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A B S T R A C T

Measurements of greenhouse gas exchange (GHG) using the eddy covariance method are crucial for identifying
strategies to achieve emission reductions and carbon sequestration. There are many sites that have heteroge-
neous land covers where it would be useful to have balances of particular land areas, such as field trials of
emission mitigation strategies, but the flux footprint infrequently covers only the area of interest. Filtering
the data based on a footprint area threshold can be done but may result in the loss of a high proportion of
observations that contain valuable information. Here, we present a study that uses a single eddy covariance
tower on the border of two land uses to compare GHG exchange from a Typha latifolia paludiculture experiment
and the surrounding area (SA) which is primarily a dairy meadow. We used a Bayesian inference approach to
predict carbon dioxide (CO2) and methane (CH4) fluxes where the relative contribution of the two source areas,
derived from a two-dimensional footprint for each timestep, was used to weight and parameterise equations.
Distinct differences in flux behaviour were observed when contributions of the two land areas changed and
that resulted in clearly different parameter distributions. The annual totals (posterior mean ± 95% confidence
interval) from the simulations showed that Typha was a net sink of CO2 for both simulation years (−18.5 ± 2.9
and −17.8 ± 2.9 t CO2 ha

−1 yr−1) while SA was a net source (16.8 ± 2.9 and 17.4 ± 2.9 t CO2 ha
−1 yr−1). Using

the 100-year global warming potential of CH4, even though CH4 emissions were higher for paludiculture in
both years (13.6 ± 0.6 and 15.9 ± 1.0 t CO2-eq ha−1 yr−1) than SA (7.1 ± 0.6 and 6.8 ± 1.2 t CO2-eq ha−1 yr−1),
the net GHG balance indicates that Typha paludiculture is a viable strategy to limit GHG emissions from drained
peatlands.
1. Introduction

Eddy covariance (EC) is a direct method to measure turbulent fluxes
of energy, gases and momentum between the biosphere and atmosphere
(Mauder et al., 2021). The development of EC has been crucial to
improve our understanding of terrestrial and atmospheric functioning
over the past 30 years (Baldocchi, 2020). There are many sites where it
is desirable to observe the exchange of GHGs but they may not be ideal
places to measure with EC. Homogeneity of the flux source area is an
assumption of the EC method, however heterogeneity is frequently a
reality. This is often the case in natural and disturbed peatland ecosys-
tems, where there can be a mix of vegetation, and presence of drainage
ditches or water bodies that can have drastically different carbon source
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and sink behaviour. Field experiments are another example, where
it may be desirable to assess the effect of a treatment in-situ and at
the same moment in time, rather than applying treatments in time or
having to use multiple sets of equipment in space, which is especially
costly for trace gases such as methane (CH4) or nitrous oxide (N2O)
(Goodrich et al., 2021). Alternative measuring methods exist that could
be deployed in such situations such as static or automatic chambers, but
they have their own deficiency of being point scale measurements that
disturb the measuring point (Riederer et al., 2014; Poyda et al., 2017).
EC is ideal in that it can provide ecosystem-scale measurements over
long time periods with minimal disturbance to the environment and
relatively low maintenance requirements (Baldocchi, 2003).
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Studying different source areas of interest can be achieved with
footprint models (Vesala et al., 2008; Leclerc and Foken, 2014). For
each moment in time, the source area of the flux can be estimated and
then the flux can be attributed to different land features (Wang et al.,
2006; Franz et al., 2016; Tuovinen et al., 2019; Chu et al., 2021; Rey-
Sanchez et al., 2022), providing a more precise comparison of different
land elements than by partitioning based simply on wind direction.
Unwanted land features can also be excluded more precisely. Fast
two-dimensional footprint prediction models, such as the models of Ko-
rmann and Meixner (2001) and Kljun et al. (2015), drastically reduce
the computation time required and it is feasible to obtain footprints for
each timestep for multiple years compared to sophisticated Lagrangian
stochastic particle dispersion models (e.g., Kljun et al., 2002).

A timeseries of fluxes from a specific part of the footprint can
be obtained by spatially analysing each footprint and retaining only
the timesteps where some minimum threshold (e.g., 50%, 70%) was
estimated to come from the desired area (Chu et al., 2021). This can
cause many timepoints to be marked as missing and subsequently need
to be gapfilled for annual budget estimates. If a lower threshold is
used, this also means that the flux source is mixed for many timesteps
and less representative of the desired area. Some studies have also
compared fluxes from adjacent fields using a single EC system. Fuchs
et al. (2018) and Goodrich et al. (2021) compared adjacent fields to
study emission mitigation options of N2O fluxes, and Wall et al. (2020)
examined carbon dioxide (CO2) fluxes from adjacent fields. These
studies also used contribution thresholds to define the source areas. For
example, Wall et al. (2020) used a contribution threshold of 70% during
the day and 60% at night, with the latter lower value to compensate
for the lower number of observations at night due to low turbulence.
In these studies, after the different timeseries were defined by using
the footprint thresholds, they were gapfilled independently. However,
all timesteps with a mixed contribution from different land features
contain information about all these land features, and a method that
uses this valuable information is wanted.

A special case of where large differences in emission behaviour in a
landscape can be found is in peatland rewetting and rewetting strategy
trials. Peatlands are an important storage of carbon (C) and contain
more than 30% of the Earth’s soil C (Lamers et al., 2015), despite
only covering approximately 3% of the global surface area (Yu et al.,
2010). The formation of peat occurs in areas with high rainfall or poor
drainage where the soil saturates, limiting the supply of oxygen and
inhibiting decomposition of organic matter. Many peatlands have been
drained for productive agricultural and forestry use. While natural peat-
lands may be net annual C sinks (Nilsson et al., 2008; Dinsmore et al.,
2010; Koehler et al., 2011), drainage enables microbial peat oxidation
that increases CO2 emissions (Renou-Wilson et al., 2014; Wilson et al.,
2015; Prananto et al., 2020) and causes land subsidence (Erkens et al.,
2016). The drainage and disturbance of peatlands poses a large risk to
the climate, given their large and relatively vulnerable C pool that can
readily exchange with the atmosphere (Frolking et al., 2011). Drained
peatlands cover 0.3% of the Earth’s surface area but are responsible for
around 5% of the global anthropogenic CO2 emissions (Joosten et al.,
2016) and reducing emissions from drained peatlands is required to
limit global warming (Leifeld et al., 2019).

The rewetting of drained peatlands is a relatively easy strategy
to reduce C emissions or sequester C (Wilson et al., 2016; Leifeld
and Menichetti, 2018) with moderate expenses (Bonn et al., 2016).
Evidence generally points to rewetting having a neutral to cooling
effect on the climate (Kivimäki et al., 2008; Waddington et al., 2010;
Schwieger et al., 2021), despite the increase in CH4 emissions (Günther
et al., 2020; Evans et al., 2021). Paludiculture is often proposed as
a rewetting option to mitigate emissions while keeping productive
land Geurts et al. (2019), de Jong et al. (2021). Paludiculture is the
practice to cultivate crops on wet conditions or shallow water tables
(Joosten et al., 2012). So-called paludicrops that are often established
2

are tall helophytes, namely Phragmites australis (reeds) and Typha spp. a
(cattail). In north-western Europe, reeds are widely established, while
cattail species are still in pilot or experimental settings. Cattail in
particular is a promising paludicrop as the physical characteristics of
the crop make it suitable material for insulation (Luamkanchanaphan
et al., 2012; Georgiev et al., 2013; Krus et al., 2015; de Jong et al.,
2021). As the type of vegetation on peat can influence the emissions
of CH4 (Hendriks et al., 2010; Bhullar et al., 2014; van den Berg
t al., 2016, 2020), paludicrops that also suppress CH4 emissions are
deal. A concern about Typha spp, such as Typha latifolia as (broadleaf

cattail) and Typha angustifolia (narrowleaf cattail), is the potential for
high CH4 emissions due to its efficient internal gas transport mecha-
nism (Bendix et al., 1994; Vroom et al., 2022). However, due to the
various factors that influence emissions from rewetted peatlands, such
as from substrate and nutrient availability, there may be substantial
variability in emissions (IPCC, 2014; Wilson et al., 2016). There is a
clear need for more studies on the GHG exchange from paludiculture
trials. However, the size of the field trials, and more generally just fields
in the Netherlands, is often problematic for EC, where the footprint may
not cover the desired source area all the time. Additionally, it would
be desirable to compare the fluxes from adjacent fields as a comparison
to see if the GHG exchange behaviour is different and that mitigation
strategies are effective.

In this study, we aim to develop a method to exploit the information
contained in timesteps with mixed source area contributions measured
by a single EC tower, rather than discard them. We use the flux
footprint and empirical CO2 and CH4 prediction models to constrain
the flux source behaviour and test it on a two-year timeseries from a
mixed paludiculture-meadow field site in the Netherlands. Specifically,
our aims were to: (1) develop a Bayesian inference approach that can
identify probable parameter sets for models that predict CO2 and CH4
luxes for multiple land elements in a heterogeneous field site, (2)
emonstrate the skill and advantages of our approach compared to
tandard flux filtering and gapfilling approaches, and (3) compare and
valuate the annual emissions of the paludiculture trial to the adjacent
ield.

. Materials and methods

.1. Study site

Fluxes of CO2 and CH4 were measured at a field site on the exper-
mental farm KTC Zegveld (52.14 N, 4.84 E, −2.3 m elev), located in
he west of the Netherlands between May 2020 and December 2022
Fig. 1). The climate is temperate and humid, with a mean annual
emperature and precipitation of 10.5 ± 0.7 ◦C and 766 ± 141 mm,
espectively, for the period 1991 to 2020 (Cabauw, KNMI ID: 348).
he peat soils at Zegveld have a clay rich topsoil that overlays 6 to
m of wood sedge peat Langeveld et al. (1997). The typical land use
f Zegveld is intensive grazing by dairy cattle and the vegetation is
ominated by Lollium perenne (perennial ryegrass) and Poa pratensis
meadow grass). A 0.4ha parcel of Typha latifolia (common name
attail, henceforth simply Typha) was established in July 2016 as a
aludiculture experiment. Prior to establishment, approximately 10 to
0 cm of the topsoil was excavated and was used to create a small dike
round the parcel edge to ensure that the Typha had a standing water
evel above the ground surface. More details about the establishment
f the field are provided in Pijlman et al. (2019). In the first year
f field establishment, 2016, no fertiliser was applied to the Typha
ield, but from 2017 to 2020 nutrients were added. In 2017 and
018 150 kgNha−1 as coated urea and 150 kgK ha−1 as coated potassium
itrate (Ekompany, Born, Netherlands) were applied. The same amount
f nutrients was used in 2019 and 2020 but were in the form of
mmonium nitrate, potassium chloride, and monocalcium phosphate.
n 2021 and 2022, no nutrients were added. There was an annual Typha
arvest usually between February and March. The Typha here grow to

n average height of around 2m.
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Fig. 1. The location of the study site in the Netherlands (right) and an overview of the Zegveld field site (left). The footprint contours were calculated using the mean footprint
over the study period, where the footprints were estimated with the Kljun et al. (2015) model. Timesteps where the wind direction was lower than 60 degrees or more than 265
degrees were excluded to avoid built-up farm area.
2.2. Measurements and ancillary data

An EC system was setup in the north eastern corner of the Typha
field (Fig. 1). The predominant wind direction is from the southwest,
and hence the location of the EC system was set to mainly cap-
ture fluxes from the Typha field. A Metek uSonic-3 Cage MP sonic
anemometer (Metek GmbH, Elmshorn, Germany) was used to record
three-dimensional wind speed and heat fluxes. Open path gas analysers
for CO2 and H2O (LI-7500DS, LI-COR Biosciences, Lincoln NE, USA)
and CH4 (LI-7700, LI-COR Biosciences, Lincoln NE, USA) were used
to measure gas concentrations. Raw data were recorded at a 10Hz
frequency by a Smartflux 3 system (LI-COR Biosciences, Lincoln NE,
USA), which uploaded the data to a central database via telemetry. The
height of the EC system was fixed at 3m above the ground, meaning
that the height above the maximum vegetation was 1m for Typha and
2.5m for the pasture. The data used in this study was collected between
February 2021 and December 2022.

A meteorological station was installed next to the EC system. Short
and longwave radiation components were measured using an Apogee
SN500SS net radiometer (Apogee Instruments, North Logan, Utah,
USA), air temperature and humidity with a Campbell HygroVUE5
(Campbell Scientific, Utah, USA), soil temperature at 10 and 30 cm
depth with a Campbell 107 probe, and water level with a Campbell
CS450 pressure transducer. Raw data were recorded using a Campbell
CR1000X data logger, which was connected to the Smartflux 3 system.
A separate weather station located approximately 300m to the south-
east of the EC tower was also used. This station consisted of a Gill
Maximet GMX500 system that measured air temperature, relative hu-
midity, atmospheric pressure, precipitation, wind speed and direction
was combined with an Apogee SN500SS net radiometer and a Skye
SKR1840 two channel light sensor (Skye Instruments, Powys, UK) to
measure photosynthetically active radiation (PAR). All meteorological
data were recorded at a one-minute frequency and then averaged into
30-min records.

Meteorological data from the nearest Royal Netherlands Meteoro-
logical Institute (KNMI) weather station approximately 20 km east of
the study site (Cabauw location A (KNMI ID: 348)) were retrieved in
case meteorological records required gapfilling. Records of temperature
3

and humidity, atmospheric pressure, wind speed direction, global ra-
diation, and precipitation were obtained from the KNMI data platform
(https://dataplatform.knmi.nl). The data retrieved were 10-min records
and were aggregated into 30-min records.

2.3. Flux calculation

Turbulent fluxes were calculated using the covariance of vertical
wind speed and scalars of interest using EddyPro (v7.0.9, LI-COR
Biosciences). The flux averaging interval was 30-min and the missing
sample allowance was 10%. Raw data were screened using the (Vick-
ers and Mahrt, 1997) tests for spike removal, amplitude resolution,
drop-outs, absolute limits, skewness and kurtosis, and discontinuities.
Corrections were applied to the covariances, including double co-
ordinate rotation for tilt correction, block averaging for detrending,
covariance maximisation for time lag detection, and compensation for
density fluctuations for the open path systems (Webb et al., 1980).
Compensation for spectroscopic effects of temperature, pressure, and
water vapour were also applied for the LI-7700 (McDermitt et al., 2011;
Burba et al., 2019). Fully analytic low frequency (Moncrieff et al.,
2004) and high frequency (Moncrieff et al., 1997) spectral corrections
were applied. The net ecosystem exchange (NEE) for each scalar was
calculated as the turbulent flux plus the single point storage estimate
for each timestep (Aubinet et al., 1999). Dynamic metadata for canopy
height of the Typha was used as input for the flux calculation that
was based on observations or interpolated estimates at a one-week
frequency. Potential impacts of this on the footprint modelling are
discussed later.

The 30-min fluxes were postprocessed using a series of filters. CO2
and CH4 fluxes were filtered according to the Mauder and Foken (2004)
0–1–2 system, where only fluxes with a flag of 0 (indicative of the
highest quality) were selected for further analysis. A received signal
strength indicator (RSSI) threshold of 70 was used for the CO2 fluxes
and a threshold of 10 for CH4. The CH4 threshold of 10 was chosen as
it indicates when the sample path is blocked or the mirrors have been
fouled (McDermitt et al., 2011). Flux values for CH4 between −0.05 to
2 μmolm−2 s−1 were considered realistic, and values outside that range
were marked as missing. To remove poorly turbulent conditions that

https://dataplatform.knmi.nl
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occur at night, a friction velocity (𝑢 ∗) threshold was determined using
the moving point test (Papale et al., 2006). The 𝑢 ∗ threshold deter-
mined by the algorithm was 0.06m s−1, and night-time fluxes below this
hreshold were marked as missing. Fluxes were only accepted between
he wind directions 60 and 265 degrees to avoid built-up farm area to
he north of the EC instrument. After filtering, 25% of the CO2 and 17%

of CH4 flux timesteps remained for analysis.

2.4. Footprint modelling

The (Kljun et al., 2015) two-dimensional fast footprint prediction
(FFP) model was used to estimate the flux footprint for each 30-min
timestep. The model requires input that is readily sourced from the
EC tower and field observations, including the measurement above dis-
placement height, roughness length, mean wind speed, wind direction,
Monin–Obukhov length, and the standard deviation of lateral wind
velocity fluctuations. Temporal changes in the zero-plane displacement
height and roughness length were determined based on a mixture of
observations and expected canopy growth over time. We used standard
approximations for the zero-plane displacement height and roughness
length of 0.67 and 0.15 multiplied by the canopy height, respectively.
The last model input required is the planetary boundary layer height
(PBLH). We followed the recommendation of Kljun et al. (2015, Ap-
pendix B) and used estimates of the PBLH from a Lufft CHM 15k
ceilometer (OTT HydroMet Fellbach GmbH, Fellbach, Germany) from
the KNMI site Cabauw (KNMI ID: 06348), also obtained from the KNMI
data portal. The ceilometer detects aerosols in the atmosphere and the
lowest aerosol layer that can be detected can be interpreted as the
PBLH. The ceilometer records data at a 12 s frequency and comes with
an associated quality flag from 0 to 9. After inspection of the quality
flags and data, all data with a flag of 5 and higher was marked as
missing and the data was averaged into 30-min intervals to match the
frequency of the flux data.

All footprints were calculated with the R adaptation of Kljun et al.
(2015) FFP model code that was retrieved from https://footprint.kljun.
net. The size of the footprint calculation area was ±240m for the 𝑥, 𝑦
axes from the EC tower and the resolution was 1 × 1m. Every valid
footprint for a 30-min timestep was rasterised and the weighted contri-
bution of the flux originating from the Typha field was extracted and
summed. The sum of the proportion of the flux originating from inside
the Typha field was divided by the total to estimate the contribution
percentage and is henceforth referred to as CBTypha. The estimate of
the surrounding area (SA) outside the Typha plot, CBSA, is then simply
calculated as CBSA = 1 − CB𝑇 𝑦𝑝ℎ𝑎.

A valid footprint could not be estimated for every timestep for a
variety of reasons, such as when the friction velocity was too low
or when power failures resulted in no EC data being recorded. To
replace missing timesteps where the contribution of the Typha field
to the flux could not be estimated, a Random Forest (Breiman, 2001)
model was used. The model was trained with inputs of wind speed,
wind direction, and day of the year to predict the percentage of the
flux originating from the Typha field. The model was trained with a
random sample of 70% of the data and tested with 30%. The model
achieved a Lin’s concordance correlation coefficient (LCCC) of 0.99
in the training round and 0.98 in the testing round. The gapfilled
contributions were only used for the timeseries of the simulated EC
tower (i.e., combination of the flux sources) and not for the individual
sources, and, most importantly, not for model parameter identification
or annual budgets of the individual sources.

2.5. Bayesian inference and flux modelling

The partitioning and inference of NEE into ecosystem respiration
(𝑅eco) and gross primary production (GPP), modelling of CH4 flux
(FCH4), as well as mixing of the flux sources, was performed in a
Bayesian framework. The general Bayesian framework is described first,
4

followed by the gas specific equations used to model the fluxes. Relative
posterior probabilities are assigned to model parameters 𝜃 given the
observed data d according to Bayes’ theorem:

𝑃 (𝜃|d) ∝ 𝑃 (d|𝜃)𝑃 (𝜃) (1)

here the prior 𝑃 (𝜃) is an informed or uninformed probability distribu-
ion about the model parameters 𝜃 before considering the observed data
, and the likelihood 𝑃 (d|𝜃) is the probability distribution of d given 𝜃.
Markov Chain Monte Carlo (MCMC) with the Differential-Evolution

DEzs) sampling algorithm (ter Braak and Vrugt, 2008) was used via
he R package BayesianTools (Hartig et al., 2019).

We used two model rounds: firstly, to define a probable parameter
pace for each land use and secondly to use all timesteps with mixed
ontribution. For the first-round, data was subset using 70% thresholds
f CBTypha and CBSA to define fluxes originating from inside the Typha
lot and outside. The decision to use 70% flux source contributions
orresponding to inside and outside the Typha plot was motivated by
he idea to yield parameter distributions that reasonably resemble the
wo flux sources considering the distribution of available data, and it
s the minimum percentage recommended by Mauder et al. (2013).
niform prior distributions were used for all parameters in the first-

ound and their ranges are presented in Table A.1. In the following
quations, NEE is the example but the same process applies to FCH4.
he residuals (𝜖) were combined for estimating the log-likelihood in
he first-round as so:

𝑇 𝑦𝑝ℎ𝑎 = 𝑁𝐸𝐸𝑇 𝑦𝑝ℎ𝑎 − ̂𝑁𝐸𝐸𝑇 𝑦𝑝ℎ𝑎 (2)

𝜖𝑆𝐴 = 𝑁𝐸𝐸𝑆𝐴 − ̂𝑁𝐸𝐸𝑆𝐴 (3)

𝓁 = 𝑓 (𝜖𝑇 𝑦𝑝ℎ𝑎|𝜇𝑇 𝑦𝑝ℎ𝑎, 𝜎𝑁𝐸𝐸 ) + 𝑓 (𝜖𝑆𝐴|𝜇𝑆𝐴, 𝜎𝑁𝐸𝐸 ) (4)

where 𝑁𝐸𝐸 is measured data, ̂𝑁𝐸𝐸 is simulated data, 𝓁 is the log-
likelihood, 𝜎𝑁𝐸𝐸 is the estimated error parameter, and the subscripts
denote the flux source, which at this stage is approximated using the
contribution thresholds previously mentioned. We assumed indepen-
dent Gaussian noise such that the log-likelihood function 𝑓 is given
by:

𝑓 = −1
2

𝑛
∑

𝑖=1

𝜖2

𝜎2𝑁𝐸𝐸

− 1
2
𝑛 log(2𝜋𝜎2𝑁𝐸𝐸 ) (5)

The prior distributions for the second-round were truncated normal
prior distributions that were fit to the posterior parameter distributions
from the first-round (𝑃𝜃1) as they showed approximately normal be-
haviour. However, the standard deviation of the first-round posterior
was doubled when creating the second-round prior distributions to
allow for greater flexibility as the first-round used 70% thresholds,
where the flux source could be contaminated rather than representing
100% flux sources corresponding to inside and outside the Typha plot,
espectively.

The second-round used all available data and we assumed that the
easured (and simulated) NEE or FCH4 is equal to the flux from the Ty-

ha parcel and the SA and scaled by their area weighted contributions
BTypha and CBSA:

𝐸̂𝐸 = ̂𝑁𝐸𝐸𝑇 𝑦𝑝ℎ𝑎𝐶𝐵𝑇 𝑦𝑝ℎ𝑎 + ̂𝑁𝐸𝐸𝑆𝐴𝐶𝐵𝑆𝐴 (6)

The residuals and the log-likelihood for the second-round are then
given as:

𝜖 = 𝑁𝐸𝐸 − ̂𝑁𝐸𝐸 (7)

𝓁 = 𝑓 (𝜖|𝜇, 𝜎𝑁𝐸𝐸 ) (8)

and the same log-likelihood function is used as in the first-round.
The number of model iterations for the first-round was 2 × 105 and
the second-round was 105. An overview of the modelling procedure is

provided in Fig. 2.

https://footprint.kljun.net
https://footprint.kljun.net
https://footprint.kljun.net
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2.5.1. NEE modelling and flux partitioning
The NEE can be simply decomposed into GPP and 𝑅eco, such that:

𝑁𝐸𝐸 = 𝐺𝑃𝑃 + 𝑅eco (9)

using the conventional notation where a negative NEE is uptake of
carbon by the land system and a positive NEE is a loss. This can
be represented using the hyperbolic light-response curve (LRC) (Falge
et al., 2001) and a respiration function for 𝑅eco:

𝑁𝐸𝐸 = −
𝛼𝛽𝑅𝑔

𝛼𝑅𝑔 + 𝛽
+ 𝑅eco (10)

where 𝛼 is the light utilisation efficiency of the canopy and is the
initial slope of the LRC, Rg is global radiation, and 𝛽 is the maximum

O2 uptake rate of the canopy at infinite Rg. 𝑅eco is modelled using
he respiration-temperature dependence function of Lloyd and Taylor
1994):

eco = 𝑅𝑟𝑒𝑓 exp
(

𝐸0

(

1
𝑇𝑟𝑒𝑓 − 𝑇0

− 1
𝑇 − 𝑇0

))

(11)

here Rref is the reference respiration, E0 is the temperature sensitivity,
ref is the reference temperature of 15 ◦C, and T0 is the zero respiration
emperature of −46.02 ◦C, as fitted by Lloyd and Taylor (1994).

In EC studies, the partitioning of NEE into 𝑅eco and GPP is most
requently done with the night-time partitioning method of Reich-
tein et al. (2005) or daytime partitioning approach of Lasslop et al.
2010). Both of these approaches use sliding windows to fit parameters
hrough time to reflect changes in carbon loss and uptake. Rather than
se sliding windows, which would drastically increase the amount of
arameters that need to be estimated, a sine term is introduced to
epresent seasonality in the parameters for GPP:

𝛼𝑆𝑖𝑛 = 𝛼 + 𝐴𝛼 sin(2𝜋(𝑡 − 𝜙)∕365) (12)

𝛽𝑆𝑖𝑛 = 𝛽 + 𝐴𝛽 sin(2𝜋(𝑡 − 𝜙)∕365) (13)

𝑃𝑃 = −
𝛼𝑆𝑖𝑛𝛽𝑆𝑖𝑛𝑅𝑔

𝛼𝑆𝑖𝑛𝑅𝑔 + 𝛽𝑆𝑖𝑛
(14)

where 𝐴𝛼 and 𝐴𝛽 are amplitude scalers for 𝛼 and 𝛽, respectively, 𝑡 is the
day of the year, and 𝜙 is the phase shift for GPP. These parameters can
be expected to vary in time for physiological reasons, where the leaf
area index, light absorptivity, and senescence (particularly in annual
plants such as Typha) would vary carbon uptake in response to light.
A sine term introduction was also tested for 𝑅eco parameters but was
found to not improve performance as the dependence on temperature
was adequate to capture seasonal variability, and therefore the term
was not introduced and Eq. (11) was used.

Following Eq. (9), the modelled NEE of the two land uses is there-
fore given as:

̂𝑁𝐸𝐸𝑇 𝑦𝑝ℎ𝑎 = 𝐺𝑃𝑃𝑇 𝑦𝑝ℎ𝑎 + 𝑅𝑒𝑐𝑜𝑇 𝑦𝑝ℎ𝑎 (15)
̂𝑁𝐸𝐸𝑆𝐴 = 𝐺𝑃𝑃𝑆𝐴 + 𝑅𝑒𝑐𝑜𝑆𝐴 (16)

here 𝑁𝐸𝐸𝑇 𝑦𝑝ℎ𝑎 and 𝑁𝐸𝐸𝑆𝐴 are the simulated NEEs of Typha and
utside the plot (SA).

For data input into the model, the same PAR was input for 𝑅𝑔
n Eq. (14) for both flux sources, however for temperature in the
espiration equation (Eq. (11)) surface soil temperature in the top 10 cm
s measured in the Typha plot and in the reference grassland plot was
sed for the respective flux sources.

.5.2. FCH4
An exponential temperature function with decay for declining water

evel was used to simulate fluxes of CH4:

𝐶𝐻4 = 𝑎 exp(𝑏𝑇 ) 1
(1 + exp(−𝑊𝐿))𝑘

(17)

where 𝑎, 𝑏, and 𝑘 are coefficients on the non-linear equation, 𝑇 is tem-
erature, and 𝑊𝐿 is water level. The 𝑎 (flux at 0 ◦C) and 𝑏 (exponent)
5

arameters define FCH4 in response to temperature, while 𝑘 smooths
the sigmoidal water level function. The parameter distributions were
estimated using the same two round procedure, where uniform priors
were used in the first-round with 70% flux source thresholds, followed
by using all data in the second-round and combining the two sources
using the following equations:

̂𝐹𝐶𝐻4𝑇 𝑦𝑝ℎ𝑎 = 𝑎𝑇 𝑦𝑝ℎ𝑎 exp(𝑏𝑇 𝑦𝑝ℎ𝑎𝑇𝑇 𝑦𝑝ℎ𝑎)
1

(1 + exp(−𝑊𝐿𝑇 𝑦𝑝ℎ𝑎))
𝑘𝑇 𝑦𝑝ℎ𝑎

(18)

̂𝐹𝐶𝐻4𝑆𝐴 = 𝑎𝑆𝐴 exp(𝑏𝑆𝐴𝑇𝑆𝐴)
1

(1 + exp(−𝑊𝐿𝑆𝐴))𝑘𝑆𝐴
(19)

̂𝐹𝐶𝐻4 = ̂𝐹𝐶𝐻4𝑇 𝑦𝑝ℎ𝑎𝐶𝐵𝑇 𝑦𝑝ℎ𝑎 + ̂𝐹𝐶𝐻4𝑆𝐴𝐶𝐵𝑆𝐴 (20)

The surface soil temperature and water level as measured in the
Typha plot was used for 𝑇𝑇 𝑦𝑝ℎ𝑎 and 𝑊𝐿𝑇 𝑦𝑝ℎ𝑎, respectively, and the
surface soil temperature and water level measured in the reference
meadow plot, 300m southeast of the plot, was used for 𝑇𝑆𝐴 and 𝑊𝐿𝑆𝐴.

2.6. Data and analysis

The posterior parameter sets from the second-round (𝑃𝜃2) were
used to assess the performance of the model framework and for making
annual budgets. Annual totals were calculated as the cumulative sum of
simulated fluxes for a model year. The uncertainty of the annual totals
is shown by the 2.5 and 97.5 quantiles of the annual totals produced
by the parameter sets, and we also present the standard deviation of
the annual total distribution. The uncertainty due to 𝑢 ∗ threshold was
not assessed, however it is expected to be minimal for simulated fluxes
of Typha and SA because the Kljun et al. (2015) model only produces
a footprint when 𝑢 ∗ is more than 0.1m s−1. The uncertainty of the
footprint model was not propagated and issues due to footprint model
uncertainty are discussed later.

We also compared the output of the Bayesian framework with the
standard Marginal Distribution Sampling (MDS) gapfilling (Reichstein
et al., 2005) and night-time flux partitioning approach using 70%
thresholds for in and outside the Typha plot. Since the alternate flux
source outside the Typha plot is mostly pasture, we also compared
the fluxes simulated for outside the plot with fluxes as measured by
an EC system that was temporarily located on an adjacent field at
Zegveld between May 2021 and August 2021. While the SA is mostly
pasture, there are ditches and paths in this area which makes it less
representative than the typical area of Zegveld which the temporary
EC tower measured, and differences in fluxes were expected due to this.
The annual uncertainty of the MDS annual totals was estimated using
the mean residual error without considering correlation.

All analysis in this study was done using R (R Core Team, 2022) in
combination with R tidyverse packages (Wickham et al., 2019).

3. Results

3.1. Study period

There were seasonal differences in the key meteorological variables
and fluxes of CO2 and CH4 over the study period (Fig. 3). Imme-
diately noticeable is the clear annual cycle of northern hemisphere
CO2 uptake and emission, where the largest uptake typically occurs
during spring and summer, while those seasons also tended to have
the highest emissions of CH4. The year 2022 was a warm year in
the Netherlands with a mean annual temperature of 11.6 ◦C, compared
to 2021 which had a mean annual temperature 10.4 ◦C. Total annual
rainfall was lower for 2021 than 2022 at 720 and 814mm, respectively,
however summer totals were 175 and 146mm, respectively. The water
level inside the Typha plot was usually maintained above or near the
surface level, except for a period during the August 2022. Mean summer
groundwater levels for 2021 were 4 and −72 cm, relative to the ground
level, respectively for Typha and SA, while for 2022 they were −1 cm
and −88 cm, respectively. The soil temperature in the Typha plot was

often lower in summer, likely due to the saturation of the soil.
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Fig. 2. Overview of the Bayesian inference framework used in this study.
3.2. Flux sources

We first inspected the relationship between CBTypha and the fluxes of
CO2 and CH4 to check if there were clear differences in flux behaviour
based on the footprint (Fig. 4). In the relationship between air temper-
ature and night-time NEE, when there was more Typha in the footprint
there is a distinct pattern visible and the fluxes generally were lower
6

and did not increase as rapidly with air temperature. During daytime,
there was a larger positive association between CO2 uptake and PAR
as CBTypha increased. There is another distinct curve with high CBTypha
that is visible between around PAR 0 to 500 μmolm−2 s−1 where there
is poorer light utilisation efficiency and these values were mostly from
autumn and winter when there is Typha senescence. The relationship of
air temperature and the FCH was noisier than CO but as temperature
4 2
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Fig. 3. (A) Daily means of key meteorological variables over the study period. (B) Half-hourly flux observations of the net ecosystem exchange (NEE) (top) and CH4 (FCH4)
(bottom).
Fig. 4. Plots of (A) histogram of the proportion of the flux estimated to originate from the Typha plot (CB𝑇 𝑦𝑝ℎ𝑎), (B) night-time net ecosystem exchange (NEE) against air
temperature, (C) daytime NEE against photosynthetically active radiation (PAR), and (D) methane flux (FCH4) against air temperature. The timestep of the points is 30-min.
and CBTypha increases so does the flux. The trafficking of cattle on the
property and livestock mowing are also probable sources of spikes of
CH4 emission for low values of CBTypha (and therefore high CBSA).

3.3. Bayesian inference

3.3.1. Parameter distributions and model performance
The posterior distributions of the parameters from the second-round

are shown in Fig. 5. The posterior distribution of the first-round, which
7

were used as the prior distributions for the second round after trunca-
tion to the 95% credible interval, are presented in Figure S1. In Figure
S1 all parameters showed approximately normal behaviour and clear
distributions that could be constrained for fitting in the second-round.
A comparison of the first and second-round posterior distributions is
presented in Figure S2 which shows that there were no extreme shifts
in parameter distributions between rounds but some different optima
were found after introducing all data in the second-round.
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Fig. 5. Posterior distributions of the second-round of CO2 model parameters of gross primary production (GPP) and ecosystem respiration (𝑅eco), and CH4 flux (FCH4) model
parameters a, b, and k. An inset is provided for the GPP parameter 𝐴𝛽 and FCH4 parameter k for an enhanced view.
There were clear differences between the two land use classes across
nearly all model parameters, but also year-to-year variation (Fig. 5).
The GPP light use efficiency parameter 𝛼 had lower values for Typha
compared to SA and also had less annual variability, as shown by the
distributions of 𝐴𝛼 . There was a small difference in the distributions
of 𝛽 for both years for Typha and there was a larger difference for
SA, where the distribution was spread across lower values for 2021
than 2022. The distributions of 𝐴𝛽 indicated that there is greater
annual variability in maximum GPP for Typha compared to SA. The
𝐴𝛽 parameter had values greater than zero in 2021, however in 2022
the parameter had values around zero, indicating it was not useful for
that model year. The distributions of 𝜙 simply indicate that the annual
maximum uptake of GPP shifts from the day of the year 90 when 𝜙 is
0 to closer towards the middle of the year. For 𝑅eco, Typha had lower
valued distributions for both 𝐸0 and 𝑅𝑟𝑒𝑓 for both years. This would
result in lower predicted values of 𝑅eco with increasing temperature
and is in agreement with the results shown in Fig. 4. The CH4 soil
temperature parameters, 𝑎 and 𝑏, had higher values for Typha than for
SA. The parameter 𝑘 only had distributions more than 0 for Typha,
indicating that water level was not important for predicting SA CH4
emissions and that the relationship is controlled by the temperature
response parameters 𝑎 and 𝑏.

Model performance statistics were calculated using all the posterior
parameter sets of the second-round. Overall, model performance was
good for CO2 (Table 1). The best performing simulation obtained Lin’s
concordance correlation coefficients (LCCC) of 0.94, 𝑅2 of 0.89, and
a root mean square error (RMSE) of 2.98, and general performance
across the posterior parameter sets was also satisfactory. Performance
was poorer for CH4, with the best values of LCCC of 0.57, 𝑅2 of 0.38,
and RMSE of 0.05. The mean of the simulations follows the 1:1 line
for CO2 well and does not indicate a strong bias, however for CH4 the
model does not reproduce some higher observed values (Fig. 6), despite
having generally low mean bias (Table 1).

3.3.2. Timeseries
There was a clear annual cycle simulated for both land uses (Fig. 7).

Typha was a net sink of CO2 during the warmer seasons and was only a
net source in the winter, early spring and autumn. In contrast, SA was
simulated to be a net sink from the onset of spring until late spring
to early summer, and was then simulated to be a net source. Simulated
daily emissions of CH4 were higher for Typha than SA, with the highest
emissions coming in the warmer seasons. There is a clear difference
in the rate of annual emissions in 2022 compared to 2021, which
corresponds to a hotter year compared to a mild one, respectively. Of
8

interest, there is a noticeable decrease in observed CH4 emissions 2022
Table 1
Summary of the model performance of the CO2 flux (NEE) and CH4 flux (FCH4).
The model quality criteria are the root mean square error (RMSE), coefficient of
determination (R2), Lin’s concordance correlation coefficient (LCCC), and mean bias.

Flux Stat RMSE R2 LCCC Bias

NEE Min 2.98 0.78 0.88 −0.749
Q2.5 2.99 0.85 0.92 −0.265
Median 3.01 0.85 0.92 −0.091
Q97.5 3.03 0.89 0.94 0.094
Max 4.34 0.89 0.94 0.256

FCH4 Min 0.05 0.24 0.27 −0.043
Q2.5 0.05 0.28 0.40 0.001
Median 0.08 0.29 0.44 0.003
Q97.5 0.10 0.38 0.56 0.009
Max 0.11 0.38 0.57 0.035

after day 200, which corresponds to a period where the water level in
the 𝑇 𝑦𝑝ℎ𝑎 plot was not maintained above the surface and decreased
past 20 cm below the surface, as is visible in Fig. 3. Timeseries of 𝑅eco
and GPP are provided in Figure S3.

The timeseries of the temporary EC tower on the nearby meadow
at Zegveld and the simulation of SA is provided in Figure S4. The
simulation tracks the observed points, obtaining a LCCC of 0.80 and an
𝑅2 of 0.67, but tends to underestimate uptake of CO2. Possible reasons
for the underestimation are that the simulation only uses inflexible
annual scale equations, despite the introduction of the sine wave in the
GPP parameters, and that there is a greater proportion of ditch area in
the SA footprint compared to the temporary EC site, where GPP would
likely be lower and 𝑅eco higher. The timeseries of CH4 also appears
to simulate the average emission but does not capture the emission
dynamics and only obtained LCCC and 𝑅2 scores of 0.04 and 0.02,
respectively.

The comparison of the Bayesian inference approach and the thresh-
old filtered and gapfilled timeseries using the MDS method are pre-
sented in Figure S5 for CO2 and Figure S6 for CH4. The Bayesian
approach showed greater CO2 uptake in the growing season by Typha
and slightly higher emissions in the cooler months. The timeseries of
the two approaches for SA are broadly similar, with the MDS gap-
filled series showing generally greater extremes. The Typha CH4 were
frequently higher in the Bayesian approach than the MDS gapfilled
timeseries, and it also did not simulate a drop in emissions after July
2022 as the MDS approach showed. The Bayesian SA CH4 timeseries
had higher emissions in the cooler months. In 2021 they both had
similar emissions in the warmer season, but in 2022 the emissions were
lower.
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Fig. 6. From left to right: observed and simulated plots of net ecosystem exchange (NEE) of CO2 for all data, night only, day only, and CH4 flux (FCH4) for all data. The black
line is the 1:1 observed and simulated relationship. The means of the simulated values are presented in this plot.
Fig. 7. Modelled fluxes of the net ecosystem exchange (NEE) of (A) CO2 and (B) CH4 for 𝑇 𝑦𝑝ℎ𝑎 (red), surrounding area (SA) (green), and the NEE as would be observed by the
tower (blue). The width of lines represents the 2.5% to 97.5% simulation ranges. The black points are daily aggregates of the observed fluxes, which were gapfilled with the MDS
algorithm to avoid large biases.
3.3.3. Annual budgets
Budgets were calculated for each year using the simulated time-

series from all posterior parameter sets of the second-round (Table 2).
Imports and exports, such as carbon import via irrigation water and
harvest, are not considered in these totals. The Typha site was simulated
9

to have a net uptake of CO2 in both 2021 and 2022 with mean NEE
values of −18.5 and −17.8 t CO2 ha

−1 yr−1, respectively, while SA was
a net emitter at 16.8 and 17.4 t CO2 ha

−1 yr−1, respectively. 𝑅eco was
simulated to be almost twice as much for SA compared to Typha, where
the average of both simulation years for Typha was 50.5 for Typha and
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(

Table 2
Annual budgets of CO2 and CH4 for Typha and surrounding area (SA), presented as the mean and one standard deviation. Budgets of CH4 and the greenhouse gas (GHG) balance
are expressed in CO2-equivalents using the 100-year non-fossil global warming potential of 27.0 (IPCC, 2021).

Year Stat Reco GPP NEE FCH4 GHG Balance

t CO2 ha−1 year−1 t CO2-eq ha−1 year−1

Typha SA Typha SA Typha SA Typha SA Typha SA

2021 Q2.5 40.5 86.4 −64.9 −76.8 −21.3 13.8 13.1 6.5 −8.2 20.3
2021 Mean ± SD 44.2 ± 1.9 90.8 ± 2.3 −62.7 ± 1.1 −74.1 ± 1.4 −18.5 ± 1.5 16.8 ± 1.5 13.6 ± 0.3 7.1 ± 0.3 −4.9 ± 1.5 23.9 ± 1.5
2021 Q97.5 47.9 95.2 −60.6 −71.2 −15.7 19.7 14.1 7.7 −1.6 27.4

2022 Q2.5 52.9 105.3 −78.4 −94.2 −20.6 14.3 15 5.7 −5.6 20
2022 Mean ± SD 56.8 ± 2.4 109.3 ± 2 −74.6 ± 1.5 −92 ± 1.1 −17.8 ± 1.5 17.4 ± 1.5 15.9 ± 0.5 6.8 ± 0.6 −2 ± 1.6 24.2 ± 1.6
2022 Q97.5 63.3 113.1 −72.3 −89.7 −14.6 20 16.8 7.9 2.2 27.9
Table 3
Annual flux totals of CO2 and CH4 filtered for minimum contributions of at least 70% from Typha and surrounding area (SA) and gapfilled using the marginal distribution sampling
MDS) algorithm. The annual totals derived by the Bayesian inference approach are provided for comparison.
Year Method NEE FCH4 GHG balance

t CO2 ha−1 yr−1 t CO2-eq ha−1 yr−1

𝑛 Typha 𝑛 SA 𝑛 Typha 𝑛 SA Typha SA

2021 Bayesian 4062 −18.5 ± 1.5 4062 16.8 ± 1.5 3140 13.6 ± 0.3 3140 7.1 ± 0.3 −4.9 ± 1.5 23.9 ± 1.5
2021 MDS 1235 −9 ± 3.5 830 17 ± 6.2 999 11 ± 0.6 585 5.8 ± 1.3 2 ± 3.6 22.8 ± 6.3

2022 Bayesian 4584 −17.8 ± 1.5 4584 17.4 ± 1.5 2779 15.9 ± 0.5 2779 6.8 ± 0.6 −2 ± 1.6 24.2 ± 1.6
2022 MDS 1130 −6.8 ± 3.7 1170 15.9 ± 3.8 800 12.5 ± 0.8 419 6.3 ± 3.3 5.7 ± 3.8 22.2 ± 5
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100.5 t CO2 ha
−1 yr−1 for SA. Annual totals of GPP were also simulated

to be higher for SA than Typha for both years. The emission by 𝑅eco
and GPP uptake were lower in wetter and cooler 2021, compared to
the hotter and drier year in 2022.

Annual totals of FCH4 have been converted to CO2 equivalents
using the non-fossil global warming potential of 27.0 (IPCC, 2021).
Emissions of FCH4 were lower in 2021 than 2022 for Typha, with values
of 13.6 and 15.9 t CO2-eq ha−1 yr−1, respectively, whereas the emissions
were similar for both years for SA at 7.1 and 6.8 t CO2-eq ha−1 yr−1. The
GHG balance provided is the addition of the annual NEE and FCH4
totals. The Typha site had a net negative GHG balance of in 2021 and
2022 at −4.9 and −2.0 t CO2-eq ha−1 yr−1, respectively. SA was a net
positive GHG balance for both years with annual totals of 23.9 and
24.2 t CO2-eq ha−1 yr−1.

Annual totals derived from the Bayesian and MDS methods were
similar for both NEE and FCH4 for SA (Table 3). For Typha, the
difference between methods of NEE was 9.5 and 11.0 t CO2 ha

−1 yr−1

for 2021 and 2022, respectively, while FCH4 differed by 2.6 and
3.4 t CO2-eq ha−1 yr−1 for 2021 and 2022, respectively. In Table 3, the
number of data points available for parameter estimation or gapfilling
for the different methods are also presented and it highlights the greater
number of data points that the Bayesian inference approach has as
information for the modelling process.

4. Discussion

4.1. Interpretation of fluxes and annual budgets

The results showed that Typha paludiculture was a net CO2 sink
and SA, primarily a dairy meadow on peat soil, a source of CO2, while
the CH4 emissions of Typha paludiculture were approximately double
compared to the SA. The GHG balances shown in Table 2 indicate that
Typha paludiculture would have a net cooling effect on the climate
compared to the meadow when using the 100-year GWP of CH4, and
the net emissions were 28.8 and 26.2 t CO2-eq ha−1 yr−1 lower across the
two simulation years. Even though the uncertainty was relatively large,
as indicated by the difference from the Q2.5 to Q97.5 quantiles of
around 5 to 7 t CO2-eq ha−1 yr−1 for the annual totals of NEE for both
land uses, the relative difference between the two land uses was greater.
These balances do not include biomass harvest (carbon export), carbon
import via irrigation water, or potential nitrous oxide emissions, and
if these extra factors were considered there is the possibility that the
10
interpretation could change. However, in our case the export of biomass
of the Typha is intended for longer term stores, namely as building
nsulation material (Wichtmann et al., 2016; Lahtinen et al., 2022), and
he end result is unlikely to be different.

Studies on Typha paludiculture are limited and there are few reports
f annual flux totals. Another study in the Netherlands reported one
ear of annual totals for a pilot paludiculture project where chamber
easurements were conducted on T. latifolia (van den Berg et al.,
024). In their study, the prior land use was also a drained meadow
nd topsoil was excavated before rewetting. van den Berg et al. (2024)
eported annual totals of 𝑅eco, GPP, and NEE of 47.2 t CO2 ha

−1 yr−1,
64.5 t CO2 ha

−1 yr−1, and −17.2 ± 15.0 t CO2 ha
−1 yr−1 (mean ±SD were

nly provided for NEE). These totals compare remarkably well with
he range of annual emissions reported in our study, however there is
large variation amongst the replicates for NEE. van den Berg et al.

2024) also reported annual totals of T. angustifolia where the annual to-
als of 𝑅eco, GPP, and NEE were 27.8 t CO2 ha

−1 yr−1, −51.5 t CO2 ha
−1 yr−1,

nd −23.7 ± 19.0 t CO2 ha
−1 yr−1,respectively, and highlights that there

an be large interspecies differences in emission rates. Other studies
ave reported annual totals of Typha in natural or in rewetted natural
ystems. The annual totals of GPP for Typha are comparable to values
ound in a California marsh dominated by T. latifolia of between 42 to
3 t CO2 ha

−1 yr−1 (Rocha and Goulden, 2009), and values of 𝑅eco are
lso comparable, as inferred from the results of net primary produc-
ion (NPP) of 26 to 46 t CO2 ha

−1 yr−1. Lower values are also found in
iterature, where Minke et al. (2016) reported a range for NEE of −4.1
o 5.5 t CO2 ha

−1 yr−1 from a rewetted fen vegetated with Typha latifolia
nd Hydrocharis morsus–ranae (European frog-bit) in Belarus. The low
nnual totals of 𝑅eco found for the Typha parcel in this study, and in
thers (e.g., Minke et al., 2016; van den Berg et al., 2024), can be
xplained by the near-permanent inundation of the soil which limits
eterotrophic respiration.

The annual values of NEE for the SA were high, but similar to the
nnual totals for 𝑅eco and GPP reported for Dutch peatland grazed
eadows by Weideveld et al. (2021), where annual values of chamber

luxes were 100.8 ± 11 and 128.4 ± 4.6 t CO2 ha
−1 yr−1 for 𝑅eco and

89.2 ± 13 and −65.7 ± 4.9 t CO2 ha
−1 yr−1 for GPP. The results are also

roadly similar to values reported for German peat soils of a NEE
f 19.9 ± 16.1 t CO2 ha

−1 yr−1 by Tiemeyer et al. (2016). In the study
f Tiemeyer et al. (2016), they reported mean values of 𝑅eco and
PP of 81.4 ± 30.4.6 and −61.2 ± 19.1 t CO2 ha

−1 yr−1, where the mean

values are lower than reported in this study but within the uncertainty
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limits. Another study with automatic chambers on Dutch peat mead-
ows reported net annual uptake of NEE with values ranging between
−5.4 to −21.7 t CO2 ha

−1 yr−1 (Boonman et al., 2021), highlighting the
spread and potential spatial variability of results. The presence of the
drainage ditch in the SA footprint was also a likely cause of high
annual 𝑅eco and NEE totals in our study as they are a strong source
of emissions (Schrier-Uijl et al., 2011; Hendriks et al., 2024).

For CH4, van den Berg et al. (2024) reported higher annual emis-
sions of T. latifolia of 22.9 ± 13 t CO2-eq ha−1 yr−1, but there was a
high variation between sample replicates as shown by the standard
deviation. Mean annual emissions of T. angustifolia were lower at
10.0 ± 5.4 t CO2-eq ha−1 yr−1, but similarly had a large variation. The
large variation in totals amongst chamber replicates for CH4, but also
with CO2, also demonstrates of the benefit of measuring at the ecosys-
tem scale with EC. Annual totals of sites dominated by T. latifolia of
.8 to 10.5 t CO2-eq ha−1 yr−1 have been reported for a rewetted Irish
ut over bog (Wilson et al., 2007, 2009), 1.1 to 3.5 t CO2-eq ha−1 yr−1
n a rewetted German fen (Günther et al., 2015), and Franz et al.
2016) reported 10.8 t CO2-eq ha−1 yr−1 for a shallow German lake. Emis-
ions from SA were high for a meadow, however as mentioned there
s a drainage ditch that runs alongside the parcel and was likely a
ource of CH4. Annual CH4 emissions of drained agricultural land with
itches in the Netherlands have been observed to range between 4.0
o 5.5 t CO2-eq ha−1 yr−1 and approximately 60 to 70% of emissions
riginated from ditches and bordering edges of fields (Schrier-Uijl et al.,
011). Ditches are known hotspots of CH4 emissions globally (Peacock
t al., 2021). The trafficking of cattle on the farm was also a possible
ontributing source of emissions for the SA.

.2. Modelling approach

Our modelling approach was based on using the flux footprint to
eight the source areas and relate it to the measured flux. Previous

tudies have found that it is difficult to partition fluxes using foot-
rint models (e.g., Wohlfahrt et al., 2012; Chu et al., 2021). In our
tudy, we had strongly contrasting source areas and this translated
nto detectable differences in flux behaviour with varying footprint
overage (Fig. 4), and subsequently into the parameter distributions
nd resulting timeseries and annual flux totals. The annual budget
esults were comparable to values in literature, demonstrating that the
odelling process grasped real signals and is useful in mixed footprint

ettings such as the one studied, and thereby we succeeded to meet our
irst aim.

Other studies have decided to truncate the footprint to 80% of the
ource weight contour with only a marginal influence on the final re-
ults (Kim et al., 2018; Chu et al., 2021). In our study, the surrounding
A the results of the Bayesian inference approach and the traditional
pproach yielded similar net annual GHG balance totals, where the
ifferences between the methods was 1.1 and 2.0 t CO2-eq ha−1 yr−1 in
021 and 2022, respectively. However, for the relatively small ex-
erimental Typha plot the differences between the approaches were
arger, where the differences between the approaches were −6.9 and
7.7 t CO2-eq ha−1 yr−1 in 2021 and 2022, respectively (Table 3). There
re two main important reasons for the difference. Firstly, the advan-
age of our modelling approach is that it could use more data points to
rasp likely parameter values and therefore have higher certainty in the
lux behaviour of the two land uses in our study (Table 3). Secondly, in
he distribution of CBTypha there were few data points with high values.
he total number of data points exceeding 70% was 𝑛 = 2423, above
0% 𝑛 = 400, and above 90% there were zero points. On the other
and, the total number of points below 30% was 𝑛 = 2018, below 20%
as 𝑛 = 1724, and below 10% 𝑛 = 1384 points. The lack of values
ith high footprint contributions for Typha indicates that the threshold

iltered and MDS gapfilled approach would have a bias in the fluxes
ue to the lack of consideration of weighted flux source scaling in the
11

lux estimation. This shows that accounting for footprint heterogeneity
when EC towers are used for relatively small experimental sites, where
there may be markedly different behaviour between land uses, is crucial
for GHG budget estimation.

We used a conventional function for 𝑅eco but modified the GPP
function with an annual sine wave to allow the parameters to vary
smoothly through the year. The sine parameters, 𝐴𝛼 and 𝐴𝛽 , were found
to be useful except in one case where values 𝐴𝛽 for SA in 2022 were
close to zero, indicating for one year there was little annual variability
in maximum GPP uptake by SA. This may be explained by poor seasonal
coverage of data when determining the first-round prior distributions.
The use of the sine terms proved important for Typha, particularly
for 𝛽𝑠𝑖𝑛, as demonstrated by the posterior distribution of 𝐴𝛽 for Typha
had higher values than SA (Fig. 5), which means larger changes in
maximum GPP throughout the year. This is unsurprising, given that
Typha is an annual crop while grass is perennial. Instead of using a sine
curve, an alternate indicator of vegetation status or productivity could
be used, such as the normalised difference vegetation index (NDVI) or
leaf area index (LAI), as a scaling parameter. In our case, we did not
have continuous estimates of NDVI or LAI locally and gaps in remotely
sensed data were too large. In addition, other functions than the sine
function tested here may provide suitable or better fits of the data,
e.g., a Gaussian function since it can more flexibly accommodate the
growing season length compared to a more rigid sine function.

There is no standardised approach for gapfilling or simulating CH4
fluxes but using simple empirical relationships is common and can
often provide a reasonable fit (e.g., Rinne et al., 2007; Schrier-Uijl
et al., 2010; Levy et al., 2012; Schrier-Uijl et al., 2014; Turetsky
et al., 2014). Machine learning methods can be considered the state
of the art as they can better handle multiple predictors and the non-
linearity and hysteresis of CH4 emissions (Knox et al., 2015, 2019;
Kim et al., 2020; Irvin et al., 2021; Staudhammer et al., 2022). We
used a simple temperature and water level dependence relationship
here for parsimony, but alternate functions that also incorporate extra
predictors should be tested and may see performance gains. How a
more complex machine learning approach could be integrated into the
framework presented should be explored for more enhanced simulation
of FCH4 (Wall et al., 2020; Goodrich et al., 2021).

Empirical equations were evaluated in the Bayesian framework at
the annual scale to reduce the parameter burden and for the simpler
evaluation of our approach. Parameter estimation could be attempted
seasonally, monthly, or even fortnightly, but there would need to
be a necessary amount of data collected from multiple source areas
over those periods. Parameters could also be interpolated between
periods when there is missing data from the source area, as is done by
Reichstein et al. (2005). This may be easier if a frequentist inference
approach was adopted rather than a Bayesian one.

4.3. Uncertainties and future work

The assumptions of the Kljun et al. (2015) footprint model were
not strictly adhered to in this study. The model uses Monin–Obukhov
similarity theory and assumes a logarithmic wind profile which are
only valid in areas with horizontal homogeneity. In our study, the
abrupt change in canopy height between the Typha and SA would
cause disturbance to the flow field and violates those assumptions. The
disturbance to the flow field will also affect the measurement of fluxes
(Huang et al., 2011). EC studies with large canopy discontinuities have
focussed on forest edges (e.g., Klaassen and Sogachev, 2006; Sogachev
et al., 2008; Belcher et al., 2012; Kanani-Sühring and Raasch, 2015)
where there is a much larger canopy height difference (typically at
least 10 times) and different structural properties, such as vegetation
density, than in our study. We inspected disturbances to the flow field
by comparing the half-hourly wind speeds from different wind direc-
tions as measured at the EC tower location and at the meteorological
station at Zegveld which surrounded by a near-homogeneous meadow

across seasons. The residuals between the measurements show greater
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disturbance (lower wind speed) between the two locations when the
wind flows over the Typha parcel (Figure S7), which is expected due
o the higher canopy height, however there is still a bias when the
ind flows over the meadow towards the EC tower. Differences range

rom −0.28 to −0.49m s−1 when the wind comes from the south east
over the meadow and decrease to −0.81 to −1.18m s−1 when the wind
direction is over the Typha. When the wind is approximately between
abrupt change between 160 to 180 degrees, the median difference is
−0.83m s−1 and there also appears to be more outliers. In addition, the
residuals are the smallest in spring across all wind sectors, which is after
the Typha harvest and the canopy height differential is also the smallest.

hile a small difference may be expected between the measurement
ocations and/or due to different instruments, the values here show
hat a bias exists in the measurements that would affect the calculation
f the turbulent flux and also affect footprint estimation and this bias
emains unquantified.

The calculation of the flux and shape of the flux footprint is in-
luenced by the displacement height and roughness length (Arriga
t al., 2017). The values of the displacement height and roughness
ength were derived from the canopy height of the Typha for each
imestep, even when the wind was not coming directly over the Typha

canopy, despite there being a maximum difference of around 1.8m for
part of the year to the surrounding meadow area. This was done

ecause Typha was a smaller experimental parcel and it was easier to
efine CBTypha, and therefore CBSA. It would not be trivial to vary the
isplacement height or roughness length parameters depending upon
he wind direction and particularly when the flux is likely to originate
rom multiple source areas. This has likely introduced some bias and
ncertainty in our approach that remains unquantified. Moreover, the
ncertainty of footprint models becomes larger as the upwind distance
rom the measuring point increases (Kljun et al., 2015). This may lead
o issues with incorrect flux source attribution, which is important for
he parameter identification and mixing process in our method. More
omplex footprint models than the flux footprint prediction model of
ljun et al. (2015) as used here may be able to deal with aforemen-

ioned issues, but at the expense of simulation complexity and much
reater computation time (Leclerc and Foken, 2014). Nevertheless, we
howed that multiple source areas could be parameterised well, but
ore work needs to be done to inspect and deal with these potential

ssues.
The height of our sonic anemometer was also closer to the canopy

eight than conventionally desired. The best practical position for an
C tower is in the constant flux layer starting around 1.2–2 canopy
eights above the ground and at least 1–2 m above the canopy (Aubinet
t al., 2012). In our measurement site, we may have been measuring in
he roughness sublayer when the Typha grew to its maximum height for
otentially 3 to 4 months per year. The height of the tower was chosen
o maximise the source area of the Typha field with the prevailing wind
irection of south-west, given that it is a relatively small parcel at
.4 ha. While the Typha parcel is relatively small, it is still one of the
argest, if not the largest, paludiculture trial fields in the Netherlands.
he approach in our study may be experimental, but this study site
resented itself as an ideal location to test this framework and to try and
mprove the annual estimate of fluxes for the Typha plot and improve
he understanding of GHG exchange of paludiculture.

Evaluating our modelling approach at more sites would test the
igour of the framework and may reveal more insights into GHG ex-
hange in heterogeneous sites. Testing with more than two source areas
ould also be interesting if there is sufficient data to do so. Further
xperimental validation by, for example, using longer timeseries of
ultiple EC towers would be valuable.

. Conclusions

We presented a novel Bayesian inference approach of extracting
12

seful flux information from all timesteps to constrain flux behaviour a
nd annual budgets in situations with heterogeneous field sites. We
nticipate that this approach is useful in situations where there are, for
xample, contrasting vegetation types, water levels, or particular field
reatments that would lead to detectable differences in flux behaviour
y a single eddy covariance tower. Addressing our original aims: (1)
n our test case, a paludiculture trial next to a dairy meadow and
itches, the Bayesian inference approach could take advantage of many
ore data points and identified probable parameter distributions well.

2) Our results showed good performance at simulating CO2 fluxes,
ut performance for CH4 fluxes was relatively poorer. Compared to
traditional threshold filtering and standard gapfilling approach, our
ayesian inference method produced comparable timeseries and annual
udgets for the dairy meadow and ditches, but differences found for
ypha were most likely due to the greater number of data points and
ource strength scaling included in the Bayesian approach. (3) We
ound that the Typha paludiculture land use had a net uptake of CO2

and higher emissions of CH4 than the meadow. Overall paludiculture
had a more favourable net annual greenhouse gas balance, excluding
carbon imports and exports, of 28.4 and 26.2 t CO2-eq ha−1 yr−1 in our
wo study years of 2021 and 2022 compared to the surrounding dairy
eadow and ditches. This suggests that, in our case, paludiculture with
ypha latifolia is a viable strategy to reduce peat oxidation and net
HG emissions. Future work should evaluate more source areas, across
wider range of conditions, and try to use a longer timeseries with
ultiple towers to further validate simulated fluxes.
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ppendix A

The model parameters and their ranges used for simulating CO2 and
H4 in the Bayesian inference approach are presented in Table A.1.
he ranges of the parameters were chosen based on common ranges in

iterature for CO2 fluxes (e.g., Lasslop et al., 2010; Wutzler et al., 2018),

nd for FCH4 they were selected to be wide enough through iteration.

https://github.com/buzacott/ZegveldBayesianFluxes
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Table A.1
Parameters and their ranges used for the Bayesian inference procedure.

Flux Variable Parameter Units Lower Upper

NEE 𝑅eco R𝑟𝑒𝑓 μmol CO2 m−2 s−1 0 max(NEEnight )
𝐸0 – 50 400

GPP 𝛼 μmol CO2 J−1 0 0.22
𝛽 μmol CO2 m−2 s−1 0.001 250
𝐴𝛼 – 0 0.11
𝐴𝛽 – 0 50
𝜙 – 0 180

Error 𝜎𝑁𝐸𝐸 μmol CO2 m−2 s−1 0.02𝜎𝑁𝐸𝐸 2𝜎𝑁𝐸𝐸

FCH4 – 𝑎 μmol CH4 m−2 s−1 0 0.5
– 𝑏 ◦C−1 0 0.5
– 𝑘 – 0 1
Error 𝜎𝐹𝐶𝐻4

μmol CH4 m−2 s−1 0.02𝜎𝐹CH4
2𝜎𝐹𝐶𝐻4

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.agrformet.2024.110179.
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