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Abstract

Many inductive logic programming (ILP) methods are incapable of learning programs from prob-
abilistic background knowledge, for example, coming from sensory data or neural networks with
probabilities. We propose Propper, which handles flawed and probabilistic background knowl-
edge by extending ILP with a combination of neurosymbolic inference, a continuous criterion
for hypothesis selection (binary cross-entropy) and a relaxation of the hypothesis constrainer
(NoisyCombo). For relational patterns in noisy images, Propper can learn programs from as few
as 8 examples. It outperforms binary ILP and statistical models such as a graph neural network.

Keywords: inductive logic programming, neurosymbolic inference, probabilistic background
knowledge, relational patterns, sensory data

1 Introduction

Inductive logic programming (ILP) (Muggleton 1995) learns a logic program from labeled
examples and background knowledge (e.g. relations between entities). Due to the strong
inductive bias imposed by the background knowledge, ILP methods can generalize from
small numbers of examples (Cropper et al. 2022). Other advantages are the ability to
learn complex relations between the entities, the expressiveness of first-order logic, and
the resulting program can be understood and transferred easily because it is in sym-
bolic form (Cropper and Dumanci¢ 2022). This makes ILP an attractive alternative
methodology besides statistical learning methods.

For many real-world applications, dealing with noise is essential. Mislabeled samples
are one source of noise. To learn from noisy labels, various ILP methods have been pro-
posed to generalize a subset of the samples (Srinivasan 2001; Ahlgren and Yuen 2013;
Zeng et al. 2014; De Raedt et al. 2015). To advance methods to learn recursive pro-
grams and invent new predicates, Combo (Cropper and Hocquette 2023) was proposed,
a method that searches for small programs that generalize subsets of the samples and
combines them. MaxSynth (Hocquette et al. 2024) extends Combo to allow for mislabeled
samples, while trading off program complexity for training accuracy. These methods are
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dealing with noisy labels, but do not explicitly take into account errors in the background
knowledge, nor are they designed to deal with probabilistic background knowledge.

Most ILP methods take as a starting point the inputs in symbolic declarative form
(Cropper et al. 2021). Real-world data often does not come in such a form. A predi-
cate p(.), detected in real-world data, is neither binary or perfect. The assessment of
the predicate can be uncertain, resulting in a non-binary, probabilistic predicate. Or
the assessment can be wrong, leading to imperfect predicates. Dealing with noisy and
probabilistic background knowledge is relevant for learning from sources that exhibit
uncertainties. A probabilistic source can be a human who needs to make judgments at
an indicated level of confidence. A source can also be a sensor measurement with some
confidence. For example, an image is described by the objects that are detected in it,
by a deep learning model. Such a model predicts locations in the image where objects
may be, at some level of confidence. Some objects are detected with a lower confidence
than others, for example, if the object is partially observable or lacks distinctive visual
features. The deep learning model implements a probabilistic predicate that a particular
image region may contain a particular object, for example, 0.7 :: vehicle(x). Given that
most object detection models are imperfect in practice, it is impossible to determine a
threshold that distinguishes the correct and incorrect detections.

Two common ILP frameworks, Aleph (Srinivasan, 2001) and Popper (Cropper and
Morel, 2021), typically fail find the correct programs when dealing with predicted objects
in images (Helff et al., 2023); even with a state-of-the-art object detection model, and
after advanced preprocessing of said detections. In the absence of an ideal binarization
of probabilities, most ILP methods are not applicable to probabilistic sources (Cropper
et al., 2021).

We propose a method toward probabilistic ILP. At a high level, ILP methods typically
induce a logical program that entails many positive and few negative samples, by search-
ing the hypothesis space, and subsequently testing how well the current hypothesis fits
the training samples (Cropper and Dumancié¢ 2022). One such method is Popper, which
learns from failures (LFF) (Cropper and Morel 2021), in an iterative cycle of generating
hypotheses, testing them, and constraining the hypothesis search. Our proposal is to
introduce a probabilistic extension to LFF at the level of hypothesis testing. For that
purpose, we consider neurosymbolic AT (Garcez et al. 2019). Within neurosymbolic AT
a neural network predicts the probability for a predicate. For example, a neural network
for object detection, which outputs a probability for a particular object being present
in an image region, for example, 0.7 :: vehicle(x). Neurosymbolic Al connects this neu-
ral network with knowledge represented in a symbolic form, to perform reasoning over
the probabilistic predicates predicted by the neural network. With this combination of a
neural network and symbolic reasoning, neurosymbolic Al can reason over unstructured
inputs, such as images. We leverage neurosymbolic programming and connect it to the
tester within the hypothesis search. One strength of neurosymbolic programming is that
it can deal with uncertainty and imperfect information (Garcez et al. 2019; De Raedt
et al. 2020; Huang et al. 2021; Li et al. 2024), in our case the probablistic background
knowledge.

We propose to use neurosymbolic inference as tester in the test phase of the LFF cycle.
Neurosymbolic reasoning calculates an output probability for a logical query being true,
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Fig. 1. Our method Propper extends the ILP method popper that learns from failures (left)
with neurosymbolic inference to test logical programs on probabilistic background knowledge,
for example, objects detected in images with a certain probability (right).

for every input sample. The input samples are the set of positive and negative examples,
together with their probabilistic background knowledge. The logical query evaluated
within the neurosymbolic reasoning is the hypothesis generated in the generate-phase
of the LFF cycle, which is a first-order-logic program. With the predicted probability
of the hypothesis being true per sample, it becomes possible to compute how well the
hypothesis fits the training samples. That is used to continue the LFF cycle and generate
new constraints based on the failures.

Our contribution is a step toward probabilistic ILP by proposing a method called
Propper. It builds on an ILP framework that is already equipped to deal with noisy
labels, Popper-MaxSynth (Cropper and Morel 2021; Hocquette et al. 2024), which we
extend with neurosymbolic inference which is able to process probabilistic facts, that is,
uncertain and imperfect background knowledge. Our additional contributions are a con-
tinuous criterion for hypothesis selection, that can deal with probabilities, and a relaxed
formulation for constraining the hypothesis space. Propper and the three contributions
are outlined in Figure 1. We compare Popper and Propper with statistical ML models
(support vector mach (SVM) and graph neural network (GNN)) for the real-life task of
finding relational patterns in satellite images based on objects predicted by an imperfect
deep learning model. We validate the learning robustness and efficiency of the various
models. We analyze the learned logical programs and discuss the cases which are hard
to predict.

2 Related work

For the interpretation of images based on imperfect object predictions, ILP methods
such as Aleph (Srinivasan, 2001) and Popper (Cropper and Morel 2021) proved to be
vulnerable and lead to incorrect programs or not returning a program at all (Helff et al.
2023). Solutions to handle observational noise were proposed (Cropper and Dumancié
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2021) for small binary images. With LogVis (Muggleton et al. 2018) images are analyzed
via physical properties. This method could estimate the direction of the light source or the
position of a ball from images in very specific conditions or without clutter or distractors.
Metaapq (Dai and Muggleton 2020) jointly learns a neural network with induction of
recursive first-order logic theories with predicate invention. This was demonstrated on
small binary images of digits. Real-life images are more complex and cluttered. We aim
to extend these works to realistic samples, for example, large color images that contain
many objects under partial visiblity and in the midst of clutter, causing uncertainties.
Contrary to Metaapq, we take pretrained models as a starting point, as they are often
already very good at their task of analyzing images. Our focus is on extending ILP to
handle probabilistic background knowledge.

In statistical relational artificial intelligence (StarAI) (Raedt et al. 2016) the ratio-
nale is to directly integrate probabilities into logical models. StarAl addresses a different
learning task than ILP: it learns the probabilistic parameters of a given program, whereas
ILP learns the program (Cropper et al. 2021). Probabilities have been integrated into
ILP previously. Aleph (Srinivasan 2001) was used to find interesting clauses and then
learn the corresponding weights (Huynh and Mooney 2008). ProbFOIL (De Raedt et al.
2015), and SLIPCOVER (Bellodi and Riguzzi 2015) search for programs with probabil-
ities associated to the clauses, to deal with the probabilistic nature of the background
knowledge. SLIPCOVER searches the space of probabilistic clauses using beam search.
The clauses come from Progol (Muggleton 1995). Theories are searched using greedy
search, where refinement is achieved by adding a clauses for a target predicate. As guid-
ance the log likelihood of the data is considered. SLIPCOVER operates in a probabilistic
manner on binary background knowledge, where our goal is to involve the probabilities
associated explicitly the background knowledge.

How to combine these probabilistic methods with recent ILP frameworks is unclear.
In our view, it is not trivial and possibly incompatible. Our work focuses on integrating
a probabilistic method into a modern ILP framework, in a simple yet elegant man-
ner. We replace the binary hypothesis tester of Popper (Cropper and Morel 2021) by
a neurosymbolic program that can operate on probabilistic and imperfect background
knowledge (Garcez et al. 2019; De Raedt et al. 2020). Rather than advanced learning of
both the knowledge and the program, for example, NS-CL (Mao et al., 2019), we take
the current program as the starting point. Instead of learning parameters, for example,
Scallop (Huang et al. 2021), we use the neurosymbolic program for inference given the
program and probabilistic background knowledge. Real-life samples may convey large
amounts of background knowledge, for example, images with many objects and relations
between them. Therefore, scalability is essential. Scallop (Huang et al. 2021) improved
the scalability over earlier neurosymbolic frameworks such as DeepProbLog (Manhaeve
et al. 2018, 2021). Scallop introduced a tunable parameter k to restrain the validation
of hypotheses by analyzing the top-k proofs. They asymptotically reduced the com-
putational cost while providing relative accuracy guarantees. This is beneficial for our
purpose. By replacing only the hypothesis tester, the strengths of ILP (i.e. hypothesis
search) are combined with the strengths of neurosymbolic inference (i.e. probabilistic
hypothesis testing).
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3 Propper algorithm

To allow ILP on flawed and probabilistic background knowledge, we extend modern
ILP (Section 3.1) with neurosymbolic inference (3.2) and coin our method Propper. The
neurosymbolic inference requires program conversion by grammar functions (3.3), and
we added a continuous criterion for hypothesis selection (3.4), and a relaxation of the
hypothesis constrainer (3.5).

3.1 ILP: popper

Popper represents the hypothesis space as a constraint satisfaction problem and gen-
erates constraints based on the performance of earlier tested hypotheses. It works by
learning from failures (LFF) (Cropper and Morel 2021). Given background knowledge
B, represented as a logic program, positive examples Et and negative examples £,
it searches for a hypothesis H that is complete (Ve€ Et, HU B e€) and consistent
(Ve€e E-, HU B [~ e). The algorithm consists of three main stages (see Figure 1, left).
First a hypothesis in the form of a logical program is generated, given the known predi-
cates and constraints on the hypothesis space. The Test stage tests the generated logical
program against the provided background knowledge and examples, using Prolog for
inference. It evaluates whether the examples are entailed by the logical program and
background knowledge. From this information, failures that are made when applying the
current hypothesis, can be identified. These failures are used to constrain the hypothesis
space, by removing specializations or generalizations from the hypothesis space. In the
original Popper implementation (Cropper and Morel 2021), this cycle is repeated until an
optimal solution is found; the smallest program that covers all positives and no negative
examples.! Its extension Combo combines small programs that do not entail any nega-
tive example (Cropper and Hocquette 2023). When no optimal solution is found, Combo
returns the obtained best solution. The Popper variant MaxSynth does allow noise in the
examples and generates constraints based on an MDL cost function, by comparing the
length of a hypothesis with the possible gain in wrongly classified examples (Hocquette
et al. 2024).

3.2 Neurosymbolic inference: scallop

Scallop is a language for neurosymbolic programming which integrates deep learning
with logical reasoning (Huang et al. 2021). Scallop reasons over continuous, probabilistic
inputs and results in a probabilistic output confidence. It consists of two parts: a neu-
ral model that outputs the confidence for a specific concept occurring in the data and
a reasoning model that evaluates the probability for the query of interest being true,
given the input. It uses provenance frameworks (Kimmig et al. 2017) to approximate
exact probabilistic inference, where the AND operator is evaluated as a multiplica-
tion (AND(z,y) =z *y), the OR as a minimization (OR(z,y)=min(l,z+y)) and
the NOT as a 1—xz. Other, more advanced formulations are possible, for example,
noisy-OR(z,y)=1— (1 —a)(1 —b) for enhanced performance. For ease of integration,

1 See (Cropper and Morel 2021) for a formal definition.
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we considered this basic provenance. To improve the speed of the inference, only the
most likely top-k hypotheses are processed, during the intermediate steps of computing
the probabilities for the set of hypotheses.

3.3 Connecting ILP and neurosymbolic inference

Propper changes the Test stage of the Popper algorithm (see Figure 1): the binary Prolog
reasoner is replaced by the neurosymbolic inference using Scallop, operating on proba-
bilistic background knowledge (instead of binary), yielding a probability for each sample
given the logical program. The background knowledge is extended with a probability
value before each first-order-logic statement, for example, 0.7 :: vehicle(x).

The Generate step yields a logic program in Prolog syntax. The program can cover
multiple clauses, that can be understood as OR as one needs to be satisfied. Each clause
is a function of predicates, with input arguments. The predicate arguments can differ
between the clauses within the logic program. This is different from Scallop, where every
clause in the logic program is assumed to be a function of the same set of arguments. As
a consequence, the Prolog program requires syntax rewriting to arrive at an equivalent
Scallop program. This rewriting involves three steps by consecutive grammar functions,
which we illustrate with an example. Take the Prolog program:

f(A) =has_object(A, B), vehicle(B)
f(A) =has_object(A, B), bridge(C), is_on(B, C) (1)

The bodies of f(A) are extracted by: b(f) = {[has_object(A, B), vehicle(B)],
[has_object(A, B), bridge(C), is_on(B, C)]}. The sets of arguments of f(A) are
extracted by: v(f) ={{A, B},{C, A, B}}.

For a Scallop program, the clauses in the logic program need to be functions of the same
argument set. Currently the sets are not the same: {A, B} versus {C, A, B}. Function
e(-) adds a dummy predicate for all non-used arguments, that is, C in the first clause,
such that all clauses operate on the same set, that is, {C, A, B}:

e([has_object (A, B),vehicle(B)],{C, A, B})=
has_object(A, B), vehicle(B), always_true(C) (2)

After applying grammar functions b(-), v(-), and e(+), the Prolog program f (A) becomes
the equivalent Scallop program g(C, A, B):

g,(C, A, B) =has_object(A, B), vehicle(B), always_true(C)
g,(C, A, B) =has_object(A, B), bridge(C), is_on(B, C)
g(C’ A, B):go(cg A’ B) or gi(C, A: B) (3)

3.4 Selecting the best hypothesis

MaxSynth uses a minimum description length (MDL) cost (Hocquette et al. 2024) to
select the best solution:

MDLp g =size(h) + fnp,g(h) + fpe,r(h) (4)
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The MDL cost compares the number of correctly classified examples with the number of
literals in the program. This makes the cost dependent on the dataset size and requires
binary predictions in order to determine the number of correctly classified examples.
Furthermore, it is doubtful whether the number of correctly classified examples can be
compared directly with the rule size, since it makes the selection of the rule size dependent
on the dataset size again.

Propper uses the binary cross-entropy (BCE) loss to compare the performance of
hypotheses, as it is a more continuous measure than MDL. The neurosymbolic inference
predicts an output confidence for an example being entailed by the hypothesis. The BCE-
cost compares this predicted confidence with the groundtruth (one or zero). For y; being
the groundtruth label and p; the confidence predicted via neurosymbolic inference for
example 7, the BCE-cost for IV examples becomes

N

BOB= 5 3 (wlog(p) + (1 =) wloo(1 1) )
Scallop reasoning automatically avoids overfitting, by punishing the size of the pro-
gram, because when adding more or longer clauses the probability becomes lower by
design. The more ANDs in the program, the lower the output confidence of the Scallop
reasoning, due to the multiplication of the probabilities. Therefore, making a program
more specific will result in a higher BCE-cost, unless the specification is beneficial to
remove FPs. Making the program more generic will cover more samples (due to the addi-
tion operator for the OR). However the confidences for the negative samples will increase
as well, which will increase the BCE-cost again. The BCE-cost is purely calculated on
the predictions itself and thereby removes the dependency on the dataset size and the

comparison between number of samples and program length.

3.5 Constraining on inferred probabilities

Whereas Combo (Cropper and Hocquette 2023) and MaxSynth (Hocquette et al. 2024)
yield optimal programs given perfect background knowledge, with imperfect and prob-
abilistic background knowledge no such guarantees can be provided. The probabilistic
outputs of Scallop are converted into positives and negatives before constraining. The
optimal threshold is chosen by testing 15 threshold values, evenly spaced between 0 and 1
and selecting the threshold resulting in the most highest true positives plus true negatives
on the training samples.

MaxSynth generates constraints based on the MDL loss (Hocquette et al. 2024), mak-
ing the constraints dependent on the size of the dataset. To avoid this dependency,
we introduce the NoisyCombo constrainer. Combo generates constraints once a false
positive (FP) or negative (FN) is detected. e € E~, H U B |=e: prune generalizations.
Jdec ET,HUBJ;e or Vee E~, HU B £ e: prune specializations. NoisyCombo relaxes
this condition and allows a few FPs and FNs to exist, depending on an expected noise
level, inspired by LogVis (Muggleton et al. 2018). This parameter defines a percent-
age of the examples that could be imperfect, from which the allowed number of FPs
and FNs is calculated. ) (e€ E~, HU B = e) > noise_level * Nypegatives: Prune general-
izations. Ve € E~, H U B [~ e: prune specializations. The positives are not thresholded by
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the noise level, since programs that cover at least one positive sample are added to the
combiner.

4 Analyses

We validate Propper on a real-life task of finding relational patterns in satellite images,
based on flawed and probabilistic background knowledge about the objects in the images,
which are predicted by an imperfect deep learning model. We analyze the learning robust-
ness under various degrees of flaws in the background knowledge. We do this for various
models, including Popper (on which Propper is based) and statistical ML models. In addi-
tion, we establish the learning efficiency for very low amounts of training data, as ILP is
expected to provide an advantage because it has the inductive bias of background knowl-
edge. We analyze the learned logical programs, to compare them qualitatively against
the target program. Finally, we discuss the cases that are hard to predict.

4.1 First dataset

The DOTA dataset (Xia et al. 2018) contains many satellite images. This dataset is
very challenging, because the objects are small, and therefore visual details are lacking.
Moreover, some images are very cluttered by sometimes more than 100 objects.

For the background knowledge, we leverage the pretrained DOTA Aerial Images Model
(Coradesque 2023) to predict the objects in the images, with for each object a label, loca-
tion (bounding box) and a probability (confidence value). For each image, the respective
predictions are added to the background knowledge, as a predicate with a confidence, for
example, 0.7 :: vehicle(x). The locations of the objects are used to calculate a confidence
for two relations: is_on and is_close. This information is added to the background
knowledge as well. Figure 2 shows various images from the dataset, including zoomed
versions to reveal some more details and to highlight the small size of the objects. Figure
2(b) shows an image with many objects. The relational patterns of interest is ”vehicle
on bridge.” For this pattern, there are 11 positive test images and 297 negative test
images. Figure 2 shows both a positive (left) and negative image (right). To make the
task realistic, both sets contain images with vehicles, bridges, and roundabouts, so the
model cannot distinguish the positives and negatives by purely finding the right sets of
objects; the model really needs to find the right pattern between the right objects. Out of
the negative images, 17 are designated as hard, due to incorrect groundtruths (2 images)
and incorrect detections (15 images). These hard cases are shown in Figure 3.

4.2 Experimental setup

The dataset is categorized into three subsets that are increasingly harder in terms of
flaws in the background knowledge. Easy: This smallest subset excludes the incorrect
groundtruths, a manual check that most object predictions are reasonable, that is, images
with many predicted objects are withheld (this includes images with many false posi-
tives). Intermediate: This subset excludes the incorrect groundtruths. Compared to Easy,
this subset adds all images with many object predictions. Hard: This is the full set, which
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Positive image

vehicle: 4

™

bridge: 79.1%

(zoom) (zoom)

Fig. 2. Examples of images with the detected objects and their probabilities.

includes all images, also the ones with incorrect groundtruths. We are curious whether
ILP methods can indeed generalize from small numbers of examples, as is hypothesized
(Cropper et al. 2022). Many datasets used in ILP are using training data with tens to hun-
dreds (sometimes thousands) of labeled samples (Bellodi and Riguzzi 2015; Hocquette et
al. 2024). We investigate the performance for as few as {1, 2, 4, 8} labels for, respectively,
the positive and negative set, as this is common in practical settings. Moreover, common
ILP datasets are about binary background knowledge, without associated probabilities
(Bellodi and Riguzzi 2015; Hocquette et al. 2024). In contrast, we consider probabilistic
background knowledge. From the Easy subset, we construct an Easy-1.0 set by threshold-
ing the background knowledge with a manually chosen optimal threshold, which results
in an almost noiseless dataset and shows the complexity of the logical rule to learn. All
experiments are repeated five times, randomly selecting the training samples from the
dataset and using the rest of the dataset as test set.
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Fig. 3. Hard cases due to incorrect groundtruths (right) or incorrect detections (others).

4.3 Model variants and baselines

We compare Propper with Popper (on which it builds), to validate the merit of inte-
grating the neurosymbolic inference and the continuous cost function BCE. Moreover,
we compare these ILP models with statistical ML models: the SVM (Cortes and Vapnik
1995) because it is used so often in practice; a GNN (Wu et al. 2020) because it is also
relational by design which makes it a reasonable candidate for the task at hand, that is,
finding a relational pattern between objects. All methods except the SVM are relational
and permutation invariant. The objects are unordered and the models should therefore
represent them in an orderless manner. The SVM is not permutation invariant, as objects
and their features have some arbitrary but designated position in its feature vectors. All
methods except Popper are probabilistic. All methods except the most basic Popper vari-
ant, can handle some degree of noise. The expected noise level for NoisyCombo is set at
0.15. The tested models are characterized in Table 1.

For a valid comparison, we increase the SVM’s robustness against arbitrary object
order. With prior knowledge about the relevant objects for the pattern at hand, these
objects can be placed in front of the feature vector. This preprocessing step makes the
SVM model less dependent on the arbitrary order of objects. In the remainder of the
analyses, we call this variant "SVM ordered.” To binarize the probabilistic background
knowledge as input for Popper, the detections are thresholded with the general value of
0.5.

4.4 Increasing noise in background knowledge

We are interested in how the robustness of model learning for increasing difficulty of
the dataset. Here we investigate the performance on the three subsets from Section 4.2:
Easy, Intermediate, and Hard. Figure 4 shows the performance for various models for
increasing difficulty. The four subplots show the various types of models. For a reference,
the best performing model is indicated by an asterisk (*) in all subplots. It is clear that for
increasing difficulty, all models struggle. The statistical ML models struggle the most: the
performance of the GNN drops to zero on the Hard set. The SVMs are a bit more robust
but the performance on the Hard set is very low. The most basic variant of Popper also
drops to zero. The noise-tolerant Popper variants (Noisy-Combo and MaxSynth) perform
similarly to the SVMs. Propper outperforms all models. This finding holds for all Propper
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Table 1. The tested model variants and their properties

Model SVM GNN ILP Popper ILP MaxSynth  ILP Propper
Cortes 1995 Wu 2020 Cropper 2021 Hocquette 2024  (ours)
Constrainer - - Combo MaxSynth Noisy-Combo
Tester - - Prolog Prolog Scallop
Cost function - - MDL MDL BCE
Type Stat. Stat. Logic Logic Logic
Label noise Yes Yes No Yes Yes
Background noise  Yes Yes No Some Yes
Relational No Yes Yes Yes Yes
Permutation inv.  No Yes Yes Yes Yes
Probabilistic Yes Yes No No Yes
Statistical ML Popper
1.0
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Fig. 4. Performance of the models on finding a relational pattern in satellite images, for
increasing hardness of image sets. The best performer is Propper BCE, indicated in each graph
by * for comparison. Our probabilistic ILP outperforms binary ILP and statistical ML.
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Fig. 5. Performance of the models on finding a relational pattern in satellite images, for
increasing training sets. The best performer is Propper BCE, indicated in each graph by * for
comparison. Our probabilistic ILP outperforms binary ILP and statistical ML.

variants (Combo, Noisy-Combo, and MaxSynth). Using BCE as a cost function yields a
small but negligible advantage over MDL.

4.5 Learning efficiency with few labels

We are curious how the models perform with as few as {1, 2, 4, 8} labels for respectively
the positive and negative set. The performance is measured on the Hard set. Figure 5
shows the performance for various models for increasing training set size. The four sub-
plots show the various types of models. Again, for reference, the best performing model
is indicated by an asterisk (*) in all subplots. The upper left shows the statistical ML
models. They do perform better with more training samples, but the performance is infe-
rior to the ILP model variants. The Propper variant with Scallop and Noisy-Combo and
BCE is the best performer. BCE does not improve significantly over MDL. MaxSynth has
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Fig. 6. Examples of the MS-COCO dataset with images of everyday scenes.

an optimization criterion that cannot operate with less than three training samples. The
main improvement by Propper is observed when switching from Combo to Noisy-Combo
and switching from Prolog to Scallop (i.e. neurosymbolic inference).

4.6 Second dataset

We are interested how the methods perform on a different dataset. The MS-COCO
dataset (Lin et al. 2014) contains a broad variety of images of everyday scenes. This
dataset is challenging, because there are many different objects in a wide range of set-
tings. Similar to the previous experiment, the background knowledge is acquired by the
predictions of a pretrained model, GroundingDINO (Liu et al. 2023), which are used to
extract the same two relations. Figure 6 shows some examples.

The pattern of interest is "person next to a car.” We consider all images that have
a maximum of two persons and two cars, yielding 1728 images. We use random eight
positive and eight negative images for training, which is repeated 5 times. We test
both ILP variants, Popper and Propper, for the MaxSynth constrainer, because the
Combo constrainer regularly did not return a solution. We validate Popper with vari-
ous thresholds to be included as background knowledge. Propper does not need such a
threshold beforehand, as all background knowledge is considered in a probabilistic man-
ner. The results are shown in Table 2. Propper is the best performer, achieving f1 =0.947.
This is significantly better than the alternatives: SVM achieves f1 =0.668 (—0.279) and
Popper achieves f1=0.596 (—0.351). Adding probabilistic behavior to ILP is helpful for
challenging datasets.

Table 3 shows the learned programs, how often each program was predicted across
the experimental repetitions, and the respective resulting f1 scores. The best program is
that there is a person on a car. Popper yields the same program, however, with a lower
f1-score, since the background knowledge is thresholded before learning the program,
removing important data from the background knowledge. This confirms that in practice
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Table 2. Model variants and performance on MS-COCO

Category Method Constrainer  Tester Criterion Threshold f1

ILP Propper (ours) MaxSynth  Probabilistic MDL - 0.947
ILP Propper (ours) MaxSynth Probabilistic BCE - 0.754
Statistical ML SVM - - - - 0.668
Statistical ML SVM (ordered) - - - - 0.652
ILP Popper MaxSynth Prolog MDL 0.3 0.596
ILP Popper MaxSynth Prolog MDL 0.5 0.466
ILP Popper MaxSynth Prolog MDL 0.4 0.320

Table 3. Learned programs, prevalence and performance on MS-COCO

Model 11 % Program

Propper 1.0 40 f(A) :- has_object(A,B), person(B), is_on(B,C), car(C).
Propper 0.93 40 f(A) :- has_object(A,B), car(B), is_on(C,B).
Propper 0.88 20 f(A) :- person(B), has_object(A,C), car(B).

Popper 0.82 20 f(A) :- has_object(A,C), is_on(C,B), has_object(A,B).
Popper 0.72 20 f(A) :- has_object(A,C), is_on(B,C), person(B).
Popper 0.72 40 f(A) :- person(C), is_on(C,B), has_object(A,C), car(B).

Popper 0 20 No program learned.

it is intractable to set a perfect threshold on the background knowledge. It is beneficial
to use Propper which avoids such prior thresholding.

5 Discussion and conclusions

We proposed Propper, which handles flawed and probabilistic background knowledge
by extending ILP with a combination of neurosymbolic inference, a continuous cri-
terion for hypothesis selection (BCE), and a relaxation of the hypothesis constrainer
(NoisyCombo). Neurosymbolic inference has a significant impact on the results. Its advan-
tage is that it does not need prior thresholding on the probabilistic background knowledge
(BK), which is needed for binary ILP and is always imperfect. NoisyCombo has a small
yet positive effect. It provides a parameter for the level of noise in BK, which can be
tailored to the dataset at hand. The BCE has little impact. Propper is able to learn a
logic program about a relational pattern that distinguishes between two sets of images,
even if the background knowledge is provided by an imperfect neural network that pre-
dicts concepts in the images with some confidence. With as few as a handful of examples,
Propper learns effective programs and outperforms statistical ML methods such as a
GNN.

Although we evaluated Propper on two common datasets with different recording con-
ditions, a broader evaluation of Propper across various domains and datasets to confirm
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its generalizability and robustness for various (especially non-image) use cases, is inter-
esting. The proposed framework of integrated components allows for an easy setup of
the system and simple adaptation to new developments/algorithms within the sepa-
rate components. However, the integration as is performed now could be non-optimal in
terms of computational efficiency. For example, the output of the hypothesis generation
is an answer set, which in Popper is converted to Prolog syntax. Propper converts this
Prolog syntax to Scallop syntax. Developing a direct conversion from the answer sets
to the Scallop syntax is recommended. We favored modularization over full integration
and computational efficiency, in order to facilitate the methodological configuration and
comparison of the various components. It is interesting to investigate whether a redesign
of the whole system with the components integrated will lead to a better system. To
make the step to fully probabilistic ILP, the allowance of probabilistic rules should be
added to the system as well, for example, by integration of StarAIl methods (Raedt et
al. 2016).
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