis are static and dynamic. Static models analyse the system state at one point in time. Dynamic models examine how the economy evolves over time by modelling how variables change from one period to the next. There are also other more specific types such as comparative static, recursive dynamic and Intertemporal.                                                             |
| Type of model                           | Examples of model types are CGE, Macroeconometric and Input-output. Each type has a different modelling approach. For example, macroeconometric models use statistical techniques to provide economic forecasts, while CGE models are mathematical tools that simultaneously solve a set of equations.                                                                                                              |
| Developer                               | The developer of the tool, which can be an individual, an institution, or a consortium.                                                                                                                                                                                                                                                                                                                             |
| Number of Sectors/                      | The number of sectors or activities that produce                                                                                                                                                                                                                                                                                                                                                                    |
| Activities                              | commodities and services in the economy.                                                                                                                                                                                                                                                                                                                                                                            |
| Accessibility                           | The accessibility to the software and/or data sources utilized in the tool. In some cases, one or more licenses are required to access the tool and sometimes it cannot be accessed at all.                                                                                                                                                                                                                         |
| Supporting software                     | The supporting software is the platform in which the model's equations and variables are defined, and where the model runs (e.g. MATLAB, GAMS).                                                                                                                                                                                                                                                                     |
| Spatial scale                           | The spatial scale of the tool, which can be Global, National or Subnational.                                                                                                                                                                                                                                                                                                                                        |
| Geographical coverage                   | The countries and regions that the tool covers. For example, a tool specific to the USA may include disaggregation into its individual states.                                                                                                                                                                                                                                                                      |
| Temporal scale                          | The time duration during which the model runs (e.g., 1990–2050).                                                                                                                                                                                                                                                                                                                                                    |
| Technological change                    | Parameters and method (e.g. exogenous, endogenous) used to represent technological change in the economy.                                                                                                                                                                                                                                                                                                           |
| Inclusion of modules                    | The macroeconomic model can have internal modules that represent some systems in the economy with extra details (e.g. water-use or emission trading).                                                                                                                                                                                                                                                               |
| Representation of labour/<br>employment | Parameters and insights generated by the tool in-line with the labour/employment representation in the economy. For example, some tools can show the unemployment rate as a result of a new policy or technology. Other models can examine the effect of changes in the minimum wage or social welfare programs on the different groups of workers, such as those with different levels of education or experience. |
| Data Source                             | Public resources, national accounts, or established databases (e.g. European statistics) used as input data for the tool.                                                                                                                                                                                                                                                                                           |

representation', 'Technological change', 'Employment', and 'Environment'. The criteria focus on the various components of the industrial sector and endeavours to capture the pertinent social and environmental interactions Table 2 presents these criteria and their definitions. In identifying the criteria per category, we attempted to draw attention to particular aspects, as discussed in the following paragraphs.

**Industrial/Sectoral representation:** the focus here is to analyse the degree to which the industrial sector is represented in a given tool, with particular emphasis on the number of sectors included and the degree of flexibility in technology choices within each sector. These features are crucial for ensuring accurate industrial representation, as they can reduce the aggregation of industrial sectors. For instance, when considering electricity production, it is more reasonable to have independent wind, solar, and coal sectors, rather than aggregating them into a single sector, such as the power sector. This disaggregation enables higher sectoral resolution, providing better scrutiny of the details of each sector. Moreover, when linking macroeconomic models with ESMs, a significant challenge faced by modellers is the discrepancy in the number of sectors and technologies between the two models. ESMs often represent these aspects with detailed granularity, as exemplified by the IESA-Opt ESM, which comprises over 700 technologies distributed among multiple sectors [19]. Another example is the OPERA ESM, which represents industrial sector in about 104 subsectors [20]. To establish a link between the two models, the sectors and technologies in the ESM must be aggregated until they align with those of the macroeconomic model. However, this process of aggregation would lead to a considerable reduction in the level of detail in the industrial representation, which may impede the ability to obtain a comprehensive understanding of the energy system.

Technological change: when examining industrial transformation, it's essential to consider the critical role of technological change. At its core, technological change refers to the potential increase in output resulting from improvements in the production process [21,22]. Technological change can be categorized into three groups: exogenous, endogenous, and semi-endogenous. Exogenous variables are inputs provided by the user, while endogenous variables are calculated internally with a model's equations. Semi-endogenous variables, on the other hand, are a combination of exogenous and endogenous variables [23, 24]. A key aspect of our comparative framework is maintaining consistency in assumptions across CGE models and ESMs. This is crucial for effective linkage between these models. Using exogenous parameters, such as Autonomous Energy Efficiency Improvement (AEEI), ensures that both models operate under the same set of assumptions about technological progress. While endogenous and semi-endogenous changes have their merits in modelling dynamic economic interactions, the choice of exogenous technological change in our analysis is a methodological decision tailored to the practical needs of models linking.

**Employment:** in examining the labour force, there are two fundamental factors to consider; unemployment types (e.g., cyclical, involuntary/voluntary), and categories of skills [25]. Despite the importance of such elements, most computable general equilibrium (CGE) models merely take into account unemployment rates and the division of labour into skilled and unskilled categories, with few incorporating involuntary unemployment. Despite these limitations, we endeavoured to identify criteria that would assess the broader interplay within the social loop of the macroeconomy, such as labour mobility between countries or regions, which is fundamental for enabling industrial transformation [26]. Incorporating these elements when examining changes in industry, can provide a more comprehensive and nuanced understanding of the labour force and its impact on the economy.

**Environment:** this category encompasses five criteria designed to assess the tools' capability in covering today's most critical environmental issues. In identifying these criteria, we take into account the limitations of CGE models when it comes to examining complex environmental issues. For instance, studying certain issues may require more

**Table 2**The framework's criteria and their definition

| Index           | Criteria                                                 | Definition/Aim                                                                                                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | Industrial/Sectoral                                      |                                                                                                                                                                                                                                                                                             |
| 1.1             | representation<br>Number of sectors/activities           | Identifies the number of sectors or activities in the modelling tool, if the number of sectors and activities are unequal, the more comprehensive one is considered.                                                                                                                        |
| 1.2             | More than one technology per one commodity               | Assesses whether the modelling tool permits the utilization of more than one technology for producing the same commodity, such as the presence of a green and a conventional technology for steel production. Note that this criterion does not consider the electricity generation sector. |
| 1.3             | More than one commodity per sector                       | Evaluates the modelling tool's ability to<br>accommodate the production of more<br>than one commodity per sector (e.g. by-                                                                                                                                                                  |
| 1.4             | Fuel substitution per technology                         | products). Verifies if the modelling tool allows for the substitution of one fuel by another for the same technology.                                                                                                                                                                       |
| 1.5             | Flexibility of aggregation and disaggregation of sectors | Evaluates if the sectors can be aggregated into fewer sectors or disaggregated to include more sectors, which can allow researchers to adjust the level of sectoral detail according to the research question at hand.                                                                      |
| 2<br>2.1        | Technological change<br>AEEI/Technical progress          | Assesses if the modelling tool uses AEEI/<br>Technical progress and their equivalent<br>parameters to represent technological<br>change.                                                                                                                                                    |
| 2.2             | Learning-by-doing                                        | Assesses if the modelling tool uses the learning-by-doing approach to represent technological change.                                                                                                                                                                                       |
| 2.3             | Learning-by-searching                                    | Assesses if the modelling tool uses the learning-by-searching approach to represent technological change.                                                                                                                                                                                   |
| 2.4             | Exogenous                                                | Determines whether at least one of the technological change parameters in the modelling tool is exogenous.                                                                                                                                                                                  |
| <b>3</b><br>3.1 | <b>Employment</b><br>Skilled and unskilled labour        | Checks if the modelling tool considers at least two types of labour.                                                                                                                                                                                                                        |
| 3.2             | Labour mobility                                          | Determines if the modelling tool<br>evaluates the labour mobility across<br>regions or countries or sub-regions.                                                                                                                                                                            |
| 3.3             | Involuntary unemployment<br>(Imperfect market)           | Determines if the modelling tool accounts for involuntary unemployment or imperfect market.                                                                                                                                                                                                 |
| 3.4             | Sectoral employment                                      | Checks if the modelling tool assesses the employment per sector even if the tool does so for only one sector (e.g. agriculture).                                                                                                                                                            |
| 3.5             | Unemployment rate                                        | Checks if the modelling tool assesses the unemployment rate for the whole economy.                                                                                                                                                                                                          |
| 4               | Environment                                              | ·                                                                                                                                                                                                                                                                                           |
| 4.1             | Water-use                                                | Verifies if the modelling tool analyses the water-use throughout the different sectors as well as the household.                                                                                                                                                                            |
| 4.2             | Land-use                                                 | Checks if the modelling tool includes land<br>demand per sector and/or accounts for<br>land-use change (e.g. building on<br>cropland).                                                                                                                                                      |
| 4.3             | Natural resources                                        | Checks if the modelling tool evaluates and accounts for depletion of the natural resources (e.g. fossil fuel reserves).                                                                                                                                                                     |
| 4.4             | Air pollution and health                                 | Evaluates the analyses of GHGs emissions and/or air pollutants and/or the population's health in the modelling tool.                                                                                                                                                                        |
| 4.5             | Material flow/demand/<br>recycling                       | Assesses if the modelling tool accounts for material demand per sector and/or includes sectors dedicated for material recycling.                                                                                                                                                            |

than simply including a detailed environmental module; it may necessitate linking with Earth or atmospheric models. In this category, we try to shed light on materials and natural resources management, which are important global issues for several reasons. First, the Earth's natural resources are finite and their extraction and use can have negative environmental impacts, including air and water pollution, and deforestation [27]. Second, the increasing global demand for materials and natural resources, particularly in rapidly developing economies, has led to resource depletion and price volatility. This has important implications for global political, and economic stability, and social equity [28]. Finally, the management of natural resources requires international cooperation and coordination, as has been highlighted by the United Nations Sustainable Development Goals (SDGs) [29]. The sustainable management of materials, particularly through recycling, can reduce the need for extraction and processing of new resources, minimize pollution and waste, and contribute to the principles of circular economy [30]. However, despite these benefits, sustainable materials management practices tend to be underrepresented in both macroeconomic models and ESMs [31,32], which is a significant issue that we aim to highlight in this paper.

The steps of applying the framework are as follows:

- Identifying articles and reports that mention or use the shortlisted tools.
- (2) Analysing and assessing each tool against the criteria listed in Table 2 for each article or report.
- (3) Marking all the criteria that were met by each specific tool with an 'x', where x equals 1 if the criterion was met and 0 if it was not. For criterion 1.1, we multiplied x by the corresponding number of sectors. To ensure consistency, we normalized the values of criterion 1.1 to be in the range of [0,1] by applying the linear normalization method using Eq. (1). Criterion 1.1 is a beneficial attribute, meaning that the higher the number of sectors, the more favourable the tool. Thus, the tool with the highest number of sectors would receive the value of x = 1 while the remaining tools would be assigned a fraction of x.
- (4) Repeating steps 2 and 3 for several articles and reports until it is improbable that any more criteria can be met.

$$\overline{Y}_{ij} = rac{Y_{ij}}{Y_{i}^{Max}}$$
 Eq. 1

To ensure a comprehensive evaluation of the shortlisted tools, we conducted a total of five MCAs: four individual MCAs, one for each category, referred to as local MCAs, and one MCA to evaluate the four main categories as a whole with relevance to one another, referred to as the global MCA. This allowed us to assess the performance of each tool in each category with greater precision. Moreover, such approach averted any confusion or entanglements that could have arisen from the differences in nature of the criteria within each of the four categories. For instance, criteria 1.1 to 1.5 (criteria relevant to industrial/sectoral representation) were evaluated relative to one another and not with reference to criterion 3.2 (labour mobility).

We utilized the Analytic Hierarchy Process (AHP) [33,34] to conduct the MCA. The AHP has been extensively utilized for weighting in MCAs and has been demonstrated to be competitive when compared to other methods [35–37]. To construct the pairwise comparison matrices, we mapped the criteria against Saaty's scale of relative importance [34]. The next step involved normalizing the pairwise comparison matrices by averaging each respective row to calculate the weights of the criteria. The consistency of the weights was subsequently checked and validated by determining the consistency ratio with relevance to the random index (RI) scale [38]. The steps for determining the consistency ratio were as follows:

- We calculated the weighted sum by multiplying the weights assigned to each criterion by their respective relative intensities of importance;
- (2) To determine the lambda values, we used Eq. (2), and then calculated the lambda $_{Max}(\lambda_{Max})$  by averaging the lambdas;
- (3) We calculated the consistency index (CI) and consistency ratio (CR) using Equations (3) and (4), respectively. In these equations, "c" denotes the number of criteria, and "RI" denotes the random index, which was determined based on the matrix size through a table that maps the matrix size to random indexes [39].

$$Lambda(\lambda) = \frac{Weighted \ sum_j}{Weight_i}$$
 Eq. 2

Consistency index(CI) = 
$$\frac{\lambda_{Max} - c}{c - 1}$$
 Eq. 3

Consistency ratio (CR) = 
$$\frac{Consistency index (CI)}{Random consistency index (RI)}$$
 Eq. 4

It is important to note that for the weights to be considered consistent, the CR should be less than 0.1 [40]. In case this condition was not met, the pairwise matrices were re-evaluated accordingly. After verifying the consistency of the weights, the MCA results were used to compare the tools and rank them based on a preference score.

#### 3. Results and discussion

#### 3.1. The database

Table 3 presents the identified macroeconomic modelling tools as well as references used to gather the respective information. The complete database is accessible online at the following URL: [https://sites.google.com/view/macromodelingtools/home]. In subsection 3.1.1, we provide a summary of the features and characteristics of the tools with respect to some selected attributes (as shown in Table 1), and also offer a critical analysis of the relevant findings. However, it is important to acknowledge potential source of errors in our database. Given the vast array of tools examined, there is a possibility that some information might have been misinterpreted or not fully understood in its original context. Additionally, these tools are continually evolving, and updates or modifications made after our data collection could lead to discrepancies between our analysis and the current capabilities of the tools.

# 3.1.1. Insights on key attributes of the database

The database consists of 61 tools, 41 of which are CGE models while the rest are of different types. We present a summary of our analysis for the main attributes as follows:

3.1.1.1. Number of sectors/activities. The number of sectors in tools is depicted by Fig. 2a and b. Analysis of the distribution curve reveals that the majority of the tools has an average number of around 40 sectors. Conversely, the likelihood of tools having less than 5 or more than 100 sectors is comparatively low. It is important to note that a large number of sectors (>100) can increase the complexity of solving the model. Alternatively, having only 5 sectors may not suffice in addressing certain research questions. Nevertheless, the choice ultimately rests with the modelers and the tools at their disposal.

3.1.1.2. Type of analysis. Fig. 2c indicates that recursive dynamic is the most prevalent type of analysis followed by the dynamic type. Each of the other types of analysis is associated with about five modelling tools, with the static type has the fewest number of tools associated with it. This observation underscores the importance of dynamic modelling in providing time-independent insights, which is especially critical for policy makers.

**Table 3**The tools contained in the database.

| Index    | Tool                                           | References                      |
|----------|------------------------------------------------|---------------------------------|
| 1        | ANARRES                                        | [41]                            |
| 2        | CEEEA2.0                                       | [42]                            |
| 3        | CETA                                           | [43,44]                         |
| 4        | DELFI                                          | [45]                            |
| 5        | DEMETRA                                        | [46]                            |
| 6        | DICE                                           | [47–49]                         |
| 7        | Dynamic Applied Regional Trade Model           | [50,51], Personal               |
| 0        | (DART)<br>E3ME                                 | communication                   |
| 8<br>9   | ENVISAGE                                       | [52]<br>[53,54], Personal       |
|          | ENVIOLEE .                                     | communication                   |
| 10       | ENV-Linkages                                   | [55–57]                         |
| 11       | EPPA                                           | [58,59]                         |
| 12       | EXIOMOD                                        | [60,61]                         |
| 13       | FTAP Model                                     | [62–67]                         |
| 14       | FUND                                           | [68,69]                         |
| 15       | G-Cubed                                        | [70–73], Personal communication |
| 16       | GEM-E3                                         | [74,75], Personal               |
| 10       | GEW EO                                         | communication                   |
| 17       | GEMST                                          | Personal communication          |
| 18       | GEMINI-E3                                      | [76-79], Personal               |
|          |                                                | communication                   |
| 19       | GINFORS-E                                      | [80]. Personal                  |
|          |                                                | communication                   |
| 20       | GLOBE                                          | [18,81,82]                      |
| 21       | GRACE                                          | [83–85], Personal communication |
| 22       | GTAP                                           | [86–90]                         |
| 23       | GTEM                                           | [91,92]                         |
| 24       | HERMES model                                   | [93–97]                         |
| 25       | HMRC's CGE mode                                | [98,99]                         |
| 26       | I3E                                            | [100,101]                       |
| 27       | ICES (Intertemporal Computable Equilibrium     | [102,103], Personal             |
| 28       | System)<br>IEG-CGE                             | communication [104–106]         |
| 29       | INTERLINK                                      | [107,108]                       |
| 30       | LINKAGE                                        | [109,110]                       |
| 31       | MAGNET                                         | [111]                           |
| 32       | MAMS                                           | [112]                           |
| 33       | MANAGE-Mitigation, Adaptation, and New         | [113,114]                       |
|          | Technologies Applied General Equilibrium model |                                 |
| 34       | MEDEAS-World                                   | [115,116]                       |
| 01       | MEDEAS-EU                                      | [110,110]                       |
|          | MEDEAS-Country level (Austria and Bulgaria)    |                                 |
| 35       | MONASH                                         | [117]                           |
| 36       | MIRAGRODEP-AEZ (MIRAGE (Modelling              | [118,119]                       |
|          | International Relationships in Applied         |                                 |
|          | General Equilibrium))                          | 54004047                        |
| 37       | MSG3 model                                     | [120,121]                       |
| 38<br>39 | MULTIMOD<br>MyGTAP                             | [122–124]<br>[125–127]          |
| 40       | NEMESIS                                        | [15,128–131], Personal          |
|          |                                                | communication                   |
| 41       | NiGEM                                          | [132]                           |
| 42       | ORANI-G                                        | [133–135]                       |
| 43       | PEP-1-t                                        | [136]                           |
| 44       | PEP-w-t                                        | [137]                           |
| 45       | Phoenix                                        | [138]                           |
| 46<br>47 | POLES<br>PINGO                                 | [139–141]<br>[142]              |
| 48       | QUEST                                          | [143–145]                       |
| 49       | RHOMOLO                                        | [146–148]                       |
| 50       | RICE                                           | [149–151]                       |
| 51       | Second Generation Model (SGM)                  | [152,153]                       |
| 52       | SNoW-NO                                        | [154–156]                       |
| 53       | STAGE                                          | [157,158], Personal             |
| 54       | The ECLAC - CIAM model                         | communication [159,160]         |
| 55<br>55 | TEA                                            | [161]                           |
| 56       | Term                                           | [162–164]                       |
| 57       | ThreeME                                        | [165–167]                       |
| 58       | US Macro Model                                 | [168,169]                       |

Table 3 (continued)

| Index | Tool      | References |
|-------|-----------|------------|
| 59    | WEGDYN    | [170,171]  |
| 60    | WITCH     | [172]      |
| 61    | WorldScan | [173,174]  |

3.1.1.3. Supporting software and data sources. The analysis of the data-base shows that GAMS is the mostly used supporting software for all the tools. One possible reason behind this is that GAMS enables users to formulate their models in concise mathematical statements. In addition, GAMS provides discounted licenses to academics, and offers a diverse range of solvers that endorse the time efficiency aspect.

Fig. 2d illustrates the most commonly utilized data source by various tools. The Global Trade Analysis Project (GTAP) emerged as the most frequently used data source, surpassing the use of personal databases, the IEA, and national statistics. GTAP's comprehensive coverage of bilateral and multilateral cooperation among more than 140 countries/regions, combined with its high accessibility, frequent updates, and rigorous quality assurance of data, are likely factors contributing to its prominent position [175].

It is also possible that the widespread use of GAMS and GTAP within the CGE community and the fact that most of the tools in the database are CGE models, contribute to their prevalence.

3.1.1.4. Spatial scale and accessibility. Fig. 3 presents an overview of the spatial scale and accessibility of the 61 tools in the database. Among them, 39 tools have a global coverage, 16 tools focus on the national level, and the rest consider the subnational level. The popularity of global models in macroeconomic analysis can be attributed to the growing significance of the global economy in today's world. By simulating the global economy, macroeconomic modellers can capture and analyse the performance and prospects of the world's economies, especially with regards to the economic interactions between countries, and the potential consequences of national economic decisions and policies on other economies. However, the accessibility of the tools varies depending on the model at hand, whether it is global, national or subnational. Most global models can be freely accessed, while 16 models allow free access to the code and require licences for either the supporting software (e.g. GEMPACK) or the database (e.g. GTAP) and sometimes both. Some tools in the three spatial categories are not accessible at all and only consultancy services could be provided on a fee-basis per project. A further type of accessibility that is specific to global models is "Exclusive" accessibility, which means that the tool is solely available to the host institute and its close partners for their own projects without consultancy services being available. In some cases, this lack of accessibility can be due to contractual arrangements related to a specific project, or concerns related to data privacy.

3.1.1.5. Geographical coverage. Fig. 4 shows the number of tools that represent countries individually, rather than as part of a region. The world's largest economies (e.g. the USA) and countries that have bilateral trade with them, are individually represented by many tools, as depicted by the map. Most modelling tools, however, do not include many African, Middle Eastern, and Central Asian countries individually. This is mainly due to their limited impact on the global economy. It is important to note that some countries in these regions, particularly major oil and gas exporters such as Saudi Arabia and the United Arab Emirates, can have a substantial impact on the global economy. Nevertheless, many modelling tools group these countries together as part of the OPEC region because of their collective impact on global oil production and prices. As production relocation becomes more prevalent, there is a growing need for modelling tools to expand their geographical coverage and represent specific countries in greater detail. For example, with the potential for hydrogen production in North African countries [176,177], it becomes essential to include them

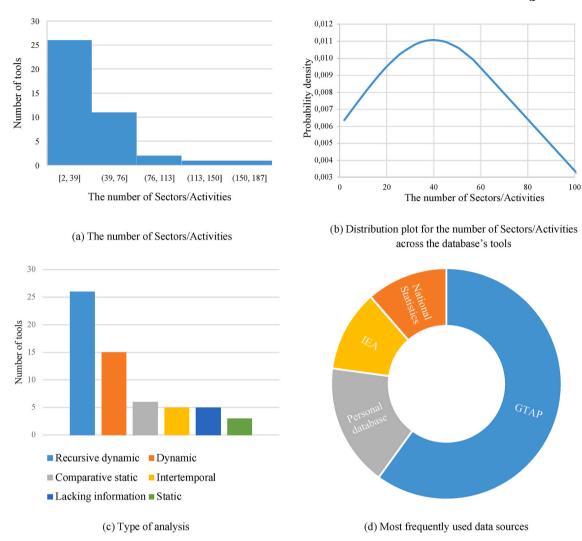



Fig. 2. Charts for the macroeconomic modelling tools in the database.

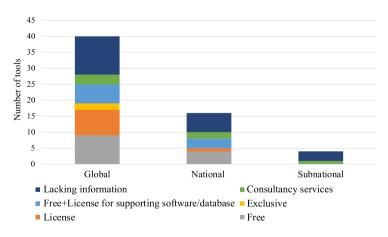



Fig. 3. Spatial scale and accessibility of the tools.

individually in the modelling tools as has been done with some tools such as GTAP [89] and TIAM-ECN [178].

3.1.1.6. Temporal scale. The analysis reveals that the majority of tools

are designed to run up to the year 2050 or 2100. The underlying explanation for this can be attributed to the fact that most international climate strategies aim at 2050 as the year by which important emissions reductions and climate goals should be achieved. For the year 2100, it is

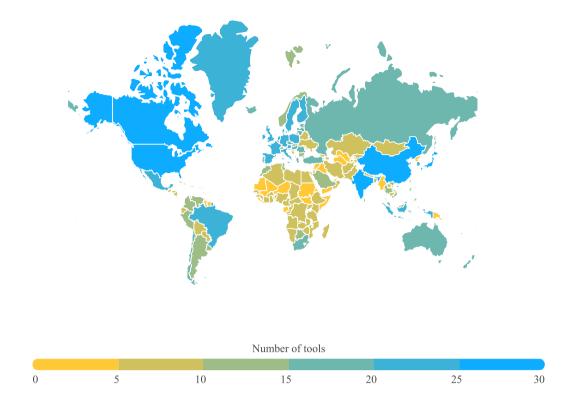



Fig. 4. Geographical disaggregation of the tools.

because climate changes can have long-term and far-reaching effects, with a 100-year timescale being a common benchmark. Thus, designing tools that are capable of projecting outcomes up to these years is a logical and strategic approach for analysing the impacts of climate change.

3.1.1.7. Technological change. Fig. 5 displays some of the most frequently used technological change parameters. An initial evaluation of this chart suggests that each parameter is uniquely different from the other, which is not entirely accurate. For example, apart from their nomenclature, AEEI, technological progress, technological change, and

rate of technological change essentially measure the same concept that is the technology change through the rate of efficiency improvement. In the same way, technical progress, technical efficiency, and technical change differ only in terms of nomenclature, and it is not clear how developers of these tools determine the terminology for such similar parameters. In macroeconomic models, technical change and technological change play crucial roles in explaining economic growth and development. While these terms are often used interchangeably, they have different implications for macroeconomic models. Technical change is essentially concerned with the organizational changes in the production function per se such as the enhanced efficiency of the labour

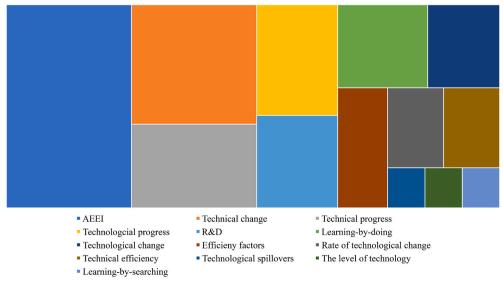



Fig. 5. The most frequently used technological change parameters.

force [179,180]. Thus, a more efficient labour force will result in a greater production output. Meanwhile, technological change manifests itself in various forms that are technologically relevant such as adopting state-of-the-art equipment with high efficiency or enhanced materials, which in turn will also improve the production efficiency [181].

In regard to other parameters, such as learning-by-searching, learning-by-doing and technology spillover, they mostly come as complementary to technological change, and there are slight vet distinctive differences between them. The reduction in costs of technology over time as a result of experience and learning is usually described with the learning curve concept, that correlates the historical increase of manufactured units, or installed capacity, to a fall in cost. Both parameters; learning-by-searching and learning-by-doing are based on the learning curve concept, however, the driver of the cost reduction in both approaches is different. Learning-by-doing is relevant to the reduction of costs due to the repetition of the manufacturing process that leads to a gain of experience and ultimately a more efficient production process. Conversely, the main drivers for cost reduction in the learning-bysearching approach are innovation and knowledge acquisition, which contribute to the improvement of manufacturing processes [182,183]. There is a conceptual similarity between learning-by-searching, R&D, and technology spillover parameters, though the latter specifically refers to knowledge acquired by one firm as a result of R&D conducted by other firms without sharing the costs [184]. For instance, consider a scenario in which Company 'A' conducted research aimed at improving the production efficiency of a specific commodity, and published its results. Company 'B', which had not provided funding for that research, was able to use the same results to enhance its production process. This type of knowledge transfer is known as a technology spillover.

Considering the types of technology change used by the tools, Table 4a demonstrates that exogenous technological change constitutes the majority of the tools at 60%, while endogenous and semiendogenous technological change account for 22% and 3% of the tools, respectively. On another note, the technological change can be represented by one or more parameters, such as AEEI and learning-bydoing or AEEI only. Table 4b illustrates how many parameters are used to represent technological change in the tools. It compares the number of tools that uses one parameter versus those that use two or three parameters. The number of tools that use only one parameter is 37 while only 4 tools base their technological change on three parameters. This can be due to the positive correlation between the number of parameters and the complexity of the model, where adding more parameters makes the model more complex, and further affect the degree of freedom. Nine tools lacked any information on the technological change dimension, which can be seen on both tables.

# 3.2. Shortlisted CGE modelling tools

In section 2.1, a set of criteria was established to guide the selection of shortlisted tools. Despite meeting the criteria, some tools could not be shortlisted due to either inadequate documentation or the existence of multiple versions of the same model without proper documentation for the core version. To overcome this information deficit, we attempted to

**Table 4**The technological change types and the number of parameters for the tools in the Database.

| (a) The types of technological change for the tools |                 | (b) The number of technological change parameters for the tools |                 |  |  |
|-----------------------------------------------------|-----------------|-----------------------------------------------------------------|-----------------|--|--|
| Types of technological change                       | Number of tools | Number of technological change parameters                       | Number of tools |  |  |
| Exogenous                                           | 37              | 1 parameter                                                     | 38              |  |  |
| Endogenous                                          | 13              | 2 parameters                                                    | 10              |  |  |
| Semi-endogenous                                     | 2               | 3 parameters                                                    | 4               |  |  |
| Lacking information                                 | 9               | Lacking information                                             | 9               |  |  |

contact these tools' developers; however, this was not always a successful method of obtaining clear information. Additionally, we observed that despite the presence of some tools that have very interesting features, and developed by large organizations (e.g., the World Bank), the webpages of these tools were deserted, and did not contain any updated contact information. This in turn resulted in a very limited pool of tools that we can choose from. The tools that ideally met the criteria and were most suitable for the shortlist are as follows: Economic Projection and Policy Analysis (EPPA), General Equilibrium Model for Economy-Energy-Environment (GEM-E3), GTAP standard model, and Modular Applied General Equilibrium Tool (MAGNET). In following sections, we provide background information on each of these tools, and present the MCA results.

#### 3.2.1. Background of the shortlisted tools

3.2.1.1. EPPA. EPPA is a CGE model developed by the Massachusetts Institute of Technology (MIT) Joint Program on the Science and Policy of Global Change. It is a multisectoral recursive dynamic model that can be used to assess the effects of different energy and environmental policies and regulations related to energy production and consumption, land-use, natural resource depletion, and technologies deployment [185]. EPPA also calculates the future GHGs emission and air pollutants, which can be fed to the MIT Earth System Model (MESM) creating the substrates of MIT Integrated Global System Modeling (IGSM). This can in turn can be utilized in carrying out advanced climate scenarios analyses. One of the merits of EPPA, is that fossil fuels can be substituted by clean fuels, such as hydrogen, which allows for studying the various pressing issues concerning the new green fuels [186]. GTAP is the primary database for EPPA, however, with its geographical resolution aggregated into 10 countries and 8 regions (e.g., Africa). While the industrial sectors are merely aggregated in EPPA, the power production sector is quite detailed, providing a robust foundation for representing the application of advanced technologies in this sector [187]. This is one of the reasons why EPPA has been extensively used in assessing technological advancements besides evaluating energy and climate policies. EPPA has also been used widely in land-use studies thanks to its distinctive features in that regard where it categorizes land into five types (e.g. cropland), and allows farmers to convert their land to a more competitive type given that they can afford the corresponding conversion costs [188-190].

3.2.1.2. GEM-E3. GEM-E3 is a global recursive dynamic CGE model that can run up to the year 2100, it is developed by a consortium of institutions with the National Technical University of Athens as the leading institution. One of the prominent features of GEM-E3 is its ability to provide a thorough display of the interlinkages between economy, environment, and energy system [191]. GEM-E3 typically covers 38 regions that include the world's major economies, and it represents 31 sectors with 50 activities, which allows for a profound representation of technologies. In addition to its superiority in technological representation, another interesting attribute of GEM-E3 is its progress semi-endogenous technological that incorporates learning-by-doing and learning-by-searching concepts [192]. This in turn allows for capturing important trends like the effects of R&D investments on technological advancements. Like many other macroeconomic modelling tools, GEM-E3 uses the GTAP database, however, it also uses multiple data sources besides the GTAP, most notably, IEA energy statistics and the International Labour Organization (ILO) database [191,193]. The GEM-E3 model distinguishes between skilled and unskilled labour, and estimates the corresponding unemployment rates for each category. Furthermore, it considers involuntary unemployment, which manifests the market's imperfection [194]. The model has a unique environmental module that covers about six of the major greenhouse gases, and tracks their emission from each sector along with

an integrated structure for an emissions trading market [195]. This provides an opportunity to explore a variety of emission reduction and trading policies. Materials are considered as one of the core inputs of the production functions in GEM-E3, which further allows for tracking material flow and consumption [196]. Numerous studies have used GEM-E3 to explore various scenarios concerning the nexus of economy, energy, and environment, such as energy taxes implications, labour force role in economic development, and the effects of emissions reduction policies [197–199].

3.2.1.3. GTAP standard model. While GTAP is well-recognized as a database, there is also a macroeconomic model that holds the exact same name. It is a multi-sector global CGE model that runs in a comparative static mode [200]. The model covers 141 regions, and it comprises 65 sectors (based on GTAP database 10) that can be aggregated or disaggregated in line with the research in question [56]. Although GTAP does not fully meet the criteria to be shortlisted, it has been widely used as a core model for dozens of other CGE models (e.g. MAGNET. FTAP). Furthermore, the GTAP standard model has some unique features that make it stands out, such as the fine industrial/sectoral representation where the model allows for the production of more than one commodity from one sector (e.g. by-products) [86,201]. This kind of flexibility provides the users with means for controlling the resolution of their economic analysis, hence a wider pool of research questions to investigate. There are a number of other GTAP models that are extended from its standard model (e.g. GTAP-AEZ) [59]. These extended models are tailored to look into and establish interconnections among different sectors and systems that are closely linked to the most important issues of our modern world, namely, land-use, agriculture, labour migration, and power sectors [86,202].

3.2.1.4. MAGNET. MAGNET is a global CGE model developed by the MAGNET consortium, which is led by the Wageningen Economic Research in the Netherlands. It is a recursive dynamic model that is calibrated to the GTAP database and runs up to the year 2100, dividing the world into 141 regions. MAGNET is fundamentally based on the GTAP CGE model but with various new features and upgrades that are mostly closely related to environment and land-use [203,204]. The sectoral representation in MAGNET is comprehensive where it covers 114 sectors that can be aggregated and disaggregated at the user's

convenience and the same flexibility in aggregation can also be applied for the geographical regions [204,205]. In the same context, all the model's extra features can be switched off/on, which allows users to tailor the model's parameters and features in accordance with their research questions. One of the attractive aspects of MAGNET is the representation of some specific sectors that are uncommon in most CGE models, such as sectors for waste collection as well as recycling of different types of materials [111]. In a similar vein, MAGNET also simulates emissions permits trading, and accounts for land-use and land-use change (LULUC) emissions [111,206]. Therefore, MAGNET can be regarded as one of the leading CGE models currently available for analysing land-use related environmental issues.

#### 3.2.2. Framework and MCA results

Table 5 presents the corresponding results obtained by applying the framework for each tool in the shortlist, with an 'x' mark denoting each fulfilled criterion except for the number of sectors criterion, which was determined using Eq. (1) (as discussed in section 2.2). The table also shows the corresponding weights for each of the criteria, as well as for the four categories. The weights were calculated according to the steps outlined in Section 2.2. The last two columns of Table 5 show the results of the consistency ratios for the criteria's weights, and as can be seen, all ratios are below 0.1, indicating that the respective weights are consistent.

The results of the local MCA are depicted in the radar chart shown in Fig. 6. It can be seen that GTAP has the precedence for the industrial/sectoral representation category, succeeded by MAGNET, GEM-E3 and EPPA, in that order. Although the latter three cover only two out of the five criteria for that category, the different weights and values assigned to each criterion resulted in the scoring discrepancies shown. Among all the tools, GEM-E3 has the highest in the technological change category, as it exclusively covers the learning-by-doing and learning-by-searching criteria that are well-weighted (0,54 and 0,29, resp.) while the other three tools had a balanced score of 0.2 in this category.

In the environment category, MAGNET and GEM-E3 received slightly higher scores above 0.8, followed by EPPA and GTAP with scores of 0.6 and 0.1, respectively. In terms of employment representation, GEM-E3 received the highest score due to its coverage of four out of the five criteria in this category, while MAGNET and GTAP had balanced scores. EPPA did not cover any of the criteria and hence

**Table 5**The framework's results and the corresponding AHP weights.

| Index | Criteria                                                 | EPPA          | GEM-E3 | MAGNET | GTAP          | Weight | Consistency Ratio |                     |
|-------|----------------------------------------------------------|---------------|--------|--------|---------------|--------|-------------------|---------------------|
|       |                                                          |               |        |        |               |        | Criteria          | The four-categories |
| 1     | Industrial/Sectoral representation                       |               |        |        |               | 0,466  |                   | 0,011               |
| 1.1   | Number of sectors/activities                             | $0,35 \times$ | 0,44×  | x      | $0,57 \times$ | 0,55   | 0,094             |                     |
| 1.2   | More than one technology per one commodity               |               |        |        | x             | 0,20   |                   |                     |
| 1.3   | More than one commodity per sector                       |               |        |        | x             | 0,14   |                   |                     |
| 1.4   | Flexibility of aggregation and disaggregation of sectors |               |        | x      | x             | 0,04   |                   |                     |
| 1.5   | Fuel substitution per technology                         | x             | x      |        |               | 0,071  |                   |                     |
| 2     | Technological change                                     |               |        |        |               | 0,277  |                   |                     |
| 2.1   | AEEI/Technological change                                | x             |        | x      | x             | 0,12   | 0,077             |                     |
| 2.2   | Learning-by-searching                                    |               | x      |        |               | 0,29   |                   |                     |
| 2.3   | Learning-by-doing                                        |               | x      |        |               | 0,54   |                   |                     |
| 2.4   | Exogenous                                                | x             | x      | x      | x             | 0,06   |                   |                     |
| 3     | Employment                                               |               |        |        |               | 0,096  |                   |                     |
| 3.1   | skilled and unskilled labour                             |               | x      | x      | x             | 0,48   | 0,061             |                     |
| 3.2   | Labour mobility                                          |               |        |        |               | 0,23   |                   |                     |
| 3.3   | Involuntary unemployment (Imperfect market)              |               | x      |        |               | 0,16   |                   |                     |
| 3.4   | Sectoral employment                                      |               | x      |        |               | 0,04   |                   |                     |
| 3.5   | unemployment rate                                        |               | x      |        |               | 0,09   |                   |                     |
| 4     | Environment                                              |               |        |        |               | 0,161  |                   |                     |
| 4.1   | Water-use                                                |               |        |        |               | 0,14   | 0,075             |                     |
| 4.2   | Land-use                                                 | x             | x      | x      | x             | 0,03   |                   |                     |
| 4.3   | Natural resources                                        | x             | x      | x      | x             | 0,08   |                   |                     |
| 4.4   | Air pollution and health                                 | x             | x      | x      |               | 0,49   |                   |                     |
| 4.5   | Material flow/demand/recycling                           |               | x      | x      |               | 0,26   |                   |                     |

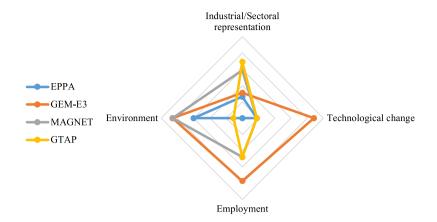



Fig. 6. Local MCA results; illustrating comparative performance across the four pillars.

received a score of zero for this category. Notably, none of the four tools achieved a full score in any of the four categories, indicating areas for improvement. Additionally, two important criteria, labour mobility and water use, were not accounted for by any of the four tools, despite their substantial significance. This is particularly noteworthy because both water scarcity and labour migration are recognized as significant challenges worldwide [207,208].

The results of the global MCA are presented in Table 6, where the normalized decision matrix with the weighted criteria is shown. GEM-E3 ranked first with a score of 0.602 points, followed by MAGNET and GTAP in second and third places, respectively. EPPA obtained the lowest score of 0.27, placing it in the fourth and last position.

Based on the analysis of the local and global MCA results, it can be inferred that GEM-E3 exhibits a strong potential as a modelling tool for analysing industrial transformation. While GEM-E3 did not perform the best in the industrial/sectoral representation category, it excelled in other categories, such as employment representation and environment, which are equally important when analysing industrial transformation (as discussed in section 2.2). Furthermore, upgrading a macroeconomic model to meet the criteria of the industrial/sectoral category may be relatively straightforward. However, incorporating environmental externalities and social aspects into macroeconomic models can be complex and challenging, which has also been emphasized by several studies (e.g. Refs. [156,209,210]). Therefore, we positively value macroeconomic modelling tools that account for multiple environmental and social factors.

#### 4. Conclusion

This paper examines 61 macroeconomic tools on the basis of 13 dimensions. All the findings are publicly available in an online database. We provide a comprehensive presentation of our findings and a critical analysis in order to convey a deeper understanding of the multitude of macroeconomic modelling tools available in the literature.

In analysing the database, the results reveal that:

**Table 6**Ranking and preference Scores of the shortlisted tools based on the global MCA results.

| Tool   | Preference Score | Rank |
|--------|------------------|------|
| EPPA   | 0,268            | 4th  |
| GEM-E3 | 0,602            | 1st  |
| GTAP   | 0,436            | 3rd  |
| MAGNET | 0,508            | 2nd  |

- Many tools are not accessible by third parties. We here stress that accessibility to macroeconomic modelling tools is crucial for researchers in the field of economics and related disciplines, as it enables them to conduct robust and comprehensive analyses of various economic phenomena. In addition, the availability of these models can help to promote transparency in research, as it allows other researchers to replicate and build upon existing studies.
- Inadequate or absent representation of social aspects is present in a number of tools. It is essential to consider social aspects while utilizing macroeconomic models in general, and particularly when analysing industrial transformation. For instance, structural unemployment is a social aspect that can significantly impact industrial transformation. This type of unemployment is often caused by structural changes in the economy, such as technological advancements or shifts in industry demand, and can persist even in periods of economic growth. Incorporating such aspect into macroeconomic models can help policymakers to create a more adaptive and flexible labour market that drives industrial transformation in a way that benefits all members of society.
- Most of the tools have a relatively small number of sectors, averaging around 40, which we believe is inadequate to provide an accurate depiction of the industrial sector. Because the energy system is an integral part of the economy, a comprehensive analysis requires linking ESMs to macroeconomic models. If the ESM has more sectors than the macroeconomic model, then the impacts of policies on the energy system may be overestimated, while the impacts on the economy may be underestimated. Therefore, it is generally considered important to match the number of sectors between the two models as closely as possible, while also ensuring that the sectors are defined in a consistent manner between the two models. However, it is important to recognize that there may be practical limitations in matching the number of sectors exactly, and that some level of aggregation or disaggregation may be necessary depending on the specific research question being addressed.
- There is a paucity of individual geographical coverage for MENA and Central Asian countries. These countries are expected to play a key role in global hydrogen production given their vast renewable energy potential, which can be used to produce green hydrogen. Several projects are currently underway in MENA countries to develop hydrogen infrastructure and production facilities, including pilot projects for green hydrogen production in Morocco and Tunisia, as well as plans for blue hydrogen production in Saudi Arabia, the United Arab Emirates, and Egypt. These initiatives are expected to contribute significantly to the development of the hydrogen economy in the region and beyond. Therefore, we anticipate that most tools will expand their geographical disaggregation to include some

of these countries individually as it is becoming increasingly important to consider their role in the global energy transition.

For a more comprehensive analysis, we shortlist four modelling tools (EPPA, GEM-E3, MAGNET, and GTAP) and conduct an MCA using a comparison framework that has been specifically tailored for this study. Our results indicate that GEM-E3 yields the highest overall score. This does not rule out the other tools. Rather, it portrays the research opportunities manifested in developing and extending their capabilities. It is also important to acknowledge that our analysis was conducted from a particular angle (i.e. industrial transformation), which may have obscured other strengths that these tools might have in other facets. On the other hand, the MCA demonstrates that none of the shortlisted tools had a full score in any of the four categories: industrial/sectoral representation, technological change, employment, and environment. Furthermore, none of the tools met the criteria for labour mobility and water use. As we argue that linking with other models (e.g. hydrological model) can be a solution for the latter issue, the presence of some basic elements in macroeconomic models is crucial for such linking to take place.

Our framework is not impeccable, and it can indeed be improved. For instance, certain criteria are rather general in nature, as exemplified by the labour mobility. Here, we observed that when two tools consider labour mobility as a factor, the depth and manner in which labour dynamics are modelled can significantly vary, which may lead to different implications in the analysis. The different perspectives of economists, engineers, and policymakers can also be compiled as part of further research to identify more criteria. In addition, the framework does not delve into specific economic concepts (e.g. economic theories) as part of the criteria, given its focus on global CGE models where significant overlap exists among the various tools in this regard.

The ambiguity and lack of basic information in the literature about many of the tools constitute a major impediment to this study in terms of forming an integrated analysis. In this regard, we attempted to shed light on the importance of prospective users having a clear understanding of the characteristics, features, and limitations of the tools. Otherwise, they will lack the adequate basis to make an informed decision about which tool to use. We also observe that despite the growing global focus on sustainable and circular practices, macroeconomic modelling tools are failing to fully account for the positive impact these elements can have on economic growth and productivity. This lack of proper representation of circular economy principles could result in policymakers missing opportunities to make well-founded decisions that support sustainable economic development and preserve natural resources for future generations. Future research in this area should aim to improve and expand upon existing macroeconomic models to ensure they are better equipped to address these pressing issues. Developers of tools should also strive to include further features to their tools aiming at filling the criteria identified in this study. Thereby, the tools can be used in carrying out more holistic and inclusive analyses for industrial transformation.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

#### Data availability

I have provided a website for the data in the article

#### References

- [1] UN. Paris Agreement | UNFCCC. United Nations; [n.d].
- [2] IEA. Industry: Tracking Progress 2022. IEA; 2022.

- [3] Klinge Jacobsen H. Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark. Energy Econ 1998;20:443–61. https://doi.org/10.1016/S0140-9883(98)00002-4.
- [4] Bauer N, Edenhofer O, Kypreos S. Linking energy system and macroeconomic growth models. Comput Manag Sci 2008;5:95–117. https://doi.org/10.1007/ s10287-007-0042-3.
- [5] Messner S, Schrattenholzer L. MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 2000;25: 267–82. https://doi.org/10.1016/S0360-5442(99)00063-8.
- [6] Dou WW, Lo AW, Muley A, Uhlig H. Macroeconomic models for Monetary policy: a critical review from a finance perspective. Annu Rev Financ Econ 2020;12: 95–140. https://doi.org/10.1146/annurev-financial-012820-025928.
- [7] Löschel A, Schymura M. Modeling technological change in economic models of climate change. In: Shogren JF, editor. Encycl. Energy nat. Resour. Environ. Econ. Waltham: Elsevier; 2013. p. 89–97. https://doi.org/10.1016/B978-0-12-375067-9.00663-2.
- [8] Naess-Schmidt S, Hansen MB, Below D von. Literature review on macroeconomic effects of energy efficiency improvement actions. Copenhagen: COMBI-Calculating and Operationalising the Multiple Benefits of nergy Efficiency in Europe 2015.
- [9] Ciarli T, Savona M. Modelling the evolution of economic structure and climate change: a review. Ecol Econ 2019;158:51–64.
- [10] Bergman L. Chapter 24 CGE modeling of environmental policy and resource management. In: Mäler K-G, Vincent JR, editors. Handb. Environ. Econ., vol. 3. Elsevier; 2005. p. 1273–306. https://doi.org/10.1016/S1574-0099(05)03024-X.
- [11] Babatunde KA, Begum RA, Said FF. Application of computable general equilibrium (CGE) to climate change mitigation policy: a systematic review. Renew Sustain Energy Rev 2017;78:61–71. https://doi.org/10.1016/j. rser 2017 04 064
- [12] An K, Zhang S, Zhou J, Wang C. How can computable general equilibrium models serve low-carbon policy? A systematic review. Environ Res Lett 2023;18:033002. https://doi.org/10.1088/1748-9326/acbbe2.
- [13] Faehn T, Bachner G, Beach R, Chateau J, Fujimori S, Ghosh M, et al. Capturing key energy and emission trends in CGE models: assessment of status and remaining challenges | Faehn. Journal of Global Economic Analysis 2020. https://doi.org/10.21642/JGFA.050106AF.
- [14] Hafner S, Anger-Kraavi A, Monasterolo I, Jones A. Emergence of new economics energy transition models: a review. Ecol Econ 2020;177:106779. https://doi.org/ 10.1016/j.ecolecon.2020.106779.
- [15] Akcigit U, Fasil CB, Impullitti G, Licandro O, Sanchez-Martinez M. Macroeconomic modelling of R&D and Innovation policies. Springer Nature; 2021
- [16] Rose A. Input-output economics and computable general equilibrium models. Struct Change Econ Dyn 1995;6:295–304. https://doi.org/10.1016/0954-349X (95)00018-1.
- [17] Pollitt H, Lewney R, Mercure J-F. Conceptual differences between macroeconometric and CGE models, UK: Cambridge Econometrics; n.d.
- [18] Delzeit R, Beach R, Bibas R, Britz W, Chateau J, Freund F, et al. Linking global CGE models with sectoral models to generate baseline scenarios: approaches, challenges, and opportunities. J Glob Econ Anal 2020;5:162–95. https://doi.org/ 10.21642/JGFA.050105AF.
- [19] Sánchez Diéguez M, Fattahi A, Sijm J, Morales España G, Faaij A. Modelling of decarbonisation transition in national integrated energy system with hourly operational resolution. Adv Appl Energy 2021;3:100043. https://doi.org/ 10.1016/j.adapen.2021.100043.
- [20] van Stralen JNP, Dalla Longa F, Daniëls BW, Smekens KEL, van der Zwaan B. OPERA: a new high-resolution energy system model for sector integration research. Environ Model Assess 2021;26:873–89. https://doi.org/10.1007/ s10666-020-09741-7.
- [21] Popp D, Newell RG, Jaffe AB. Chapter 21 energy, the environment, and technological change. In: Hall BH, Rosenberg N, editors. Handb. Econ. Innov., vol. 2. North-Holland; 2010. p. 873–937. https://doi.org/10.1016/S0169-7218 (10)02005-8.
- [22] Seo SN. 5 Breakthrough technologies: technological innovations as an alternative global warming solution. In: Seo SN, editor. Behav. Econ. Clim. Change. Academic Press; 2017. p. 139–83. https://doi.org/10.1016/B978-0-12-811874-0.00005-2
- [23] Petersen T. Endogeneity: methodology. In: Smelser NJ, Baltes PB, editors. Int. Encycl. Soc. Behav. Sci. Oxford: Pergamon; 2001. p. 4511–3. https://doi.org/ 10.1016/B0-08-043076-7/00778-6.
- [24] Weil D, Mankiw NG. Macrobytes 3.0: for use with macroeconomics. third ed. Worth; 1997.
- [25] Labor Littek W. Division of. In: Smelser NJ, Baltes PB, editors. Int. Encycl. Soc. Behav. Sci. Oxford: Pergamon; 2001. p. 8220–6. https://doi.org/10.1016/B0-08-043076-7/01908-2.
- [26] Oettl A, Agrawal A. International labor mobility and knowledge flow externalities. J Int Bus Stud 2008;39:1242–60. https://doi.org/10.1057/palgrave. jibs.8400358.
- [27] Manager. Global resources outlook 2019. 2019.
- [28] Chapter 6-Defining the Criticality of Materials. Crit. Mater. Underlying causes sustain. Mitig. Strateg. London, UK: World Scientific; 2019. p. 91–101. https:// doi.org/10.1142/11007.
- [29] United Nations. Transforming our world: the 2030 agenda for sustainable development. 2015.
- [30] Frankel J. The natural resource curse: a survey. 2010.

- [31] Zuo H, Ai D. Environment, energy and sustainable economic growth. Procedia Eng 2011;21:513-9. https://doi.org/10.1016/j.proeng.2011.11.2045
- [32] Agboola MO, Bekun FV, Joshua U. Pathway to environmental sustainability: nexus between economic growth, energy consumption, CO2 emission, oil rent and total natural resources rent in Saudi Arabia. Resour Policy 2021;74:102380. https://doi.org/10.1016/j.resourpol.2021.102380.
- [33] Ramanathan R. Multicriteria analysis of energy. In: Cleveland CJ, editor. Encycl. Energy. New York: Elsevier; 2004. p. 77-88. https://doi.org/10.1016/B0-12-
- [34] Saaty RW. The analytic hierarchy process—what it is and how it is used. Math Model 1987;9:161-76. https://doi.org/10.1016/0270-0255(87)90473
- [35] Guarini MR, Battisti F, Chiovitti A. A methodology for the selection of multicriteria decision analysis methods in real estate and land management processes. Sustainability 2018;10:507. https://doi.org/10.3390/su10020507.
- Zlaugotne B, Zihare L, Balode L, Kalnbalkite A, Khabdullin A, Blumberga D. Multi-criteria decision analysis methods comparison. Environ Clim Technol 2020; 24:454–71. https://doi.org/10.2478/rtuect-2020-0028.
- [37] Németh B, Molnár A, Bozóki S, Wijaya K, Inotai A, Campbell JD, et al. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low- and middle-income countries. Httpsdoiorg102217cer-2018-0102, https://doi.org/10.2217/cer-2018-0102;
- Piantanakulchai M, Campus R, Saengkhao N. Evaluation of alternatives in transportation planning using multi-stakeholders multi-objectives AHP modeling.
- [39] Adriyendi A, Melia Y. DSS using AHP in selection of lecturer. Int J Inform Commun Technol IJ-ICT 2015;4:79-85. https://doi.org/10.11591/ijict.v4i2.
- [40] Aguarón J, Moreno-Jiménez JM. The geometric consistency index: approximated thresholds. Eur J Oper Res 2003;147:137-45. https://doi.org/10.1016/S0377
- [41] ANARRES n.d. http://www.cgemod.org.uk/anarres.html. [Accessed 3 June
- [42] Jia Z, Lin B. CEEEA2.0 model: a dynamic CGE model for energy-environmenteconomy analysis with available data and code. Energy Econ 2022;112:106117. https://doi.org/10.1016/j.eneco.2022.106117.
- [43] Filar JA, Krawczyk JB. Mathematical models volume III. EOLSS Publications;
- [44] Peck SC, Teisberg TJ. International CO2 emissions control: an analysis using CETA. Energy Pol 1995;23:297-308. https://doi.org/10.1016/0301-4215(95) 90156-2.
- [45] Berben R-P, Kearney I, Vermeulen R. DELFI 2.0, DNB's macroeconomic policy model of The Netherlands. Netherlands Central Bank; 2018. Research Department.
- [46] DEMETRA. DEMETRA CGE Model official page n.d. https://datam.jrc.ec.europa. eu/datam/model/DEMETRA/documentation.html?rdr=1662123833921. [Accessed 2 September 2022].
- [47] Nordhaus WD. Evolution of assessments of the economics of global warming: changes in the DICE model, 1992 - 2017. https://doi.org/10.3386/w23319; 2017
- **[48]** Nordhaus WD, Sztorc P, Dice 2013R 2013.
- [49] Nordhaus WD. Projections and uncertainties about climate change in an era of minimal climate policies. 2016. https://doi.org/10.3386/w22933. Peterson S. The dynamic applied regional trade (DART) model. 2015.
- [50]
- Springer K. The DART general equilibrium model: a technical description. IfW [51] Kiel: Kiel Institute for the World Economy; 1998.
- Cambridge econometrics. https://www.e3me.com/wp-content/uploads /2019/09/E3ME-Technical-Manual-v6.1-onlineSML.pdf 2019.
- [53] Dixon PB, Jorgenson D. Handbook of computable general equilibrium modeling. Newnes: 2013
- van der Mensbrugghe D. GitHub mensbrugghe/Envisage: Core Envisage Model n.d. https://github.com/mensbrugghe/Envisage (accessed June 3, 2022).
- Château J, Dellink R, Lanzi E. An overview of the OECD ENV-linkages model: version 3. Paris: OECD; 2014. https://doi.org/10.1787/5jz2qck2b2vd-er
- Burniaux J-M, Château J. An overview of the OECD ENV-linkages model. OECD Econ Dep Work Pap 2008. https://doi.org/10.1787/230123880460.
- Dellink R. The OECD env-linkages modelling framework. OECD; 2013.
- Henry Chen Y-H, Paltsev Sergey, Reilly John M, Morris Jennifer F, Babiker Mustafa H. The MIT EPPA6 model: economic growth, energy use, and food consumption. Cambridge, MA 02139 (USA): Massachusetts Institute of Technology; 2015.
- [59] Paltsev S, Reilly JM, Jacoby HD, Gurgel AC, Metcalf GE, Sokolov AP, et al. Assessment of US GHG cap-and-trade proposals. Clim Policy 2008;8:395-420. https://doi.org/10.3763/cpol.2007.0437.
- [60] Ivanova O, Reynès F. Potential approaches for modelling resource efficiency related to buildings and infrastructure. Reflections on a hybrid set-up. Delft: TNO;
- [61] Bulavskaya T, Hu J, Moghayer SM, Reynès FGD. EXIOMOD 2.0: EXtended Input-Output MODel: a full description and applications. 2016.
- World Bank. Tunisia's global integration: a second generation of reforms to boost growth and employment. Washington, DC: World Bank; 2009.
- Hanslow K, Phamduc T, Verikios G. The structure of the FTAP model, vol. 27. Econ Anal; 2000.
- Hanslow K. The structure of the FTAP model. 2000. Melbourne.
- Verikios G, Xiao-guang Z. The FTAP2 model: theory and data. 2001.

- [66] Christen E, Francois J, Hoekman B. Chapter 25 computable general equilibrium modeling of market access in services. In: Dixon PB, Jorgenson DW, editors. Handb. Comput. Gen. Equilib. Model, vol. 1. Elsevier; 2013. p. 1601-43. https:// doi.org/10.1016/B978-0-444-59568-3.00025-0.
- [67] Dee P, Hanslow K. Chapter 4-multilateral liberalization of services trade. In: Services trade reform: making sense of it, vol. 28. World Scientific Books; 2013.
- Waldhoff S, Anthoff D, Rose S, Tol RSJ. The marginal damage costs of different greenhouse gases: an application of FUND. Economics 2014;8. https://doi.org/ 10.5018/economics-ejournal.ja.2014-31.
- [69] FUND. Home MimiFUND.jl n.d. http://www.fund-model.org/MimiFUND.jl/ latest/(accessed September 3, 2022).
- [70] McKibbin WJ, Wilcoxen PJ. Chapter 15 a global approach to energy and the environment: the G-cubed model. In: Dixon PB, Jorgenson DW, editors. Handb. Comput. Gen. Equilib. Model., vol. 1. Elsevier; 2013. p. 995-1068. https://doi. org/10.1016/B978-0-444-59568-3.00015-8.
- Cagliarini A, McKibbin W. Global relative price shocks: the role of macroeconomic policies. In: Inflat. Era relat. Price shocks. Reserve Bank of Australia: 2010.
- McKibbin WJ, Wilcoxen PJ. The theoretical and empirical structure of the G-Cubed model. Econ Model 1999;16:123-48. https://doi.org/10.1016/S0264-
- [73] Mckibbin WJ. Climate change policy for India. In: Jha R, editor. Econ. Growth econ. Perform. Welf. South asia. London: Palgrave Macmillan UK; 2005. p. 121-50. https://doi.org/10.1057/9780230520318\_7.
- [74] Institute for Prospective Technological Studies (Joint Research Centre), Van Regemorter D, Perry M, Capros P, Ciscar J-C, Paroussos L, et al. GEM-E3 model documentation. Publications Office of the European Union; 2013. LU.
- [75] GEM-E3. GEM-E3 E3 Modelling n.d. https://e3modelling.com/modelling-tools/ gem-e3/(accessed September 3, 2022).
- [76] Bernard A, Vielle M. GEMINI-E3, a general equilibrium model of international-national interactions between economy, energy and the environment. Comput Manag Sci 2008;5:173-206. https://doi.org/10.1007/ s10287-007-0047-v
- [77] GEMINI-E3. I2AMPARIS detailed model documentation n.d. https://paris-re inforce.epu.ntua.gr/detailed model doc/gemini e3. [Accessed 3 September
- Jaumotte F, Liu W, McKibbin W. Mitigating climate change: growth-friendly policies to achieve net zero emissions by 2050. 2021.
- Fernando R, Liu W, McKibbin WJ. Global economic impacts of climate shocks. climate policy and changes in climate risk assessment 2021. https://doi.org/ 10.2139/ssrn.3817111
- Wiebe DKS, Lutz DC. The Renewable Power Generation Module (RPGM) an extension to the GWS model family to endogenize technological change in the renewable power generation sector. GWS - Institute of Economic Structures Research: 2013.
- [81] McDonald S, Robinson S, Thierfelder K. Globe: a SAM based global CGE model using GTAP data. United States Naval Academy Department of Economics; 2007.
- Thierfelder K. Globe v3: a SAM based global CGE model using GTAP data. United States Naval Academy Department of Economics; 2021.
- [83] Orlov A, Daloz AS, Sillmann J, Thiery W, Douzal C, Lejeune Q, et al. Global economic responses to heat stress impacts on worker productivity in crop production. Econ Disasters Clim Change 2021;5:367-90. https://doi.org 10.1007/s41885-021-00091-6
- [84] Wei T, Liu Y. Estimation of global rebound effect caused by energy efficiency improvement. Energy Econ 2017;66:27-34. https://doi.org/10.1016/j. eneco 2017 05 030.
- Aaheim A, Orlov A, Wei T, Glomsrod S. GRACE model and applications. Norway: CICERO 2018
- Corong EL, Hertel TW, McDougall R, Tsigas ME, van der Mensbrugghe D. The standard GTAP model, version 7. J Glob Econ Anal 2017;2:1-119. https://doi. org/10.21642/JGEA.020101AF.
- [87] Corong E, Selva AC, Batta G, Keeney R, Mensbrugghe D van der. Standard GTAP model v7 - quick reference card. 2018.
- Walmsley TL, Aguiar AH, Narayanan B. Introduction to the global trade analysis project and the GTAP data base. 2012.
- GTAP Data Base. GTAP Data Bases: 10.211 Regions n.d. https://www.gtap.ageco n.purdue.edu/databases/regions.aspx?version=10.211 (accessed September 4, 2022).
- [90] Aguiar A, Chepeliev M, Corong EL, McDougall R. Mensbrugghe D van der. The GTAP Data Base: Version 10. J Glob Econ Anal 2019;4:1-27. https://doi.org/ 10.21642/JGEA.040101AF.
- Pezzey J, Jack, Lambie R. CGE models for evaluating domestic greenhouse policies in Australia: a comparative analysis. 2001.
- [92] ABARE. Modelling climate change policies using GTEM n.d.
- [93] Italianer A, D'alcantara G, Zagame P. Chapter 3 the hermes model for the member states of the EUROPEAN community. In: HERMES, editor. Commission of the european communities. Amsterdam: North-Holland; 1993. p. 15-64. https:// doi.org/10.1016/B978-0-444-89760-2.50005-4
- [94] HERMES. HERMES. Economic models in which energy plays a special role | News | CORDIS | European Commission n.d. https://cordis.europa.eu/article id/2055-hermes-economic-models-in-which-energy-plays-a-special-role. [Accessed 4 September 2022].
- [95] Bassilière D, Baudewyns D, Bossier F, Ingrid B, Lebrun I, Stockman P, et al. A new version of the HERMES model - HERMES III. 2013.
- [96] Bergin A, FitzGerald J, Kearney I. The HERMES-13 macroeconomic model of the Irish economy. ESRI; 2013.

- [97] Federal Planning Bureau. Transition to a low carbon economy: status of the long run scientific modelling in Belgium. 2012.
- [98] HMRC. HMRC's CGE model documentation. Her Majesty Revenue and Customs; 2013.
- [99] Böhringer C, Rutherford TF. CGE Peer review of tax model. 2013.
- [100] De Bruin KC, Yakut AM. The use of the I3E model in macroeconomic analysis for the Irish economy. 2020. ESRI Working Paper 679 September 2020.
- [101] Bruin KCD, Yakut AM. Technical documentation of the I3E model, v4.0. ESRI. https://doi.org/10.26504/sustat109; 2021.
- [102] Parrado R, De Cian E. Technology spillovers embodied in international trade: intertemporal, regional and sectoral effects in a global CGE framework. Energy Econ 2014;41:76–89. https://doi.org/10.1016/j.eneco.2013.10.016.
- [103] García-León D, Casanueva A, Standardi G, Burgstall A, Flouris AD, Nybo L. Current and projected regional economic impacts of heatwaves in Europe. Nat Commun 2021;12:5807. https://doi.org/10.1038/s41467-021-26050-z.
- [104] Johansson DJA, Lucas PL, Weitzel M, Ahlgren EO, Bazaz AB, Chen W, et al. Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitig Adapt Strateg Glob Change 2015;20: 1335–59. https://doi.org/10.1007/s11027-014-9549-4.
- [105] Pradhan BK, Ghosh J. A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India's green energy transition via furthering its renewable capacity. Energy Econ 2022;106:105788. https://doi. org/10.1016/j.eneco.2021.105788.
- [106] Pradhan BK, Ghosh J. The impact of carbon taxes on growth emissions and welfare in India: a CGE analysis. Delhi: Inst. of Economic Growth; 2012. Unvi. of Delhi Englave
- [107] Dalsgaard T, André C, Richardson P. Standard shocks in the OECD interlink model. Paris: OECD; 2001. https://doi.org/10.1787/000706200171.
- [108] Interlink Zimin I. An interindustrial model for simulating a balanced regional economic development and its links to IIASA's set of energy models. 1980.
- [109] Valenzuela E, van der Mensbrugghe D, Anderson K, editors. General equilibrium effects of price distortions on global markets, farm incomes and welfare; 2008. https://doi.org/10.22004/ag.econ.48630.
- [110] GTAP Data Base. GTAP data bases: other data and models n.d. https://www.gtap.agecon.purdue.edu/about/data\_models.asp. [Accessed 4 September 2022].
- [111] MAGNET. The MAGNET Model. https://www.magnet-model.eu/model/(accessed September 4, 2022).
- [112] Lofgren H, Cicowiez M, Diaz-Bonilla C. MAMS a computable general equilibrium model for developing country strategy analysis. Handb. Comput. Gen. Equilib. Model. 2013;1:159–276. Elsevier.
- [113] van der Mensbrugghe D. The mitigation, adaptation and new technologies applied general equilibrium (MANAGE) model version 2.0g. West Lafayette. In: Center for global Trade Analysis. Purdue University; 2020.
- [114] Selva AC, Chepeliev M, van der Mensbrugghe D. Nicaragua's climate mitigation policy: sectoral and inter-household effects. In: GTAP annual conference on global economic analysis: 2020.
- [115] Capellán-Pérez I, Blas I de, Nieto J, Castro C de, Miguel LJ, Carpintero Ó, et al. MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints. Energy Environ Sci 2020;13:986–1017. https://doi. org/10.1039/C9EE02627D.
- [116] Pymedeas. D8.11 (D34) Pymedeas model user's manual. 2019.
- [117] Dixon PB, Rimmer MT. Dynamic general equilibrium modelling for Forecasting and policy: a Practical Guide and documentation of MONASH. Emerald Group Publishing Limited; 2002.
- [118] Bouët A, Laborde Debucquet D, Traoré F. MIRAGRODEP-AEZ 1.0: documentation. International Food Policy Research Institute (IFPRI); 2022.
- [119] AGRODEP. Models & Modeling tools | African Growth and Development Policy Modeling Consortium (AGRODEP) n.d. http://www.agrodep.org/content/model s-modeling-tools (accessed September 4, 2022).
- [120] Neck R, Haber G. Macroeconomic and welfare effects of structural and budgetary policies: spillovers in the MSG3 model. In: van Aarle B, Weyerstrass K, editors. Econ. Spillovers Struct. Reforms Policy Coord. Euro Area. Heidelberg: Physica-Verlag HD; 2008. p. 155–201. https://doi.org/10.1007/978-3-7908-1970-0\_6.
- [121] Reinhard R, Haber G, McKibbin WJ. Monetary and fiscal policy-makers in the European economic and monetary union: allies or adversaries? Empirica 2002;29: 225–44. https://doi.org/10.1023/A:1020203809986.
- [122] Fund IM. MULTIMOD: a multi-region econometric model. International Monetary Fund; 1988.
- [123] Jamshidi A. Evaluating global macroeconomic models: a case study of MULTIMOD. The World Bank; 1989.
- [124] Geda A, Hammouda HB, Karingi SN. Global macroeconomic models and African trade and finance: a survey of the literature. https://www.semanticscholar. org/paper/Global-Macroeconomic-Models-and-African-Trade-and-%3A-Geda-Ha mmouda/5d871a672927be265d9a19e46221e7fbed7f5275. [Accessed 4 September 2022].
- [125] Siddig K, Grethe H. No more gas from Egypt? Modeling offshore discoveries and import uncertainty of natural gas in Israel. Appl Energy 2014;136:312–24. https://doi.org/10.1016/j.apenergy.2014.09.019.
- [126] Walmsley T, Minor P. MyGTAP model: a model for employing data from the MyGTAP data application-multiple households, split factors, remittances, foreign aid and transfers. Center for global trade analysis, department of agricultural economics. Purdue University; 2013.
- [127] MyGTAP. A global model with single country flexibilities n.d.
- [128] Zagamé P, Boitier B, Fougeyrollas A, Le Mouel P. The NEMESIS reference manual. Greece: National Technical University of Athens; n.d.

- [129] Boitier B, Fougeyrollas A, Le Hir B, Le Mouel P, Zagamé P. NEMESIS-A description-first draft. 2015.
- [130] NEMESIS. The NEMESIS model. 2012.
- [131] NEMESIS. I2AMPARIS Detailed Model Documentation n.d. https://paris-reinforce.epu.ntua.gr/detailed\_model\_doc/nemesis (accessed September 4, 2022).
- [132] Kara A. Introducing climate change to NiGEM. 2019.
- [133] Horridge M. ORANI-G: a general equilibrium model of the Australian economy. Victoria University, Centre of Policy Studies/IMPACT Centre; 2000.
- [134] Horridge M. ORANI-G: a generic single-country computable general equilibrium model. 2006.
- [135] ORANI-G. The ORANI-G Page n.d. https://www.copsmodels.com/oranig.htm (accessed June 3, 2022).
- [136] Decaluwé B, Lemelin A, Robichaud V, Maisonnave H. The PEP standard singlecountry, recursive dynamic CGE model. Québec: partnership for economic policy 2013
- [137] Robichaud V, Lemelin A, Decaluwé B, Maisonnave H. The PEP standard multiregion, recursive dynamic world CGE model. Québec: partnership for economic policy 2013.
- [138] Wing IS, Daenzer K, Fisher-Vanden K, Calvin K. Phoenix model documentation. 2011.
- [139] Joint Research Centre (European Commission), Keramidas K, Kitous A, Schade B, Després J, Schmitz A. POLES-JRC model documentation: 2018 update. Publications Office of the European Union; 2018. LU.
- [140] POLES. Reference card POLES IAMC-Documentation n.d. https://www.iamcdocumentation.eu/index.php/Reference\_card\_-POLES (accessed September 4, 2022)
- [141] Vandyck T, Keramidas K, Saveyn B, Kitous A, Vrontisi Z. A global stocktake of the Paris pledges: implications for energy systems and economy. Glob Environ Change 2016;41:46–63. https://doi.org/10.1016/j.gloenycha.2016.08.006.
- [142] Vold A, Jean-Hansen V, institutt (Norway) T. PINGO: a model for prediction of regional and interriogional freight transport in Norway. Institute of transport economics; 2007.
- [143] QUEST. E-QUEST A Multi-Region Sectoral Dynamic General Equilibrium Model with Energy: Model Description and Applications to Reach the EU Climate Targets. https://economy-finance.ec.europa.eu/publications/e-quest-multi-re gion-sectoral-dynamic-general-equilibrium-model-energy-model-description-an d en (accessed September 4, 2022).
- [144] QUEST. QUEST macroeconomic model. https://economy-finance.ec.europa. eu/economic-research-and-databases/economic-research/macroeconomic-models/quest-macroeconomic-model\_en (accessed September 4, 2022).
- [145] QUEST. model QUEST Macroeconomic model QUEST | Modelling Inventory and Knowledge Management System of the European Commission (MIDAS). https://web.jrc.ec.europa. eu/policy-model-inventory/explore/models/model-quest#inline-nav-licence (accessed September 4, 2022).
- [146] RHOMOLO. Regional holistic model. 2022.
- [147] Comite FD, Diukanova O, Kancs D. RHOMOLO model manual: a dynamic spatial general equilibrium model for EU regions and sectors. Joint Research Centre (Seville site): 2016.
- [148] Mandras G, Lecca P, Sakkas S, Christensen M, Barbero J, Persyn D, et al. Rhomolo V3: a spatial modelling framework. Publications Office of the European Union; 2018. LU.
- [149] Nordhaus B. RICE model runs. 2012.
- [150] Li B, Li T, Zeng H. Analysis and predictions of historical responsibilities of carbon mitigation based on the RICE-2010 model. Procedia Comput Sci 2017;122:362–9. https://doi.org/10.1016/j.procs.2017.11.381.
- [151] Nordhaus WD, Yang Z. A regional dynamic general-equilibrium model of alternative climate-change strategies. Am Econ Rev 1996;86:741–65.
- [152] Fawcett A, Sands R. The second generation model: model description and theory. 2005.
- [153] Sands RD, Miller SR, Kim M-K. The second generation model: comparison of SGM and GTAP approaches to data development. 2005.
- [154] Faehn T, Bachner G, Beach R, Chateau J, Fujimori S, Ghosh M, et al. Capturing key energy and emission trends in CGE models: assessment of status and remaining challenges. J Glob Econ Anal 2020;5:196–272. https://doi.org/ 10.21642/JGEA.050106AF.
- [155] Bye B, Fæhn T, Rosnes O. Residential energy efficiency and European carbon policies: a CGE-analysis with bottom-up information on energy efficiency technologies. Discussion Papers; 2015.
- [156] Braendle T. Introductory note on integrating climate into macroeconomic modelling. OECD; 2021.
- 157] Mcdonald S. STAGE: a user guide. 2020.
- [158] Mcdonalnd S. STAGE: a standard applied general equilibrium model: technical documentation. South Yorkshire 2020.
- [159] Roson R. A modelling framework for assessing the economic impact of climate change in the Caribbean. CEPAL Rev 2013;2013:23–35. https://doi.org/ 10.18356/a5498199-en.
- [160] CIAM. Economic Commission for Latin America and the Caribbean, CIAM climate impacts assessment model. United Nations; n.d.
- [161] Cunha BSL, Garaffa R, Gurgel ÂC. TEA model documentation. 2020.
- [162] Horridge M. The TERM model and its data base. Monash University; 2011.
- [163] Horridge M, Madden JR, Wittwer G. Using a highly disaggregated multi-regional single-country model to analyse the impacts of the 2002-03 drought on Australia. Centre of Policy Studies, Monash University; n.d.
- [164] de Souza Ferreira Filho JB, Horridge M. Climate change impacts on agriculture and internal migration in Brazil. In: Madden JR, Shibusawa H, Higano Y, editors.

- Environ. Econ. Comput. Gen. Equilib. Anal. Essays mem. Yuzuru miyata. Singapore: Springer; 2020. p. 129–51. https://doi.org/10.1007/978-981-15-3970.1.6
- [165] Callonnec G, Landa G, Malliet P, Frédéric Reynes, Yeddir-Tamsamani Y. A full description of the three-ME model: multi-sector macroeconomic model for the evaluation of environmental and energy policy. 2013.
- [166] Reynès F. ThreeME V3-open. 2022.
- [167] Malliet P, Reynès F, Landa G, Hamdi-Cherif M, Saussay A. Assessing short-term and long-term economic and environmental effects of the COVID-19 crisis in France. Environ Resour Econ 2020;76:867–83. https://doi.org/10.1007/s10640-020-00488-z.
- [168] IHS. US Economic Modeling Services | IHS Markit. https://ihsmarkit. com/products/us-economic-modeling-forecasting-services.html#Macro (accessed September 4, 2022).
- [169] U.S. Macro Model. U.S. Macro Model Briefing Note n.d. https://www.cbre-ea.com/public-home/deconstructing-cre/2019/01/31/u.s.-macro-model-briefing-note (accessed September 4, 2022).
- [170] Mayer J, Bachner G, Steininger KW. Macroeconomic implications of switching to process-emission-free iron and steel production in Europe. J Clean Prod 2019; 210:1517–33. https://doi.org/10.1016/j.jclepro.2018.11.118.
- [171] Bachner G, Wolkinger B, Mayer J, Tuerk A, Steininger KW. Risk assessment of the low-carbon transition of Austria's steel and electricity sectors. Environ Innov Soc Transit 2020;35:309–32. https://doi.org/10.1016/j.eist.2018.12.005.
- [172] team TW. WITCH documentation. n.d.
- [173] Lejour A, Veenendaal P, Verweij G, van Leeuwen N. Worldscan; a model for international economic policy analysis. CPB Netherlands Bureau for Economic Policy Analysis; 2006.
- [174] WorldScan. WorldScan. Glob Clim Action Partnersh n.d. https://ledsgp.org/ resource/worldscan/(accessed September 6, 2022).
- [175] Narayanan B, Hertel T, Walmsley T. Introduction. Global trade, assistance, and production: the GTAP 8 data base. Center for Global Trade Analysis, Purdue University; 2012.
- [176] Al-Kuwari O, Schönfisch M. The emerging hydrogen economy and its impact on LNG. Int J Hydrog Energy 2022;47:2080–92. https://doi.org/10.1016/j. iihvdene.2021.10.206.
- [177] van der Zwaan B, Lamboo S, Dalla Longa F. Timmermans' dream: an electricity and hydrogen partnership between Europe and North Africa. Energy Pol 2021; 159:112613. https://doi.org/10.1016/j.enpol.2021.112613.
- [178] Altamirano MA, Bodegom AJ van, van der Linden N, Rijke H de, Verhagen A, Bucx T, et al. Operationalizing the WEF nexus: quantifying the trade-offs and synergies between the water, energy and food sectors: Dutch Climate Solutions research programme. ECN; 2018.
- [179] Solow RM. Technical change and the aggregate production function. Rev Econ Stat 1957;39:312–20. https://doi.org/10.2307/1926047.
- [180] Solow RM. Technical progress, capital formation, and economic growth. Am Econ Rev 1962;52:76–86.
- [181] Romer PM. Endogenous technological change. J Polit Econ 1990;98:S71–102.
- [182] Kahouli-Brahmi S. Technological learning in energy-environment-economy modelling: a survey. Energy Pol 2008;36:138–62. https://doi.org/10.1016/j. enpol.2007.09.001.
- [183] Sagar AD, van der Zwaan B. Technological innovation in the energy sector: R&D, deployment, and learning-by-doing. Energy Pol 2006;34:2601–8. https://doi.org/ 10.1016/j.enpol.2005.04.012.
- [184] Sun Y, Fan P. Technology spillover. Int. Encycl. Geogr. John Wiley & Sons, Ltd; 2017. p. 1–3. https://doi.org/10.1002/9781118786352.wbieg0654.
- [185] Chen Y-HH, Paltsev S, Gurgel A, Reilly JM, Morris J. A multisectoral dynamic model for energy, economic, and climate scenario analysis. Low Carbon Econ 2022;13:70–111. https://doi.org/10.4236/ice.2022.132005.
- [186] Jacoby HD, Reilly JM, McFarland JR, Paltsev S. Technology and technical change in the MIT EPPA model. Energy Econ 2006;28:610–31. https://doi.org/10.1016/ i.eneco.2006.05.014.
- [187] Octaviano C, Paltsev S, Gurgel AC. Climate change policy in Brazil and Mexico: results from the MIT EPPA model. Energy Econ 2016;56:600–14. https://doi.org/ 10.1016/j.eneco.2015.04.007.
- [188] Njakou Djomo S, Ceulemans R. A comparative analysis of the carbon intensity of biofuels caused by land use changes. GCB Bioenergy 2012;4:392–407. https:// doi.org/10.1111/j.1757-1707.2012.01176.x.

- [189] Schmitz C, van Meijl H, Kyle P, Nelson GC, Fujimori S, Gurgel A, et al. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agric Econ 2014;45:69–84. https://doi.org/10.1111/agec.12090.
- [190] Calvin KV, Beach R, Gurgel A, Labriet M, Loboguerrero Rodriguez AM. Agriculture, forestry, and other land-use emissions in Latin America. Energy Econ 2016;56:615–24. https://doi.org/10.1016/j.eneco.2015.03.020.
- [191] Capros P, Van Regemorter D, Paroussos L, Karkatsoulis P. GEM-E3 model manual. Athens, Greece: E3-modelling. 2017.
- [192] Fragkos P, Fragkiadakis K. Analyzing the macro-economic and employment implications of ambitious mitigation pathways and carbon pricing. Front Clim 2022:4.
- [193] GEM-E3. Technological change in energy GEM-E3 IAMC-Documentation n.d. https://www.iamcdocumentation.eu/index.php/Technological\_change\_in\_energy - GEM-E3 (accessed October 12, 2022).
- [194] Vrontisi Z, Fragkiadakis K, Kannavou M, Capros P. Energy system transition and macroeconomic impacts of a European decarbonization action towards a below 2 °C climate stabilization. Clim Change 2020;162:1857–75. https://doi.org/ 10.1007/s10584-019-02440-7.
- [195] Vrontisi Z, Charalampidis I, Paroussos L. What are the impacts of climate policies on trade? A quantified assessment of the Paris Agreement for the G20 economies. Energy Pol 2020;139:111376. https://doi.org/10.1016/j.enpol.2020.111376.
- [196] Skelton ACH, Paroussos L, Allwood JM. Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model. Ecol Econ 2020;173:106544. https://doi.org/10.1016/j. ecolecon.2019.106544.
- [197] Tsani S. Female labour force participation and economic development in southern mediterranean countries: what scenarios for 2030? Labor Demogr Amp Econ Fam EJournal; 2012.
- [198] Kouvaritakis N, Paroussos L, Revesz T, Zalai E, Regemorter DV. Impacts of energy taxation in the enlarged European Union, evaluation with GEM-E3 Europe. Directorate General Taxation and Customs Union, European Commission; 2005.
- [199] Vandyck T, Weitzel M, Wojtowicz K, Rey Los Santos L, Maftei A, Riscado S. Climate policy design, competitiveness and income distribution: a macro-micro assessment for 11 EU countries. Energy Econ 2021;103. https://doi.org/10.1016/ j.eneco.2021.105538. None.
- [200] Hertel T. Chapter 12 global applied general equilibrium analysis using the global trade analysis project framework. In: Dixon PB, Jorgenson DW, editors. Handb. Comput. Gen. Equilib. Model., vol. 1. Elsevier; 2013. p. 815–76. https://doi.org/ 10.1016/B978-0-444-59568-3.00012-2.
- [201] Mensbrugghe D van der. The standard GTAP model in GAMS, version 7. J Glob Econ Anal 2018;3:1–83. https://doi.org/10.21642/JGEA.030101AF.
- [202] Peters JC. GTAP-E-Power: an electricity-detailed economy-wide model. J Glob Econ Anal 2016;1:156–87.
- [203] Philippidis G, Shutes L, M'Barek R, Ronzon T, Tabeau A, van Meijl H. Snakes and ladders: world development pathways' synergies and trade-offs through the lens of the Sustainable Development Goals. J Clean Prod 2020;267:122147. https:// doi.org/10.1016/j.jclepro.2020.122147.
- [204] Woltjer GB, Kuiper M, Kavallari A, Meijl H van, Powell JP, Rutten MM, Shutes LJ, Tabeau AA. The MAGNET model: module description. The Hague, NL: Wageningen UR: 2012.
- [205] Smeets-Kristkova Z, Achterbosch T, Kuiper M. Healthy diets and reduced land pressure: towards a double gain for future food systems in Nigeria. Sustainability 2019;11:835. https://doi.org/10.3390/su11030835.
- [206] Prestele R, Alexander P, Rounsevell MDA, Arneth A, Calvin K, Doelman J, et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob Change Biol 2016;22:3967–83. https://doi.org/10.1111/gcb.13337.
- [207] Biswas AK, Tortajada C. Water crisis and water wars: myths and realities. Int J Water Resour Dev 2019;35:727–31. https://doi.org/10.1080/ 07900627.2019.1636502.
- [208] ILO global estimates on international migrant workers results and methodology. 2021.
- [209] Herath G. Sustainable development and environmental accounting: the challenge to the economics and accounting profession. Int J Soc Econ 2005;32:1035–50. https://doi.org/10.1108/03068290510630999.
   [210] Wilson RA, Briscoe G. In: Descy P, Tessaring M, editors. (Geoffrey). The impact of
- [210] Wilson RA, Briscoe G. In: Descy P, Tessaring M, editors. (Geoffrey). The impact of human capital on economic growth: a review. Luxembourg: Office for Official Publications of the European Communities; 2005. p. 13–61.