Discrete Event Dynamic Systems (2024) 34:689-732
https://doi.org/10.1007/510626-024-00403-4

®

Check for
updates

Reducing the computational effort of symbolic supervisor
synthesis

Sander Thuijsman'@® - Dennis Hendriks?>3@® - Michel Reniers’

Received: 16 May 2023 / Accepted: 29 August 2024 / Published online: 12 September 2024
© The Author(s) 2024

Abstract

Supervisor synthesis is a means to algorithmically derive a supervisory controller from a
discrete-event model of a system and a requirements specification. For large systems, syn-
thesis suffers from state space explosion. To mitigate this, synthesis can be applied to a
symbolic representation of the models by using Binary Decision Diagrams (BDDs). Peak used
BDD nodes and BDD operation count are introduced as deterministic and platform indepen-
dent metrics to express the computational effort of a symbolic synthesis. These BDD-based
metrics are useful to analyze the efficiency of the synthesis algorithm. From this analysis,
modifications can be made to how BDDs are handled during synthesis, improving synthesis
efficiency. We demonstrate this approach by introducing and analyzing: DCSH, a variable
ordering heuristic; several edge ordering heuristics; and an approach to efficiently enforce
state exclusion requirements in synthesis. These methods were recently implemented in our
open source supervisory control tool: Eclipse ESCET. The analysis is based on large scale
experiments of performing synthesis on a variety of models from literature. We show that: (1)
by using DCSH, synthesis with high computational effort can be avoided, and generally low
computational effort is required, relative to the variable ordering heuristics that were used
prior to this work; (2) applying reverse-model edge order realizes relatively low synthesis
effort; and (3) state exclusion requirements can efficiently be enforced by restricting edge
guards prior to synthesis. While these methods reduce computational effort in practice, it
should be noted that they do not affect the theoretical (worst-case) complexity of synthesis.

Keywords Discrete-event systems - Supervisory control - Supervisor synthesis -
Binary decision diagrams - Computational efficiency

B Michel Reniers
m.a.reniers @tue.nl

Sander Thuijsman
sbthuijsman @ gmail.com

Dennis Hendriks
dennis.hendriks @tno.nl

Eindhoven University of Technology, Eindhoven, Netherlands
2 TNO-ESI, Eindhoven, Netherlands
Radboud University, Nijmegen, Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10626-024-00403-4&domain=pdf
https://orcid.org/0000-0002-1628-8622
https://orcid.org/0000-0002-9886-7918
https://orcid.org/0000-0002-9283-4074

690 Discrete Event Dynamic Systems (2024) 34:689-732

1 Introduction

Supervisory control theory (Ramadge and Wonham 1987, 1989) is a model-based approach
to control cyber-physical systems. Given a plant (a model that defines all possible system
behavior) and a requirements specification (a model that defines what behavior is allowed), a
supervisor can be computed algorithmically (synthesized) that restricts the plant’s behavior
so that it is in accordance with the requirements specification. Depending on the synthesis
algorithm, the supervised system has some useful properties by construction, such as safety,
nonblockingness, controllability, and maximal permissiveness. There are a number of formal
modeling frameworks to which supervisory control theory can be applied. The framework
of extended finite automata (EFAs) (Skoldstam et al. 2007) is an extension to finite state
automata that augments them with variables, guard expressions and updates, which enables
more convenient modeling of systems.

The power of supervisory control theory has been demonstrated in literature. There are
many examples where it is applied to controller design. We refer to Table 1 further down this
paper for a selection. Despite the advantages of supervisory control theory, and demonstra-
tion thereof in case studies, industrial acceptance is scarce. Wonham et al. (2018) point to the
state space explosion as one of the barriers to industrial acceptance. Technically, all possible
combinations of states of components in the system must be taken into account. Therefore,
adding a small component to the model might induce a large increase to the total system
state space. A way to mitigate state space explosion, is by representing the system model
using binary decision diagrams (BDDs) (Akers 1978; Lee 1959), and performing supervisor

Table 1 Benchmark models

Name Worst case state space size
Robotic swarm aggregation (Lopes et al. 2016) 1.0-10°
Robotic swarm clustering (Lopes et al. 2016) 1.0-10°
Robotic swarm segregation (Lopes et al. 2016) 6.4 - 10!
Robotic swarm formation (Lopes et al. 2016) 8.0- 10!
Multi agent formation (Cai and Wonham 2014) 1.0-10°
Automatic guided vehicles (Wonham and Cai 2019) 3.1-10°
Ball sorting system (Cengi¢ and Akesson 2008) 7.4-10%
Theme park vehicles (Forschelen et al. 2012) 2.9-10°
Cluster tool (Su et al. 2010) 2.7-108
Production cell (Feng et al. 2008) 75108
Modified cat and mouse tower (n=3, (Thuijsman et al. 2021) 1.1-10°
k=1)

Advanced driver assistance system (Korssen et al. 2018) 3.4-10°
Cat and mouse tower (n=3, k=2) (Ma and Wonham 2008) 2.1-1014
Lithography machine initialization (Vos 2020) 1.8-1016
Bridge (Reijnen et al. 2018b) 2.8-10%7
FESTO production line (Reijnen et al. 2018a) 1.3.10%8
Waterway lock (Reijnen et al. 2017) 6.0 1032

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 691

synthesis on this symbolic representation (Ma and Wonham 2006; Vahidi et al. 2006; Mire-
madi et al. 2012). This approach is considered state of the art to handle industrial-sized
systems (Malik et al. 2017).

Symbolic supervisor synthesis has been shown to be able to deal with large-scale sys-
tems. For instance, monolithic synthesis was successfully performed for a system where the
uncontrolled system and supervised system respectively had 2.3 - 10°7 and 4.5 - 103* states
by Reijnen et al. (2020), which are much larger state spaces than non-symbolic monolithic
synthesis could handle. However, as we will also show in this paper, the amount of time
and memory required for symbolic synthesis is majorly impacted by the settings the algo-
rithm is initiated with, and different ways the algorithm can be applied (Vahidi et al. 2006;
Thuijsman et al. 2019). It is of practical benefit to optimize the application of the algorithm
to minimize time and memory required to perform synthesis (of large-scale systems). Such
optimization is difficult, as what techniques are beneficial is often case dependent, and even
frequently counter-intuitive, since a BDD representing a small amount of states may require
many more BDD nodes than a BDD representing a much larger amount of states (Ciardo
and Siminiceanu 2002). Sufficient experimentation and validation is required to judge the
efficiency of a method.

A tool that can be used to perform symbolic supervisor synthesis is CIF (van Beek
et al. 2014). CIF is part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse
ESCET™)! since 2020 (Fokkink et al. 2023). As a result of this open source project, the
intensity of the development of the CIF tool has recently greatly increased. Among the many
developments that have been made, are implementations of recently proposed methods that
aim to improve the computational efficiency of symbolic supervisor synthesis, such as the
BDD variable ordering heuristic algorithm from Lousberg et al. (2020) and efficient enforce-
ment of state exclusion requirements from Thuijsman et al. (2021). These methods were
previously only available in local proof-of-concept implementations.

This paper is an extension to Thuijsman et al. (2019); Lousberg et al. (2020); and Thui-
jsman et al. (2021). Those papers contain many results of elaborate experiments. Because,
as mentioned, many developments have taken place for the CIF tool, we re-perform and re-
evaluate the results from Thuijsman et al. (2019); Lousberg et al. (2020); and Thuijsman et al.
(2021). We use the BDD-based metrics of Thuijsman et al. (2019) to measure the computa-
tional effort of performing symbolic supervisor synthesis. We re-evaluate the impact of the
variable order heuristic of Lousberg et al. (2020) and the requirement enforcement of Thui-
jsman et al. (2021) on the computational effort, now that they are implemented and available
to all users. For further validation, the experiments are performed on a larger set of models.
Additionally, we make all models publicly available, so that our experiments are repeatable?.
In further extension to Thuijsman et al. (2019); Lousberg et al. (2020); and Thuijsman et al.
(2021), we investigate various (simple) heuristics for edge ordering to improve synthesis
efficiency. We also evaluate how these methods perform together, e.g., the edge ordering
heuristics are evaluated using the variable ordering heuristic we introduce. Furthermore, this
paper contains a proof of correctness of the efficient requirement enforcement method, that
was not given in Thuijsman et al. (2021). Finally, in this paper the methods are presented in
a more unified way.

! The ESCET toolkit and documentation is open source and freely available at https://eclipse.dev/escet/.
*Eclipse’, ’Eclipse ESCET’ and "ESCET’ are trademarks of Eclipse Foundation, Inc.

2 All experiments in this paper are performed using ESCET release v0.9, available here: https://eclipse.dev/
escet/v0.9/. The models are available bundled in ESCET under “CIF Benchmarks”, see https://eclipse.dev/
escet/cif/examples.html. The files to run the same experiments as presented in this paper are available here:
https://github.com/sbthuijsman/reduce_effort.

@ Springer

https://eclipse.dev/escet/
https://eclipse.dev/escet/v0.9/
https://eclipse.dev/escet/v0.9/
https://eclipse.dev/escet/cif/examples.html
https://eclipse.dev/escet/cif/examples.html
https://github.com/sbthuijsman/reduce_effort

692 Discrete Event Dynamic Systems (2024) 34:689-732

The authors note that there are many ways in which improvements can be made on
computational efficiency of symbolic supervisor synthesis. Evidently, we restrict ourselves
to a few options in this paper in order to keep this study contained. The methods that we
evaluate have the following in common, they are:

e monolithic approaches: supervisor synthesis is not divided into multiple sub-problems;

e non-restrictive to the input model: the method can be used for synthesis of any plant and
requirement specification that CIF supports synthesis of;

e “under the hood”: the user does not have to supply additional parameters or modify their
model;

e static: in the sense that optimization is performed only at a single stage, and not on-the-fly
(dynamically) during/throughout synthesis.

All of the effort reducing methods we present in this paper are heuristic algorithms.
For none of them, it can be proven or shown that definitely the computational effort will
be reduced by applying them. Therefore, we present extensive experimental evaluations of
these methods. The experiments are performed on a large scale: running all experiments
sequentially would require several years.

In brief, this paper contains the following contributions:

e Introduction of BDD-based metrics to measure computational effort, and comparison of
those to conventional metrics, such as time and memory usage or state space sizes, in
Section 3.

e Introduction of the DCSH variable ordering heuristic, and comparison of its performance
to order variable ordering heuristcs, in Section 4.

e Evaluation and comparison of various edge ordering heuristics to reduce computational
effort, in Section 5.

e Introduction of a method to efficiently enforce requirements in synthesis, and comparison
to the conventional approach, in Section 6.

Related work

The foundations of symbolic supervisor synthesis are discussed in Ma and Wonham (2006).
Symbolic supervisor synthesis for (sets of) EFAs is discussed in Ouedraogo et al. (2011) and
Feietal. (2014). In Ziller and Schneider (2003) a supervisor synthesis algorithm is constructed
that is based on p-calculus, and a BDD-based implementation is made. In Vahidi et al. (2006)
partitioning and ordering of the transition relation to efficiently perform BDD-based synthesis
isinvestigated. This partitioning, as well as how supervisor guards can efficiently be generated
for such a partitioning, is inspected in Fei et al. (2013). A symbolic synthesis approach
using hierarchichal decomposition is presented in Song and Leduc (2006). In Miremadi and
Lennartson (2016) an efficient synthesis algorithm is introduced that is based on forward
reachability rather than backward reachability to avoid unnecessary exploration of states, of
which also a BDD-based implementation is evaluated.

Efficient symbolic state space exploration is also a well-studied topic in the field of model
checking. An overview of concepts and techniques for BDD-based model checking is pro-
vided in Chaki and Gurfinkel (2018). A BDD-based algorithm for computation tree logic
model checking is introduced in Burch et al. (1994). Several variable ordering heuristics for
state space exploration of interacting finite state machines are evaluated in Aziz et al. (1994).
In Cabodi et al. (1999) the efficiency of BDD-based operators is improved by partitioning
the BDDs. Zero-supressed BDDs are used in Minato (2001) to reduce computational effort
of symbolic model checking in some applications.

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 693

The authors are not aware of existing works that study variable ordering heuristics
specifically for supervisor synthesis, static edge ordering heuristics for supervisor synthesis
(although dynamic edge ordering is investigated in Vahidi et al. (2006) and Fei et al. (2014)),
or efficient enforcement of state-based requirements.

2 Symbolic supervisor synthesis

In this section we first introduce EFAs and their linearized version that can be symbolically
encoded. Next, we discuss symbolic supervisor synthesis. Following, the encoding of a system
in BDDs is considered. Finally, we introduce the relevant parts of the tool CIF, which we use
for symbolic supervisor synthesis.

2.1 Automata

We consider an EFA A defined as 8-tuple:
A=(L,V,%, T, Lo, Vo(V), L, Vi (V)),

where L is a finite set of locations, V is a finite set of discrete variables (each with a finite
domain), and ¥ is a finite set of events, usually called alphabet. The alphabet is split into two
disjoint subsets: X and X, representing controllable and uncontrollable events respectively.
Lo € L is aset of possible initial locations, Vp(V) is an expression indicating possible initial
values of all variablesin V, L,,, € L is the set of marked locations, and V;,, (V') is an expression
indicating marked values for variables V. T is a set of transitions where a transition ¢ is defined
as S-tuple:t = (1,,1;, o, y, v), where [, and [, are the origin and target location in L, ¢ is an
event in X, y is a guard expression, indicating for which variable values the transition can
take place, and v is an update expression that indicates new values for the variables after the
transition has occurred. If for some transition an update is not specified for some variable,
then its value remains the same when taking the transition. If a guard is not specified, then it
is assumed ‘true’.

Essentially, locations can be modeled as variables, which we call location pointer vari-
ables, and transitions between locations can be modeled as guards and updates. Furthermore,
expressions stated in an EFA can be encoded in (Boolean) predicates, that return true or false
for a particular evaluation of variable values. Therefore, to simplify our explanations, and
also stay consistent with the implementation of symbolic supervisor synthesis in CIF, we
consider Linearized Finite Automata (LFAs). We will shortly introduce them here, for more
details on the linearization of EFAs we refer to Nadales Agut and Reniers (2011). An LFA
is defined as a 5-tuple:

AL = (X, %, E, Xo(X), X (X)),

in which X is a finite set of variables (which may contain a location pointer variable).
A state is defined by a valuation over these variables. ¥ is the alphabet. X and X, are
predicates over variables from X that respectively represent the initial and marked states.
Note that for a predicate P(X) we may simply write P when it is clear from the context
that it is a predicate over variables X. E is the set of edges, with edge e defined as triple:
e = (0, g(X),u(X, XT)), where o is an event, g is a guard predicate, expressing from what
states the event may occur, and u is an update predicate over current state variables X and
new state variables X = {xT|x € X}, representing what state will be reached when the

@ Springer

694 Discrete Event Dynamic Systems (2024) 34:689-732

edge is taken from a particular current state. Le., for each variable x, we use variable x* to
indicate the value of x after an event occurs. We assume X N X+ = &.

Example 1 We consider the EFA of Fig. 1. This EFA consists of two locations L={ly, [} of
which 1y is marked: L,,={l1}, as indicated in Fig. 1 by a double circle. The initial location
Lo = {lo} is indicated by the dangling incoming arrow. We have two Boolean variables
named a and b. Both variables are initially set to false, as indicated by the expression next
to the dangling incoming arrow, i.e., Vo(V) = —a A —=b. Events a_on and b_on can occur
at lo, the value of a and b will then respectively update to true. These updates are denoted
in Fig. 1 by the keyword ‘do’. An edge with event label continue can be taken from origin
location Ly to target location ly. This can only happen if the guard a=b evaluates to true. The
guard is denoted by the keyword ‘when’. All variable values are considered to be marked,
e, Vi (V) = true.

The same model can be expressed as an LFA as follows: The set of variables is {ls, a, b},
where I is the location pointer variable with domain {ly, [}, used to encode the current
location. The initial state predicate is [;=Ily A —a N\ —b. The marked state predicate is [;=I.
There are three edges:

(a_on , L=l Ur=lo nat AbT=b);
(b_on , =y JIF=ly Aat=a AbT); and
(continue , ls=Ilp N a=b , lj':ll AaT=a AbT=b).

2.2 Symbolic supervisor synthesis

The purpose of applying supervisor synthesis is to generate a supervisor automaton such that
the parallel composition between the plant automaton and supervisor is safe, nonblocking,
controllable, and maximally permissive (Cassandras and Lafortune 2021). Safe means that the
requirements are always satisfied. How requirements are specified, and what it exactly means
to satisfy them, is discussed in more detail in Section 6. Nonblocking indicates that from
every reachable state in the controlled system, a marked state can be reached. Controllable
means that from every reachable state in the controlled system, when the plant can execute
an uncontrollable event, this event can also be executed in the parallel composition between

a_on
do a:=true

continue

a=false] when a=b l
b=false 0 1

b_on

do b:=true
Fig.1 Example EFA

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 695

supervisor and plant. In other words, the supervisor does not disallow any uncontrollable
events. Maximal permissiveness says that these properties are ensured without disabling any
events that do not strictly need to be disallowed.

In Algorithm 1 a supervisor synthesis algorithm is presented. This synthesis algorithm
is strongly based on the algorithm introduced by Ouedraogo et al. (2011), simpli-
fied by using an LFA instead of an EFA. We will shortly introduce it here, for more
details we refer to Ouedraogo et al. (2011). In line 1 the requirements are applied by
using algorithm applyRequirements. We study the application of requirements in
more detail in Section 6. For this preliminary section, it is only relevant to know that
applyRequirements returns a predicate N that defines all states where the requirements
are satisfied, a set of edges Eg which is the set of plant edges E with restricted guards of the
controllable events such that the requirements are satisfied, and a predicate X s defining the
initial states that satisfy the requirements, i.e., the initial states that are safe’.

After applying the requirements, predicate N might still allow blocking states (states
that cannot reach a marked state). Algorithm 1 iteratively calculates nonblocking states N,
followed by bad states B. The calculation to obtain N and B is done by means of a backward
reachability search, given in Algorithm 2. The algorithm loops over the edges, as defined in
the edge order, discussed later in more detail. The bad states are removed from N, which
may induce other states to become blocking. Therefore, the algorithm repeats these steps
until a fixpoint is reached, i.e., no further bad states get removed. Next, the guards of the
controllable edges are modified such that the edge is only taken when a nonblocking state
will be reached. Here, notation N (X ™) denotes predicate N (X) in which each current state
variable x € X is substituted by its new state counterpart x . Finally, the supervisor LFA is
constructed.

Algorithm 1 SS (Supervisor Synthesis).

Input: Plant LFA A} = (X, Z, E, X(, Xm), state exclusion predicates SX, state-event exclusion predicates
EX

Output: Supervisor LFA §

I: (N, Eg, Xo,s) = applyRequirements(SX, EX, E, Xq)

2: repeat

3: N =N

4: N =BRS(N, Eg, X;n)

5: B = BRS(true, {(0, g, u) € Eloc € X,},—=N)

6: N=NA-B

7: until N = N’

8: for all (0, g, u) € Eg witho € X,

9: g(X) =g(X) Ady+ [INXT) Au(X, X))

10: end

II: S=(X,X,Es, X0,s AN, X AN)

2.3 Binary decision diagrams

A Binary Decision Diagram (BDD) (Akers 1978) is a data structure that is used to represent
Boolean functions and predicates, and can be used to represent and perform calculations on
an LFA. BDDs are directed acyclic graphs that consist out of two types of nodes: decision-
and terminal nodes. Each decision node is labeled by a Boolean variable b and has two edges

3 In case of multiple initial states, it is assumed that the supervisor can restrict in which of those states the
system can start.

@ Springer

696 Discrete Event Dynamic Systems (2024) 34:689-732

Algorithm 2 BRS (Backward Reachability Search).

Input: Restriction predicate Pg(X), edges E, start predicate P(X)

Output: Coreachable predicate P’(X)

1: repeat

2: P/(X)=P(X)

30 P(X)=PRX) A PX)V V(5 gumer Ix+[PXT) A g(X) AulX, X))
4: until P(X) = P'(X)

leading to child nodes, one edge labeled true and the other false. When evaluating b to true
or false we take the respective edge. At the leaves of the BDD are terminal nodes, that are
labeled by true or false, indicating the final result of evaluating the BDD.

When referring to BDDs in this paper, we implicitly always mean reduced ordered BDDs
(Bryant 1992). This type of BDD imposes some additional restrictions such that the BDD is
minimal in the number of decision nodes and canonical for a given order of the variables.
This order is strictly imposed over all the variables in the BDD and is called the variable
order. A variable order is denoted as <, where b; < b indicates that decision node by is
placed closer to the root node than b;.

The variable order can influence the number of decision nodes required to encode a
Boolean expression, see Fig. 2 for an example. Visually, we represent true edges by solid
lines and false edges by dashed lines. The size of a BDD is defined by the number of decision
nodes and in worst-case this size can be exponential in the number of Boolean variables
(Bryant 1992).

In our work, when we mention variable order, we refer to an order of the LFA variables,
which corresponds to an order of Boolean variables in the BDD. How an ordering of LFA
variables relates to an ordering of BDD variables is shown in Example 2.

Example 2 We consider an LFA with integer variables y and z. De domains of y and z
respectively are {0, 1,2} and {0, 1}. Variable y can be encoded using two Boolean variables:
by and by 1; variable z requires a single Boolean variable b; . As for every current state
variable, there is a new state variable: there is an integer y* corresponding to Boolean
variables by+ o and by+ |, and integer 7zt corresponding to Boolean variable b+ o. Let us
assume the LFA variables are ordered by y < z. This then corresponds to the following

F T F T

(a) Variable order a<b<c<d. (b) Variable order a <c<b<d.

Fig.2 Two BDDs representing (a A b) V (¢ A d) for different variable orders

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 697

variable order of the Boolean variables: by o < by+ o < by 1 < by+ | < b0 < b+ . S0, in
the order of Boolean variables, a Boolean variable corresponding to a current state variable
is always immediately succeeded by the respective Boolean variable corresponding to the
new state variable (using default settings in CIF).

2.4 CIF

There are several tools that allow modeling of plants and requirements with the ability to
synthesize a supervisor. Of the tools considered in Reniers and van de Mortel-Fronczak
(2018), the tools Supremica (Malik et al. 2017) and CIF (van Beek et al. 2014) allow for the
use of EFAs and base their supervisor synthesis algorithm on the use of BDDs. In this paper
synthesis is performed using the supervisor synthesis tool for EFAs of CIF. CIF has been
used to synthesize supervisors for industrial sized systems (Theunissen et al. 2014; Reijnen
etal. 2017, 2018a; Loose et al. 2018; Korssen et al. 2018; Reijnen et al. 2020).

CIF is part of the ESCET project, an Eclipse open-source project since 2020 (Fokkink et al.
2023). ESCET provides a model-based approach and toolkit for synthesis-based engineering
of correct-by-construction supervisory controllers of discrete-event systems.

3 Evaluating computational effort in symbolic supervisor synthesis

The performance of algorithms is typically judged by their space- and time complexity
(Meinel and Theobald 1998). In this section, we first introduce the metrics peak used
BDD nodes and BDD operation count to quantitatively express the space- and time effort
required for supervisor synthesis. Then we explain why these metrics are advantageous over
conventional metrics such as peak random access memory and wall clock time, to assess
the computational efficiency of symbolic computations. Finally in this section, we use the
BDD-based metrics to demonstrate the impact of the variable order and edge order on the
computational effort of synthesis.

We distinguish complexity from effort. Complexity regards classes of problems, and
defines the generic trend of the (space/time) resources a computation requires for inputs
of different sizes, often expressed using ‘Big O’ notation (Knuth 1976). Effort specifies the
amount of resources used for one particular computation, where the complete input is con-
sidered rather than only its size. This input includes algorithm configuration settings and, in
our case, variable and edge order.

3.1 Peak used BDD nodes

During symbolic supervisor synthesis, the number of BDD nodes used to describe the
predicates generally fluctuates. Since reduced ordered BDDs are used, which are minimal
representations, the used BDD nodes is the minimal amount of BDD nodes required to rep-
resent the predicates at that point during the computation. The space effort can be measured
by the peak (maximal) number of BDD nodes used during synthesis (Meinel and Theobald
1998; Vahidi et al. 2006).

In CIF, BDD nodes are stored in a hash table. Each new node is allocated to an entry in the
hash table. Once the hash table reaches a certain fill rate, garbage collection is employed to
free no longer used entries. We only count the used BDD nodes, i.e., hash table entries that still
contain relevant information for the BDDs that are still in use. Garbage collection is performed

@ Springer

698 Discrete Event Dynamic Systems (2024) 34:689-732

by means of a standard mark-and-sweep algorithm. Functions from the implementation of
this algorithm in the JavaBDD library* are reused to count the BDD nodes that are in use.
This measurement is performed each time just before a BDD reference is deleted, which
causes used nodes to become unused. Thereby ensuring the exact peak value of used nodes
is found. For a more detailed explanation on BDD node references, used nodes, and unused
(dead) nodes we refer to Somenzi (1999).

Peak used BDD nodes is a reproducible metric: Performing a supervisor synthesis twice
with the same input yields exactly the same peak used BDD nodes.

3.2 BDD operation count

The time effort can be expressed in the number of steps/operations during a computation
(Meinel and Theobald 1998). As supervisor synthesis is done by performing operations on
BDDs, we use BDD operation count to express the time effort of performing supervisor
synthesis. Since BDD operations (such as ‘and’ and ‘or’) are implemented as functions that
employ structural recursion on BDD nodes, the number of invocations of such functions
can be used to express time effort. Since the functions are deterministic, the results are
reproducible.

Generally, these functions consist of three parts. First, a few checks are performed to see
whether the requested calculation is a terminal case. Second, if it is a non-terminal case, it is
checked whether the calculation has already been performed, and is still in the cache. Note
that we do not mean hardware cache here, but a table actively storing results of previous
calculations. If both previous cases do not apply, the function performs recursive expansion
over the child nodes. Each time this recursive expansion is performed, i.e., when operations
are applied on the BDD, we increment the BDD operation count. For more details about
terminal cases, cache lookup and recursive expansion over child nodes we refer to Somenzi
(1999).

3.3 Relevance of metrics

In order to compare the BDD-based metrics to conventional metrics, e.g., wall clock time,
memory usage, and state space sizes, we perform a number of supervisor syntheses and
extract these metrics. The data presented in this paper is acquired by performing supervisor
syntheses to the models shown in Table 1. The models are selected to have a wide range of
model sizes. Table 1 shows, and is sorted by, the worst case state space size of the uncontrolled
plant for each model, which is the product of all location and variable domain sizes. The first
two models have a worst-case state space of a single state because their plant models only
contain EFAs with a single state. The requirement specifications of these models contain
automata with more than one state.

For a supervisor synthesis of the Waterway lock model, Fig. 3 shows how the number of
used BDD nodes evolves, as BDD operations are performed during synthesis. Intuitively, the
horizontal axis represents the ever-increasing number of operations performed as synthesis
progresses, and the vertical axis represents the fluctuating memory usage. The metrics pre-
sented in this paper are the maxima along both axes in this plot: the peak used BDD nodes
and the final BDD operation count.

4 The JavaBDD library is available at https://javabdd.sourceforge.net.

@ Springer

https://javabdd.sourceforge.net

Discrete Event Dynamic Systems (2024) 34:689-732

699

Fig.3 Evolution of used BDD nodes during synthesis

Used BDD nodes [-]

—_
(]

BDD operation count [-]

Figure 4(a) and (b) show how peak random access memory and wall clock time respectively

relate to peak used BDD nodes and BDD operation count. A supervisor was synthesized for
each model of Table 1 for 100 pairs of random variable- and edge orders. Note that these vari-
able orders have been re-ordered by heuristic algorithms FORCE and Sliding Window (SW),
which we discuss later, to obtain the variable order that synthesis is actually applied with.
The measurements were performed in sequence using two Intel Xeon Gold 6226 processors

Peak used BDD nodes [-]

<
3

<
>

=

10 10° 10* 10°
Peak random access memory [MiB]

(a) Peak memory usage vs peak BDD nodes.

Fig.4 BDD-based metrics against conventional metrics

102y

]

: 101(]%r

=]
=3
SR o~
£ ; B>
t o Qupy 0%
§. 100 F / AL
2 i
=) 3 . o Sufhow
D0ty »
L
N
po? R R T e
10° 10° 10*

Wall clock time [ms]

(b) Wall clock time vs BDD operation count.

Robotic swarm aggregation
Robotic swarm clustering
Robotic swarm segregation
Robotic swarm formation
Multi agent formation
Automatic guided vehicles
Ball sorting system

Theme park vehicles
Cluster tool

Production cell

Modified cat and mouse tower
Advanced driver assistance system
Cat and mouse tower

Lithography machine initialization
Bridge

FESTO production line

Waterway lock

@ Springer

700 Discrete Event Dynamic Systems (2024) 34:689-732

clocked at 2.70 GHz, operating on Linux. The measurements for random access memory and
wall clock time were done separately from the measurements of the BDD-based metrics to
avoid them from interfering.

For small models, peak random access memory cannot indicate a difference in synthe-
sis effort, as all results of the small models are grouped around 60 MiB. For some of the
smaller and medium-sized models there is a significant amount of noise in the measured wall
clock time and random access memory. For wall clock time, this noise typically originates
from delays in I/O procedures (writing the output file). For memory, the noise originates
from loaded in classes and the practically random intervals at which Java performs garbage
collection.

For larger computations, a linear relation is visible between wall clock time and BDD
operation count. The threshold at which this relation starts, and its slope, are dependent on
the used hardware. The grouping that is seen for larger computations in Fig. 4(a) is a result of
the manner in which the BDD space allocation takes place: when the current table is full, it
gets doubled in size, the new free entries in this table will have an influence on the memory, but
are not measured when counting the used BDD nodes. Also, when performing computations
that require more memory, the Java Virtual Machine will perform garbage collection in the
background to free memory. For separate measurements this will happen at different times,
which impacts the peak random access memory, not the amount of used BDD nodes. Note
that for the measurements in Fig. 4 additional garbage collection is performed before every
measurement to achieve a consistent situation between measurements.

An advantage of wall clock time and peak random access memory is that a user performing
supervisor synthesis is more likely to be familiar with these metrics. It gives a better idea
whether their computer is able to perform the synthesis in an acceptable amount of time
given the available memory. However, opposed to the BDD-based metrics, wall clock time
and peak random access memory are not deterministic, so they will yield different results for
every synthesis run. Their results are influenced by aspects including loaded classes, garbage
collection, and I/O operations. The BDD-based metrics enable a distinction in effort for
the actual synthesis portion of the computation. Also, the BDD-based metrics are platform
independent. Particularly the wall clock time of some synthesis will be influenced by the
used hardware, making it difficult to compare results.

Worst-case state space of the uncontrolled system is also frequently used to indicate
(expected) synthesis effort. The advantage of using worst case state space size of the uncon-
trolled system over BDD-based metrics to indicate the synthesis effort, is that no supervisor
synthesis or reachability computations are required to calculate this number. Figure 5(a) and
(b) show how this state space size relates to the BDD-based metrics. From these figures we can
conclude that the worst case state space size is not a very accurate indicator of the expected
computational effort of synthesis: the correlation is very weak. Note that there are multiple
ways to indicate state space sizes, some also taking the product with requirement automata,
but we found that also in those cases the state space size does not accurately indicate the
computational effort.

In summary, there are several advantages of the BDD-based metrics over the conventional
metrics: They are deterministic: performing a supervisor synthesis twice with the same input
and algorithm configuration will give the exact same result. This determinism also holds
when doing the synthesis on two different platforms, even if one is a supercomputer and the
other is a personal computer. As a result, it becomes easier to compare results from different
measurements or publications. Also, there is no overhead in the measurement, loaded-in Java
classes and other computer processes will not influence the measurement.

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 701

10% w w 102
!
= 1 — 10 ko
P | g
2 10%F ! ‘ 2
g . | S 108 l
=
. e N §
2 g
B (N 0 2 1oopll | i
ERT S I S
10 | A
-
i ! a |
[. oot 1
2 2
10 . 10
10° 10" 10% 10% 10° 10" 10% 10%
Worst case state space [-] Worst case state space [-]
(a) Worst case state space size vs peak BDD nodes. (b) Worst case state space size vs BDD operation
count.
® Robotic swarm aggregation Production cell
® Robotic swarm clustering Modified cat and mouse tower
® Robotic swarm segregation Advanced driver assistance system
® Robotic swarm formation ® Cat and mouse tower
® Multi agent formation ® Lithography machine initialization
® Automatic guided vehicles Bridge
® Ball sorting system FESTO production line
® Theme park vehicles Waterway lock
® Cluster tool

Fig.5 BDD-based metrics against conventional metrics

3.4 Impact of variable- and edge order on computational effort

We presented two metrics that indicate the computational effort of a supervisor synthesis.
However, we have to be careful when making conclusions based on this synthesis effort. The
variable- and edge order have an influence on the results. This can also be seenin Figs. 4 and 5,
where the results per model are scattered due to using different variable- and edge orders.
Recall that since the BDD-based metrics are deterministic, re-performing a synthesis with
the same variable- and edge orders would provide the exact same result.

It is well known that the variable order has a notable impact on the BDD size, and con-
sequently on the computational effort. Therefore, the variable ordering heuristics FORCE
and SW (Aloul et al. 2003) are implemented in CIF (already prior to this work). FORCE
is supplied with a variable order and reorders it to group variables together that have high
interaction, meaning they often appear together in guards and updates. Note that this algo-
rithm finds a local optimum: initializing it with different orders, might give different resulting
variable orders. SW starts from a variable order, and “slides a window” across the variables
to locally optimize that part of the order. In this work, always a (default) window size of
4 is used. These heuristics can be sequenced. We denote FORCE+SW to indicate that first
FORCE is applied to some initial variable order, and SW is performed on the variable order
computed by FORCE, to produce the variable order used in synthesis.

In previous work (Thuijsman et al. 2019; Lousberg et al. 2020; Thuijsman et al. 2021)
the definition of variable relations was different from the current implementation. For further
details we refer to the CIF documentation. In contrast, the variable relations as used in
Section 4 are reproducible with both the ESCET version used in this paper (version 0.9),
as well as the current ESCET release (version 3.0). Hence, we repeat the experiments of
Thuijsman et al. (2019); Lousberg et al. (2020) and Thuijsman et al. (2021) using the same

@ Springer

702 Discrete Event Dynamic Systems (2024) 34:689-732

variable dependencies for all variable ordering heuristics, that we discuss below, such that
we can accurately compare their efficiency.

We investigate to what extent the edge order and initial variable order influence the super-
visor synthesis effort. For each model in Table 1, a supervisor has been synthesized for
all combinations of 100 random edge orders and 100 random initial variable orders. These
initial variable orders are re-ordered by FORCE+SW to produce the variable order used in
synthesis. The effort of performing each synthesis is shown in Fig. 6.

It can be seen that there are major differences in computational effort by using differ-
ent orders. For the Waterway lock model, the highest peak used BDD nodes is 658 times
larger than the lowest peak used BDD nodes. For BDD operations this factor is 338. This
is purely a result of changing the edge orders and initial variable orders: all other algorithm
configurations were the same for all measurements.

Figure 6 also shows that measuring both peak used BDD nodes and BDD operation count
is relevant. It would be difficult to distinguish the computational effort between some of
the syntheses if only one of the metrics was used. For example, if we only measured the

Robotic swarm aggregation
Robotic swarm clustering .
Robotic swarm segregation Je
Robotic swarm formation Y
Multi agent formation _E"s;"s
Automatic guided vehicles O
Ball sorting system
Theme park vehicles
Cluster tool
Production cell
Modified cat and mouse tower
Advanced driver assistance system
® Cat and mouse tower
® Lithography machine initialization
Bridge
FESTO production line
® Waterway lock

T

T

10

T

—_
(=]
=)

T

T

T

Peak used BDD nodes [-]
=

—_
(==}
S

T

10° £ -
F .
s
102 2. AT14. AT|6. T\8. Ll110. L .m...\lz
10 10 10 10 10 10

BDD operation count [-]

Fig.6 Supervisor synthesis effort for all combinations of 100 edge- and 100 variable orders for each model

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 703

BDD operation count, we would not see much difference for the efforts of synthesis for
Cat and mouse tower. If we only measured peak used BDD nodes. we would not see much
difference for the effort of synthesis for Ball sorting system. Measuring both metrics enables
us to differentiate between the efforts of synthesis for each model based on the various initial
variable orders and edge orders.

Figure 7 shows the peak used BDD nodes for all syntheses of the Theme park vehicles
model. Darker squares indicate a higher amount of peak used BDD nodes. All variable- and
edge orders were given an index. A row shows the peak used BDD nodes of all syntheses
that were performed with the same edge order and varying variable orders, and a column
shows the same for a fixed variable order with varying edge orders. In Fig. 7, we see rows and
columns where the elements are similarly colored, indicating that variable order and edge
order both have a reasonable impact on the peak used BDD nodes for this particular model.
There are other models where only the elements in columns are similarly colored, indicating
that the variable order mainly influences their synthesis effort. We observe similar results for
the BDD operation count.

Figure 7, along with analyzing the same plot for other models, shows that a relatively
poor/good variable order generally performs relatively poor/good for all edge orders and
vice versa. This means the variable order and edge order can be improved individually,
which is what we respectively focus on in Sections 4 and 5.

If we define the peak used BDD nodes for a certain model as a deterministic function
f(0y,i, 0.), where o, ; is the jth sample random variable order and o, ; the jth sample

% 10%

100 :] 1.8

00 ==l B S
. 80
) 1.6 7+
2 70 ' El
2 IH : 153
Q. 60] . | (=)
z 2
A 50 1.4 A
—
3 | : 3
5 40 .l 13 &
(D] K = u .M&
%0 30 S
0 . 12

20

F [i 1.1
10 = : -
- N 1

10 20 30 40 50 60 70 80 90 100
Variable order sample index

Fig.7 Peak used BDD nodes for all supervisor syntheses of the theme park vehicles model

@ Springer

704 Discrete Event Dynamic Systems (2024) 34:689-732

random edge order, the global sample mean (Montgomery and Runger 2018) of the peak
used BDD nodes g (f) is given by Eq. 1.

1 N M
nG(f) = N—M;;ﬂov,i,oe,», (1

where N and M respectively are the total number of sampled variable- and edge orders. For
our experiment, N = M = 100 for each model.

The global (unbiased) sample variance (Montgomery and Runger 2018) of the peak used
BDD nodes aé(f) is given by Eq. 2.

1 M
7 2 2 (F0ni0e)) = na ()" @

i=1 j=I

2 —
oG ()= N
The sample variance ai ; () of the peak used BDD nodes for the edge orders tested with
a particular variable order o, ;, is given by Eq. 3.

1
M —1

M
oZi(f) = S (f @i 0e) = 10i (1), @)

j=1
where [y, i (f) = ﬁ Zﬁil f(0y,i, 0., ;) is the mean peak used BDD nodes of the edge orders

tested with variable order o, ;. The mean sample variance for fixed variable orders 072(f)is

computed by Eq. 4:
N

N 1 2
(= 21 o (f). “
1=
Equations 3 and 4 can analogously be applied to compute the sample variance of peak
used BDD nodes for variable orders tested with particular edge orders %2, i(f), and the mean

sample variance for fixed edge orders 082(f). Likewise, we can define a function g(0y,;, 0, ;)
for the BDD operation count of a model and apply above computations to this.

When relating these characteristics to what we see in Fig. 7, a low mean sample variance
for fixed variable orders 03 (f) would indicate a similar amount of peak used BDD nodes for
a given variable order. This would be visible in Fig. 7, as elements located in the same column
would be similarly colored. This would indicate that the variable order mainly influences the
peak used BDD nodes, and the edge order has little influence.

For each model, the global sample mean i, global sample variance 0(2;, mean sample

variance for fixed variable orders o2 and mean sample variance for fixed edge orders o2
are given for peak used BDD nodes (f) and BDD operation count (g) in Table 2. For most
of the models, the mean sample variance for fixed variable orders is smaller than the mean
sample variance for fixed edge orders. This indicates that the variable order has a larger
influence on the supervisor synthesis effort than the edge order. The effect of the variable
order is particularly notable, when considering that for these experiments FORCE+SW is
being applied to the variable order (to compute the variable order that synthesis is performed
with). The variance is even higher when FORCE+SW is not applied (Lousberg et al. 2020).
However, the mean variance for fixed variable orders is large enough that the edge order is
still of considerable influence to the supervisor synthesis effort.

Models that require a relatively large amount of supervisor synthesis effort, also have
a relatively large variance in effort. This would also be observed if we were to normalize

@ Springer

705

Discrete Event Dynamic Systems (2024) 34:689-732

6101 - €1 101 - L'S 6101 - ST 01 ST 10181 10101 10161 901 - €T Yoo AemIorem
0101 6L 0101 - L€ 0101 - §'6 001 T'€ 00T 01 O T°S o0T - T'T +01-9°¢ ourf uononpord OLSHA
g101-TC g01-1°C g101 ST 0168 210169 2101- TS 2101 -L'8 901 - €T a3pug
U cf0T - '8 RUSA! ,00°99 0191 00T 1T 0191 4016’8 uonezifeniut surgoew Kydersoyyry
01 - 1°€ 101 - 8% 101 - 1°€ L0111 1101 €9 Ol Ty 1101 - €9 OI-€L JTomo) asnow pue 180
6016 01 9F 601 L9 01-8¢C OI- L8 019 o011 Ol ¥L WRISAS DOURISISSE JOALID PIOUBAPY
0101 §°C 4101 - 8C 0101 §°C g01-0C 0101 - S Q0T €% 0101 - S’y 0167 120} J9SNOUI PUE B9 PAYIPOIA
9101 - ¥'C $101 - 6% 9101 - ¥'C Q0L 61 60161 901 - €€ 0161 +01-6'S 1[99 uononpoig
U 201 T1 01 - €'1 001 - S8 ,01-0C 001 TC L01-1°C HOT- LT [00) 123N
0101 - L1 0101-9C 0101 - 8°€ OI- LS 001 - 81 01-T€ 901-0C H01- €1 s[o1yA yred ooy
$10T - L9 $101- ST $101-9°L 0T +€ 00T €6 0T +'8 00T - €6 +0T T wdsAs SuriIos [[eg
10191 00T ¥ NOIEVA g0 I'1 901’1 O1-T°L g01 - ST c01-09 SO[OIY2A PIPING pajewiony
1101-0C 0T 8°S 1101-0C 001 T'1 01 €T 00 01 €T +01-9'C uonewIo) Juage NN
01 TY o019 01 SF H01-9°€¢ 019 00 01-9¢ 0I-6€ UOIBULIOY ULIEAS O110GOY
O LY RUSES 0168 S01-9'T 0186 00 01 L6 ;0188 UONESAITOS WIEMS O10GOY
H0T-L'1 00 NIRYA 01-27 0191 00 0191 01 LS SuLIaIsN]d ULIRMS O110qOY
01 00 01 01-9F 101-0C 00 101-0C 01-9'1 uone3aI3de wiems onoqoy
(820 (8o (8)20 (8) 01 (f)go (Nge (/)20 (HHom aweN

S[opou [[& jO sedueLIeA pue sueaw d[dwes g ajqel

pringer

Qs

706 Discrete Event Dynamic Systems (2024) 34:689-732

to the mean values of the models, i.e., o>/u or o/u. This indicates that applying a good
variable- and edge order becomes more beneficial when considering models that require
more supervisor synthesis effort.

4 DCSH variable ordering heuristic

In Section 3.4 we touched on the extent in which edge and variable order influence the
computational effort. There is a large variance in the computational effort of synthesis as a
result of the initial variable order, even if FORCE+SW is applied. As such, we want to find
a variable order for which the computational effort is generally low. Unfortunately, finding
the variable order that minimizes the BDD size is an NP-complete problem (Bryant 1992).
This is why heuristic variable ordering algorithms are used.

In this section, we introduce a heuristic algorithm named DSM-based Cuthill-McKee-
Sloan variable ordering Heuristic (DCSH) to find a variable order that reduces the
computational effort required for symbolic supervisor synthesis compared to current imple-
mentation (FORCE+SW). This heuristic is based on two matrix ordering heuristics from
Cuthill and McKee (1969) and Sloan (1989), that are used to minimize the Weighted Event
Span (WES) (Siminiceanu and Ciardo 2006). It is shown in Meijer and van de Pol (2016)
that these heuristics are able to reduce the WES, and thereby the computational effort for
symbolic model checking. Since the approach is shown to work for symbolic model check-
ing, we hypothesize it also might work for symbolic supervisor synthesis. These matrix
reordering heuristics are applied to a Dependency Structure Matrix (DSM) that stores the
number of times BDD-variables appear together in transition relations, to find a new variable
order. Heuristics are used, since directly minimizing the WES is also an NP-complete prob-
lem (Siminiceanu and Ciardo 2006). The performance of DCSH in relation to the current
implementation is experimentally evaluated in Section 4.3.

4.1 Transition relation, variable order, and computational effort

When studying the evolution of BDDs during synthesis, most computational effort is per-
formed during the reachability searches (Algorithm 2). Specifically, during the existential
quantification operation in line 3 of Algorithm 2. Because this operation is applied many
times, the guard and update predicates are placed in a single predicate, which is the transi-
tion relation: T,(X, XT) = g.(X) A u.(X, X1), where there is a transition relation 7, for
each edge e = (0, go(X), u.(X, X™)).

Existential quantification over the transition relations is frequently applied during syn-
thesis. This operation can be executed by first computing P(X) A T,(X, X™) and then
quantifying over X*. However, this results in a large intermediate result of P(XT) A
T,(X, XT). Therefore, both the conjunction and existential quantification are computed in a
single recursive pass over P(X ™) and T, (X, X) by utilizing the relational product operation
(Burch et al. 1994). This operation prevents computing the entire BDD P(X ™) A T, (X, X ™)
and quantifies early over X, thereby reducing memory usage and number of required
operations. Nevertheless, computing the relational product is known to be an expensive
computation (Burch et al. 1994).

We say sets of variables are strongly related if they appear together in many transitions.
BDDs are overall small if strongly related BDD-variables are placed near each other in the
variable order Minato 1996; Somenzi 1999. If we keep variables of each transition relation

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 707

near each other in the variable order, it is likely that the resulting BDDs representing the
(nonblocking and bad-state) predicates are kept small during synthesis, leading to reduced
computational effort. Since we frequently apply computationally expensive operations to
BDDs that represent a predicate 7, (X, X) (for some e € E), we base the relatedness of
variables on these predicates.

4.2 Dependency structure matrix reordering

A DSM is a square n x n matrix representing dependencies between n aspects of a system or
model (Browning 2016). We capture variables of the LFA along the rows and columns where
each index represents a single variable. In our use, the variables are always ordered the same
along the row and column axis. In this paper we utilize static Numerical DSMs (NDSMs).
The off-diagonal elements can be non-negative integers, where the value indicates the number
of times the respective variables appear together in a predicate expression 7, of an edge in
the LFA. In our use, the diagonal elements are always zero. Furthermore, all dependencies
in the NDSM are regarded as undirected, thus providing a symmetric matrix. Subsequently,
the NDSM is manipulated by two matrix ordering heuristic algorithms that reorder the row
and column indices such that non-zero values are placed towards the diagonal. The order in
which the variables appear along the rows/columns is used as variable order for synthesis.
Essentially, we are creating a variable order such that variables that often appear together in
some T, are placed near each other in the variable order.

Before synthesis we extract the variables that appear in predicate expression 7, for each
edge e € E. For all occurrences of pairs of variables per 7, we increment the element in the
NDSM by one, thus a higher value indicates a stronger dependency between the variables.
The increment is executed for both combinations of the pair such that the resulting NDSM
is symmetric.

Figure 8 shows an example of an NDSM before and after reordering. The before image
has the variables ordered alphabetically, which is the default initial variable order in CIF.
The variables are reordered, by applying the method we discuss next. In the after image we
observe that variables that are closely related are clustered together.

1 6 1 6
--
6 - 5 6 - 5
- - - .
—11 4 2 4
Q Q
T 1k %
516 1 305 16} 3
R -
£ 21 I| , £ 5
< <
> | >
26 ﬁ . 26) 1
31 H--_ 31
i 0 0
16 11 16 21 26 31 6 11 16 21 26 31

Fig.8 NDSM before and after reordering of the cluster tool model

Variable index [-]

(a) NDSM before reordering.

Variable index [-]

(b) NDSM after reordering.

@ Springer

708 Discrete Event Dynamic Systems (2024) 34:689-732

Algorithm 3 Weighted Cuthill-McKee ordering.

Input: NDSM M

Output: Variable order list R

1: Initialize empty list R, compute weighted adjacency graph A of M

2: for each Connected subgraph A’ of A not connected to another node in A

3: Compute pseudo-peripheral node p of A’

4: Mark p and append p to R

5: while Unmarked nodes exist in A’

6: Find list C of unmarked neighbors of p

7: Sort list C such that the nodes are in descending weight

8: Sort list C such that nodes with equal weight are in ascending degree
9: Append C to R and mark all nodes in C

10: Set the next node in R as p

11: end

12: end

The use of DSMs in supervisory control theory is not new. In Goorden et al. (2020)
DSMs are used to find clusters of highly interactive components for the purpose of applying
multilevel synthesis. However, we are not looking for clusters, but interested in reordering
the row and column indices such that higher valued elements are placed as close as possible
towards the diagonal relative to lower valued elements. By finding such an order, we also
find an order where variables that often appear together in transition relations are placed near
each other.

In practice, the NDSMs constructed in our approach are sparse. We utilize existing variable
ordering heuristics, that have been designed for bandwidth, profile, and/or wavefront reduc-
tion of symmetric sparse matrices. For an elaboration on these metrics we refer to Cuthill
and McKee (1969) for bandwidth and Sloan (1989) for profile and wavefront. By minimizing
any of these metrics, an order is achieved for which relatively low computational effort is
expected. The effective use of these heuristics for static variable order optimization for BDDs
is shown in Meijer and van de Pol (2016), where several bandwidth, profile and wavefront
reducing node ordering heuristics have been compared. These heuristics apply a reordering to
the adjacency graph that can directly be extracted from an NDSM. As we utilize an NDSM we
append the graph’s edges by weights resulting in a weighted adjacency graph. For an NDSM
with row index i and column index j, we denote elements by n; ;. For each row i we generate
a node labeled by i. Subsequently, each non-zero element 7; ; results in an undirected edge
with weight ; ; between nodes i and j. This results in a weighted adjacency graph where the
node labels are reordered using the heuristics Weighted Cuthill-McKee ordering and Sloan’s
ordering.

4.2.1 Weighted Cuthill-McKee ordering

The Cuthill-McKee (CM) ordering is a bandwidth reducing node ordering heuristic intro-
duced by Cuthill and McKee (1969). The standard algorithm places non-zero elements near
the diagonal to result in a matrix with a lower bandwidth. We introduce an adjustment to the
standard algorithm, such that it is able to differentiate between non-zero elements. Higher
valued elements are prioritized in being placed close to the diagonal over lower valued ele-
ments. We will refer to this algorithm as the weighted CM ordering, which is shown in
Algorithm 3. Lines 7 and 8 are an adjustment of the standard algorithm. As a convention, the
for-loop at line 2 selects sub-graphs in descending size.

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 709

4.2.2 Sloan'’s ordering

Sloan’s ordering is a profile and wavefront reducing node ordering heuristic introduced by
Sloan (1989). It places non-zero elements near the diagonal to result in a lower profile of the
matrix. In this paper the standard algorithm is not adjusted to be able to differentiate between
non-zero elements, although this is of interest for future work.

4.2.3 Weighted event span

We apply both ordering heuristics to the NDSM indicating related pairs of variables. This
results in two orders. Furthermore, we notice that reversing the order can sometimes lead to
significant differences in synthesis effort. Siminiceanu and Ciardo (2006) noticed that placing
variables that result in more costly operations towards the bottom of the BDD resulted in less
effort required in a similar application of BDDs. This resulted in the Weighted Event Span
(WES) metric. Furthermore, the WES has been extensively tested by Meijer and van de Pol
(2016), where a correlation is shown between peak BDD nodes, computation time, and the
WES for several types of decision diagrams applied to symbolic model checking. Given a
variable order, the WES is found by

2000 00 —xe) + 1
WES =2, x| IXIIE|)

eckE

where | X| and |E| respectively indicate the total number of variables and edges. x;(e) and
xp(e) are respectively the lowest- and highest variable index from the variables in 7, (X).
The first term in Eq. 5 increases as x;(e) is placed later in the variable order. The second term
increases the WES when x;(e) — xp,(e) is large.

To estimate which of the four orders (two orders resulting from two different ordering
heuristics and two reverse orders) should be used in synthesis, the WES is computed for
each of the orders. The order that has the lowest WES is used in synthesis. This results in
the proposed variable ordering heuristic, named DSM-based Cuthill-McKee-Sloan variable
ordering Heuristic, abbreviated to DCSH for ease of reference.

4.3 Experiments

In Lousberg et al. (2020), the efficiency of variable orders computed by DCSH was com-
pared to that of FORCE+SW. As mentioned in Section 3.4, in Lousberg et al. (2020) DCSH
used different variable relations than FORCE and SW. We repeat the same experiments of
Lousberg et al. (2020) here, using the same variable relations, as discussed above, for each
heuristic algorithm, albeit in different formats: DCSH using DSMs, and FORCE and SW
using adjacency graphs. Additionally, the experiments are now performed for all models in
Table 1, which is a larger set of models than was used in Lousberg et al. (2020).

For each model in Table 1, 10,000 random initial variable orders are generated. Each
of those orders, is ordered by FORCE+SW and DCSH (separately) and then synthesis is
performed using the computed order. We noticed it may be beneficial to apply FORCE+SW on
the order computed by DCSH, so essentially performing sequence DCSH+FORCE+SW. For
clarity, the different ways the variable orders are computed are shown schematically in Fig. 9.
We perform synthesis using each resulting variable order and measure the computational
effort. Besides the initial variable order and turning on the BDD measurements, other settings
in CIF were kept default in these experiments.

@ Springer

710 Discrete Event Dynamic Systems (2024) 34:689-732

_—
CM
~
reverse | —>
/ [revere | WES pes
lect order
. _, | selector l
FORCE+SW | —» (DCSH+FORCE+SW
order

initial
order
FORCE+SW | —> FORCESW
order

Fig.9 Computation of the variable orders

For each heuristic method, the minimal, mean, and maximal value are shown in Table 3, for
both peak used BDD nodes and BDD operation count. The same results are presented graph-
ically in Fig. 10. In that figure, the values are normalized to the mean value for FORCE+SW
for that model. E.g., a mean value of 0.8 (8 - 107!) for DCSH+FORCE+SW for some model,
indicates that for that model the mean computational effort of DCSH+FORCE+SW was 20%
lower than the mean computational effort of FORCE+SW.

Summarizing the results, for both peak used BDD nodes and BDD operation count, for
16 out of 17 models, the maximal computational effort was found when using FORCE+SW.
So, using FORCE+SW there is the likelihood to perform synthesis with relatively a really
high computational effort. Generally, using DCSH or DCSH+FORCE+SW, removes most
high-effort outliers: the maximal values are much lower. The mean of peak used BDD nodes
over the measurements is less for DCSH+FORCE+SW compared to DCSH in 12 out of 17
models. For BDD operation count this is the case for 10 out of 17 models. Also, the maximal
peak used BDD nodes using DCSH+FORCE+SW is less than the maximal peak used BDD
nodes using just DCSH for 13 out of 17 models. For BDD operation count this is the case
for 12 out of 17 models.

On average over all models, when using DCSH+FORCE+SW the peak used BDD nodes
increase by 5%, and the BDD operation count lowers by 14%, relative to FORCE+SW. Rel-
ative to DCSH, it realizes 8% less peak used BDD nodes and a 12% lower BDD operation
count. Even though DCSH+FORCE+SW realizes a slightly higher average amount of peak
used BDD nodes than FORCE+SW, it is very effective at avoiding the high effort computa-
tions. In conclusion, using DCSH+FORCE+SW generally the least computational effort is
required, and computations with relatively high computational effort are avoided. Therefore,
using DCSH+FORCE+SW is advisable over just applying FORCE+SW or DCSH.

Even though generally alower computational effort is achieved by using DCSH+FORCE+
SW relative to FORCE+SW, it is clearly not always the case. The Cat and Mouse
Tower (CMT) and Modified CMT model stand out, where the computational effort using
DCSH+FORCE+SW is roughly double that of FORCE+SW. Relative to the other models,
these models lack large automata but rather contain relatively many automata of smaller
size and relatively many events with a low level of synchronization between the automata.
These characteristics might be the cause of poorer performance of the suggested method.
However, it is generally very difficult to characterize and compare models in this manner.
Devising some way to predict what variable ordering heuristic may work well based on model
characteristics remains future work.

The time to run the discussed variable ordering heuristic algorithms is negligible relative
to the time to perform synthesis.

@ Springer

71

Discrete Event Dynamic Systems (2024) 34:689-732

401 - 0S°6 01 6€°T 01 L§°T 01 0T H01-1€T 01 7T o

401508 401 €€°6 401 * L0'8 LO1- 11T +01-60°C +01°20°C urw “s£s “p0s [[eg

01 8T’ 601 $T'1 401 - S0°S 0L LSS (01 - €€°¢ 01191 xeuw

oOT - 11T GO PT'T 01 - SP'T 01-91°S O1-61°S (01509 upaw

01§76 O1-9L'8 01 €0°6 01 -6y 01 -06F (0198 unu a1yaA “pm3 Iy

0106 01099 401 - S6'F H01 - 1€°T 01 Tr'T s01 - ¥SF xeuw

01 ¥5°8 01269 01 - LE'T ;01-81°C 401 -02°T 01 08T upaw

01 09°L 01 -98°C 01 €59 +01°60°C 01 €0°C 401 - €8°1 unu wiioj Juade B[y

;01 16°€ 401 S6°€ 501 S€°¢ 01T 01 - 8€Y Ol 1LY xew

JO1 - 1L°E 401 9L°€ 01 09°€ 01 -€T'p 0T pT°p (01 6L°€ o

401 TS°T 01 6LT 401 5T°T 01 -E'E 01-97°€ (01 -68°C urw L0} WM

0T SP'T 0T PP H01-S1°T 01688 01688 01 €0'T xew

H01 €71 01 THT SO1 b1 01158 01798 01888 ot

H01-TH1 401 651 S011€T 01 5€8 01208 01 €LL unu 1308 wIeMS

O1-11°T QO1-11°T (01 -8€C 0186 01 86°S 0186 xeuw

01-60C 01 60T 01 €7T 01 -88°¢ 01 -88°S 01 LS uraw

01-60C 01-60C 01-60C 0156 01586 01556 unu S0P WIEMS

0159 01 59p 201 -8%°S 01691 01691 01-0L1 xew

01-29% 01-29F 01 76F 201991 01991 01991 uvow

0109 01-09F 0109 01 68T 01651 01 68T unu 133e wremg
MS+IDUOI+HSOA HSOd MS+HDI0d MS+HDNO +HSOd HSOd MSHIDIO aweN

junod uonerado qag sopou Qg pasn yeod

SOTSLINAY SULIOPIO dqeLIeA s)nsal [ejuowitadxyg € ajqe]

pringer

Qs

Discrete Event Dynamic Systems (2024) 34:689-732

712

01881 L0168 ,01-€9°C G01 - S8'T 01 - S8'T 401 - 60T xew
0181 L0181 01111 01 - €8°1 01 €8°1 O1-TW'L ugaws
,L01-69'T ,01-69'T Q01 - TIE 01 - 18°T 01 - 18°1 +01-0T°C un IIND
01 -80°€ 01 6£T 01 L9°€ O1-01'8 OL-01'L (0186 xeuw
01-S1'T O1-€0T O1 €T (01 - 089 (01199 O1-TTL uaws
QO1-LLT O1-LLT 01081 01 -18°S (01 - 679 QO1-LL'S uru IS “ALID “APY
01 - 69°€ 01 -99°€ g01 - 8T'S Q01+ L0°S O1-1T°S 01-TT6 xew
01 - ¥S°€ 01 - sS°€ 0L -S6'1 0196 0196t 0166 uvow
01 - €€°€ 01 - €€°€ 401 - 168 Q0108 018 401 - €8°1 urw LIND ‘JIPOIN
401 - 60°S 01+ 0SS 01" 1€°S QoL €Tl QOL-0v'1 QO1-SL'8 xew
01 6T1 01881 01 °STT 401 - €L°€ 401 - 667 401 - SP'S o
L0159 Q1 11°1 L01-S0°S ;01 8LT 401 - 00°€ 401 - 65T urw 1199 "poid
901 69T 001 - 18T 01 1€T 01 - 81°T 01 61°T 401 - 81 xew
01 - 0P'T 001 ¥S°T 401 - 88°9 401 - 81°1 401 81°1 401851 uaw
401 °7TT 001 1€T 01 97T 01 - 81T 401 -81°1 PO~ LI'T ur 100 Jsm)
01-58T 01T O1-96'€ 01 - PET 01 81°1 401 S9'1 xeuw
01261 QO1-S1°T O01-00C +01-0T'T 40T 80T 401 ST'T ugow
Q01 LS'T Q01 LS'T 01651 (01 -8L°6 (01 6L'8 01 -69'L unu yoA yred owoy,
01 1€T LO1-TLT 01 -8C°C ;01 65T 01 - LST 01 1TS xew

MS+IDIOI+HSOA HSOd MS+IDUOT MS+HD904 +HSOd HSOd MSHIDUOT aweN

junoo uonerado qag

sopou (J(Ig posn Yeoq

panunuod ¢ ajqeL

pringer

Ns

713

Discrete Event Dynamic Systems (2024) 34:689-732

01 €61 01 -8¥'L 401 -81°9 01197 01 -18°€ Q01 -HL'9 xeuw
01 €T 01 0LT 01 %09 Ol 111 01691 QO 611 uvow
01 S€°1 01 - St'E O 111 01 LE'L 0191 01 0P'L urw $0]
001 SI'E 901 * LEE 01176 01 65°€ 401 - 29°€ ;01 $€8 xew
01 96T 01 - SI°E 401 * St'€ 01 T8¢ 401 - $S°€ 501 59°€ uvow
401 - 88°C 001" L6T 01" 6LT 401 - 8¢ 401 - 81°€ 01 PPE unu 0LSTd
01 " €L°6 01609 01 L0T 01T 01 €1'T 90190 xew
01 - $0'9 01081 01 €9'L 401 08°L QO1-TL'E ;01888 uraw
01 - 88'F 01" P16 901 - S8F 01 66'S 01 TTL 01 26°S unu a3pug
Q01T Q01 TH'1 401 °T6°S Q01 €L°T 01 €L 01 -68°L xew
01 0°S L01-50°S 01889 01908 401908 ;01106 uvaw
401 07’6 401 07’6 01 116 ;01 10°€ 401 10°€ SO0 $0°€ unu Ut yorw I
MS+IDYOI+HSOA HSOd MS+IDUO0d MS+ID¥0d +HSOd HSOd MSHIDIOL aweN
junod uonerado g sopou g pasn Jyead

panunuod ¢ ajqeL

pringer

Qs

714 Discrete Event Dynamic Systems (2024) 34:689-732

o

10
" A
N A
SE A 2 a A 4 - ‘m LA
< 100] n
QUM et W my e
¥s o
8 £
&5 ot
= v
v
102 I I I I I I I I I I I | I I I I
10
a A
Z= 0 A A
© 9 A A A u
EE A A » A” A, 4 AW B
=3 19°]]]] s u*]
Eg 10 hhwg‘.”‘ﬁ "J- fn Ty Ve 5y
o= *
o = w v
a g v v vv
2 g ¢! w
m £
v
10—2 1 | 1 I L 1 1 1 I L 1 1 1 | L | L
%‘é \\s% %e% ;\06“ go&“ eo‘ B \&46\‘ x0°\ cﬁ\ ()‘6 = @l\ (\6% (o%ﬁo \)00\“
&\w ey %@“ %\»‘5 \%0 o o Nt
S S ® ‘2) ‘\ Pé \;\\‘(\-
FORCE+SW ¥ min ® mean A max
DCSH ¥ min " mean 4 max
DCSH+FORCE+SW ¥ min ® mean 4 max

Fig. 10 Minimum, mean, and maximum computational effort for variable ordering heuristics, normalized to
mean computational effort for FORCE+SW

5 Edge order

As shown in Section 3.4, next to the variable order also the edge order has a significant impact
on the computational effort of synthesis. In the current implementation of CIF, there are six
options to set the edge order:

1. model: the order in which each edge appears when reading the model top-to-bottom;
. reverse-model: the reverse of ‘model’;

sorted: alphabetical sorting of the edges by their event label;

. reverse-sorted: the reverse of ‘sorted’;

. random: a random ordering (optionally with a seed);

. a manually specified order.

In this section, we compare the efficiency of the first five options. There are perhaps more
interesting approaches to ordering the edges, e.g., such as presented in Vahidi et al. (2006)
and Fei et al. (2014). These approaches however do not satisfy our self-imposed restriction
mentioned in Section 1 to investigate static (not on-the-fly) optimization. Yet, however simple
the static edge ordering heuristics may be, we will see in the following they can still produce

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 715

good results, and investigating which option to use is worthwhile, also in order to come up
with more meticulous heuristics in the future.

For each model in Table 1, synthesis is performed using model, reverse-model, sorted,
and reverse-sorted edge order. Also for 100 random edge orders synthesis is performed.
Following Section 4, DCSH+FORCE+SW is applied as variable ordering heuristic in these
experiments, using the variable relations as introduced in Section 4.2. Besides applying
DCSH+FORCE+SW, setting the edge order, and turning on BDD measurements, other set-
tings in CIF are kept default in these experiments. The results of these experiments are shown
in Table 4. For the random edge orders, the mean of the 100 measurements is shown. The
same results are shown graphically in Fig. 11. For model, reverse-model, sorted, and reverse-
sorted edge order, computational effort is displayed, normalized to the mean of using the 100
random edge orders. E.g., a value of 2 - 10~! indicates a 80% reduction in effort compared
to the random orders on average.

As was concluded in Section 3.4, the edge order has a smaller influence on the peak used
BDD nodes compared to BDD operation count. For most models the peak used BDD nodes
are similar for the different edge orders. However, for the Bridge and Waterway lock models,
using any edge order option other than random considerably reduces the peak memory usage,
with reductions up to 90%, compared to the mean of using random edge orders, for both
models. Overall, for peak used BDD nodes the average reduction by using any edge order
option other than random is 10%.

The edge order has a larger influence on the BDD operation count. Again, for the Bridge
and Waterway lock models the highest impacts are found, with a reduction up to 99% for the
Waterway lock model compared to the mean of using random edge orders. Overall, for BDD
operation count the average reduction by using any edge order option other than random is
22%.

Over all models, the best average reduction for BDD operation count is found using
reverse-model, with a average reduction of 29%. For model, sorted, and reverse-sorted these
average reductions are 16%, 22%, and 21% respectively. Also, reverse-model is the only
heuristic that performed the same or better than the averaged random edge orders for every
model. Therefore, usage of the reverse-model edge order is advisable over the other edge
ordering heuristics available in CIF.

We give a possible reason why model, reverse-model, sorted, and reverse-sorted generally
perform better than the random edge orders. In all models, the model is specified by a network
of automata. If an event is locally specified within an automaton, its name gets prefixed with
the automaton name (to avoid duplicate names). As aresult for these ordering heuristics, edges
thatare used in the same automata are placed next to each other in the edge order. It is likely that
edges specified in the same automaton, address similar variables in their guard and update
expressions. Therefore, calculations on the parts of the BDD representing these variables
are performed in close succession to each other. This means there is a higher likelihood
of comparable calculations still being in the cache if we perform calculations on the same
variables back-to-back. We refer back to Section 3.2: when a previous calculation is found
in the cache, that result is used, no computations on the BDD need to be performed, and the
BDD operation count is not incremented. So, iterating over edges in an order such that similar
calculations are performed back-to-back improves the efficiency of the cache mechanism,
therefore speeding up synthesis. This reasoning also may explain why the heuristics work
particularly well for the Bridge and Waterway Lock model. In these models, the automata
relevant to the same module are clustered into groups. These group names are also prefixed
to the automaton name for synthesis. As a consequence, automata that have high interaction

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732

716

0119 ,01-€€°€ 01°95°C ,01-8ST (01-0I'l L01-9SL ,01-99'8 L01-868 01 99'L (01" 8S'L Yoo
001" €8T o01°T6T GO1 " PLT o01-96T o0 S6C s01 67 01 6V'€E S0 6V'€ L0l 6v'E 01 6F€ 0LSHd
O 19T ,01-+1°T 01Ty g01-SS°S g01-20T 01T 0160 OL-ILT 401-0TL (O1-90°L a3pug
01-TLT ,01-91T L01°89T ,01-1§T ,01-SIT J01 €97 L0 €9 SO €97 LOL-€9% 01 €9F “uryoew Yy
01661 ,01-0L1 01297 ,01-18T ,01- 181 001281 01 -T8'1 o01-T8T 01 T8T 0178’1 LD
O1- LT O1-1LT O1-65T O ¥8T (01-S0T 01-86S (01 L09 01°96C (O1-L1'9 (O1-0T9 ISSE “ALIP “APY
Q1 S0 01 €9°€ Q01 T6€ g01-S9€ 01 $0F O1-$S'S 0166 O01-89S 0I-€6% O1-90°S LIND JIPON
QO LVT 01-8€E'1 Q01 €01 g01-0LT ¢01°L0T s01 €0L L01-€0°L s €0L 0L €0°L 401 €0°L 1199 poid
oOL-LTE 01 P¥T g01°8TE 0 14T 401 TSE LO0-8I'T 01811 LO0-81'T ,01-8I'T 01 8I'l 1001 191D
01°60T (01-80C O01°91'T 0L ¥6'1 01 0SS HO1-9T1T ,01-9T1 (O1-9T1 ,01-9TT ,01-LTT "yoayred sweyy
o01-LT8 01 -00'L g0l 68°€ 01 L¥'8 ,01- 0’1 s01-65T ,01-65°C J01-66T ,OL-65T ,01°65C sAs 108 [[eg
OT-60L O1-TE8 0L IST 01201 OL-€6'L Q01 LTS (01-1TS O1-06S (01-1TS (01-0TS "dwpa pms ny
01969 01698 O1-9€9 01-698 (O1-€S°L L01-6TT ,01-6§TT (01-6TT ,01-STT L01-6TC wuojjuae nmpy
J01- 08T ,01-€5C JO1 ELT L01-SST 401°6LT Ol 17E 01 1€ Ol IFE 01 IFE 01 1t'€E LI} WEMS
SO PET 01651 SO 60T 0L-TH T 401681 01688 01688 01688 01688 ;01 688 1308 wreMs
0160 (01-60T 0160 (01:60C (O1°60C 01-86'S 0186 01-86S 01-86S ;0186 ISNJo WIEMS
01097 Z01-09F 01097 01-09F% Z01-09F 01691 01691 01691 01-69T ;01691 135e wremg
P9LI0S 9SIQAY POLIOS [OPOW JSIIAY [OPOIN wopuey Po}IOS ASIOADY POLIOS [OPOW JSIOAY [OPOIN wopuey| oweN
junod uonexddo qag SOpOU ([(Ig Psn Yeod

SONSLINAY SULIOPIO JUAAD S)[nsal [ejuowiradxyg ¢ ajqel

pringer

as

Discrete Event Dynamic Systems (2024) 34:689-732 717

W 10'F ® o ® ® ® B W w W ® ¢ em ® e
e
s 3

“—
Q"U
[°
M N i
‘1‘810_1? I | | | 1 | I bl 1 hdld
0L o © o0
ghloé e .‘ o o.o. ° g % o ee o
S g F -
g8 | 1 .
-
gglol— °
ISR E °
O = r 8
a g [°
Qg -2 1 1 1 1 1 1 | 1 1 1 1 1 1 | 1 1 .\.
M 10

& S
o s**” o S o °“@\ 0 W o
e NS g W
e

® model ® reverse-model ® sorted ® reverse-sorted

Fig. 11 Computational effort reduction factor for edge order heuristics normalized to random

are both in close proximity inside the model, as well as when sorting alphabetically. So for
the edge ordering heuristics, related edges are also placed close to each other.

Also, we can reason why reverse-model generally has the best results. People generally
write down the automata in a way that logically follows the behavior from top-to-bottom.
For synthesis, the main computations are calculating the nonblocking and bad state predi-
cate through backward reachability searches, i.e., the behavior is followed backwards (from
the nonblocking or bad states). Evaluating an edge that does not lead to a currently found
nonblocking/bad state costs computational effort, but does not aid in further construction of
the nonblocking/bad state predicate. As a result, states are more efficiently found by eval-
uating edges in the reverse order of how they occur in the behavior, for which practically
reverse-model is a good approximation.

6 Efficiently enforcing requirements

Central to supervisory control theory, is the specification of behavioral requirements, and
enforcing those through supervisor synthesis. In CIF, requirements can be specified in three
ways:

1. requirement EFA: an EFA prescribing allowed behavior w.r.t a subset of the plant’s events.
These are converted to an LFA prior to synthesis as described for plant EFA in Section 2.1.

2. state exclusion expression: a predicate defining a condition that needs to hold in every
state of the controlled system.

3. state-event exclusion expression: a predicate defining a condition that needs to hold for
a particular event to occur. We use the notation ¢ = J for the state-event exclusion
expression that expresses that event o may only occur when predicate J holds.

@ Springer

718 Discrete Event Dynamic Systems (2024) 34:689-732

The latter two requirement types are discussed in Markovski et al. (2010). Even though
we define the safe states or states from which events are allowed to occur, we call these
‘exclusion’ requirements because they result in a restriction on the plant behavior.

Conversion of the requirements to their predicate-based counterparts is relatively straight-
forward, and specification of requirements, along with this conversion, is exemplified in
Example 3.

Example 3 We consider two traffic lights, each regulating traffic for their road at a two-way
intersection. The plant behavior can be modeled by two automata, given in Fig. 12. The
informal requirement is that the traffic lights should not be green at the same time, as this
may result in a collision. This requirement can be formalized by a requirement EFA, given
in Fig. 13. Alternatively, the requirement specification can be given by a state exclusion
expression (i.e., this is the syntax a modeler would use in CIF):

not(LightA.Green and LightB.Green),
which directly relates to a state exclusion predicate:
—(lgo = Green A lp = Green),

where, e.g., 14 is the location pointer variable for LightA that can take values Green and
Red.

As another option, the modeler may give two state-event exclusion expressions, specifying
that one light can only be turned green if the other light is red:

green_A needs LightB.Red
green_B needs LightA.Red,

these expressions, written in CIF syntax, can be directly converted to state-event exclusion
predicates:

green_A = lp = Red
green_B = 14 = Red

We will refer to the set of all state exclusion predicates as SX, and to the set of all state-
event exclusion predicates as EX. For simplicity, we will consider specifications that do
not contain any requirement EFA. Enforcing the requirements expressed by automata in
(symbolic) supervisor synthesis is well known (Ramadge and Wonham 1987; Flordal et al.
2007; Ouedraogo et al. 2011; Cassandras and Lafortune 2021).

Through general usage of CIF, it has been noticed empirically that the manner in which
the requirements are modeled can impact the efficiency of performing supervisor synthesis,
even if they represent the same informal requirement specification and the same controlled

green_A green_B
red_A red_B
(a) LightA. (b) LightB.

Fig. 12 Traffic lights plant automata

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 719

green_A green_B

red_A red_B

Fig. 13 Traffic lights requirement automaton

behavior is achieved. Notably, the usage of state exclusion expressions would lead to syntheses
that require high computational effort. Consequently, this type of requirement specification
was sometimes avoided when modeling larger systems. This can be observed in, e.g., the
Waterway lock model from Reijnen et al. (2017).

For the purpose of modeling ease and model clarity, in a number of cases it might be useful
to use state exclusion expressions. For the traffic lights in Example 3, the state exclusion
expression is arguably the most straightforward formalization of the informal requirement
specification. Ideally, the usage of state exclusion expressions would not be penalized by a
higher computational effort in synthesis. This introduces the problem statement discussed in
this section: How can state exclusion requirements be enforced (more) efficiently in symbolic
supervisor synthesis?

We discuss the current way requirements are enforced in CIF in Section 6.1. Then we
present our modified approach in Section 6.2. Experiments comparing both approaches are
presented in Section 6.3.

6.1 Current application of requirements

We first introduce the current way requirements are enforced during synthesis in CIF (before
the new algorithm we discuss in Section 6.2 was implemented).

In the synthesis algorithm (Algorithm 1), first requirements are applied by Algorithm 4.
In this algorithm, a safe state predicate P is computed by first taking the conjunction of
all state exclusion predicates. This predicate returns true only for states for which all state
exclusion predicates hold. Note that the empty conjunction is assumed true. Next, the state-
event exclusion predicates are enforced by computing a safe state predicate and safe edges in
Algorithm 5. When these requirements consider controllable events, the guard of each edge
labeled by that event can simply be strengthened by taking the conjunction with the predicate,
so that the event only occurs when the predicate holds. This is not possible for uncontrollable
events, because the supervisor is not able to disallow uncontrollable events from occurring
when they can occur in the plant. In that case, the safe state predicate is modified to exclude
states from which the event can take place (i.e., for some edge (o, g, u), labeled by the same
event o that the state-event exclusion predicates addresses, g evaluates to true), but the state-
event exclusion predicate does not hold (i.e., J evaluates to false). The predicate g —> J
specifies the states where the state-event exclusion requirement is adhered to. Finally, Xo A P
restricts the initial state predicate to the safe part>.

In the following we show that, when supervisor synthesis is performed using Algorithm 4
to apply the requirements, supervisor synthesis (Algorithm 1) computes the correctresult, i.e.,

5 Strictly speaking, calculating the initial state predicate here is not necessary, and only needs to be performed
at the end of synthesis (line 11 Algorithm 1). We already calculate Xy s here to simplify our proofs.

@ Springer

720 Discrete Event Dynamic Systems (2024) 34:689-732

Algorithm 4 applyRequirements.

Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX, edges E, initial state pred-
icate X

Output: Safe state predicate P, safe edges E, safe initial state predicate X

I P =Ajesx !

2: (P, E) = applyEventRequirements(P, E, EX)

3: Xo=XoAP

Algorithm 5 applyEventRequirements.

Input: State predicate P, edges E, state-event exclusion predicates EX
Output: Safe state predicate P, safe edges E
1: forall (o,g,u) € E, (6 = J) € EX

2: ifoeX,

3 g=gnJ

4: else

5: P=PA(g = J)
6: end if

7: end for

the maximally permissive, safe, controllable, and nonblocking supervisor. Our explanation
is structured as follows: We first define a safe state and safe LFA in Definition 1. We then
define when an LFA is minimally restricted in Definition 3, i.e., no more behavior is removed
from the LFA than strictly necessary so that the requirements are satisfied. We show that after
performing applyRequirements, we can induce an LFA that is both safe (Lemma 1)
and minimally restricted (Lemma 2) with respect to the requirements. Since Algorithm 1
follows the same structure as the synthesis algorithm in Ouedraogo et al. (2011), it is known
that after performing applyRequirements in line 1 of SS, the remaining lines (2-11)
compute the maximally permissive, controllable, and nonblocking supervisor (Theorem 3
in Quedraogo et al. (2011)), of the minimally restricted safe LFA. Therefore, we show in
Theorem 1 that Algorithm 1 computes the maximally permissive, safe, controllable, and
nonblocking supervisor.

Given a set of symbols X, let ®(X) be the set of functions ¢ (X), where a function ¢ (X)
assigns a value to each variable x € X, in the domain of x. We write a function ¢ (X) as a
predicate A\ ..y x = ¢(x). E.g., let’s say we have variables X = {s, 1}, where the domain of
s is {1, 2} and the domain of 7 is {3, 4}, then: ®(X) = {(s=1 A t=3), (s=1 At=4), (s=2 A
t=3), (s=2 A t=4)}. Given an LFA A} with symbols X, we refer to a function ¢ (X) as a
state of Ap. We may write ¢ and ® to refer to ¢ (X) and ®(X) respectively. For a predicate
P(X) we may write P(¢) to denote the valuation of P for state ¢.

We say there is a transition from ¢ € ® to ¢’ € @, if there is some edge (o, g, u) for which
g(®) A u(p, ¢’'). We say this transition is controllable or uncontrollable, when respectively
o€ X.0ro € Xy.

Definition 1 Given LFA A; = (X, 2, E, Xo, X), and requirements SX and EX, then a state
¢ € O is safe when:

e VI € SX : I(¢), and
e V(o,g,u) e E,(0 = J) e EX:g(¢p) = J(¢).

We call LFA Ay safe if all its reachable states are safe. Non-safe states or automata are
called unsafe.

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 721

Definition2 Given LFA A;, = (X, X, E, Xo, X;n), then restricted LFA Ap g, with
respect to predicate N, edges Eg, and safe initial states Xo s, is defined as Ap p =
(X, %, Esans X0,5, Xm), where Esoy = {(0,g(X) A Ix+[N(XT) A u(X, X)), u)|
(0,g,u) € Eg}.

Note that in Definition 2 the guards are restricted in the same manner as in line 9 of
Algorithm 1.

Definition 3 Given LFA A} = (X, X, E, X9, Xn), and requirements SX and EX, then after
performing (N, Es, Xo,s) = applyRequirements(SX, EX, E, X), restricted automa-
ton Ap g (wrt. Ap, N, Es, Xo,s) is minimally restricted w.r.t. A, SX, and EX when:

e all initial states in {¢p € ®|Xo(P) N —Xo,5(P)} are unsafe, and

e allrestricted transitions lead to an unsafe state, or they are disallowed by some state-event
exclusion predicate: N, ¢’ € ® : (Ao, g, u) € E : g(¢) Au(p, ¢') A Po, gs, us) €
Es:gs(@) Aus(e, d')) = (state ¢’ is unsafe or I(c = J) € EX : =J(p)).

Le. only unsafe initial states are removed, and all transitions that are removed directly lead
to an unsafe state or are disallowed by some state-event exclusion predicate.

Lemma 1 Given LFA A = (X, Z, E, Xo, X), and requirements SX and EX, then after per-
forming (N, Eg, Xo.5s) = applyRequirements(SX, EX, E, Xy), restricted automaton
AL,R = (X, X, Esun, XO,S7 Xm) (W.r.t. A, N, Eg, XO,S) is safe w.rt. Ar, SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5 that
V¢ € @, (0, g,u) € Eg, (0 = J) € EX, witho € 2. : g(¢p) = J(¢).

It directly follows from line 1 in Algorithm 4 that V¢ € &, 1 € SX : N(¢p) = ().

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that
Vo € @, (0,g,u) € Es, (0 = J) € EX,witho € . : N(¢) = (g(¢) = J(9)).
Therefore, all states in {¢p € ®|N(¢)} are safe.

From line 3 in Algorithm 4 we can conclude that all initial states {¢ € ®|X¢ s(¢)} are safe.
From the definition of Ay g, and specifically Es.y, we can conclude that only transitions to
safe states are possible. Therefore, Ay g is safe.]

Lemma2 Given LFA A = (X, X, E, Xo, X;n), and requirements SX and EX, then after
performing (N, Es, Xo.s) = applyRequirements(SX, EX, E, Xo), restricted automa-
ton A g = (X, Z, Esan, Xo.5, Xm) (wrt. Ap, N, Es, Xo.s) is minimally restricted w.r.t.
Ar, SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5 that V¢, ¢’ €
®: 3o, gu) €eE:0eZTAg@d)Aul@d)A@o =) e EX:—J(g) =
(o, gs,us) € Es : gs(P) A us(e,). Le., guards of controllable transitions in Eg are
not restricted from E when there is no state-event exclusion predicate that does not disallow
them.

It directly follows from line 1 in Algorithm 4 thatV¢p € @, 1 € SX : =1 (¢p) = —N(¢).

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that
Vo € @, (0, g,u) € {(0, g, u) € Eslo € £,}, (0 = J) € EX : ~(g(¢) —> J($) —>
— N (¢). Therefore, all states in {¢p € ®|—~N(¢)} are unsafe.

From the definition of Ay, g, and specifically Es.y, we can conclude that only transitions
in Eg to unsafe states are restricted.

@ Springer

722 Discrete Event Dynamic Systems (2024) 34:689-732

Also, since all states {¢p € ®|—=N(¢p)} are unsafe, it follows that all states in {¢p €
®|Xo(¢) A =X 5(¢p)} are unsafe. O

Theorem 1 The supervisor obtained by Algorithm 1 is a maximally permissive, safe, con-
trollable, and nonblocking supervisor for automaton Ay, and requirements SX and EX.

Proof Note that during the repeat-until loop in Algorithm 1, for all states ¢ € &, if at the
start of the loop =N (¢), then because BRS is restricted by N, after line 4 =N (¢) still holds.
Also after lines 5 and 6 =N (¢) still holds, because BRS has =N (¢) as a start predicate, and
only the disjunction with other predicates is taken when computing B, except for conjunction
with true. So after line 5, we know that B(¢) holds, so after line 6 =N (¢) still holds. In other
words, as shown in Lemma 2, all states ¢ € ® for which =N (¢) after line 1 of Algorithm 1 are
unsafe, and these will remain unsafe (/bad/blocking) states during the fixpoint computation.
Note also that in the restriction of Definition 2, the edges are restricted in the same manner
as in in line 9 of Algorithm 1.

It is shown in Theorem 3 in Ouedraogo et al. (2011) that lines 2-11 compute a maximally
permissive, controllable, and nonblocking supervisor. This is a maximally permissive, con-
trollable, and nonblocking supervisor, for the LFA that is safe (Lemma 1), and minimally
restricted (Lemma 2). It follows that Algorithm 1 computes a maximally permissive, safe,
controllable, and nonblocking supervisor for automaton Az, and requirements SX and EX. O

6.2 Efficient application of requirements

As stated above, it has been found empirically that synthesis on models containing state
exclusion expressions was inefficient. The problem is that, when there are many state exclu-
sion expressions, the BDD describing the safe state predicate can become quite large. This
predicate is the starting point for the nonblocking predicate, which is continuously updated
during synthesis. It is beneficial to keep the BDD representing this predicate as small as
possible, to have low computational effort for synthesis.

Because synthesis on models containing state exclusion expressions was inefficient, they
are sometimes manually converted to state-event exclusion expressions. From practice it has
been found that this can solve the inefficiency problem. This is because the requirements are
encoded into the guards of the edges, rather than into the nonblocking predicate. Therefore,
we seek our solution in the same direction: we enforce state exclusion requirements in the
same manner as state-event exclusion requirements. This is done in Algorithm 6.

In Algorithm 6, for each state exclusion predicate / and each edge (o, g, u), a predicate
J is constructed that expresses the states from which the edge can be performed such that /
holds after executing the edge. In the controlled behavior, the edge can only be performed
from the states indicated by g A I, because states where I does not hold are not reached by a
safe supervisor. In all cases that the edge can be performed, J must hold so that a safe state
is reached. In line 5 it is checked whether there are any states for which this does not hold. If
that is the case, the respective edge is restricted in the same way as for state-event exclusion
predicates, note that lines 6-10 in Algorithm 6 are the same as lines 2-6 in Algorithm 5. So, if
the edge is labeled by a controllable event, the guard is restricted by J. If the edge is labeled
by an uncontrollable event, the safe state predicate is restricted so that it only describes
states where if the edge can occur, a state is reached where I holds. After enforcing all state
exclusion requirements for all edges, the state-event exclusion requirements are applied in
the same way as in Algorithm 4, by using Algorithm 5. Finally, the initial state predicate is

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 723

modified so that all state exclusion predicates hold in the initial state. Thus, the system starts
in a safe state, and does not leave the safe states as a result of the restricted guards.

We show in Example 4 how the state exclusion predicate given in Example 3 is enforced
by Algorithm 6.

Example 4 This is a continuation of Example 3, where a traffic light system was modeled,
and requirements were specified for that model. We consider the state exclusion predicate:

—(lgo = Green A lp = Green),

We consider the LightA turning green. In this case there is only one edge labeled with this
event, being: edge egn = (green_A,ly = Red, ZX = Green A l; = Ilp). Computing J as in
line 4 of Algorithm 6, provides the following predicate:

J =3x+[(lg = Red N ZX = Green N l; =Ilg A —|(1X = Green A1}, = Green)]
= 1[4 = Red N —(Ip = Green)
o = Red Nl = Red

Next, we compute the (g NI = J) as in line 5:
la = Red N —(lg = Green N lgp = Green) —> l4 = Red ANlp = Red
=ly =Red —> l4 = Red Nlp = Red
=y = Red — Ip = Red
We can see that this does not equal true, i.e., there are states from which edge eg can be

taken such that the state exclusion predicate does not hold afterwards.
Because green_A is a controllable event, its guard g 4 is restricted as follows:

ga=1I1a=Red Nly = Red Nlp = Red
=[q4 = Red Nlp = Red

Similarly, repeating the same steps for edge e, p that models LightB turning green, would
result in the following restricted guard gp:

g =1p = Red Nlp = Red

Algorithm 6 applyRequirementsEfficient.

Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX, edges E, initial states X
Output: Safe state predicate P, safe edges E, safe initial states X

1: P = true

2: forall I € SX

3: forall (o,g,u) € E

4 T =3+ [8X) AuX, X ALXT)]

5: if (@Al = J) # true
6.

7

8

ifo e X,
g=8gnNJ

else
9: P=PA(g = J)
10: end if
11: end if
12: end for
13: end for

14: (P, E) = applyEventRequirements(P, E, EX)
15: Xo=Xo AP A Njesx I

@ Springer

724 Discrete Event Dynamic Systems (2024) 34:689-732

One can verify that these guards computed by Algorithm 6 restrict the behavior in the
same way as the state-event exclusion predicates provided in Example 3.

In Algorithm 1, we can substitute line 1 with the following line, to apply the introduced
efficient enforcement of the requirements:

1: (N, Es, Xo.s) =applyRequirementsEfficient(SX, EX, E, Xo)

We will refer to Algorithm 1 with line 1 substituted as above as SS .

Same as in Section 6.1, we show that SS’ computes the maximally permissive, safe, con-
trollable, and nonblocking supervisor in Theorem 2. We do so by first showing that the induced
restricted LFA (by Definition 2) after performing applyRequirementsEfficient is
both safe (Lemma 3) and minimally restricted (Lemma 4) with respect to the requirements.

Lemma3 Given LFA A; = (X, X, E, Xo, X;n), and requirements SX and EX, then
after performing (N, Es, Xo,s) = applyRequirementsEfficient(SX, EX, E, Xo),
restricted automaton Ay g = (X, 2, Esan, Xo,s. Xm) (Wrt. A, N, Eg, Xo.s) is safe w.r.t.
Ar, SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5 that V¢ €
®, (0,g,u) € Eg, (0 = J) € EX,witho € . : g(¢) = J(¢). For all uncontrollable
transitions, it directly follows from line 5 in Algorithm 5 that V¢ € ®, (o, g, u) € Es, (0 =
J) € EX,witho € £, : N(¢) = (g(¢) = J(¢)). So, in the restricted automaton
the state-event exclusion predicates are satisfied for all transitions originating from a state
¢ € ® where N (¢) holds.

For all controllable transitions, it directly follows from line 7 in Algorithm 6 that V¢, ¢’ €
®, (0,g,u) € Eg,witho € ., 1 € SX : g(¢p) Au(p,d) AN () = g(d) Au(d, d') A
1(¢’). For all uncontrollable transitions, it directly follows from line 9 in Algorithm 6 that
Vo,¢' € ®,(0,g,u) € Es,witho € Z,,1 € SX : N(¢p) = (g(¢) Au(p,¢’) —
1(¢")). So, in the restricted automaton there are no transitions to a state that does not satisfy
some state exclusion predicate.

Since for all states in {¢p € P|N(¢)} it is implied that no uncontrollable transition
can be performed that does not satisfy a state-event exclusion predicate, all states in
{¢p € OIN(P) \jesx I(@)} are safe. From line 15 in Algorithm 6 we can conclude that
all initial states in {¢ € ®|X(s(¢)} are safe. Since A g only has safe initial states, and can
only transition to safe states, Ay g is safe.]

Lemma4 Given LFA A; = (X, X, E, Xo, Xin), and requirements SX and EX, then
after performing (N, Es, X0, 5) = applyRequirementsEfficient(SX, EX, E, Xo),
restricted automaton Aj, g = (X, X, Esan, Xo.s. Xm) (w.rt. AL, N, Eg, Xo,s) is minimally
restricted w.rt. Ay, SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5 and line 7 in
Algorithm 6 that V¢, ¢’ € ® : (A(0, g, u) € E:0 € e Ag(d) Au(p, ¢) A Blo = J) €
EX : ~J($) A (Bl € SX : =1(¢)) = 3o, gs,us) € Es : gs(¢) Aus(p,d). Le.,
guards of controllable transitions in Eg are not restricted from E when there is no state-event
exclusion predicate that does not disallow them, and there is no state exclusion predicate that
is not satisfied in the target state.

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that
Vo € D, (0, g,u) € {(0, g, u) € Eslo € £,}, (0 = J) € EX : ~(g(¢) — J($) —>
=N (¢). For all uncontrollable transitions, it directly follows from line 9 in Algorithm 6

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 725

that V¢ € @, (o,g,u) € {(0,g,u) € Eglo € Z,},1 € SX : = (g(p) N [(¢p) —
g@®) Au(gp,) ANI(¢)) = —N(¢'). Therefore, all states in {¢p € ©|—N(¢)} are unsafe.
From the definition of A, g, and specifically Es.y, we can conclude that only transitions in
E s to unsafe states are restricted.

Also, since all states {¢p € P|—N(¢)} are unsafe, it follows that all states in {¢p €
D|Xo(p) A —Xo,5(¢)} are unsafe.]

Theorem 2 The supervisor obtained by Algorithm 1 is a maximally permissive, safe, con-
trollable, and nonblocking supervisor for automaton Ay, and requirements SX and EX.

Proof The same proof as in Theorem 1 applies here. O

The authors note that not necessarily the supervisor LFAs computed by SS and SS’ are
the same. When applyRequirements is used, the guards of all edges are restricted such
that they can never reach an unsafe state, also if the edge originates from another unsafe
state. Since it is assumed in applyRequirementsEfficient that unsafe states are
never reached, the guards of the edges from unsafe states are not necessarily restricted such
that they can never reach another unsafe state. Regardless, the behavior under control of the
supervisor, that only reaches safe states, is the same.

6.3 Experiments

Here we compare the computational effort of SS and SS . In the set of benchmark models
(Table 1), there are three models that use state exclusion expressions, which are: Lithography
machine initialization, Cat and mouse tower (with 3 levels, 2 cats, and 2 mice), and Modified
cat and mouse tower (with 3 levels, and at most 1 cat or 1 mouse per room). As the suggested
approach only influences synthesis of these models, experiments are only performed for these
models. The lithography machine initialization model contains 51 state exclusion expressions.
Both cat and mouse tower models contain 15 state exclusion expressions. More details on
these models can be found in Thuijsman et al. (2021).

For each model, synthesis is performed using default CIF settings, other than: DCSH+
FORCE+SW is applied (as a result of Section 4) using the variable relations as introduced in
Section 4.2, edge order is set to reverse-model (as a result of Section 5), and BDD measure-
ments are turned on. The results of these experiments are shown in Table 5. For all models the
efficient approach (Algorithm 6) requires less computational effort than the current approach
(Algorithm 4). Generally, there is a small decrease in peak used BDD nodes, which is reduced
by 8% on average. The computational benefit for BDD operation count is more significant.
For these models, the BDD operation counts were decreased by 64% on average. Note that

Table 5 Experimental results efficiently enforcing requirements

Peak used BDD nodes BDD operation count
Name SS SS’ SS SS’
Lithography machine initialization 4.63-10* 4.17 -10* 1.68 - 107 5.88 - 10°
Cat and mouse tower 1.82-10° 1.81- 100 1.67 - 107 1.09 - 107
Modified cat and mouse tower 5.68-10° 4.92.10° 3.92- 108 2.83- 107

@ Springer

726 Discrete Event Dynamic Systems (2024) 34:689-732

the suggested method is not necessarily always more efficient than the current method. Nev-
ertheless, these experiments suggest that using applyRequirementsEfficient rather
than applyRequirements is beneficial.

To provide further discussion on the influence of applyRequirements and apply
RequirementsEfficient on the computational effort, we study the evolution of the
BDD during synthesis for the two methods. For Lithography machine initialization, the BDD
evolution during synthesis is displayed in Fig. 14. One can validate that the peak used BDD
nodes and final BDD operation count are indeed lower when SS’ is applied instead of
SS (and match the values in Table 5). Performing applyRequirementsEfficient
actually requires more BDD operations than performing applyRequirements (i.e., only
performing line 1 of SS’ and SS, not yet the remainder). Respectively, these algorithms
are finished after 9.5 - 103 and 1.8 - 10° BDD operations. So, SS* starts later on its fixpoint
computation (lines 2-7 in Algorithm 1) than SS. However, this computation is less costly
in SS’, because the state exclusion predicates do not appear directly in the nonblocking
predicate, which is the case for SS. At this point, the additional computational effort that
was invested when applying the predicates is “won back” (and more) by SS', leading to a
lower computational effort overall. The peak that is observed at the end of both syntheses in
Fig. 14 is a result of restricting the guards (lines 8-10 in Algorithm 1).

The efficiency of applyRequirementsEfficient likely depends on the number
of edges labeled by controllable/uncontrollable events in the system. When there are many
edges labeled by an uncontrollable event, the state exclusion requirements are still encoded
in the nonblocking predicate. Unfortunately, at the moment we do not have any more models
containing state exclusion expressions to use for further experimentation. In part, this is
because they were previously avoided because of their inefficient application in synthesis.

7 Conclusion

The computational effort of symbolic supervisor synthesis can be expressed using peak used
BDD nodes and BDD operation count. Unlike wall clock time and peak random access

x 10

Used BDD nodes [-]

0 1 1 | 1 1
0 2 4 6 8 10 12 14 16 18

BDD operation count|[-] x10°

Fig. 14 BDD evolution for SS and SS’ of Lithography machine initialization

@ Springer

Discrete Event Dynamic Systems (2024) 34:689-732 727

memory, these BDD-based metrics are platform independent, deterministic, and include no
overhead in their measurement. BDD-based metrics can be used to analyze, and improve,
the efficiency of the synthesis algorithm. In this paper we showcase this approach by: intro-
ducing and analyzing DCSH, a variable ordering heuristic; analyzing several edge ordering
heuristics; and introducing and analyzing an approach to efficiently enforce state exclusion
requirements in synthesis. It is shown that:

1. Even though using DCSH+FORCE+SW on average requires 5% more peak used BDD
nodes than FORCE+SW, it on average realizes a 14% lower BDD operation count
and for 16 out of 17 models it resulted in both a lower maximal measured peak used
BDD nodes and BDD operation count. Therefore, by applying DCSH+FORCE+SW as
variable ordering heuristic, performing synthesis with high computational effort can be
avoided, and generally low computational effort is required, relative to using just DCSH
or FORCE+SW.

2. Using reverse-model edge order realizes relatively low synthesis effort, averaging 10%
lower peak used BDD nodes and a 29% lower BDD operation count than using random
edge orders.

3. State exclusion requirements can efficiently be enforced by restricting edge guards prior
to synthesis. On average, this method reduces the peak used BDD nodes by 8% and BDD
operation count by 64%, relative to the conventional method.

These methods are implemented in the ESCET toolkit, and therefore available to all those
who wish to use them. Experiments like presented in this paper help in selecting what
methods or settings should be used by default. For instance, starting from ESCET release
v0.9, DCSH+FORCE+SW is applied by default.

From the experimental results it becomes clear that generally there are no one-size-fits-
all solutions. What works for one model, does not necessarily work for another model.
Unfortunately it is hard to predict when this is the case. A small change in the synthesis input,
e.g., the variable order, can have a huge influence on the synthesis effort. This means that
methods need to be thoroughly validated, which we do in this work. Nevertheless, these huge
variances in effort also indicate how much improvement can be made. Scalability is a major
factor in the industrial acceptance of supervisory control theory. This makes it worthwhile
to investigate techniques like the ones discussed in this paper, to be able to keep tackling the
engineering of supervisory controllers for larger and more complex systems with supervisor
synthesis.

Future work

As (industrial) systems generally become more and more complex, the computational effi-
ciency of symbolic supervisor synthesis should continuously be improved in the future. With
respect to static ordering of variables or edges, more heuristics can be investigated, and their
efficiency together with, or compared to, the heuristics discussed in this paper can be ana-
lyzed. Furthermore, dynamic reordering during synthesis could bring additional benefits, e.g.,
as considered in Panda et al. (1994) or Ranjan et al. (1995) for dynamic variable reordering
and in Vahidi et al. (2006) for dynamic selection of edges. Also, other synthesis settings that
directly influence the computational efficiency, such as the size of the BDD operation cache,
can be evaluated and improved using BDD-based metrics. Finally, since certain methods
perform well for some models, but poorly for others, it can be investigated whether these
cases can be recognized prior to performing synthesis, to make a selection of methods that
are likely to perform well.

@ Springer

728 Discrete Event Dynamic Systems (2024) 34:689-732

Acknowledgements The authors thank all Eclipse ESCET committers and contributors for their efforts in the
development of the toolkit.

Funding Research leading to these results has received funding from the EU ECSEL Joint Undertaking
under grant agreement n® 826452 (project Arrowhead Tools) and from the partners national programs/funding
authorities.

This research is partly carried out as part of the Poka Yoka program under the responsibility of TNO-ESI
in cooperation with ASML and VDL-ETG. The research activities are partly supported by the Netherlands
Ministry of Economic Affairs and Climate Policy and TKI-HTSM.

Data Availability All experiments in this paper are performed using ESCET release v0.9, which is available
here: https://eclipse.dev/escet/v0.9/. The models are available bundled in ESCET under “CIF Benchmarks”,
see https://eclipse.dev/escet/cif/examples.html on how to obtain them. The files and scripts to run the same
experiments as presented in this paper are available here: https://github.com/sbthuijsman/reduce_effort.

Declarations

Conflicts of Interest The authors have no conflict of interest to declare that are relevant to this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akers SB (1978) Binary decision diagrams. Trans Comp 27(6):509-516. https://doi.org/10.1109/tc.1978.
1675141

Aloul FA, Markov IL, Sakallah KA (2003) FORCE: a fast and easy-to-implement variable-ordering heuristic.
In: Proceedings of the 13th ACM Great Lakes Symposium on VLSI. ACM Press, pp 116—11. https://doi.
org/10.1145/764808.764839

Aziz A, Tasiran S, Brayton RK (1994) BDD variable ordering for interacting finite state machines. In: Pro-
ceedings of the 31st annual conference on design automation. ACM Press, pp 283-288. https://doi.org/
10.1145/196244.196379

Browning T (2016) Design structure matrix extensions and innovations: a survey and new opportunities. Trans
Eng Manage 63(1):27-52. https://doi.org/10.1109/tem.2015.2491283

Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput Surv
24(3):293-31. https://doi.org/10.1145/136035.136043

Burch JR, Clarke EM, Long DE et al (1994) Symbolic model checking for sequential circuit verification. Trans
Comp-Aided Design of Integ Circ Syst 13(4):401-42. https://doi.org/10.1109/43.275352

Cabodi G, Camurati PE, Quer S (1999) Improving the efficiency of BDD-based operators by means of parti-
tioning. Trans Comp-Aided Design of Integ Circ Syst 18(5):545-55. https://doi.org/10.1109/43.759068

Cai K, Wonham W (2014) New results on supervisor localization, with case studies. Disc Event Dyna Syst
25:203-226. https://doi.org/10.1007/s10626-014-0194-6

Cassandras CG, Lafortune S (2021) Introduction to Discrete Event Systems, 3rd edn. Springer Nature Switzer-
land https://doi.org/10.1007/978-3-030-72274-6

Cengié G, Akesson K (2008) A control software development method using IEC 61499 function blocks,
simulation and formal verification. In: Proceedings of the 20th IFAC World congress. Elsevier BV, pp
22-27. https://doi.org/10.3182/20080706-5-kr-1001.00003

Chaki S, Gurfinkel A (2018) BDD-based symbolic model checking. In: Handbook of model checking. Springer
International Publishing, p 219-245. https://doi.org/10.1007/978-3-319-10575-8_8

@ Springer

https://eclipse.dev/escet/v0.9/
https://eclipse.dev/escet/cif/examples.html
https://github.com/sbthuijsman/reduce_effort
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/tc.1978.1675141
https://doi.org/10.1109/tc.1978.1675141
https://doi.org/10.1145/764808.764839
https://doi.org/10.1145/764808.764839
https://doi.org/10.1145/196244.196379
https://doi.org/10.1145/196244.196379
https://doi.org/10.1109/tem.2015.2491283
https://doi.org/10.1145/136035.136043
https://doi.org/10.1109/43.275352
https://doi.org/10.1109/43.759068
https://doi.org/10.1007/s10626-014-0194-6
https://doi.org/10.1007/978-3-030-72274-6
https://doi.org/10.3182/20080706-5-kr-1001.00003
https://doi.org/10.1007/978-3-319-10575-8_8

Discrete Event Dynamic Systems (2024) 34:689-732 729

Ciardo G, Siminiceanu R (2002) Using edge-valued decision diagrams for symbolic generation of shortest
paths. In: Formal methods in computer-aided design. Springer Berlin Heidelberg, pp 256-273. https://
doi.org/10.1007/3-540-36126-x_16

Cuthill EH, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the
1969 24th national conference. ACM Press, pp 157-172. https://doi.org/10.1145/800195.805928

Fei Z, Miremadi S, Akesson K et al (2013) Symbolic state-space exploration and guard generation in supervi-
sory control theory. In: Communications in computer and information science, vol 271. Springer Berlin
Heidelberg, pp 161-175. https://doi.org/10.1007/978-3-642-29966-7_11

Fei Z, Miremadi S, Akesson K et al (2014) Efficient symbolic supervisor synthesis for extended finite automata.
Trans Contr Syst Tech 22(6):2368-2375. https://doi.org/10.1109/tcst.2014.2303134

Feng L, Cai K, Wonham W (2008) A structural approach to the non-blocking supervisory control of discrete-
event systems. The Int J Adv Manu Tech 41(11-12):1152-1168. https://doi.org/10.1007/s00170-008-
1555-9

Flordal H, Malik R, Fabian M et al (2007) Compositional synthesis of maximally permissive supervisors
using supervision equivalence. Disc Event Dyna Syst 17(4):475-504. https://doi.org/10.1007/s10626-
007-0018-z

Fokkink WIJ, Goorden MA, Hendriks D et al (2023) Eclipse ESCET™: the eclipse supervisory control engi-
neering toolkit. In: Tools and algorithms for the construction and analysis of systems. Springer, p 44-52.
https://doi.org/10.1007/978-3-031-30820-8_6

Forschelen STJ, van de Mortel-Fronczak JM, Su R et al (2012) Application of supervisory control theory to
theme park vehicles. Discr Event Dyna Syst 22(4):511-540. https://doi.org/10.1007/s10626-012-0130-
6

Goorden MA, van de Mortel-Fronczak J, Reniers MA et al (2020) Structuring multilevel discrete-event systems
with dependence structure matrices. Trans Auto Contr 65(4):1625-1639. https://doi.org/10.1109/tac.
2019.2928119

Knuth DE (1976) Big omicron and big omega and big theta. ACM SIGACT News 8(2):18-24. https://doi.org/
10.1145/1008328.1008329

Korssen T, Dolk V, van de Mortel-Fronczak JM et al (2018) Systematic model-based design and implementation
of supervisors for advanced driver assistance systems. Trans Intel Trans Syst 19(2):533-544. https://doi.
org/10.1109/tits.2017.2776354

Lee CY (1959) Representation of switching circuits by binary-decision programs. The Bell Syst Tech J
38(4):985-999. https://doi.org/10.1002/j.1538-7305.1959.tb01585.x

Loose R, van der Sanden BJ, Reniers MA et al (2018) Component-wise supervisory controller synthesis in a
client/server architecture. In: Proceedings of the 14th IFAC workshop on discrete event systems. Elsevier
BV, pp 381-387. https://doi.org/10.1016/j.ifacol.2018.06.329

Lopes YK, Trenkwalder SM, Leal AB et al (2016) Supervisory control theory applied to swarm robotics.
Swarm Intell 10(1):65-97. https://doi.org/10.1007/s11721-016-0119-0

Lousberg SAJ, Thuijsman SB, Reniers MA (2020) DSM-based variable ordering heuristic for reduced compu-
tational effort of symbolic supervisor synthesis. In: Proceedings of the 15th IFAC workshop on discrete
event systems. Elsevier BV, pp 429-436. https://doi.org/10.1016/j.ifacol.2021.04.058

Ma C, Wonham W (2006) Nonblocking supervisory control of state tree structures. Transactions on Automatic
Control 51(5):782—793. https://doi.org/10.1109/tac.2006.875030

Ma C, Wonham W (2008) STSLib and its application to two benchmarks. In: Proceedings of the 9th inter-
national workshop on discrete event systems. IEEE, pp 119-124. https://doi.org/10.1109/wodes.2008.
4605932

Malik R, Akesson K, Flordal H et al (2017) Supremica—an efficient tool for large-scale discrete event systems.
In: Proceedings of the 20th IFAC world congress. Elsevier BV, pp 5794-5799. https://doi.org/10.1016/
j.ifacol.2017.08.427

Markovski J, van Beek DA, Theunissen RIM et al (2010) A state-based framework for supervisory control
synthesis and verification. In: Proceedings of the 49th IEEE conference on decision and control. IEEE,
pp 3481-3486. https://doi.org/10.1109/cdc.2010.5717095

Meijer J, van de Pol JC (2016) Bandwidth and wavefront reduction for static variable ordering in symbolic
reachability analysis. In: Proceedings of the 8th NASA formal methods symposium. Springer Interna-
tional Publishing, p 255-271. https://doi.org/10.1007/978-3-319-40648-0_20

Meinel C, Theobald T (1998) Algorithms and Data Structures in VLSI Design. Springer, Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-58940-9

Minato S (1996) Binary Decision Diagrams and Applications for VLSI CAD. Springer, US. https://doi.org/
10.1007/978-1-4613-1303-8

Minato S (2001) Zero-suppressed BDDs and their applications. Int J Softw Tools Technol Transfer 3(2):156—
170. https://doi.org/10.1007/s100090100038

@ Springer

https://doi.org/10.1007/3-540-36126-x_16
https://doi.org/10.1007/3-540-36126-x_16
https://doi.org/10.1145/800195.805928
https://doi.org/10.1007/978-3-642-29966-7_11
https://doi.org/10.1109/tcst.2014.2303134
https://doi.org/10.1007/s00170-008-1555-9
https://doi.org/10.1007/s00170-008-1555-9
https://doi.org/10.1007/s10626-007-0018-z
https://doi.org/10.1007/s10626-007-0018-z
https://doi.org/10.1007/978-3-031-30820-8_6
https://doi.org/10.1007/s10626-012-0130-6
https://doi.org/10.1007/s10626-012-0130-6
https://doi.org/10.1109/tac.2019.2928119
https://doi.org/10.1109/tac.2019.2928119
https://doi.org/10.1145/1008328.1008329
https://doi.org/10.1145/1008328.1008329
https://doi.org/10.1109/tits.2017.2776354
https://doi.org/10.1109/tits.2017.2776354
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://doi.org/10.1016/j.ifacol.2018.06.329
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1016/j.ifacol.2021.04.058
https://doi.org/10.1109/tac.2006.875030
https://doi.org/10.1109/wodes.2008.4605932
https://doi.org/10.1109/wodes.2008.4605932
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1016/j.ifacol.2017.08.427
https://doi.org/10.1109/cdc.2010.5717095
https://doi.org/10.1007/978-3-319-40648-0_20
https://doi.org/10.1007/978-3-642-58940-9
https://doi.org/10.1007/978-1-4613-1303-8
https://doi.org/10.1007/978-1-4613-1303-8
https://doi.org/10.1007/s100090100038

730 Discrete Event Dynamic Systems (2024) 34:689-732

Miremadi S, Lennartson B, Akesson K (2012) A BDD-based approach for modeling plant and supervisor
by extended finite automata. Trans Control Syst Technol 20(6):1421-1435. https://doi.org/10.1109/tcst.
2011.2167150

Miremadi S, Lennartson B (2016) Symbolic on-the-fly synthesis in supervisory control theory. Trans Control
Syst Technol 24(5):1705-1716. https://doi.org/10.1109/tcst.2015.2508978

Montgomery DC, Runger GC (2018) Applied Statistics and Probability for Engineers, 7th edn. John
Wiley & Sons, Inc., https://www.wiley.com/en-us/Applied+Statistics+and+Probability+for+Engineers
%2C+7th+Edition-p-9781119400363

Nadales Agut D, Reniers M (2011) Linearization of CIF through SOS. Electron Proceed Theoretical Comp
Sci 64:74-88. https://doi.org/10.4204/eptcs.64.6

Ouedraogo L, Kumar R, Malik R et al (2011) Nonblocking and safe control of discrete-event systems modeled
as extended finite automata. Trans Automat Sci Eng 8(3):560-569. https://doi.org/10.1109/tase.2011.
2124457

Panda S, Somenzi F, Plessier BF (1994) Symmetry detection and dynamic variable ordering of decision
diagrams. In: Proceedings of the 1994 IEEE/ACM international conference on computer-aided design.
IEEE, p 628-631. https://doi.org/10.5555/191326.191598

Ramadge PJ, Wonham W (1987) Supervisory control of a class of discrete event processes. SIAM J Control
Optim 25(1):206-230. https://doi.org/10.1137/0325013

Ramadge PJ, Wonham W (1989) The control of discrete event systems. Proc IEEE 77(1):81-98. https://doi.
org/10.1109/5.21072

Ranjan RK, Aziz A, Brayton RK et al (1995) Efficient BDD algorithms for FSM synthesis and verification. In:
International workshop on logic and synthesis, https://is.ifmo.ru/research/_efficient_bdd_algorithms_
for_fsm_synthesis_and_verification.pdf

Reijnen FFH, Goorden MA, van de Mortel-Fronczak JM et al (2017) Supervisory control synthesis for a
waterway lock. In: Proceedings of the 2017 IEEE conference on control technology and applications.
IEEE, pp 1562-156. https://doi.org/10.1109/ccta.2017.8062679

Reijnen FFH, Goorden MA, van de Mortel-Fronczak JM et al (2018a) Application of dependency structure
matrices and multilevel synthesis to a production line. In: Proceedings of the 2018 IEEE conference on
control technology and applications. IEEE, pp 458-464. https://doi.org/10.1109/ccta.2018.8511449

Reijnen FFH, Reniers MA, van de Mortel-Fronczak JM et al (2018b) Structured synthesis of fault-tolerant
supervisory controllers. In: Proceedings 10th IFAC symposium on fault detection, Supervision and Safety
for Technical Processes. Elsevier BV, pp 894-901. https://doi.org/10.1016/j.ifacol.2018.09.681

Reijnen FFH, Goorden MA, van de Mortel-Fronczak JM et al (2020) Modeling for supervisor synthesis —
a lock-bridge combination case study. Disc Event Dyna Syst 30(3):499-532. https://doi.org/10.1007/
$10626-020-00314-0

Reniers MA, van de Mortel-Fronczak JM (2018) An engineering perspective on model-based design of super-
visors. Proceedings of the 14th IFAC Workshop on Discrete Event Systems 51(7):257-264. https://doi.
org/10.1016/j.ifacol.2018.06.310

Siminiceanu R, Ciardo G (2006) New metrics for static variable ordering in decision diagrams. In: Tools and
algorithms for the construction and analysis of systems. Springer Berlin Heidelberg, pp 90-104. https://
doi.org/10.1007/11691372_6

Skéldstam M, Akesson K, Fabian M (2007) Modeling of discrete event systems using finite automata with
variables. In: Proceedings of the 46th IEEE conference on decision and control. IEEE, pp 3387-3392.
https://doi.org/10.1109/cdc.2007.4434894

Sloan SW (1989) A FORTRAN program for profile and wavefront reduction. Int J Numer Meth Eng
28(11):2651-2679. https://doi.org/10.1002/nme. 1620281111

Somenzi F (1999) Binary decision diagrams. In: The VLSI handbook. CRC Press, pp 680—-694. https://doi.
org/10.1201/9781420049671-29

Song R, Leduc RJ (2006) Symbolic synthesis and verification of hierarchical interface-based supervisory
control. In: Proceedings of the 8th IFAC workshop on discrete event systems. IEEE, pp 419-426. https://
doi.org/10.1109/wodes.2006.382510

SuR, van Schuppen JH, Rooda JE (2010) Aggregative synthesis of distributed supervisors based on automaton
abstraction. Trans Automat Control 55(7):1627-164. https://doi.org/10.1109/tac.2010.2042342

Theunissen RIM, Petreczky M, Schiffelers RRH et al (2014) Application of supervisory control synthesis to
a patient support table of a magnetic resonance imaging scanner. Trans Automat Sci Eng 11(1):20-32.
https://doi.org/10.1109/tase.2013.2279692

Thuijsman SB, Hendriks D, Theunissen RJM et al (2019) Computational effort of BDD-based supervisor
synthesis of extended finite automata. In: Proceedings of the IEEE 15th international conference on
automation science and engineering. IEEE, pp 486—493. https://doi.org/10.1109/coase.2019.8843327

@ Springer

https://doi.org/10.1109/tcst.2011.2167150
https://doi.org/10.1109/tcst.2011.2167150
https://doi.org/10.1109/tcst.2015.2508978
https://www.wiley.com/en-us/Applied+Statistics+and+Probability+for+Engineers%2C+7th+Edition-p-9781119400363
https://www.wiley.com/en-us/Applied+Statistics+and+Probability+for+Engineers%2C+7th+Edition-p-9781119400363
https://doi.org/10.4204/eptcs.64.6
https://doi.org/10.1109/tase.2011.2124457
https://doi.org/10.1109/tase.2011.2124457
https://doi.org/10.5555/191326.191598
https://doi.org/10.1137/0325013
https://doi.org/10.1109/5.21072
https://doi.org/10.1109/5.21072
https://is.ifmo.ru/research/_efficient_bdd_algorithms_for_fsm_synthesis_and_verification.pdf
https://is.ifmo.ru/research/_efficient_bdd_algorithms_for_fsm_synthesis_and_verification.pdf
https://doi.org/10.1109/ccta.2017.8062679
https://doi.org/10.1109/ccta.2018.8511449
https://doi.org/10.1016/j.ifacol.2018.09.681
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1007/s10626-020-00314-0
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1016/j.ifacol.2018.06.310
https://doi.org/10.1007/11691372_6
https://doi.org/10.1007/11691372_6
https://doi.org/10.1109/cdc.2007.4434894
https://doi.org/10.1002/nme.1620281111
https://doi.org/10.1201/9781420049671-29
https://doi.org/10.1201/9781420049671-29
https://doi.org/10.1109/wodes.2006.382510
https://doi.org/10.1109/wodes.2006.382510
https://doi.org/10.1109/tac.2010.2042342
https://doi.org/10.1109/tase.2013.2279692
https://doi.org/10.1109/coase.2019.8843327

Discrete Event Dynamic Systems (2024) 34:689-732 731

Thuijsman SB, Reniers MA, Hendriks D (2021) Efficiently enforcing mutual state exclusion requirements in
symbolic supervisor synthesis. In: Proceedings of the IEEE 17th international conference on automation
science and engineering. IEEE, pp 777-783. https://doi.org/10.1109/case49439.2021.9551593

Vahidi A, Fabian M, Lennartson B (2006) Efficient supervisory synthesis of large systems. Control Eng Pract
14(10):1157-1167. https://doi.org/10.1016/j.conengprac.2006.02.013

Vos Z (2020) Efficient supervisor synthesis for feature models. Master’s thesis, Eindhoven Univer-
sity of Technology, https://research.tue.nl/en/studentTheses/initialization-and-termination-of-flexible-
manufacturing-systems

van Beek DA, Fokkink WJ, Hendriks D et al (2014) CIF 3: model-based engineering of supervisory controllers.
In: Tools and algorithms for the construction and analysis of systems. Springer Berlin Heidelberg, p 575—
580. https://doi.org/10.1007/978-3-642-54862-8_48

Wonham W, Cai K, Rudie K (2018) Supervisory control of discrete-event systems: a brief history. Annu Rev
Control 45:250-256. https://doi.org/10.1016/j.arcontrol.2018.03.002

Wonham W, Cai K (2019) Supervisory Control of Discrete-Event Systems. Springer Int Publish. https://doi.
org/10.1007/978-3-319-77452-7

Ziller R, Schneider K (2003) Reducing complexity of supervisor synthesis. Proceedings of the 2nd IFAC
Conference on Control Systems Design pp 183—191. https://doi.org/10.1016/s1474-6670(17)34666-9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Sander Thuijsman has received his BSc, MSc, and PhD degree at
the Mechanical Engineering department at Eindhoven University of
Technology. His research interests are discrete-event systems, super-
visory controller synthesis, system configuration and evolution, and
computational efficiency. Currently he is bringing model-driven engi-
neering principles into practice at Cordis. The Cordis SUITE is a
low-code cross-platform solution specialized in creating or replacing
machine-control software, based on graphical engineering. (photo-
graph by Angeline Swinkels).

Dennis Hendriks is a Senior Research Fellow at TNO-ESI, a Dutch
applied research center. He also has a part-time position at the depart-
ment of Software Science at the Radboud University in the Nether-
lands. He works with both industry and academia, bringing them
together to address the complexity challenges of the high-tech indus-
try. In his applied research, he makes academic formal methods ready
for industrial use. His work focuses mostly on Synthesis-Based Engi-
neering of supervisory controllers.

@ Springer

https://doi.org/10.1109/case49439.2021.9551593
https://doi.org/10.1016/j.conengprac.2006.02.013
https://research.tue.nl/en/studentTheses/initialization-and-termination-of-flexible-manufacturing-systems
https://research.tue.nl/en/studentTheses/initialization-and-termination-of-flexible-manufacturing-systems
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1016/j.arcontrol.2018.03.002
https://doi.org/10.1007/978-3-319-77452-7
https://doi.org/10.1007/978-3-319-77452-7
https://doi.org/10.1016/s1474-6670(17)34666-9

732

Discrete Event Dynamic Systems (2024) 34:689-732

systems.

Dr. Reniers is currently acting as an Associate Editor for “Automata”, an Associate Editor for “Dis-
crete Event Dynamic Systems” and an Associate Editor for the “IEEE Open Journal of Control Systems”.
He received the best paper award of ACSD 2018 and in 2022 the “Norbert Giambiasi Award for Conceptual
Modeling Excellence”. (photograph by Angeline Swinkels)

@ Springer

Michel Reniers is currently an Associate Professor in model-based
engineering of supervisory control at the Department of Mechanical
Engineering at TU/e. He received both his MSc and PhD degrees in
computer science form Eindhoven University of Technology in 1995
and 1999 respectively. Previously he was a postdoc at CWI (National
research institute for mathematics and computer science in the Nether-
lands), and an Assistant Professor at both the Department of Math-
ematics and Computer Science and the Department of Mechanical
Engineering of Eindhoven University of Technology. Dr. Reniers is
coauthor of the book “Process algebra : equational theories of commu-
nicating processes” published by Cambridge University Press in 2010.
He published over 200 journal and conference papers. His research
portfolio ranges from model-based systems engineering and model-
based validation and testing to novel approaches for supervisory con-
trol synthesis and discrete-event systems. Applications of this work
are mostly in the areas of cyber-physical systems and manufacturing

	Reducing the computational effort of symbolic supervisor synthesis
	Abstract
	1 Introduction
	Related work

	2 Symbolic supervisor synthesis
	2.1 Automata
	2.2 Symbolic supervisor synthesis
	2.3 Binary decision diagrams
	2.4 CIF

	3 Evaluating computational effort in symbolic supervisor synthesis
	3.1 Peak used BDD nodes
	3.2 BDD operation count
	3.3 Relevance of metrics
	3.4 Impact of variable- and edge order on computational effort

	4 DCSH variable ordering heuristic
	4.1 Transition relation, variable order, and computational effort
	4.2 Dependency structure matrix reordering
	4.2.1 Weighted Cuthill-McKee ordering
	4.2.2 Sloan's ordering
	4.2.3 Weighted event span

	4.3 Experiments

	5 Edge order
	6 Efficiently enforcing requirements
	6.1 Current application of requirements
	6.2 Efficient application of requirements
	6.3 Experiments

	7 Conclusion
	Future work

	Acknowledgements
	References

