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Abstract
Supervisor synthesis is a means to algorithmically derive a supervisory controller from a
discrete-event model of a system and a requirements specification. For large systems, syn-
thesis suffers from state space explosion. To mitigate this, synthesis can be applied to a
symbolic representation of themodels byusingBinaryDecisionDiagrams (BDDs). Peakused
BDD nodes and BDD operation count are introduced as deterministic and platform indepen-
dent metrics to express the computational effort of a symbolic synthesis. These BDD-based
metrics are useful to analyze the efficiency of the synthesis algorithm. From this analysis,
modifications can be made to how BDDs are handled during synthesis, improving synthesis
efficiency. We demonstrate this approach by introducing and analyzing: DCSH, a variable
ordering heuristic; several edge ordering heuristics; and an approach to efficiently enforce
state exclusion requirements in synthesis. These methods were recently implemented in our
open source supervisory control tool: Eclipse ESCET. The analysis is based on large scale
experiments of performing synthesis on a variety of models from literature.We show that: (1)
by using DCSH, synthesis with high computational effort can be avoided, and generally low
computational effort is required, relative to the variable ordering heuristics that were used
prior to this work; (2) applying reverse-model edge order realizes relatively low synthesis
effort; and (3) state exclusion requirements can efficiently be enforced by restricting edge
guards prior to synthesis. While these methods reduce computational effort in practice, it
should be noted that they do not affect the theoretical (worst-case) complexity of synthesis.
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1 Introduction

Supervisory control theory (Ramadge and Wonham 1987, 1989) is a model-based approach
to control cyber-physical systems. Given a plant (a model that defines all possible system
behavior) and a requirements specification (a model that defines what behavior is allowed), a
supervisor can be computed algorithmically (synthesized) that restricts the plant’s behavior
so that it is in accordance with the requirements specification. Depending on the synthesis
algorithm, the supervised system has some useful properties by construction, such as safety,
nonblockingness, controllability, and maximal permissiveness. There are a number of formal
modeling frameworks to which supervisory control theory can be applied. The framework
of extended finite automata (EFAs) (Sköldstam et al. 2007) is an extension to finite state
automata that augments them with variables, guard expressions and updates, which enables
more convenient modeling of systems.

The power of supervisory control theory has been demonstrated in literature. There are
many examples where it is applied to controller design. We refer to Table 1 further down this
paper for a selection. Despite the advantages of supervisory control theory, and demonstra-
tion thereof in case studies, industrial acceptance is scarce. Wonham et al. (2018) point to the
state space explosion as one of the barriers to industrial acceptance. Technically, all possible
combinations of states of components in the system must be taken into account. Therefore,
adding a small component to the model might induce a large increase to the total system
state space. A way to mitigate state space explosion, is by representing the system model
using binary decision diagrams (BDDs) (Akers 1978; Lee 1959), and performing supervisor

Table 1 Benchmark models

Name Worst case state space size

Robotic swarm aggregation (Lopes et al. 2016) 1.0 · 100
Robotic swarm clustering (Lopes et al. 2016) 1.0 · 100
Robotic swarm segregation (Lopes et al. 2016) 6.4 · 101
Robotic swarm formation (Lopes et al. 2016) 8.0 · 101
Multi agent formation (Cai and Wonham 2014) 1.0 · 103
Automatic guided vehicles (Wonham and Cai 2019) 3.1 · 103
Ball sorting system (Čengić and Åkesson 2008) 7.4 · 104
Theme park vehicles (Forschelen et al. 2012) 2.9 · 105
Cluster tool (Su et al. 2010) 2.7 · 108
Production cell (Feng et al. 2008) 7.5 · 108
Modified cat and mouse tower (n=3,
k=1)

(Thuijsman et al. 2021) 1.1 · 109

Advanced driver assistance system (Korssen et al. 2018) 3.4 · 109
Cat and mouse tower (n=3, k=2) (Ma and Wonham 2008) 2.1 · 1014
Lithography machine initialization (Vos 2020) 1.8 · 1016
Bridge (Reijnen et al. 2018b) 2.8 · 1027
FESTO production line (Reijnen et al. 2018a) 1.3 · 1028
Waterway lock (Reijnen et al. 2017) 6.0 · 1032
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synthesis on this symbolic representation (Ma and Wonham 2006; Vahidi et al. 2006; Mire-
madi et al. 2012). This approach is considered state of the art to handle industrial-sized
systems (Malik et al. 2017).

Symbolic supervisor synthesis has been shown to be able to deal with large-scale sys-
tems. For instance, monolithic synthesis was successfully performed for a system where the
uncontrolled system and supervised system respectively had 2.3 · 1057 and 4.5 · 1034 states
by Reijnen et al. (2020), which are much larger state spaces than non-symbolic monolithic
synthesis could handle. However, as we will also show in this paper, the amount of time
and memory required for symbolic synthesis is majorly impacted by the settings the algo-
rithm is initiated with, and different ways the algorithm can be applied (Vahidi et al. 2006;
Thuijsman et al. 2019). It is of practical benefit to optimize the application of the algorithm
to minimize time and memory required to perform synthesis (of large-scale systems). Such
optimization is difficult, as what techniques are beneficial is often case dependent, and even
frequently counter-intuitive, since a BDD representing a small amount of states may require
many more BDD nodes than a BDD representing a much larger amount of states (Ciardo
and Siminiceanu 2002). Sufficient experimentation and validation is required to judge the
efficiency of a method.

A tool that can be used to perform symbolic supervisor synthesis is CIF (van Beek
et al. 2014). CIF is part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse
ESCET™)1 since 2020 (Fokkink et al. 2023). As a result of this open source project, the
intensity of the development of the CIF tool has recently greatly increased. Among the many
developments that have been made, are implementations of recently proposed methods that
aim to improve the computational efficiency of symbolic supervisor synthesis, such as the
BDD variable ordering heuristic algorithm from Lousberg et al. (2020) and efficient enforce-
ment of state exclusion requirements from Thuijsman et al. (2021). These methods were
previously only available in local proof-of-concept implementations.

This paper is an extension to Thuijsman et al. (2019); Lousberg et al. (2020); and Thui-
jsman et al. (2021). Those papers contain many results of elaborate experiments. Because,
as mentioned, many developments have taken place for the CIF tool, we re-perform and re-
evaluate the results from Thuijsman et al. (2019); Lousberg et al. (2020); and Thuijsman et al.
(2021). We use the BDD-based metrics of Thuijsman et al. (2019) to measure the computa-
tional effort of performing symbolic supervisor synthesis. We re-evaluate the impact of the
variable order heuristic of Lousberg et al. (2020) and the requirement enforcement of Thui-
jsman et al. (2021) on the computational effort, now that they are implemented and available
to all users. For further validation, the experiments are performed on a larger set of models.
Additionally, we make all models publicly available, so that our experiments are repeatable2.
In further extension to Thuijsman et al. (2019); Lousberg et al. (2020); and Thuijsman et al.
(2021), we investigate various (simple) heuristics for edge ordering to improve synthesis
efficiency. We also evaluate how these methods perform together, e.g., the edge ordering
heuristics are evaluated using the variable ordering heuristic we introduce. Furthermore, this
paper contains a proof of correctness of the efficient requirement enforcement method, that
was not given in Thuijsman et al. (2021). Finally, in this paper the methods are presented in
a more unified way.

1 The ESCET toolkit and documentation is open source and freely available at https://eclipse.dev/escet/.
’Eclipse’, ’Eclipse ESCET’ and ’ESCET’ are trademarks of Eclipse Foundation, Inc.
2 All experiments in this paper are performed using ESCET release v0.9, available here: https://eclipse.dev/
escet/v0.9/. The models are available bundled in ESCET under “CIF Benchmarks”, see https://eclipse.dev/
escet/cif/examples.html. The files to run the same experiments as presented in this paper are available here:
https://github.com/sbthuijsman/reduce_effort.
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The authors note that there are many ways in which improvements can be made on
computational efficiency of symbolic supervisor synthesis. Evidently, we restrict ourselves
to a few options in this paper in order to keep this study contained. The methods that we
evaluate have the following in common, they are:

• monolithic approaches: supervisor synthesis is not divided into multiple sub-problems;
• non-restrictive to the input model: the method can be used for synthesis of any plant and
requirement specification that CIF supports synthesis of;

• “under the hood”: the user does not have to supply additional parameters or modify their
model;

• static: in the sense that optimization is performed only at a single stage, and not on-the-fly
(dynamically) during/throughout synthesis.

All of the effort reducing methods we present in this paper are heuristic algorithms.
For none of them, it can be proven or shown that definitely the computational effort will
be reduced by applying them. Therefore, we present extensive experimental evaluations of
these methods. The experiments are performed on a large scale: running all experiments
sequentially would require several years.

In brief, this paper contains the following contributions:

• Introduction of BDD-based metrics to measure computational effort, and comparison of
those to conventional metrics, such as time and memory usage or state space sizes, in
Section 3.

• Introduction of the DCSH variable ordering heuristic, and comparison of its performance
to order variable ordering heuristcs, in Section 4.

• Evaluation and comparison of various edge ordering heuristics to reduce computational
effort, in Section 5.

• Introduction of amethod to efficiently enforce requirements in synthesis, and comparison
to the conventional approach, in Section 6.

Related work

The foundations of symbolic supervisor synthesis are discussed in Ma and Wonham (2006).
Symbolic supervisor synthesis for (sets of) EFAs is discussed in Ouedraogo et al. (2011) and
Fei et al. (2014). InZiller andSchneider (2003) a supervisor synthesis algorithm is constructed
that is based onμ-calculus, and a BDD-based implementation is made. In Vahidi et al. (2006)
partitioning and ordering of the transition relation to efficiently performBDD-based synthesis
is investigated. This partitioning, aswell as how supervisor guards can efficiently be generated
for such a partitioning, is inspected in Fei et al. (2013). A symbolic synthesis approach
using hierarchichal decomposition is presented in Song and Leduc (2006). In Miremadi and
Lennartson (2016) an efficient synthesis algorithm is introduced that is based on forward
reachability rather than backward reachability to avoid unnecessary exploration of states, of
which also a BDD-based implementation is evaluated.

Efficient symbolic state space exploration is also a well-studied topic in the field of model
checking. An overview of concepts and techniques for BDD-based model checking is pro-
vided in Chaki and Gurfinkel (2018). A BDD-based algorithm for computation tree logic
model checking is introduced in Burch et al. (1994). Several variable ordering heuristics for
state space exploration of interacting finite state machines are evaluated in Aziz et al. (1994).
In Cabodi et al. (1999) the efficiency of BDD-based operators is improved by partitioning
the BDDs. Zero-supressed BDDs are used in Minato (2001) to reduce computational effort
of symbolic model checking in some applications.
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The authors are not aware of existing works that study variable ordering heuristics
specifically for supervisor synthesis, static edge ordering heuristics for supervisor synthesis
(although dynamic edge ordering is investigated in Vahidi et al. (2006) and Fei et al. (2014)),
or efficient enforcement of state-based requirements.

2 Symbolic supervisor synthesis

In this section we first introduce EFAs and their linearized version that can be symbolically
encoded.Next,wediscuss symbolic supervisor synthesis. Following, the encodingof a system
in BDDs is considered. Finally, we introduce the relevant parts of the tool CIF, which we use
for symbolic supervisor synthesis.

2.1 Automata

We consider an EFA A defined as 8-tuple:

A = (L, V , �, T , L0, V0(V ), Lm, Vm(V )),

where L is a finite set of locations, V is a finite set of discrete variables (each with a finite
domain), and� is a finite set of events, usually called alphabet. The alphabet is split into two
disjoint subsets:�c and�u , representing controllable and uncontrollable events respectively.
L0 ⊆ L is a set of possible initial locations, V0(V ) is an expression indicating possible initial
values of all variables inV , Lm ⊆ L is the set ofmarked locations, andVm(V ) is an expression
indicatingmarked values for variablesV . T is a set of transitionswhere a transition t is defined
as 5-tuple: t = (lo, lt , σ, γ, υ), where lo and lt are the origin and target location in L , σ is an
event in �, γ is a guard expression, indicating for which variable values the transition can
take place, and υ is an update expression that indicates new values for the variables after the
transition has occurred. If for some transition an update is not specified for some variable,
then its value remains the same when taking the transition. If a guard is not specified, then it
is assumed ‘true’.

Essentially, locations can be modeled as variables, which we call location pointer vari-
ables, and transitions between locations can be modeled as guards and updates. Furthermore,
expressions stated in an EFA can be encoded in (Boolean) predicates, that return true or false
for a particular evaluation of variable values. Therefore, to simplify our explanations, and
also stay consistent with the implementation of symbolic supervisor synthesis in CIF, we
consider Linearized Finite Automata (LFAs). We will shortly introduce them here, for more
details on the linearization of EFAs we refer to Nadales Agut and Reniers (2011). An LFA
is defined as a 5-tuple:

AL = (X , �, E, X0(X), Xm(X)),

in which X is a finite set of variables (which may contain a location pointer variable).
A state is defined by a valuation over these variables. � is the alphabet. X0 and Xm are
predicates over variables from X that respectively represent the initial and marked states.
Note that for a predicate P(X) we may simply write P when it is clear from the context
that it is a predicate over variables X . E is the set of edges, with edge e defined as triple:
e = (σ, g(X), u(X , X+)), where σ is an event, g is a guard predicate, expressing from what
states the event may occur, and u is an update predicate over current state variables X and
new state variables X+ = {x+|x ∈ X}, representing what state will be reached when the
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edge is taken from a particular current state. I.e., for each variable x , we use variable x+ to
indicate the value of x after an event occurs. We assume X ∩ X+ = ∅.

Example 1 We consider the EFA of Fig. 1. This EFA consists of two locations L={l0, l1} of
which l1 is marked: Lm={l1}, as indicated in Fig. 1 by a double circle. The initial location
L0 = {l0} is indicated by the dangling incoming arrow. We have two Boolean variables
named a and b. Both variables are initially set to false, as indicated by the expression next
to the dangling incoming arrow, i.e., V0(V ) = ¬a ∧ ¬b. Events a_on and b_on can occur
at l0, the value of a and b will then respectively update to true. These updates are denoted
in Fig. 1 by the keyword ‘do’. An edge with event label continue can be taken from origin
location l0 to target location l1. This can only happen if the guard a=b evaluates to true. The
guard is denoted by the keyword ‘when’. All variable values are considered to be marked,
i.e., Vm(V ) = true.

The same model can be expressed as an LFA as follows: The set of variables is {ls, a, b},
where ls is the location pointer variable with domain {l0, l1}, used to encode the current
location. The initial state predicate is ls=l0 ∧¬a ∧¬b. The marked state predicate is ls=l1.
There are three edges:

(a_on , ls=l0 , l+s =l0 ∧ a+ ∧ b+=b);

(b_on , ls=l0 , l+s =l0 ∧ a+=a ∧ b+); and

(continue , ls=l0 ∧ a=b , l+s =l1 ∧ a+=a ∧ b+=b).

2.2 Symbolic supervisor synthesis

The purpose of applying supervisor synthesis is to generate a supervisor automaton such that
the parallel composition between the plant automaton and supervisor is safe, nonblocking,
controllable, andmaximally permissive (Cassandras andLafortune 2021). Safemeans that the
requirements are always satisfied. How requirements are specified, and what it exactly means
to satisfy them, is discussed in more detail in Section 6. Nonblocking indicates that from
every reachable state in the controlled system, a marked state can be reached. Controllable
means that from every reachable state in the controlled system, when the plant can execute
an uncontrollable event, this event can also be executed in the parallel composition between

Fig. 1 Example EFA
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supervisor and plant. In other words, the supervisor does not disallow any uncontrollable
events. Maximal permissiveness says that these properties are ensured without disabling any
events that do not strictly need to be disallowed.

In Algorithm 1 a supervisor synthesis algorithm is presented. This synthesis algorithm
is strongly based on the algorithm introduced by Ouedraogo et al. (2011), simpli-
fied by using an LFA instead of an EFA. We will shortly introduce it here, for more
details we refer to Ouedraogo et al. (2011). In line 1 the requirements are applied by
using algorithm applyRequirements. We study the application of requirements in
more detail in Section 6. For this preliminary section, it is only relevant to know that
applyRequirements returns a predicate N that defines all states where the requirements
are satisfied, a set of edges ES which is the set of plant edges E with restricted guards of the
controllable events such that the requirements are satisfied, and a predicate X0,S defining the
initial states that satisfy the requirements, i.e., the initial states that are safe3.

After applying the requirements, predicate N might still allow blocking states (states
that cannot reach a marked state). Algorithm 1 iteratively calculates nonblocking states N ,
followed by bad states B. The calculation to obtain N and B is done by means of a backward
reachability search, given in Algorithm 2. The algorithm loops over the edges, as defined in
the edge order, discussed later in more detail. The bad states are removed from N , which
may induce other states to become blocking. Therefore, the algorithm repeats these steps
until a fixpoint is reached, i.e., no further bad states get removed. Next, the guards of the
controllable edges are modified such that the edge is only taken when a nonblocking state
will be reached. Here, notation N (X+) denotes predicate N (X) in which each current state
variable x ∈ X is substituted by its new state counterpart x+. Finally, the supervisor LFA is
constructed.

Algorithm 1 SS (Supervisor Synthesis).
Input: Plant LFA AL = (X , �, E, X0, Xm ), state exclusion predicates SX, state-event exclusion predicates

EX
Output: Supervisor LFA S
1: (N , ES , X0,S) = applyRequirements(SX,EX, E, X0)
2: repeat
3: N ′ = N
4: N = BRS(N , ES , Xm )

5: B = BRS(true, {(σ, g, u) ∈ E |σ ∈ �u},¬N )

6: N = N ∧ ¬B
7: until N = N ′
8: for all (σ, g, u) ∈ ES with σ ∈ �c
9: g(X) = g(X) ∧ ∃X+[N (X+) ∧ u(X , X+)]
10: end
11: S = (X , �, ES , X0,S ∧ N , Xm ∧ N )

2.3 Binary decision diagrams

A Binary Decision Diagram (BDD) (Akers 1978) is a data structure that is used to represent
Boolean functions and predicates, and can be used to represent and perform calculations on
an LFA. BDDs are directed acyclic graphs that consist out of two types of nodes: decision-
and terminal nodes. Each decision node is labeled by a Boolean variable b and has two edges

3 In case of multiple initial states, it is assumed that the supervisor can restrict in which of those states the
system can start.
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Algorithm 2 BRS (Backward Reachability Search).
Input: Restriction predicate PR(X), edges E , start predicate P(X)

Output: Coreachable predicate P ′(X)

1: repeat
2: P ′(X) = P(X)

3: P(X) = PR(X) ∧ (P(X) ∨ ∨
(σ,g,u)∈E ∃X+[P(X+) ∧ g(X) ∧ u(X , X+)])

4: until P(X) = P ′(X)

leading to child nodes, one edge labeled true and the other false. When evaluating b to true
or false we take the respective edge. At the leaves of the BDD are terminal nodes, that are
labeled by true or false, indicating the final result of evaluating the BDD.

When referring to BDDs in this paper, we implicitly always mean reduced ordered BDDs
(Bryant 1992). This type of BDD imposes some additional restrictions such that the BDD is
minimal in the number of decision nodes and canonical for a given order of the variables.
This order is strictly imposed over all the variables in the BDD and is called the variable
order. A variable order is denoted as <, where b1 < b2 indicates that decision node b1 is
placed closer to the root node than b2.

The variable order can influence the number of decision nodes required to encode a
Boolean expression, see Fig. 2 for an example. Visually, we represent true edges by solid
lines and false edges by dashed lines. The size of a BDD is defined by the number of decision
nodes and in worst-case this size can be exponential in the number of Boolean variables
(Bryant 1992).

In our work, when we mention variable order, we refer to an order of the LFA variables,
which corresponds to an order of Boolean variables in the BDD. How an ordering of LFA
variables relates to an ordering of BDD variables is shown in Example 2.

Example 2 We consider an LFA with integer variables y and z. De domains of y and z
respectively are {0, 1, 2} and {0, 1}. Variable y can be encoded using two Boolean variables:
by,0 and by,1; variable z requires a single Boolean variable bz,0. As for every current state
variable, there is a new state variable: there is an integer y+ corresponding to Boolean
variables by+,0 and by+,1, and integer z+ corresponding to Boolean variable bz+,0. Let us
assume the LFA variables are ordered by y < z. This then corresponds to the following

Fig. 2 Two BDDs representing (a ∧ b) ∨ (c ∧ d) for different variable orders
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variable order of the Boolean variables: by,0 < by+,0 < by,1 < by+,1 < bz,0 < bz+,0. So, in
the order of Boolean variables, a Boolean variable corresponding to a current state variable
is always immediately succeeded by the respective Boolean variable corresponding to the
new state variable (using default settings in CIF).

2.4 CIF

There are several tools that allow modeling of plants and requirements with the ability to
synthesize a supervisor. Of the tools considered in Reniers and van de Mortel-Fronczak
(2018), the tools Supremica (Malik et al. 2017) and CIF (van Beek et al. 2014) allow for the
use of EFAs and base their supervisor synthesis algorithm on the use of BDDs. In this paper
synthesis is performed using the supervisor synthesis tool for EFAs of CIF. CIF has been
used to synthesize supervisors for industrial sized systems (Theunissen et al. 2014; Reijnen
et al. 2017, 2018a; Loose et al. 2018; Korssen et al. 2018; Reijnen et al. 2020).

CIF is part of the ESCETproject, an Eclipse open-source project since 2020 (Fokkink et al.
2023). ESCET provides a model-based approach and toolkit for synthesis-based engineering
of correct-by-construction supervisory controllers of discrete-event systems.

3 Evaluating computational effort in symbolic supervisor synthesis

The performance of algorithms is typically judged by their space- and time complexity
(Meinel and Theobald 1998). In this section, we first introduce the metrics peak used
BDD nodes and BDD operation count to quantitatively express the space- and time effort
required for supervisor synthesis. Then we explain why these metrics are advantageous over
conventional metrics such as peak random access memory and wall clock time, to assess
the computational efficiency of symbolic computations. Finally in this section, we use the
BDD-based metrics to demonstrate the impact of the variable order and edge order on the
computational effort of synthesis.

We distinguish complexity from effort. Complexity regards classes of problems, and
defines the generic trend of the (space/time) resources a computation requires for inputs
of different sizes, often expressed using ‘Big O’ notation (Knuth 1976). Effort specifies the
amount of resources used for one particular computation, where the complete input is con-
sidered rather than only its size. This input includes algorithm configuration settings and, in
our case, variable and edge order.

3.1 Peak used BDD nodes

During symbolic supervisor synthesis, the number of BDD nodes used to describe the
predicates generally fluctuates. Since reduced ordered BDDs are used, which are minimal
representations, the used BDD nodes is the minimal amount of BDD nodes required to rep-
resent the predicates at that point during the computation. The space effort can be measured
by the peak (maximal) number of BDD nodes used during synthesis (Meinel and Theobald
1998; Vahidi et al. 2006).

In CIF, BDD nodes are stored in a hash table. Each new node is allocated to an entry in the
hash table. Once the hash table reaches a certain fill rate, garbage collection is employed to
free no longer used entries.We only count the used BDDnodes, i.e., hash table entries that still
contain relevant information for theBDDs that are still in use.Garbage collection is performed
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by means of a standard mark-and-sweep algorithm. Functions from the implementation of
this algorithm in the JavaBDD library4 are reused to count the BDD nodes that are in use.
This measurement is performed each time just before a BDD reference is deleted, which
causes used nodes to become unused. Thereby ensuring the exact peak value of used nodes
is found. For a more detailed explanation on BDD node references, used nodes, and unused
(dead) nodes we refer to Somenzi (1999).

Peak used BDD nodes is a reproducible metric: Performing a supervisor synthesis twice
with the same input yields exactly the same peak used BDD nodes.

3.2 BDD operation count

The time effort can be expressed in the number of steps/operations during a computation
(Meinel and Theobald 1998). As supervisor synthesis is done by performing operations on
BDDs, we use BDD operation count to express the time effort of performing supervisor
synthesis. Since BDD operations (such as ‘and’ and ‘or’) are implemented as functions that
employ structural recursion on BDD nodes, the number of invocations of such functions
can be used to express time effort. Since the functions are deterministic, the results are
reproducible.

Generally, these functions consist of three parts. First, a few checks are performed to see
whether the requested calculation is a terminal case. Second, if it is a non-terminal case, it is
checked whether the calculation has already been performed, and is still in the cache. Note
that we do not mean hardware cache here, but a table actively storing results of previous
calculations. If both previous cases do not apply, the function performs recursive expansion
over the child nodes. Each time this recursive expansion is performed, i.e., when operations
are applied on the BDD, we increment the BDD operation count. For more details about
terminal cases, cache lookup and recursive expansion over child nodes we refer to Somenzi
(1999).

3.3 Relevance of metrics

In order to compare the BDD-based metrics to conventional metrics, e.g., wall clock time,
memory usage, and state space sizes, we perform a number of supervisor syntheses and
extract these metrics. The data presented in this paper is acquired by performing supervisor
syntheses to the models shown in Table 1. The models are selected to have a wide range of
model sizes. Table 1 shows, and is sorted by, theworst case state space size of the uncontrolled
plant for each model, which is the product of all location and variable domain sizes. The first
two models have a worst-case state space of a single state because their plant models only
contain EFAs with a single state. The requirement specifications of these models contain
automata with more than one state.

For a supervisor synthesis of the Waterway lock model, Fig. 3 shows how the number of
used BDD nodes evolves, as BDD operations are performed during synthesis. Intuitively, the
horizontal axis represents the ever-increasing number of operations performed as synthesis
progresses, and the vertical axis represents the fluctuating memory usage. The metrics pre-
sented in this paper are the maxima along both axes in this plot: the peak used BDD nodes
and the final BDD operation count.

4 The JavaBDD library is available at https://javabdd.sourceforge.net.
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Fig. 3 Evolution of used BDD nodes during synthesis

Figure 4(a) and (b) showhowpeak randomaccessmemory andwall clock time respectively
relate to peak used BDD nodes and BDD operation count. A supervisor was synthesized for
each model of Table 1 for 100 pairs of random variable- and edge orders. Note that these vari-
able orders have been re-ordered by heuristic algorithms FORCE and SlidingWindow (SW),
which we discuss later, to obtain the variable order that synthesis is actually applied with.
The measurements were performed in sequence using two Intel Xeon Gold 6226 processors

Fig. 4 BDD-based metrics against conventional metrics
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clocked at 2.70 GHz, operating on Linux. The measurements for random access memory and
wall clock time were done separately from the measurements of the BDD-based metrics to
avoid them from interfering.

For small models, peak random access memory cannot indicate a difference in synthe-
sis effort, as all results of the small models are grouped around 60 MiB. For some of the
smaller and medium-sized models there is a significant amount of noise in the measured wall
clock time and random access memory. For wall clock time, this noise typically originates
from delays in I/O procedures (writing the output file). For memory, the noise originates
from loaded in classes and the practically random intervals at which Java performs garbage
collection.

For larger computations, a linear relation is visible between wall clock time and BDD
operation count. The threshold at which this relation starts, and its slope, are dependent on
the used hardware. The grouping that is seen for larger computations in Fig. 4(a) is a result of
the manner in which the BDD space allocation takes place: when the current table is full, it
gets doubled in size, the new free entries in this tablewill have an influence on thememory, but
are not measured when counting the used BDD nodes. Also, when performing computations
that require more memory, the Java Virtual Machine will perform garbage collection in the
background to free memory. For separate measurements this will happen at different times,
which impacts the peak random access memory, not the amount of used BDD nodes. Note
that for the measurements in Fig. 4 additional garbage collection is performed before every
measurement to achieve a consistent situation between measurements.

An advantage of wall clock time and peak random accessmemory is that a user performing
supervisor synthesis is more likely to be familiar with these metrics. It gives a better idea
whether their computer is able to perform the synthesis in an acceptable amount of time
given the available memory. However, opposed to the BDD-based metrics, wall clock time
and peak random access memory are not deterministic, so they will yield different results for
every synthesis run. Their results are influenced by aspects including loaded classes, garbage
collection, and I/O operations. The BDD-based metrics enable a distinction in effort for
the actual synthesis portion of the computation. Also, the BDD-based metrics are platform
independent. Particularly the wall clock time of some synthesis will be influenced by the
used hardware, making it difficult to compare results.

Worst-case state space of the uncontrolled system is also frequently used to indicate
(expected) synthesis effort. The advantage of using worst case state space size of the uncon-
trolled system over BDD-based metrics to indicate the synthesis effort, is that no supervisor
synthesis or reachability computations are required to calculate this number. Figure 5(a) and
(b) showhow this state space size relates to theBDD-basedmetrics. From these figureswe can
conclude that the worst case state space size is not a very accurate indicator of the expected
computational effort of synthesis: the correlation is very weak. Note that there are multiple
ways to indicate state space sizes, some also taking the product with requirement automata,
but we found that also in those cases the state space size does not accurately indicate the
computational effort.

In summary, there are several advantages of the BDD-based metrics over the conventional
metrics: They are deterministic: performing a supervisor synthesis twice with the same input
and algorithm configuration will give the exact same result. This determinism also holds
when doing the synthesis on two different platforms, even if one is a supercomputer and the
other is a personal computer. As a result, it becomes easier to compare results from different
measurements or publications. Also, there is no overhead in the measurement, loaded-in Java
classes and other computer processes will not influence the measurement.
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Fig. 5 BDD-based metrics against conventional metrics

3.4 Impact of variable- and edge order on computational effort

We presented two metrics that indicate the computational effort of a supervisor synthesis.
However, we have to be careful when making conclusions based on this synthesis effort. The
variable- and edge order have an influence on the results. This can also be seen inFigs. 4 and 5,
where the results per model are scattered due to using different variable- and edge orders.
Recall that since the BDD-based metrics are deterministic, re-performing a synthesis with
the same variable- and edge orders would provide the exact same result.

It is well known that the variable order has a notable impact on the BDD size, and con-
sequently on the computational effort. Therefore, the variable ordering heuristics FORCE
and SW (Aloul et al. 2003) are implemented in CIF (already prior to this work). FORCE
is supplied with a variable order and reorders it to group variables together that have high
interaction, meaning they often appear together in guards and updates. Note that this algo-
rithm finds a local optimum: initializing it with different orders, might give different resulting
variable orders. SW starts from a variable order, and “slides a window” across the variables
to locally optimize that part of the order. In this work, always a (default) window size of
4 is used. These heuristics can be sequenced. We denote FORCE+SW to indicate that first
FORCE is applied to some initial variable order, and SW is performed on the variable order
computed by FORCE, to produce the variable order used in synthesis.

In previous work (Thuijsman et al. 2019; Lousberg et al. 2020; Thuijsman et al. 2021)
the definition of variable relations was different from the current implementation. For further
details we refer to the CIF documentation. In contrast, the variable relations as used in
Section 4 are reproducible with both the ESCET version used in this paper (version 0.9),
as well as the current ESCET release (version 3.0). Hence, we repeat the experiments of
Thuijsman et al. (2019); Lousberg et al. (2020) and Thuijsman et al. (2021) using the same
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variable dependencies for all variable ordering heuristics, that we discuss below, such that
we can accurately compare their efficiency.

We investigate to what extent the edge order and initial variable order influence the super-
visor synthesis effort. For each model in Table 1, a supervisor has been synthesized for
all combinations of 100 random edge orders and 100 random initial variable orders. These
initial variable orders are re-ordered by FORCE+SW to produce the variable order used in
synthesis. The effort of performing each synthesis is shown in Fig. 6.

It can be seen that there are major differences in computational effort by using differ-
ent orders. For the Waterway lock model, the highest peak used BDD nodes is 658 times
larger than the lowest peak used BDD nodes. For BDD operations this factor is 338. This
is purely a result of changing the edge orders and initial variable orders: all other algorithm
configurations were the same for all measurements.

Figure 6 also shows that measuring both peak used BDD nodes and BDD operation count
is relevant. It would be difficult to distinguish the computational effort between some of
the syntheses if only one of the metrics was used. For example, if we only measured the
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Fig. 6 Supervisor synthesis effort for all combinations of 100 edge- and 100 variable orders for each model
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BDD operation count, we would not see much difference for the efforts of synthesis for
Cat and mouse tower. If we only measured peak used BDD nodes. we would not see much
difference for the effort of synthesis for Ball sorting system. Measuring both metrics enables
us to differentiate between the efforts of synthesis for each model based on the various initial
variable orders and edge orders.

Figure 7 shows the peak used BDD nodes for all syntheses of the Theme park vehicles
model. Darker squares indicate a higher amount of peak used BDD nodes. All variable- and
edge orders were given an index. A row shows the peak used BDD nodes of all syntheses
that were performed with the same edge order and varying variable orders, and a column
shows the same for a fixed variable order with varying edge orders. In Fig. 7, we see rows and
columns where the elements are similarly colored, indicating that variable order and edge
order both have a reasonable impact on the peak used BDD nodes for this particular model.
There are other models where only the elements in columns are similarly colored, indicating
that the variable order mainly influences their synthesis effort. We observe similar results for
the BDD operation count.

Figure 7, along with analyzing the same plot for other models, shows that a relatively
poor/good variable order generally performs relatively poor/good for all edge orders and
vice versa. This means the variable order and edge order can be improved individually,
which is what we respectively focus on in Sections 4 and 5.

If we define the peak used BDD nodes for a certain model as a deterministic function
f (ov,i , oe, j ), where ov,i is the i th sample random variable order and oe, j the j th sample
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Fig. 7 Peak used BDD nodes for all supervisor syntheses of the theme park vehicles model
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random edge order, the global sample mean (Montgomery and Runger 2018) of the peak
used BDD nodes μG( f ) is given by Eq. 1.

μG( f ) = 1

N · M
N∑

i=1

M∑

j=1

f (ov,i , oe, j ), (1)

where N and M respectively are the total number of sampled variable- and edge orders. For
our experiment, N = M = 100 for each model.

The global (unbiased) sample variance (Montgomery and Runger 2018) of the peak used
BDD nodes σ 2

G( f ) is given by Eq. 2.

σ 2
G( f ) = 1

N · M − 1

N∑

i=1

M∑

j=1

(
f (ov,i , oe, j ) − μG( f )

)2
. (2)

The sample variance σ 2
v,i ( f ) of the peak used BDD nodes for the edge orders tested with

a particular variable order ov,i , is given by Eq. 3.

σ 2
v,i ( f ) = 1

M − 1

M∑

j=1

(
f (ov,i , oe, j ) − μv,i ( f )

)2
, (3)

whereμv,i ( f ) = 1
M

∑M
j=1 f (ov,i , oe, j ) is themean peak used BDD nodes of the edge orders

tested with variable order ov,i . The mean sample variance for fixed variable orders σ 2
v ( f ) is

computed by Eq. 4:

σ 2
v ( f ) = 1

N

N∑

i=1

σ 2
v,i ( f ). (4)

Equations 3 and 4 can analogously be applied to compute the sample variance of peak
used BDD nodes for variable orders tested with particular edge orders σ 2

e, j ( f ), and the mean

sample variance for fixed edge orders σ 2
e ( f ). Likewise, we can define a function g(ov,i , oe, j )

for the BDD operation count of a model and apply above computations to this.
When relating these characteristics to what we see in Fig. 7, a low mean sample variance

for fixed variable orders σ 2
v ( f )would indicate a similar amount of peak used BDD nodes for

a given variable order. This would be visible in Fig. 7, as elements located in the same column
would be similarly colored. This would indicate that the variable order mainly influences the
peak used BDD nodes, and the edge order has little influence.

For each model, the global sample mean μG , global sample variance σ 2
G , mean sample

variance for fixed variable orders σ 2
v and mean sample variance for fixed edge orders σ 2

e
are given for peak used BDD nodes ( f ) and BDD operation count (g) in Table 2. For most
of the models, the mean sample variance for fixed variable orders is smaller than the mean
sample variance for fixed edge orders. This indicates that the variable order has a larger
influence on the supervisor synthesis effort than the edge order. The effect of the variable
order is particularly notable, when considering that for these experiments FORCE+SW is
being applied to the variable order (to compute the variable order that synthesis is performed
with). The variance is even higher when FORCE+SW is not applied (Lousberg et al. 2020).
However, the mean variance for fixed variable orders is large enough that the edge order is
still of considerable influence to the supervisor synthesis effort.

Models that require a relatively large amount of supervisor synthesis effort, also have
a relatively large variance in effort. This would also be observed if we were to normalize
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to the mean values of the models, i.e., σ 2/μ or σ/μ. This indicates that applying a good
variable- and edge order becomes more beneficial when considering models that require
more supervisor synthesis effort.

4 DCSH variable ordering heuristic

In Section 3.4 we touched on the extent in which edge and variable order influence the
computational effort. There is a large variance in the computational effort of synthesis as a
result of the initial variable order, even if FORCE+SW is applied. As such, we want to find
a variable order for which the computational effort is generally low. Unfortunately, finding
the variable order that minimizes the BDD size is an NP-complete problem (Bryant 1992).
This is why heuristic variable ordering algorithms are used.

In this section, we introduce a heuristic algorithm named DSM-based Cuthill-McKee-
Sloan variable ordering Heuristic (DCSH) to find a variable order that reduces the
computational effort required for symbolic supervisor synthesis compared to current imple-
mentation (FORCE+SW). This heuristic is based on two matrix ordering heuristics from
Cuthill and McKee (1969) and Sloan (1989), that are used to minimize the Weighted Event
Span (WES) (Siminiceanu and Ciardo 2006). It is shown in Meijer and van de Pol (2016)
that these heuristics are able to reduce the WES, and thereby the computational effort for
symbolic model checking. Since the approach is shown to work for symbolic model check-
ing, we hypothesize it also might work for symbolic supervisor synthesis. These matrix
reordering heuristics are applied to a Dependency Structure Matrix (DSM) that stores the
number of times BDD-variables appear together in transition relations, to find a new variable
order. Heuristics are used, since directly minimizing the WES is also an NP-complete prob-
lem (Siminiceanu and Ciardo 2006). The performance of DCSH in relation to the current
implementation is experimentally evaluated in Section 4.3.

4.1 Transition relation, variable order, and computational effort

When studying the evolution of BDDs during synthesis, most computational effort is per-
formed during the reachability searches (Algorithm 2). Specifically, during the existential
quantification operation in line 3 of Algorithm 2. Because this operation is applied many
times, the guard and update predicates are placed in a single predicate, which is the transi-
tion relation: Te(X , X+) = ge(X) ∧ ue(X , X+), where there is a transition relation Te for
each edge e = (σ, ge(X), ue(X , X+)).

Existential quantification over the transition relations is frequently applied during syn-
thesis. This operation can be executed by first computing P(X+) ∧ Te(X , X+) and then
quantifying over X+. However, this results in a large intermediate result of P(X+) ∧
Te(X , X+). Therefore, both the conjunction and existential quantification are computed in a
single recursive pass over P(X+) and Te(X , X+) by utilizing the relational product operation
(Burch et al. 1994). This operation prevents computing the entire BDD P(X+)∧ Te(X , X+)

and quantifies early over X+, thereby reducing memory usage and number of required
operations. Nevertheless, computing the relational product is known to be an expensive
computation (Burch et al. 1994).

We say sets of variables are strongly related if they appear together in many transitions.
BDDs are overall small if strongly related BDD-variables are placed near each other in the
variable order Minato 1996; Somenzi 1999. If we keep variables of each transition relation
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near each other in the variable order, it is likely that the resulting BDDs representing the
(nonblocking and bad-state) predicates are kept small during synthesis, leading to reduced
computational effort. Since we frequently apply computationally expensive operations to
BDDs that represent a predicate Te(X , X+) (for some e ∈ E), we base the relatedness of
variables on these predicates.

4.2 Dependency structure matrix reordering

ADSM is a square n×n matrix representing dependencies between n aspects of a system or
model (Browning 2016). We capture variables of the LFA along the rows and columns where
each index represents a single variable. In our use, the variables are always ordered the same
along the row and column axis. In this paper we utilize static Numerical DSMs (NDSMs).
The off-diagonal elements can be non-negative integers, where the value indicates the number
of times the respective variables appear together in a predicate expression Te of an edge in
the LFA. In our use, the diagonal elements are always zero. Furthermore, all dependencies
in the NDSM are regarded as undirected, thus providing a symmetric matrix. Subsequently,
the NDSM is manipulated by two matrix ordering heuristic algorithms that reorder the row
and column indices such that non-zero values are placed towards the diagonal. The order in
which the variables appear along the rows/columns is used as variable order for synthesis.
Essentially, we are creating a variable order such that variables that often appear together in
some Te, are placed near each other in the variable order.

Before synthesis we extract the variables that appear in predicate expression Te for each
edge e ∈ E . For all occurrences of pairs of variables per Te we increment the element in the
NDSM by one, thus a higher value indicates a stronger dependency between the variables.
The increment is executed for both combinations of the pair such that the resulting NDSM
is symmetric.

Figure 8 shows an example of an NDSM before and after reordering. The before image
has the variables ordered alphabetically, which is the default initial variable order in CIF.
The variables are reordered, by applying the method we discuss next. In the after image we
observe that variables that are closely related are clustered together.

Fig. 8 NDSM before and after reordering of the cluster tool model
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Algorithm 3Weighted Cuthill-McKee ordering.
Input: NDSM M
Output: Variable order list R
1: Initialize empty list R, compute weighted adjacency graph A of M
2: for each Connected subgraph A′ of A not connected to another node in A
3: Compute pseudo-peripheral node p of A′
4: Mark p and append p to R
5: while Unmarked nodes exist in A′
6: Find list C of unmarked neighbors of p
7: Sort list C such that the nodes are in descending weight
8: Sort list C such that nodes with equal weight are in ascending degree
9: Append C to R and mark all nodes in C
10: Set the next node in R as p
11: end
12: end

The use of DSMs in supervisory control theory is not new. In Goorden et al. (2020)
DSMs are used to find clusters of highly interactive components for the purpose of applying
multilevel synthesis. However, we are not looking for clusters, but interested in reordering
the row and column indices such that higher valued elements are placed as close as possible
towards the diagonal relative to lower valued elements. By finding such an order, we also
find an order where variables that often appear together in transition relations are placed near
each other.

In practice, theNDSMs constructed in our approach are sparse.We utilize existing variable
ordering heuristics, that have been designed for bandwidth, profile, and/or wavefront reduc-
tion of symmetric sparse matrices. For an elaboration on these metrics we refer to Cuthill
andMcKee (1969) for bandwidth and Sloan (1989) for profile and wavefront. Byminimizing
any of these metrics, an order is achieved for which relatively low computational effort is
expected. The effective use of these heuristics for static variable order optimization for BDDs
is shown in Meijer and van de Pol (2016), where several bandwidth, profile and wavefront
reducing node ordering heuristics have been compared. These heuristics apply a reordering to
the adjacency graph that can directly be extracted from anNDSM.Aswe utilize anNDSMwe
append the graph’s edges by weights resulting in a weighted adjacency graph. For an NDSM
with row index i and column index j , we denote elements by ηi, j . For each row i we generate
a node labeled by i . Subsequently, each non-zero element ηi, j results in an undirected edge
with weight ηi, j between nodes i and j . This results in a weighted adjacency graph where the
node labels are reordered using the heuristics Weighted Cuthill-McKee ordering and Sloan’s
ordering.

4.2.1 Weighted Cuthill-McKee ordering

The Cuthill-McKee (CM) ordering is a bandwidth reducing node ordering heuristic intro-
duced by Cuthill and McKee (1969). The standard algorithm places non-zero elements near
the diagonal to result in a matrix with a lower bandwidth. We introduce an adjustment to the
standard algorithm, such that it is able to differentiate between non-zero elements. Higher
valued elements are prioritized in being placed close to the diagonal over lower valued ele-
ments. We will refer to this algorithm as the weighted CM ordering, which is shown in
Algorithm 3. Lines 7 and 8 are an adjustment of the standard algorithm. As a convention, the
for-loop at line 2 selects sub-graphs in descending size.
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4.2.2 Sloan’s ordering

Sloan’s ordering is a profile and wavefront reducing node ordering heuristic introduced by
Sloan (1989). It places non-zero elements near the diagonal to result in a lower profile of the
matrix. In this paper the standard algorithm is not adjusted to be able to differentiate between
non-zero elements, although this is of interest for future work.

4.2.3 Weighted event span

We apply both ordering heuristics to the NDSM indicating related pairs of variables. This
results in two orders. Furthermore, we notice that reversing the order can sometimes lead to
significant differences in synthesis effort. Siminiceanu andCiardo (2006) noticed that placing
variables that result in more costly operations towards the bottom of the BDD resulted in less
effort required in a similar application of BDDs. This resulted in the Weighted Event Span
(WES) metric. Furthermore, the WES has been extensively tested by Meijer and van de Pol
(2016), where a correlation is shown between peak BDD nodes, computation time, and the
WES for several types of decision diagrams applied to symbolic model checking. Given a
variable order, the WES is found by

WES =
∑

e∈E

2xl(e)

|X | · xl(e) − xh(e) + 1

|X ||E | (5)

where |X | and |E | respectively indicate the total number of variables and edges. xl(e) and
xh(e) are respectively the lowest- and highest variable index from the variables in Te(X).
The first term in Eq. 5 increases as xl(e) is placed later in the variable order. The second term
increases the WES when xl(e) − xh(e) is large.

To estimate which of the four orders (two orders resulting from two different ordering
heuristics and two reverse orders) should be used in synthesis, the WES is computed for
each of the orders. The order that has the lowest WES is used in synthesis. This results in
the proposed variable ordering heuristic, named DSM-based Cuthill-McKee-Sloan variable
ordering Heuristic, abbreviated to DCSH for ease of reference.

4.3 Experiments

In Lousberg et al. (2020), the efficiency of variable orders computed by DCSH was com-
pared to that of FORCE+SW. As mentioned in Section 3.4, in Lousberg et al. (2020) DCSH
used different variable relations than FORCE and SW. We repeat the same experiments of
Lousberg et al. (2020) here, using the same variable relations, as discussed above, for each
heuristic algorithm, albeit in different formats: DCSH using DSMs, and FORCE and SW
using adjacency graphs. Additionally, the experiments are now performed for all models in
Table 1, which is a larger set of models than was used in Lousberg et al. (2020).

For each model in Table 1, 10,000 random initial variable orders are generated. Each
of those orders, is ordered by FORCE+SW and DCSH (separately) and then synthesis is
performedusing the computed order.Wenoticed itmaybe beneficial to apply FORCE+SWon
the order computed by DCSH, so essentially performing sequence DCSH+FORCE+SW. For
clarity, the different ways the variable orders are computed are shown schematically in Fig. 9.
We perform synthesis using each resulting variable order and measure the computational
effort. Besides the initial variable order and turning on the BDDmeasurements, other settings
in CIF were kept default in these experiments.
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reverse
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FORCE+SW DCSH+FORCE+SW
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Fig. 9 Computation of the variable orders

For each heuristicmethod, theminimal,mean, andmaximal value are shown in Table 3, for
both peak used BDD nodes and BDD operation count. The same results are presented graph-
ically in Fig. 10. In that figure, the values are normalized to the mean value for FORCE+SW
for that model. E.g., a mean value of 0.8 (8 ·10−1) for DCSH+FORCE+SW for some model,
indicates that for that model the mean computational effort of DCSH+FORCE+SWwas 20%
lower than the mean computational effort of FORCE+SW.

Summarizing the results, for both peak used BDD nodes and BDD operation count, for
16 out of 17 models, the maximal computational effort was found when using FORCE+SW.
So, using FORCE+SW there is the likelihood to perform synthesis with relatively a really
high computational effort. Generally, using DCSH or DCSH+FORCE+SW, removes most
high-effort outliers: the maximal values are much lower. The mean of peak used BDD nodes
over the measurements is less for DCSH+FORCE+SW compared to DCSH in 12 out of 17
models. For BDD operation count this is the case for 10 out of 17 models. Also, the maximal
peak used BDD nodes using DCSH+FORCE+SW is less than the maximal peak used BDD
nodes using just DCSH for 13 out of 17 models. For BDD operation count this is the case
for 12 out of 17 models.

On average over all models, when using DCSH+FORCE+SW the peak used BDD nodes
increase by 5%, and the BDD operation count lowers by 14%, relative to FORCE+SW. Rel-
ative to DCSH, it realizes 8% less peak used BDD nodes and a 12% lower BDD operation
count. Even though DCSH+FORCE+SW realizes a slightly higher average amount of peak
used BDD nodes than FORCE+SW, it is very effective at avoiding the high effort computa-
tions. In conclusion, using DCSH+FORCE+SW generally the least computational effort is
required, and computations with relatively high computational effort are avoided. Therefore,
using DCSH+FORCE+SW is advisable over just applying FORCE+SW or DCSH.

Even though generally a lower computational effort is achieved by usingDCSH+FORCE+
SW relative to FORCE+SW, it is clearly not always the case. The Cat and Mouse
Tower (CMT) and Modified CMT model stand out, where the computational effort using
DCSH+FORCE+SW is roughly double that of FORCE+SW. Relative to the other models,
these models lack large automata but rather contain relatively many automata of smaller
size and relatively many events with a low level of synchronization between the automata.
These characteristics might be the cause of poorer performance of the suggested method.
However, it is generally very difficult to characterize and compare models in this manner.
Devising someway to predict what variable ordering heuristicmayworkwell based onmodel
characteristics remains future work.

The time to run the discussed variable ordering heuristic algorithms is negligible relative
to the time to perform synthesis.
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Fig. 10 Minimum, mean, and maximum computational effort for variable ordering heuristics, normalized to
mean computational effort for FORCE+SW

5 Edge order

As shown in Section 3.4, next to the variable order also the edge order has a significant impact
on the computational effort of synthesis. In the current implementation of CIF, there are six
options to set the edge order:

1. model: the order in which each edge appears when reading the model top-to-bottom;
2. reverse-model: the reverse of ‘model’;
3. sorted: alphabetical sorting of the edges by their event label;
4. reverse-sorted: the reverse of ‘sorted’;
5. random: a random ordering (optionally with a seed);
6. a manually specified order.

In this section, we compare the efficiency of the first five options. There are perhaps more
interesting approaches to ordering the edges, e.g., such as presented in Vahidi et al. (2006)
and Fei et al. (2014). These approaches however do not satisfy our self-imposed restriction
mentioned in Section 1 to investigate static (not on-the-fly) optimization. Yet, however simple
the static edge ordering heuristics may be, we will see in the following they can still produce
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good results, and investigating which option to use is worthwhile, also in order to come up
with more meticulous heuristics in the future.

For each model in Table 1, synthesis is performed using model, reverse-model, sorted,
and reverse-sorted edge order. Also for 100 random edge orders synthesis is performed.
Following Section 4, DCSH+FORCE+SW is applied as variable ordering heuristic in these
experiments, using the variable relations as introduced in Section 4.2. Besides applying
DCSH+FORCE+SW, setting the edge order, and turning on BDD measurements, other set-
tings in CIF are kept default in these experiments. The results of these experiments are shown
in Table 4. For the random edge orders, the mean of the 100 measurements is shown. The
same results are shown graphically in Fig. 11. For model, reverse-model, sorted, and reverse-
sorted edge order, computational effort is displayed, normalized to the mean of using the 100
random edge orders. E.g., a value of 2 · 10−1 indicates a 80% reduction in effort compared
to the random orders on average.

As was concluded in Section 3.4, the edge order has a smaller influence on the peak used
BDD nodes compared to BDD operation count. For most models the peak used BDD nodes
are similar for the different edge orders. However, for the Bridge andWaterway lock models,
using any edge order option other than random considerably reduces the peakmemory usage,
with reductions up to 90%, compared to the mean of using random edge orders, for both
models. Overall, for peak used BDD nodes the average reduction by using any edge order
option other than random is 10%.

The edge order has a larger influence on the BDD operation count. Again, for the Bridge
and Waterway lock models the highest impacts are found, with a reduction up to 99% for the
Waterway lock model compared to the mean of using random edge orders. Overall, for BDD
operation count the average reduction by using any edge order option other than random is
22%.

Over all models, the best average reduction for BDD operation count is found using
reverse-model, with a average reduction of 29%. For model, sorted, and reverse-sorted these
average reductions are 16%, 22%, and 21% respectively. Also, reverse-model is the only
heuristic that performed the same or better than the averaged random edge orders for every
model. Therefore, usage of the reverse-model edge order is advisable over the other edge
ordering heuristics available in CIF.

We give a possible reason whymodel, reverse-model, sorted, and reverse-sorted generally
perform better than the random edge orders. In all models, themodel is specified by a network
of automata. If an event is locally specified within an automaton, its name gets prefixed with
the automaton name (to avoid duplicate names).As a result for these ordering heuristics, edges
that are used in the sameautomata are placednext to eachother in the edgeorder. It is likely that
edges specified in the same automaton, address similar variables in their guard and update
expressions. Therefore, calculations on the parts of the BDD representing these variables
are performed in close succession to each other. This means there is a higher likelihood
of comparable calculations still being in the cache if we perform calculations on the same
variables back-to-back. We refer back to Section 3.2: when a previous calculation is found
in the cache, that result is used, no computations on the BDD need to be performed, and the
BDD operation count is not incremented. So, iterating over edges in an order such that similar
calculations are performed back-to-back improves the efficiency of the cache mechanism,
therefore speeding up synthesis. This reasoning also may explain why the heuristics work
particularly well for the Bridge and Waterway Lock model. In these models, the automata
relevant to the same module are clustered into groups. These group names are also prefixed
to the automaton name for synthesis. As a consequence, automata that have high interaction
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Fig. 11 Computational effort reduction factor for edge order heuristics normalized to random

are both in close proximity inside the model, as well as when sorting alphabetically. So for
the edge ordering heuristics, related edges are also placed close to each other.

Also, we can reason why reverse-model generally has the best results. People generally
write down the automata in a way that logically follows the behavior from top-to-bottom.
For synthesis, the main computations are calculating the nonblocking and bad state predi-
cate through backward reachability searches, i.e., the behavior is followed backwards (from
the nonblocking or bad states). Evaluating an edge that does not lead to a currently found
nonblocking/bad state costs computational effort, but does not aid in further construction of
the nonblocking/bad state predicate. As a result, states are more efficiently found by eval-
uating edges in the reverse order of how they occur in the behavior, for which practically
reverse-model is a good approximation.

6 Efficiently enforcing requirements

Central to supervisory control theory, is the specification of behavioral requirements, and
enforcing those through supervisor synthesis. In CIF, requirements can be specified in three
ways:

1. requirement EFA: an EFAprescribing allowed behaviorw.r.t a subset of the plant’s events.
These are converted to anLFAprior to synthesis as described for plant EFA in Section 2.1.

2. state exclusion expression: a predicate defining a condition that needs to hold in every
state of the controlled system.

3. state-event exclusion expression: a predicate defining a condition that needs to hold for
a particular event to occur. We use the notation σ ⇒ J for the state-event exclusion
expression that expresses that event σ may only occur when predicate J holds.
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The latter two requirement types are discussed in Markovski et al. (2010). Even though
we define the safe states or states from which events are allowed to occur, we call these
‘exclusion’ requirements because they result in a restriction on the plant behavior.

Conversion of the requirements to their predicate-based counterparts is relatively straight-
forward, and specification of requirements, along with this conversion, is exemplified in
Example 3.

Example 3 We consider two traffic lights, each regulating traffic for their road at a two-way
intersection. The plant behavior can be modeled by two automata, given in Fig. 12. The
informal requirement is that the traffic lights should not be green at the same time, as this
may result in a collision. This requirement can be formalized by a requirement EFA, given
in Fig. 13. Alternatively, the requirement specification can be given by a state exclusion
expression (i.e., this is the syntax a modeler would use in CIF):

not(LightA.Green and LightB.Green),

which directly relates to a state exclusion predicate:

¬(lA = Green ∧ lB = Green),

where, e.g., lA is the location pointer variable for LightA that can take values Green and
Red.

As another option, the modeler may give two state-event exclusion expressions, specifying
that one light can only be turned green if the other light is red:

green_A needs LightB.Red

green_B needs LightA.Red,

these expressions, written in CIF syntax, can be directly converted to state-event exclusion
predicates:

green_A ⇒ lB = Red

green_B ⇒ lA = Red

We will refer to the set of all state exclusion predicates as SX, and to the set of all state-
event exclusion predicates as EX. For simplicity, we will consider specifications that do
not contain any requirement EFA. Enforcing the requirements expressed by automata in
(symbolic) supervisor synthesis is well known (Ramadge and Wonham 1987; Flordal et al.
2007; Ouedraogo et al. 2011; Cassandras and Lafortune 2021).

Through general usage of CIF, it has been noticed empirically that the manner in which
the requirements are modeled can impact the efficiency of performing supervisor synthesis,
even if they represent the same informal requirement specification and the same controlled

Fig. 12 Traffic lights plant automata
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Fig. 13 Traffic lights requirement automaton

behavior is achieved.Notably, the usageof state exclusion expressionswould lead to syntheses
that require high computational effort. Consequently, this type of requirement specification
was sometimes avoided when modeling larger systems. This can be observed in, e.g., the
Waterway lock model from Reijnen et al. (2017).

For the purpose of modeling ease andmodel clarity, in a number of cases it might be useful
to use state exclusion expressions. For the traffic lights in Example 3, the state exclusion
expression is arguably the most straightforward formalization of the informal requirement
specification. Ideally, the usage of state exclusion expressions would not be penalized by a
higher computational effort in synthesis. This introduces the problem statement discussed in
this section: How can state exclusion requirements be enforced (more) efficiently in symbolic
supervisor synthesis?

We discuss the current way requirements are enforced in CIF in Section 6.1. Then we
present our modified approach in Section 6.2. Experiments comparing both approaches are
presented in Section 6.3.

6.1 Current application of requirements

We first introduce the current way requirements are enforced during synthesis in CIF (before
the new algorithm we discuss in Section 6.2 was implemented).

In the synthesis algorithm (Algorithm 1), first requirements are applied by Algorithm 4.
In this algorithm, a safe state predicate P is computed by first taking the conjunction of
all state exclusion predicates. This predicate returns true only for states for which all state
exclusion predicates hold. Note that the empty conjunction is assumed true. Next, the state-
event exclusion predicates are enforced by computing a safe state predicate and safe edges in
Algorithm 5. When these requirements consider controllable events, the guard of each edge
labeled by that event can simply be strengthened by taking the conjunction with the predicate,
so that the event only occurs when the predicate holds. This is not possible for uncontrollable
events, because the supervisor is not able to disallow uncontrollable events from occurring
when they can occur in the plant. In that case, the safe state predicate is modified to exclude
states from which the event can take place (i.e., for some edge (σ, g, u), labeled by the same
event σ that the state-event exclusion predicates addresses, g evaluates to true), but the state-
event exclusion predicate does not hold (i.e., J evaluates to false). The predicate g 
⇒ J
specifies the states where the state-event exclusion requirement is adhered to. Finally, X0∧ P
restricts the initial state predicate to the safe part5.

In the following we show that, when supervisor synthesis is performed using Algorithm 4
to apply the requirements, supervisor synthesis (Algorithm1) computes the correct result, i.e.,

5 Strictly speaking, calculating the initial state predicate here is not necessary, and only needs to be performed
at the end of synthesis (line 11 Algorithm 1). We already calculate X0,S here to simplify our proofs.
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Algorithm 4 applyRequirements.
Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX, edges E , initial state pred-

icate X0
Output: Safe state predicate P , safe edges E , safe initial state predicate X0
1: P = ∧

I∈SX I
2: (P, E) = applyEventRequirements(P, E,EX)

3: X0 = X0 ∧ P

Algorithm 5 applyEventRequirements.
Input: State predicate P , edges E , state-event exclusion predicates EX
Output: Safe state predicate P , safe edges E
1: for all (σ, g, u) ∈ E, (σ ⇒ J ) ∈ EX
2: if σ ∈ �c
3: g = g ∧ J
4: else
5: P = P ∧ (g 
⇒ J )

6: end if
7: end for

the maximally permissive, safe, controllable, and nonblocking supervisor. Our explanation
is structured as follows: We first define a safe state and safe LFA in Definition 1. We then
define when an LFA isminimally restricted in Definition 3, i.e., no more behavior is removed
from the LFA than strictly necessary so that the requirements are satisfied.We show that after
performing applyRequirements, we can induce an LFA that is both safe (Lemma 1)
and minimally restricted (Lemma 2) with respect to the requirements. Since Algorithm 1
follows the same structure as the synthesis algorithm in Ouedraogo et al. (2011), it is known
that after performing applyRequirements in line 1 of SS, the remaining lines (2-11)
compute the maximally permissive, controllable, and nonblocking supervisor (Theorem 3
in Ouedraogo et al. (2011)), of the minimally restricted safe LFA. Therefore, we show in
Theorem 1 that Algorithm 1 computes the maximally permissive, safe, controllable, and
nonblocking supervisor.

Given a set of symbols X , let �(X) be the set of functions φ(X), where a function φ(X)

assigns a value to each variable x ∈ X , in the domain of x . We write a function φ(X) as a
predicate

∧
x∈X x = φ(x). E.g., let’s say we have variables X = {s, t}, where the domain of

s is {1, 2} and the domain of t is {3, 4}, then: �(X) = {(s=1∧ t=3), (s=1∧ t=4), (s=2∧
t=3), (s=2 ∧ t=4)}. Given an LFA AL with symbols X , we refer to a function φ(X) as a
state of AL . We may write φ and � to refer to φ(X) and �(X) respectively. For a predicate
P(X) we may write P(φ) to denote the valuation of P for state φ.

We say there is a transition from φ ∈ � to φ′ ∈ �, if there is some edge (σ, g, u) for which
g(φ) ∧ u(φ, φ′). We say this transition is controllable or uncontrollable, when respectively
σ ∈ �c or σ ∈ �u .

Definition 1 Given LFA AL = (X , �, E, X0, Xm), and requirements SX and EX, then a state
φ ∈ � is safe when:

• ∀I ∈ SX : I (φ), and
• ∀(σ, g, u) ∈ E, (σ ⇒ J ) ∈ EX : g(φ) 
⇒ J (φ).

We call LFA AL safe if all its reachable states are safe. Non-safe states or automata are
called unsafe.
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Definition 2 Given LFA AL = (X , �, E, X0, Xm), then restricted LFA AL,R, with
respect to predicate N, edges ES, and safe initial states X0,S, is defined as AL,R =
(X , �, ES�N , X0,S, Xm), where ES�N = {(σ, g(X) ∧ ∃X+[N (X+) ∧ u(X , X+)], u)|
(σ, g, u) ∈ ES}.

Note that in Definition 2 the guards are restricted in the same manner as in line 9 of
Algorithm 1.

Definition 3 Given LFA AL = (X , �, E, X0, Xm), and requirements SX and EX, then after
performing (N , ES, X0,S) = applyRequirements(SX,EX, E, X0), restricted automa-
ton AL,R (w.r.t. AL , N , ES, X0,S) is minimally restricted w.r.t. AL , SX, and EX when:

• all initial states in {φ ∈ �|X0(φ) ∧ ¬X0,S(φ)} are unsafe, and
• all restricted transitions lead to an unsafe state, or they are disallowed by some state-event

exclusion predicate: ∀φ, φ′ ∈ � : (∃(σ, g, u) ∈ E : g(φ) ∧ u(φ, φ′) ∧ �(σ, gS, uS) ∈
ES : gS(φ) ∧ uS(φ, φ′)) 
⇒ (state φ′ is unsafe or ∃(σ ⇒ J ) ∈ EX : ¬J (φ)).

I.e. only unsafe initial states are removed, and all transitions that are removed directly lead
to an unsafe state or are disallowed by some state-event exclusion predicate.

Lemma 1 Given LFA AL = (X , �, E, X0, Xm), and requirements SX andEX, then after per-
forming (N , ES, X0,S) = applyRequirements(SX,EX, E, X0), restricted automaton
AL,R = (X , �, ES�N , X0,S, Xm) (w.r.t. AL , N , ES, X0,S) is safe w.r.t. AL , SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5 that
∀φ ∈ �, (σ, g, u) ∈ ES, (σ ⇒ J ) ∈ EX, withσ ∈ �c : g(φ) 
⇒ J (φ).

It directly follows from line 1 in Algorithm 4 that ∀φ ∈ �, I ∈ SX : N (φ) 
⇒ I (φ).
For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that

∀φ ∈ �, (σ, g, u) ∈ ES, (σ ⇒ J ) ∈ EX, with σ ∈ �c : N (φ) 
⇒ (g(φ) 
⇒ J (φ)).
Therefore, all states in {φ ∈ �|N (φ)} are safe.

From line 3 inAlgorithm 4we can conclude that all initial states {φ ∈ �|X0,S(φ)} are safe.
From the definition of AL,R , and specifically ES�N , we can conclude that only transitions to
safe states are possible. Therefore, AL,R is safe. 
�
Lemma 2 Given LFA AL = (X , �, E, X0, Xm), and requirements SX and EX, then after
performing (N , ES, X0,S) = applyRequirements(SX,EX, E, X0), restricted automa-
ton AL,R = (X , �, ES�N , X0,S, Xm) (w.r.t. AL , N , ES, X0,S) is minimally restricted w.r.t.
AL , SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5 that ∀φ, φ′ ∈
� : (∃(σ, g, u) ∈ E : σ ∈ �c ∧ g(φ) ∧ u(φ, φ′) ∧ (�(σ ⇒ J ) ∈ EX : ¬J (φ)) 
⇒
∃(σ, gS, uS) ∈ ES : gS(φ) ∧ uS(φ, φ′). I.e., guards of controllable transitions in ES are
not restricted from E when there is no state-event exclusion predicate that does not disallow
them.

It directly follows from line 1 in Algorithm 4 that ∀φ ∈ �, I ∈ SX : ¬I (φ) 
⇒ ¬N (φ).
For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that

∀φ ∈ �, (σ, g, u) ∈ {(σ, g, u) ∈ ES |σ ∈ �u}, (σ ⇒ J ) ∈ EX : ¬(g(φ) 
⇒ J (φ)) 
⇒
¬N (φ). Therefore, all states in {φ ∈ �|¬N (φ)} are unsafe.

From the definition of AL,R , and specifically ES�N , we can conclude that only transitions
in ES to unsafe states are restricted.
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Also, since all states {φ ∈ �|¬N (φ)} are unsafe, it follows that all states in {φ ∈
�|X0(φ) ∧ ¬X0,S(φ)} are unsafe. 
�

Theorem 1 The supervisor obtained by Algorithm 1 is a maximally permissive, safe, con-
trollable, and nonblocking supervisor for automaton AL and requirements SX and EX.

Proof Note that during the repeat-until loop in Algorithm 1, for all states φ ∈ �, if at the
start of the loop ¬N (φ), then because BRS is restricted by N , after line 4 ¬N (φ) still holds.
Also after lines 5 and 6 ¬N (φ) still holds, because BRS has ¬N (φ) as a start predicate, and
only the disjunction with other predicates is taken when computing B, except for conjunction
with true. So after line 5, we know that B(φ) holds, so after line 6¬N (φ) still holds. In other
words, as shown in Lemma 2, all statesφ ∈ � forwhich¬N (φ) after line 1 ofAlgorithm1 are
unsafe, and these will remain unsafe (/bad/blocking) states during the fixpoint computation.
Note also that in the restriction of Definition 2, the edges are restricted in the same manner
as in in line 9 of Algorithm 1.

It is shown in Theorem 3 in Ouedraogo et al. (2011) that lines 2-11 compute a maximally
permissive, controllable, and nonblocking supervisor. This is a maximally permissive, con-
trollable, and nonblocking supervisor, for the LFA that is safe (Lemma 1), and minimally
restricted (Lemma 2). It follows that Algorithm 1 computes a maximally permissive, safe,
controllable, and nonblocking supervisor for automaton AL and requirements SX and EX. 
�

6.2 Efficient application of requirements

As stated above, it has been found empirically that synthesis on models containing state
exclusion expressions was inefficient. The problem is that, when there are many state exclu-
sion expressions, the BDD describing the safe state predicate can become quite large. This
predicate is the starting point for the nonblocking predicate, which is continuously updated
during synthesis. It is beneficial to keep the BDD representing this predicate as small as
possible, to have low computational effort for synthesis.

Because synthesis on models containing state exclusion expressions was inefficient, they
are sometimes manually converted to state-event exclusion expressions. From practice it has
been found that this can solve the inefficiency problem. This is because the requirements are
encoded into the guards of the edges, rather than into the nonblocking predicate. Therefore,
we seek our solution in the same direction: we enforce state exclusion requirements in the
same manner as state-event exclusion requirements. This is done in Algorithm 6.

In Algorithm 6, for each state exclusion predicate I and each edge (σ, g, u), a predicate
J is constructed that expresses the states from which the edge can be performed such that I
holds after executing the edge. In the controlled behavior, the edge can only be performed
from the states indicated by g∧ I , because states where I does not hold are not reached by a
safe supervisor. In all cases that the edge can be performed, J must hold so that a safe state
is reached. In line 5 it is checked whether there are any states for which this does not hold. If
that is the case, the respective edge is restricted in the same way as for state-event exclusion
predicates, note that lines 6-10 in Algorithm 6 are the same as lines 2-6 in Algorithm 5. So, if
the edge is labeled by a controllable event, the guard is restricted by J . If the edge is labeled
by an uncontrollable event, the safe state predicate is restricted so that it only describes
states where if the edge can occur, a state is reached where I holds. After enforcing all state
exclusion requirements for all edges, the state-event exclusion requirements are applied in
the same way as in Algorithm 4, by using Algorithm 5. Finally, the initial state predicate is
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modified so that all state exclusion predicates hold in the initial state. Thus, the system starts
in a safe state, and does not leave the safe states as a result of the restricted guards.

We show in Example 4 how the state exclusion predicate given in Example 3 is enforced
by Algorithm 6.

Example 4 This is a continuation of Example 3, where a traffic light system was modeled,
and requirements were specified for that model. We consider the state exclusion predicate:

¬(lA = Green ∧ lB = Green),

We consider the LightA turning green. In this case there is only one edge labeled with this
event, being: edge egA = (green_A, lA = Red, l+A = Green ∧ l+B = lB). Computing J as in
line 4 of Algorithm 6, provides the following predicate:

J = ∃X+[(lA = Red ∧ l+A = Green ∧ l+B = lB ∧ ¬(l+A = Green ∧ l+B = Green)]
≡ lA = Red ∧ ¬(lB = Green)

≡ lA = Red ∧ lB = Red

Next, we compute the (g ∧ I 
⇒ J ) as in line 5:

lA = Red ∧ ¬(lA = Green ∧ lB = Green) 
⇒ lA = Red ∧ lB = Red

≡ lA = Red 
⇒ lA = Red ∧ lB = Red

≡ lA = Red 
⇒ lB = Red

We can see that this does not equal true, i.e., there are states from which edge egA can be
taken such that the state exclusion predicate does not hold afterwards.

Because green_A is a controllable event, its guard gA is restricted as follows:

gA = lA = Red ∧ lA = Red ∧ lB = Red

≡ lA = Red ∧ lB = Red

Similarly, repeating the same steps for edge egB that models LightB turning green, would
result in the following restricted guard gB:

gB = lA = Red ∧ lB = Red

Algorithm 6 applyRequirementsEfficient.
Input: Mutual state exclusion predicates SX, state-event exclusion predicates EX, edges E , initial states X0
Output: Safe state predicate P , safe edges E , safe initial states X0
1: P = true
2: for all I ∈ SX
3: for all (σ, g, u) ∈ E
4: J (X) = ∃X+[g(X) ∧ u(X , X+) ∧ I (X+)]
5: if (g ∧ I 
⇒ J ) �= true
6: if σ ∈ �c
7: g = g ∧ J
8: else
9: P = P ∧ (g 
⇒ J )

10: end if
11: end if
12: end for
13: end for
14: (P, E) = applyEventRequirements(P, E,EX)

15: X0 = X0 ∧ P ∧ ∧
I∈SX I
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One can verify that these guards computed by Algorithm 6 restrict the behavior in the
same way as the state-event exclusion predicates provided in Example 3.

In Algorithm 1, we can substitute line 1 with the following line, to apply the introduced
efficient enforcement of the requirements:

1: (N , ES, X0,S) =applyRequirementsEfficient(SX,EX, E, X0)

We will refer to Algorithm 1 with line 1 substituted as above as SS’.
Same as in Section 6.1, we show that SS’ computes the maximally permissive, safe, con-

trollable, and nonblocking supervisor inTheorem2.Wedo so byfirst showing that the induced
restricted LFA (by Definition 2) after performing applyRequirementsEfficient is
both safe (Lemma 3) and minimally restricted (Lemma 4) with respect to the requirements.

Lemma 3 Given LFA AL = (X , �, E, X0, Xm), and requirements SX and EX, then
after performing (N , ES, X0,S) = applyRequirementsEfficient(SX,EX, E, X0),
restricted automaton AL,R = (X , �, ES�N , X0,S, Xm) (w.r.t. AL , N , ES, X0,S) is safe w.r.t.
AL , SX, and EX.

Proof For all controllable transitions, it directly follows from line 3 in Algorithm 5 that ∀φ ∈
�, (σ, g, u) ∈ ES, (σ ⇒ J ) ∈ EX, with σ ∈ �c : g(φ) 
⇒ J (φ). For all uncontrollable
transitions, it directly follows from line 5 in Algorithm 5 that ∀φ ∈ �, (σ, g, u) ∈ ES, (σ ⇒
J ) ∈ EX, with σ ∈ �u : N (φ) 
⇒ (g(φ) 
⇒ J (φ)). So, in the restricted automaton
the state-event exclusion predicates are satisfied for all transitions originating from a state
φ ∈ � where N (φ) holds.

For all controllable transitions, it directly follows from line 7 in Algorithm 6 that ∀φ, φ′ ∈
�, (σ, g, u) ∈ ES , with σ ∈ �c, I ∈ SX : g(φ) ∧ u(φ, φ′) ∧ I (φ) 
⇒ g(φ) ∧ u(φ, φ′) ∧
I (φ′). For all uncontrollable transitions, it directly follows from line 9 in Algorithm 6 that
∀φ, φ′ ∈ �, (σ, g, u) ∈ ES , with σ ∈ �u, I ∈ SX : N (φ) 
⇒ (g(φ) ∧ u(φ, φ′) 
⇒
I (φ′)). So, in the restricted automaton there are no transitions to a state that does not satisfy
some state exclusion predicate.

Since for all states in {φ ∈ �|N (φ)} it is implied that no uncontrollable transition
can be performed that does not satisfy a state-event exclusion predicate, all states in
{φ ∈ �|N (φ)

∧
I∈SX I (φ)} are safe. From line 15 in Algorithm 6 we can conclude that

all initial states in {φ ∈ �|X0,S(φ)} are safe. Since AL,R only has safe initial states, and can
only transition to safe states, AL,R is safe. 
�
Lemma 4 Given LFA AL = (X , �, E, X0, Xm), and requirements SX and EX, then
after performing (N , ES, X0,S) = applyRequirementsEfficient(SX,EX, E, X0),
restricted automaton AL,R = (X , �, ES�N , X0,S, Xm) (w.r.t. AL , N , ES, X0,S) is minimally
restricted w.r.t. AL , SX, and EX.

Proof For all controllable transitions, it follows from line 3 in Algorithm 5 and line 7 in
Algorithm 6 that ∀φ, φ′ ∈ � : (∃(σ, g, u) ∈ E : σ ∈ �c ∧ g(φ) ∧ u(φ, φ′) ∧ (�(σ ⇒ J ) ∈
EX : ¬J (φ)) ∧ (�I ∈ SX : ¬I (φ′))) 
⇒ ∃(σ, gS, uS) ∈ ES : gS(φ) ∧ uS(φ, φ′). I.e.,
guards of controllable transitions in ES are not restricted from E when there is no state-event
exclusion predicate that does not disallow them, and there is no state exclusion predicate that
is not satisfied in the target state.

For all uncontrollable transitions, it directly follows from line 5 in Algorithm 5 that
∀φ ∈ �, (σ, g, u) ∈ {(σ, g, u) ∈ ES |σ ∈ �u}, (σ ⇒ J ) ∈ EX : ¬(g(φ) 
⇒ J (φ)) 
⇒
¬N (φ). For all uncontrollable transitions, it directly follows from line 9 in Algorithm 6
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that ∀φ ∈ �, (σ, g, u) ∈ {(σ, g, u) ∈ ES |σ ∈ �u}, I ∈ SX : ¬(g(φ) ∧ I (φ) 
⇒
g(φ) ∧ u(φ, φ′) ∧ I (φ′)) 
⇒ ¬N (φ′). Therefore, all states in {φ ∈ �|¬N (φ)} are unsafe.
From the definition of AL,R , and specifically ES�N , we can conclude that only transitions in
ES to unsafe states are restricted.

Also, since all states {φ ∈ �|¬N (φ)} are unsafe, it follows that all states in {φ ∈
�|X0(φ) ∧ ¬X0,S(φ)} are unsafe. 
�

Theorem 2 The supervisor obtained by Algorithm 1 is a maximally permissive, safe, con-
trollable, and nonblocking supervisor for automaton AL and requirements SX and EX.

Proof The same proof as in Theorem 1 applies here. 
�

The authors note that not necessarily the supervisor LFAs computed by SS and SS’ are
the same. When applyRequirements is used, the guards of all edges are restricted such
that they can never reach an unsafe state, also if the edge originates from another unsafe
state. Since it is assumed in applyRequirementsEfficient that unsafe states are
never reached, the guards of the edges from unsafe states are not necessarily restricted such
that they can never reach another unsafe state. Regardless, the behavior under control of the
supervisor, that only reaches safe states, is the same.

6.3 Experiments

Here we compare the computational effort of SS and SS’. In the set of benchmark models
(Table 1), there are three models that use state exclusion expressions, which are: Lithography
machine initialization, Cat and mouse tower (with 3 levels, 2 cats, and 2 mice), and Modified
cat and mouse tower (with 3 levels, and at most 1 cat or 1 mouse per room). As the suggested
approach only influences synthesis of thesemodels, experiments are only performed for these
models. The lithographymachine initializationmodel contains 51 state exclusion expressions.
Both cat and mouse tower models contain 15 state exclusion expressions. More details on
these models can be found in Thuijsman et al. (2021).

For each model, synthesis is performed using default CIF settings, other than: DCSH+
FORCE+SW is applied (as a result of Section 4) using the variable relations as introduced in
Section 4.2, edge order is set to reverse-model (as a result of Section 5), and BDD measure-
ments are turned on. The results of these experiments are shown in Table 5. For all models the
efficient approach (Algorithm 6) requires less computational effort than the current approach
(Algorithm 4). Generally, there is a small decrease in peak used BDDnodes, which is reduced
by 8% on average. The computational benefit for BDD operation count is more significant.
For these models, the BDD operation counts were decreased by 64% on average. Note that

Table 5 Experimental results efficiently enforcing requirements

Peak used BDD nodes BDD operation count
Name SS SS’ SS SS’

Lithography machine initialization 4.63 · 104 4.17 · 104 1.68 · 107 5.88 · 106
Cat and mouse tower 1.82 · 106 1.81 · 106 1.67 · 107 1.09 · 107
Modified cat and mouse tower 5.68 · 105 4.92 · 105 3.92 · 108 2.83 · 107
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the suggested method is not necessarily always more efficient than the current method. Nev-
ertheless, these experiments suggest that using applyRequirementsEfficient rather
than applyRequirements is beneficial.

To provide further discussion on the influence of applyRequirements and apply
RequirementsEfficient on the computational effort, we study the evolution of the
BDD during synthesis for the twomethods. For Lithography machine initialization, the BDD
evolution during synthesis is displayed in Fig. 14. One can validate that the peak used BDD
nodes and final BDD operation count are indeed lower when SS’ is applied instead of
SS (and match the values in Table 5). Performing applyRequirementsEfficient
actually requires more BDD operations than performing applyRequirements (i.e., only
performing line 1 of SS’ and SS, not yet the remainder). Respectively, these algorithms
are finished after 9.5 · 105 and 1.8 · 105 BDD operations. So, SS’ starts later on its fixpoint
computation (lines 2-7 in Algorithm 1) than SS. However, this computation is less costly
in SS’, because the state exclusion predicates do not appear directly in the nonblocking
predicate, which is the case for SS. At this point, the additional computational effort that
was invested when applying the predicates is “won back” (and more) by SS’, leading to a
lower computational effort overall. The peak that is observed at the end of both syntheses in
Fig. 14 is a result of restricting the guards (lines 8-10 in Algorithm 1).

The efficiency of applyRequirementsEfficient likely depends on the number
of edges labeled by controllable/uncontrollable events in the system. When there are many
edges labeled by an uncontrollable event, the state exclusion requirements are still encoded
in the nonblocking predicate. Unfortunately, at the moment we do not have any more models
containing state exclusion expressions to use for further experimentation. In part, this is
because they were previously avoided because of their inefficient application in synthesis.

7 Conclusion

The computational effort of symbolic supervisor synthesis can be expressed using peak used
BDD nodes and BDD operation count. Unlike wall clock time and peak random access
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Fig. 14 BDD evolution for SS and SS’ of Lithography machine initialization
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memory, these BDD-based metrics are platform independent, deterministic, and include no
overhead in their measurement. BDD-based metrics can be used to analyze, and improve,
the efficiency of the synthesis algorithm. In this paper we showcase this approach by: intro-
ducing and analyzing DCSH, a variable ordering heuristic; analyzing several edge ordering
heuristics; and introducing and analyzing an approach to efficiently enforce state exclusion
requirements in synthesis. It is shown that:

1. Even though using DCSH+FORCE+SW on average requires 5% more peak used BDD
nodes than FORCE+SW, it on average realizes a 14% lower BDD operation count
and for 16 out of 17 models it resulted in both a lower maximal measured peak used
BDD nodes and BDD operation count. Therefore, by applying DCSH+FORCE+SW as
variable ordering heuristic, performing synthesis with high computational effort can be
avoided, and generally low computational effort is required, relative to using just DCSH
or FORCE+SW.

2. Using reverse-model edge order realizes relatively low synthesis effort, averaging 10%
lower peak used BDD nodes and a 29% lower BDD operation count than using random
edge orders.

3. State exclusion requirements can efficiently be enforced by restricting edge guards prior
to synthesis. On average, this method reduces the peak used BDD nodes by 8% and BDD
operation count by 64%, relative to the conventional method.

These methods are implemented in the ESCET toolkit, and therefore available to all those
who wish to use them. Experiments like presented in this paper help in selecting what
methods or settings should be used by default. For instance, starting from ESCET release
v0.9, DCSH+FORCE+SW is applied by default.

From the experimental results it becomes clear that generally there are no one-size-fits-
all solutions. What works for one model, does not necessarily work for another model.
Unfortunately it is hard to predict when this is the case. A small change in the synthesis input,
e.g., the variable order, can have a huge influence on the synthesis effort. This means that
methods need to be thoroughly validated, which we do in this work. Nevertheless, these huge
variances in effort also indicate how much improvement can be made. Scalability is a major
factor in the industrial acceptance of supervisory control theory. This makes it worthwhile
to investigate techniques like the ones discussed in this paper, to be able to keep tackling the
engineering of supervisory controllers for larger and more complex systems with supervisor
synthesis.

Future work

As (industrial) systems generally become more and more complex, the computational effi-
ciency of symbolic supervisor synthesis should continuously be improved in the future. With
respect to static ordering of variables or edges, more heuristics can be investigated, and their
efficiency together with, or compared to, the heuristics discussed in this paper can be ana-
lyzed. Furthermore, dynamic reordering during synthesis could bring additional benefits, e.g.,
as considered in Panda et al. (1994) or Ranjan et al. (1995) for dynamic variable reordering
and in Vahidi et al. (2006) for dynamic selection of edges. Also, other synthesis settings that
directly influence the computational efficiency, such as the size of the BDD operation cache,
can be evaluated and improved using BDD-based metrics. Finally, since certain methods
perform well for some models, but poorly for others, it can be investigated whether these
cases can be recognized prior to performing synthesis, to make a selection of methods that
are likely to perform well.
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Aziz A, Taşiran S, Brayton RK (1994) BDD variable ordering for interacting finite state machines. In: Pro-
ceedings of the 31st annual conference on design automation. ACM Press, pp 283–288. https://doi.org/
10.1145/196244.196379

Browning T (2016) Design structure matrix extensions and innovations: a survey and new opportunities. Trans
Eng Manage 63(1):27–52. https://doi.org/10.1109/tem.2015.2491283

Bryant RE (1992) Symbolic booleanmanipulation with ordered binary-decision diagrams. ACMComput Surv
24(3):293–31. https://doi.org/10.1145/136035.136043

Burch JR, Clarke EM, Long DE et al (1994) Symbolic model checking for sequential circuit verification. Trans
Comp-Aided Design of Integ Circ Syst 13(4):401–42. https://doi.org/10.1109/43.275352

Cabodi G, Camurati PE, Quer S (1999) Improving the efficiency of BDD-based operators by means of parti-
tioning. Trans Comp-Aided Design of Integ Circ Syst 18(5):545–55. https://doi.org/10.1109/43.759068

Cai K, Wonham W (2014) New results on supervisor localization, with case studies. Disc Event Dyna Syst
25:203–226. https://doi.org/10.1007/s10626-014-0194-6

Cassandras CG, Lafortune S (2021) Introduction to Discrete Event Systems, 3rd edn. Springer Nature Switzer-
land https://doi.org/10.1007/978-3-030-72274-6
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