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The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are
limited is likely to increase in the coming decades, as autonomous systems become more common and human
workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring
the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level
of protection against potentially hazardous situations. We present such a method to create dynamic safety zones,

the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available
and using conservative extrapolation from last known location when information is missing or unreliable.
Simulation and statistical methods were used to investigate performance gains compared to static safety zones.
The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its
implementation would not offer the same level of protection and is currently not recommended.

1. Introduction

For purpose of the present study, a safety zone is defined as an area in
which special rules, such a permanently reduced speed (in the static
case) or mobile exclusion zones around pedestrians (in the dynamic
case), apply to the movement of autonomous machinery (e.g., delivery
robots or self-driving forklifts) to ensure the safety of the people present.
Therefore, as such, a safety zone does not imply any restriction to human
access.

1.1. Motivation

According to Ref. [1], more than half of the work-related fatalities of
2021 in the EU happened in industries where humans work alongside
increasingly autonomous machinery. In this context, safety zones are an
essential component of many industrial operations across a wide variety
of activity sectors, from mining to shipping, from forestry to
manufacturing. Yet by definition, a safety zone is detrimental to effi-
ciency, performance and/or comfort, since it is necessarily an area in
which some restrictions apply to ensure the safety of people working at
the area. In some cases, it may be completely off-limits to some
personnel or equipment (e.g. manufacturing robots isolated in physical
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cages inside a factory), in others some actions that may be desirable are
forbidden (e.g. light a fire), others that may be burdensome are
mandatory (e.g. put on a helmet and a high-visibility jacket). Other
aspects may include observing lower speed limits etc. In other words:
safety zones have an operational cost, which individuals, companies
and/or other organisations are willing to pay in order to avoid accidents
and injuries that would come at an even heavier price.

Precisely because of the potentially heavy cost of accidents and in-
juries [2], safety zones tend to be managed conservatively. As a result,
they often are larger, last longer and impose heavier restrictions than
strictly necessary. In the “old” world, where real-time situational
awareness was severely undermined by technology limitations, this was
not only justified but unavoidable: if you cannot follow or predict an
employee’s whereabouts precisely and with a high degree of certainty,
you are forced to make sure that everywhere they could be is safe for
them. This has led to current practice in different industries to set up
static safety zones, which isolate people form automated production
processes or operations. This practice has some drawbacks considering
the current technological development. For example, efficient and dy-
namic co-operation between people and autonomous robots (augmented
intelligence/capabilities of workers) is not possible if people and their
intended collaborators are isolated physically from each other with
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static safety zones. We argue that considerable advances in sensors,
communications and machine intelligence over the past few decades
have rendered the static and deterministic safety zone paradigm obso-
lete and that the time has come to redesign the methods by which ac-
cidents and injuries are prevented at industrial production sites. Such a
redesign can and should be evaluated in terms of the potential efficiency
and performance benefits compared to the current static safety zone
paradigm.

We are proposing to develop the concept of dynamic and probabi-
listic safety zones, informed, created, maintained and removed on-
demand by leveraging current and soon-to-be available technology (e.
g., 5G communications and advanced location tracking systems). With
regard to these enabling technologies, we do not claim expertise in any
specific approach or product line, the envisioned concepts are hardware
agnostic. The primary motivation for this is to improve efficiency and
performance of business operations by increasing flexibility and lifting
unnecessary restrictions, for instance by “suspending” the effect of a
safety zone when it is known with absolute certainty that the reasons for
its existence have ceased to apply (e.g., there is no human being in the
designated area). It may however be worth emphasising that the pro-
posed approach could also result in extending the boundaries of a pre-
defined safety zone if the situation requires it (e.g., an employee has
been detected outside the restricted area in which special rules normally
apply to ensure their safety). So, far from compromising safety,
increased flexibility would be accompanied by further risk reduction.

1.2. Contributions of this article

The main contribution of the paper is not to demonstrate that dy-
namic and probabilistic safety zones yield efficiency gains, which is
largely self-evident. Rather, the objective is to present a quantitative
method to accurately measure the extent of the performance increase in
different regions of the parameters space, thereby providing the
decision-maker with the information needed to determine whether the
cost/benefit ratio for their implementation in specific circumstances is
sufficiently low. This is illustrated by considering a simple collision
prevention scenario in which the relevant parameters are the density of
the pedestrian population and the number of robots.

2. State of the art
2.1. Safety challenges of autonomous machinery

In recent years there has been a sharp increase in the industrial,
commercial and professional use of mobile machines [3], which operate
with increasing levels of autonomy. Such autonomous mobile robots
(AMRs) [4], also referred to as “highly-automated heavy-duty mobile
machinery” (HDMM) [5] offer a huge potential when it comes to
improving efficiency and productivity, but they also pose a novel threat
to the human personnel alongside which they are deployed: Villani et al.
[6] identified safety issues as the primary main challenge for realizing
human robot collaboration. And indeed, the New Machinery regulation
proposal [7] (Proposal for a Regulation of European Parliament and of
the Council on machinery product. Brussels, 25.1.2023) requires that
autonomous mobile machinery products operate in an enclosed zone or
object detecting devices are applied to prevent risks to health and safety,
in the vicinity of the autonomous mobile machine. It is (will be) the first
time autonomous mobile machines are mentioned in European ma-
chinery legislation.

From the presented two options the object detecting devices idea is
more relevant to the dynamic safety zone concept. The technology that
can be applied on dynamic safety zones depends on the required per-
formance of the dynamic safety zone. The dynamic safety zone area,
range and shape need to be changed rapidly according to known situa-
tion and its uncertainties. This means that fences [6] or light curtains are
not useful, since they have to be physically installed and modified in
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order to redefine a safety zone, thus lacking adequate dynamic
properties.

Traditionally, detecting humans in a work area has been addressed
centrally through CCTV systems [8], which can today identify specific
humans based on their gait and can follow them even though they may
be occluded by obstacles periodically [9]. With growing autonomy of
the employed robotic systems (and due to their increasingly mobile
nature) sensing capability is moving to the device level. In practice, the
sensors that can detect objects beside the mobile machine tend to be
mainly on-board, potentially augmented with infrastructure-mounted
monitoring devices (e.g. fixed video cameras). The most applicable
sensors, which can provide long detection range are LIDAR [10-12],
RADAR [13,14], laser scanner and [15] camera technologies [11,12].
Several sensors are needed because overlapping of detection zones is
required (for safety and reliability reasons), all possible blind spots must
be covered and having a diversity of sensors helps compensate for the
weaknesses of each sensor type. For example, dirt and water tend to
weaken detection properties of light-based sensors. The number of
object-detecting sensors depends on machine size but is usually a small
number, partly for economic reasons; e.g., Garigipati et al. [12] report
on performance comparison of SLAM algorithms using a combination of
LIDAR, stereo camera, inertial measurement unit (IMU) and GNSS an-
tennas. Small indoors mobile robots can cope with two or three sensors;
e.g. Ref. [16], reports on an industrial mobile robot using two laser
scanners. Some sensors can also be attached to the infrastructure, e.g., at
crossings to track oncoming machines and persons. One additional way
to avoid collisions is to tag all moving objects (persons and machines)
and then keep separation distance adequate between all moving actors.
In a centralised control scenario, this requires communication to fleet
control, which keeps track of separation distances and commands the
machines [17]. Fleet control cannot anticipate fortuitous hazards such
as fallen rocks, which must be detected to avoid collisions. Once
detected, a problematic rigid object can be marked as an obstacle on the
digital terrain map, resulting in continuous updates.

One additional method for handling interaction between relevant
agents would involve using state-of-the-art radio signal analysis tech-
niques (which are becoming available, e.g., as a result of the deployment
of 5G networks), e.g. Ref. [18], to build and maintain a real-time map of
their whereabouts. It is unclear at this stage if the accuracy of such
positioning methods would be sufficient to meet the stringent re-
quirements of a safety zone management system but combining them
with the probabilistic approach that we have developed may result in a
viable solution.

There are some uncertainties when trying to detect objects using only
on-board sensors. The causes for these uncertainties are, for example,
uneven ground causing swaying of sensors and their detection zones,
and adverse detection conditions. It is tricky to detect persons leaning
against a wall or large object, or someone lying on the ground. It is also
difficult to factor in additional dimensions of a machine, with certain
elements (e.g., boom or load) potentially extending beyond the normal
envelope. Environmental factors such as dust, water flows and darkness
may also cause problems to some sensors [17]. Despite those limitations
(which also apply to static safety zones), when cross-referencing enough
reliable sources of sensor data, dynamic safety zones appear feasible.
Obviously, safety aspects need to be evaluated on a case-by-case basis,
with all possible sources of error (blind spots, capabilities of sensors,
environmental conditions), and the characteristics of mobile machinery
(momentum, braking distance etc.) taken into consideration.

2.2. Dynamic safety zone concept in research literature

In the research literature, the concept of dynamic safety zones has
been studied primarily in the manufacturing industry. Mostly the
research is related to industrial and collaborative robots. Especially in
collaborative robotics, various dynamic approaches based on different
sensors and algorithms have been developed and tested. For example,
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Malm et al. [19,20] have developed a dynamic safety system based on
monitoring the position and speed of the robot and human operator.
Similarly, Byner et al. [21], Vicentini et al. [22] as well as Scalera et al.
[23,24] have proposed approaches where the size of the safety zone
around an industrial robot is determined based on various combinations
of the robot and human positions, velocities, and trajectories. Kanazawa
et al. [25] have developed a probabilistic approach for collaborative
robots, focusing on probabilistic prediction of the human’s motion for
collision avoidance. Dynamic safety systems for industrial robots have
also been developed in the automotive manufacturing, for example by
the Volkswagen group [26].

In these use cases related to industrial and collaborative robotics,
however, the robots are stationary, and their actuators can only move
within the range of the physical dimensions of the robot. In mobile ro-
botics, the complexity further increases as not only humans, but also the
robots themselves, are moving simultaneously. In these types of more
dynamic environments and involving mobile robots, dynamic safety
zones have been considerably less studied. One example is by Adam
et al. [27] who have proposed a dynamic safety system for mobile ro-
bots. However, this system is rule-based as opposed to the dynamic and
probabilistic approach proposed in this article.

In mobile robotics, a lot of research has been directed towards route
planning and route optimization of robots or robot fleets [3,4], also in
environments with humans. However, these studies are typically not
related to heavy industrial robotics nor the fulfilment of machinery
safety standards and requirements. Instead, the mobile robots rely on
on-board collision avoidance systems for safety.

3. Material and methods

Although we would argue that dynamic safety zones are applicable
to various domains and therein to a range of specific scenarios in which
the location and whereabouts of human personnel may be subject to
uncertainty (due to e.g., signal blocking obstacles as found in under-
ground mining operations or for deployment in contested or signal de-
nied environments in the defense domain) [3], we chose to illustrate the
concept and conduct our performance analysis in the more generic and
relatable case of autonomous mobile robots sharing an urban environ-
ment with humans. A suitable example is found in the box-sized ground
delivery robots that have become a common sight in districts of Helsinki,
Finland, where the service is already available.'

The results presented in this paper have been obtained primarily
through stochastic numerical experiments (Monte Carlo simulation).
When other methods are used, as with the deterministic calculation of
probabilistic weights, it is clearly stated in the text.

3.1. Dynamic safety zones

In the first simulation, we look exclusively at the dynamic element:
when dynamic safety zones are in effect, their boundaries are redrawn in
real-time based on information the availability, completeness, timeli-
ness, and reliability of which is assumed perfect. The proof-of-concept
scenario is as follows. A fleet of autonomous mobile vehicles (e.g., ro-
botic forklifts) must repeatedly cross the modelled environment from
East to West (and back). This environment is discretised into 1024 cells,
arranged in a square lattice (32 x 32). Whenever a robot reaches its
destination, a new destination is chosen at random, on the opposite side,
resulting in a “pendulum” movement. There can only ever be one robot
(or human) inside a cell: in the rare event that a planned movement
would break this rule, it is simply cancelled in the simulation. By default,
on every time-step, every autonomous vehicle is attempting to move
closer to its destination if possible. Depending on whether machine and
destination are already on the same line (identical vertical coordinate)

1 https://www.s-kaupat.fi/sivu/robokuljetus.
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or not, there can be one or two such preferred options. If no such move is
allowed (the corresponding cell contains another robot or a person), the
robot will attempt a sidestep or backtrack manoeuvre (i.e., moving to a
cell that is one step further from the destination than its current loca-
tion). If this option is also unavailable (e.g., because it is outside the
system’s limits), the unit’s location remains unchanged (stop).

The static safety zone reference scenario consists in designating a
vertical (North-South) corridor 16 cells wide in the middle of the envi-
ronment as a restricted area. When in this zone, autonomous vehicle
movement is limited to half-speed, which is simulated by allowing ro-
bots to move only every other time-step (see Fig. 1(A)). The safety zone
is meant to represent a pedestrian crossing: a predetermined number of
humans are using it to traverse the environment from North to South
(and vice-versa).

The movement of pedestrians is handled in a manner similar but not
identical to that of autonomous vehicles: on every time-step, every
simulated person has a probability P of trying to move into their main
direction of travel (North or South, depending on where they entered the
environment). By default, P = 0.75. In the 1-P fraction of cases when
they don’t try to move in a straight line, or if the path is blocked, a side-
step is attempted. Unlike for robots, backtracking is never an option.
Pedestrians also never leave the safety zone (i.e., a side-step is only
allowed if it is still inside the designated area). Upon reaching the edge
of the environment, a simulated human is removed and another one
“enters” at a random location selected among the north-most or south-
most edge cells of the safety zone. This results in a constant pedestrian
density (one of the key parameters of the simulation).

In the dynamic safety zone alternative, individual safety zones are
substituted to the static pedestrian crossing corridor. At the beginning of
every robot movement phase, an exclusion zone is drawn around every
pedestrian (see Fig. 1(B)). No autonomous vehicle is allowed to enter
that zone (i.e., the corresponding cells are removed from available op-
tions). If a robot finds itself inside such a “personal” safety zone (which
may only happen if one of the pedestrians moves towards it), options are
limited to the cells outside the restricted area (i.e., it can leave the safety
zone but not travel within it).

The main parameters to be explored are the number of autonomous
vehicles, the number or density of pedestrians and the size of individual
safety zones (by default, 3 x 3 cells). Performance is measured as the
number of trips completed by the fleet of robots over a fixed period.

3.2. Dynamic and probabilistic safety zones

In the real world, perfect availability, completeness, timeliness, and
reliability of information can never be fully achieved. Consequently,
redrawing the boundaries of dynamic safety zones in real-time with
impeccable accuracy is likely to remain impractical. It is therefore
necessary to incorporate a probabilistic element, to account for errors or
gaps in data that may adversely affect situational awareness. In order to
develop a feasible conceptual framework to handle such uncertainty in a
principled and scientifically rigorous manner, we focused on the specific
case in which errors take the shape of missing information (e.g., a
malfunctioning beacon that only transmits updates at irregular in-
tervals). The reader will understand that this methodology can be
adapted to other sources of inaccuracy such as erroneous localisation,
time-lag, radio shadows etc.

Concretely, in the numerical experiments, whenever a pedestrian
moves from one cell to the next, a random test is performed against an
error probability P*. If the test is successful, i.e., when the randomly
generated number x in the [0,1[ interval is such that x > P*, the updated
location is successfully registered (and used to update the corresponding
safety zone). When the test fails however, the pedestrian goes tempo-
rarily “missing” and the personal safety zone is treated differently (NB:
this is assumed to be a “known unknown”, i.e., we do not consider the
scenario in which an update is wrongly thought to have been received).
Basically, the system then extrapolates the probable location of the
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Fig. 1. Static (A) and dynamic (B) safety zone examples for a generic urban environment (as opposed to an industrial scenario). A robot within the static safety zone
is restricted to half-speed. No robot is allowed to enter a dynamic safety zone. For easier visualisation, the environment size is only a quarter of the default value used

in simulation (16 x 16 instead of 32 x 32).

person from the last known location and the expected direction of
movement (reminder: by default, there is a 75 % chance that pedestrians
move in the primary direction of travel, i.e., northward or southward,
25 % that they make a side-step). To account for the possibility that the
path may have been blocked, these values are multiplied by a factor
0.99, resulting in 1 % chance of no movement. This leads to an asym-
metrical expansion of the safety zone around all possible locations of the
missing pedestrian (variable statistical weights).

In case of multiple consecutive failures, the extrapolation continues,
leading to an increasingly large and “diluted” safety zone (see Fig. 2).
When an update is finally received and the precise location of the
pedestrian is known again, this “fuzzy” safety zone is collapsed around
the correct position (NB: this makes the implicit assumption that in-
dividuals are identifiable, as it is obviously necessary to determine
which “reappearing” pedestrian is which previously missing one to be
able to update the corresponding safety zone correctly).

In order to quantify the performance of a dynamic and probabilistic
safety zones scenario, an additional metric is necessary. It is not suffi-
cient to count the number of trips to determine if there is an efficiency
gain, we must also consider how frequently the probabilistic element
creates hazardous situations. This is done by counting how many times a
robot enters a safety zone by mistake due to the uncertainty surrounding
the actual whereabouts of pedestrians. It should be noted that, if the rule
is that the probability of a person being in a given location must be
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strictly zero for it not to be added to the list of cells around which the
safety zone is drawn, then such an event can never occur. However, such
a rigid rule could also quickly lead to system “paralysis” (i.e., the en-
tirety of the environment being declared unsafe for robots to enter) if the
value of P* is non-negligible.

A most interesting parameter to explore is therefore the value of this
threshold, e.g., should a cell in which the probability that a pedestrian is
present is < 0.01 be considered safe enough to enter, or should this be <
0.0001? It should be noted that this value is not the probability that an
accident will occur, only that of a person and a robot finding themselves
in closer proximity than intended. In addition to this and the other pa-
rameters already relevant in the deterministic case, the value of P* is
obviously also a critical one to investigate.

4. Results
4.1. Dynamic safety zones

As expected, for the reference or benchmark scenario (static safety
zone), performance is strongly dependent on the number of autonomous
devices and only weakly affected by the density of pedestrians, since the
latter only influences a robot’s movement insofar as it cannot enter a cell
when it is occupied by a person (which can be interpreted as the effect of
a secondary collision detection mechanism). Apart from in this
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Fig. 2. Probabilistic safety zones influenced by the absence of information about one pedestrian (6 consecutive failed updates, last know location marked by the icon
with a question mark). The statistical weights (based on likely direction of movement) are indicated. (A) Threshold is zero (i.e., safety zone extends around any
possible location, however unlikely). (B) Threshold is 0.001, resulting in a somewhat smaller exclusion zone (but proportionally increased risk).
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particular event, the actual presence of pedestrians has no effect, since
the rules only stipulate that autonomous vehicles are limited to half-
speed whenever inside the safety zone (whether it is crowded or
empty is not taken into consideration).

The simplest case has a single robot crossing the empty environment
back and forth. The average trip length in a 32 x 32 discrete environ-
ment is ~ 41.5 steps: minimum 31 steps (straight line), maximum 62
steps (diagonal). Half of these are inside the safety zone, in which speed
is divided by two, meaning that the average duration of one trip is ~
62.5 time-steps. The simulation run is halted after 1000 time-steps. The
autonomous vehicle is therefore expected to complete about 16 trips.
The average over 10000 repetitions was 15.77, due to discretisation
effects (the final, uncompleted trip is not counted), in good agreement
with this simple theoretical projection (benchmark).

As the number of pedestrians present at any one time in the safety
zone increases, performance slowly degrades due to collision avoidance
effects (i.e., the robot stopping or taking a detour to avoid a person) but
the effect is weak. Although congestion manifest itself in the fact that the
slope of the curve plotting the number of trips completed as a function of
the number of robots is lower than 15.77 in the absence of pedestrians,
the relationship remains linear in the region of the parameters space that
was considered. In summary: as anticipated, static safety zones are
almost insensitive to population density fluctuations in the chosen
scenario.

In the dynamic case, efficiency gains are substantial when the
number of pedestrians is low. This is an intuitive result: in the absence of
a static safety zone, robots may travel at full speed across the entire
environment unless blocked by the smaller “interdiction zones” sur-
rounding individuals. If this is a rare event, there is obviously a net
benefit. Simulation results show the average number of trips completed
to be an exponential decay function of the number of pedestrians in both
the static and dynamic scenarios (r2 > 0.99, Fig. 3).

However, the slope is much steeper in the latter, leading to the
number of trips completed falling below that observed in the static
scenario for ~25 pedestrians concurrently present, for the default
parameter values (see Fig. 3). Additional results (not shown) also indi-
cate that this is almost independent of the number of robots with only a
very minor increase of this threshold value: ~26 individuals for 20 ro-
bots instead of for the 10 robots, for which the results are shown in
Fig. 3, below (intersection values calculated from exponential fitting
functions).

If increasing the size of personal safety zones to 5 x 5, the threshold
value falls to ~9 people, so almost the same ratio as between the surface

05 robots (dynamic) © 10 robots (dynamic)
= 5 robots (static) ® 10 robots (static)

250

Avg. number of trips completed

0 5 10 15 20 25 30 35
# Pedestrians

Fig. 3. Sample results illustrating the effect of enabling dynamic safety zones,
as a function of pedestrian density. Every data point is the average number of
trips completed after 1,000 time-steps, summed over the entire robot popula-
tion, for 10,000 independent realisations. Exclusion zone is 3 x 3 cells around
every person, the environment is 32 x 32 cells, with the central 16 x 32 area
being designated as the static safety zone (see Fig. 1).
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areas (%5). The small but noticeable deviation from the exponential
decay fitting (see Fig. 4, especially the “10 robots (dynamic)” scenario)
is likely attributable to nonlinearities such as the increased probability
of significant overlap as dynamic safety zones grow larger.

These results point to the need to limit the use of dynamic safety
zones to cases in which certain conditions are met (here, sufficiently low
pedestrian traffic). Obviously, this numerical experiment and its specific
threshold values are meant as a proof-of-concept. The operational con-
ditions in which the introduction of dynamic safety zones can lead to
significant efficiency gains will vary from one application to the other,
and the corresponding boundaries must be calculated on a case-by-case
basis. Our findings merely demonstrate that this is feasible, with a high
degree of confidence, provided that a sufficiently accurate model exists.

4.2. Dynamic and probabilistic safety zones

For a P* value of 0.5, indicating that updates are received, statisti-
cally, every other step, most results are unsurprising. As expected, for
the same number of pedestrians, the frequency of safety incidents de-
creases progressively as the tolerance threshold (probability value above
which a cell is included in the safety zone) is lowered from 0.1 to 0.01
and 0.001. Similarly, the number of trips completed also decreases,
albeit more slowly, as the “paralysing” effect of faster-expanding safety
zones becomes stronger for lower threshold values. The number of ro-
bots (5 or 10) appears to affect both variables (frequency of safety in-
cidents and number of trips) near linearly, as in the “perfect positioning
accuracy” scenario, which is also an intuitive result. The number of
pedestrians (population density) appears to have the strongest effect
over the number of trips completed, emphasising the main drawback of
the probabilistic approach: for a large number of potential hazards, even
limited uncertainty (P* = 0.5) is highly detrimental to performance,
compounding the effect already observed for the dynamic scenario (cf.
Section 4.1). These results are summarised in Fig. 5.

A more surprising result was that the number of safety incidents as a
function of pedestrian population density goes through a maximum in
certain regions of the parameters space. This pattern, clearly visible in
Fig. 6, is most likely attributable to a “herding” effect: when uncertainty
is high (P* = 0.9), the “opportunities” for incidents (when the statistical
weight of a person’s actual position falls below the interdiction
threshold) increases with the number of pedestrians. However, when the
crowd becomes even denser, the expanding probabilistic safety zones
increasingly overlap, meaning that individuals can “protect” each other.
In short: a robot may unknowingly keep its distance to one “missing”
person by purposefully avoiding another. Since this “herding” effect is
also directly proportional to population density, it counteracts the “law

05 robots (dynamic) © 10 robots (dynamic)
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Fig. 4. Identical representation as in Fig. 3 but with 5 x 5 (instead of 3 x 3)
personal safety zone around individual pedestrians (all other parameter values
are unchanged). The “static” data is the same as in Fig. 3 and is provided for
comparison purposes.
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of large numbers” and brings down the probability of safety breaches.
5. Conclusion

The main conclusion of this work is that dynamic safety zones could
provide a feasible solution to introduce efficient automation (self-
driving vehicles and other robots) without compromising safety stan-
dards for human workers, given adequate levels of situational awareness
(communication, localisation etc.) Our results clearly demonstrate that a
transition from static to dynamic safety zones would yield a significant

increase in productivity in certain circumstances, e.g. when the density
of relevant actors is low, and the precautionary exclusion of a large area
designated as a safety zone severely complicates the navigation of
autonomous vehicles (see Section 3).

However, as stated in the introduction, our intention is not to
emphasise that dynamic and probabilistic safety zones have advantages,
which is obvious. Rather, we wanted to demonstrate the use of a
quantitative method for evaluating performance gains in a simple
collision prevention scenario, emphasising the presence of a “law of
diminishing return” in certain circumstances. Our results show that
above a critical pedestrian population density, the use of dynamic safety
zones can have an adverse effect, reducing performance (in terms of
trips completed over a fixed period) instead of increasing it (see, e.g.,
Figs. 3 and 4). Other non-trivial findings include the presence of a
maximum in the number of safety incidents recorded in the probabilistic
case when plotted as a function of pedestrian density, which we inter-
pret as a “herding” effect (see Fig. 6).

One of the most important findings is that there are reliable algo-
rithmic methods to deal with specific types of uncertainty, which was
illustrated by the use of expanding safety zones around the last known
location of a human worker. It is therefore essential to categorise un-
certainty and especially to understand how it can be affected very
differently by lack of either confidence or precision: a high degree of
confidence in some information indicates that there is a high probability
of it being correct, notwithstanding its specificity. By contrast, a high
degree of precision indicates that some information has a sufficient level
of detail, but it does not imply that it is accurate.

Our results indicate that it is possible to maintain safety when facing
uncertainty resulting from lack of precision, but only if confidence re-
mains high. For instance, a robot may be able to guarantee that it does
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not compromise the safety of Bob or Alice as long as it is 99.9999 %
confident that Alice cannot be less than 8 m away and Bob less than 12 m
away, even if it doesn’t know their actual location. On the contrary,
being 90 % confident that Bob is 15 m to the Northeast and 85 % sure
that Alice is 10 m to the South does not allow to make such a determi-
nation, even though the localisation data is more precise. Accordingly,
we conclude that technologies capable of increasing information time-
liness and reliability (e.g., excellent synchronisation, ultra-low latency,
accurate quality of service assessment), both of which can increase
confidence (or flag the lack thereof when correctly identified as
compromised), will be more critical enablers of dynamic safety zones
than those emphasising high-precision measurements (e.g., 3D mapping
of the autonomous robot’s environment).
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