Check for
Updates

Towards an Industrial Stateful Software Rejuvenation
Toolchain using Model Learning

Mathijs Schuts
mathijs.schuts@ru.nl
Radboud University
Nijmegen, Netherlands

Abstract

We present our vision for creating an industrial legacy soft-
ware rejuvenation toolchain. The goal is to semi automat-
ically remove code smells from stateful software used in
Cyber Physical Systems (CPS). Compared to existing tools
that remove code smells, our toolchain can remove more than
one type of code smell. Additionally, our approach supports
multiple programming languages because we use abstract
models obtained by means of model learning. Supporting
more than one programming language is often lacking in
state of art refactoring tools.

CCS Concepts: « Software and its engineering — Soft-
ware maintenance tools; State based definitions.

Keywords: model learning, model based development, soft-
ware refactoring, software rejuvenation, state machine

ACM Reference Format:

Mathijs Schuts and Jozef Hooman. 2023. Towards an Industrial State-
ful Software Rejuvenation Toolchain using Model Learning. In Pro-
ceedings of the 2023 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! °23), October 25-27, 2023, Cascais, Portugal. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3622758.3622888

1 Introduction

The high tech industry creates Cyber Physical Systems (CPS)
—such as cars, airplanes, trains, medical systems and indus-
trial robots— that contain a lot of software to manage and
control hardware. Often these embedded systems have soft-
ware architectures in which many decades of development
has been invested. Up to 80 percent of development cost is
spend on maintaining embedded systems. Some software
components can be characterized as legacy. Legacy compo-
nents lack documentation and often the original developers
have left the company. Moreover, obsolete tools, libraries

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Onward! °23, October 25-27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0388-1/23/10.
https://doi.org/10.1145/3622758.3622888

15

Jozef Hooman
jozef.hooman@tno.nl
TNO-ESI
Eindhoven, Netherlands

and languages are used, and regression test coverage is very
limited. Unfortunately, frequent updates and extensions of
the software by a large number of software developers work-
ing under time pressure, inevitably leads to a lot of incidental
complexity [28]. Such incidental complexity can be detected
by so called code smells [12].

Legacy software contains a lot of accumulated value that
cannot be thrown away to start from scratch. Starting from
scratch would mean that scarce resources are used to make
a new implementation of the system with the same behavior
as the current system. These resources cannot be used to
create new functionality and features for customers.

State of art automated refactoring tools typically focus on
the removal of one type of code smell, e.g. code duplication.
They also provide support for refactoring software written in
a single programming language only. In addition, these tools
are based on static analysis techniques [23]. In Section 2, we
elaborate on state of art related work.

The goal of this paper is to propose a toolchain for the
semi-automated refactoring of embedded software. In in-
dustrial practice, a complete rewrite of the code is almost
never economically feasible. Moreover, because of the time
pressure mentioned before, the set of tests is typically lim-
ited. Hence, it is difficult to show that a new implementation
has the same behavior as the original system. We aim at
automatic support of code refactorings where we have more
confidence in the correctness of the code changes than by
only running the existing regression test cases.

Our approach combines model learning, equivalence check-
ing and metaprogramming technologies to remove incidental
complexity by refactoring code and removing code smells.
Removing code smells will improve the maintainability char-
acteristics of an implementation [23].

In CPS, the behavior is often written in terms of state
machines. For instance, a state machine can represent the
states of a hardware component that is managed by software.
Our proposed toolchain acquires a state machine model of
the blackbox dynamic behavior of a complex software system.
Model learning [32] is a technique to capture the behavior of
an implementation in the form of a state machine. Because
model learning is a blackbox technique, our proposed tool
is not bound to a single programming language. It can —in
contrast to the existing state of art tools— potentially refactor
software written in any programming language.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-4166-288X
https://orcid.org/0009-0003-8294-8857
https://doi.org/10.1145/3622758.3622888
https://doi.org/10.1145/3622758.3622888
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3622758.3622888&domain=pdf&date_stamp=2023-10-19

Onward! 23, October 25-27, 2023, Cascais, Portugal

Metaprogramming is used to generate a learning setup
automatically, to connect the different technologies of our
toolchain and to generate new code.

Learned models can be large when a learned implementa-
tion is large. To restructure the state machine, the toolchain
supports the possibility to edit the learned model interac-
tively with model based tools. The edited model can be
checked for equivalence with the learned model using an
equivalence checker. In this way it can be ensured that the
behavior is preserved by the edits.

From the edited model, a new implementation can be gen-
erated. The generated software will be a formfit replacement
of the original legacy software. Hence, all external interfaces
will be respected. The newly generated software has the code
smells removed.

We formulate the following requirements for the toolchain:

e Req. 1 The toolchain shall be able to rejuvenate units
of state-based CPS.

e Req. 2 The toolchain shall support multiple program-
ming languages.

e Req. 3 The toolchain shall remove many code smells.

e Req. 4 The toolchain shall provide a formfit replace-
ment. Hence, the rejuvenated code has unchanged
external interfaces and the behavior of the code is
equivalent.

The toolchain consists of a novel combination of existing
technologies. The toolchain combines model learning, equiv-
alence checking and metaprogramming technologies. We
intend to make the toolchain modular such that we can in-
novate the steps in the workflow by using new or improved
tools, techniques or algorithms. We show that the individual
technologies have already been successfully applied in in-
dustry. We reason that the combination of the technologies
will implement the described requirements while existing
tools do not.

The paper is organized as follows. In Section 2, we elab-
orate on state of art related work. Section 3 provides back-
ground information about the technologies and describes
examples of their application in industry. We describe the
refactoring workflow in Section 4, and in Section 5, we de-
scribe our plan for a first prototype of the toolchain. Section 6
discusses challenges and limitations. Section 7 contains con-
cluding remarks.

2 Related Work

Requirements 3 & 4 are inspired by the book of Fowler [12]
about refactoring. He defines refactoring as changing the
internals of an unit (file) without changing its usage of its
external interface while preserving its behavior. When the
current test suites have insufficient coverage, the manual
creation of test cases is advocated before the start of the
refactoring. Moreover, Fowler describes how to manually

16

Mathijs Schuts and Jozef Hooman

remove code smells after the manually creation of additional
test cases.

Lacerda et. al. [23] performed a tertiary Systematic Litera-
ture Review (SLR) —which is a review of secondary studies-
about refactoring and code smells. The paper provides an
extensive list of the type of code smells identified by multi-
ple authors. They also list many tools that could be used to
identify refactoring opportunities. There are only a few tools
that can automate code smell refactorings. The studies they
have included presented 24 different refactor automation
tools. These tools only remove one or few code smells. In
addition, the tools only support one programming language,
i.e., Java or Erlang. The largest challenge for these tools is to
preserve behavior. In sum, existing tools do not implement
the Regs. 2-4 we identified in Section 1.

Integrated Development Environments (IDE) like Visual
Studio!, Visual Code? and Eclipse® provide support to refac-
tor C/C++/C# code, for instance to rename methods and
variables. However, these IDEs does not support the semi
automated removal of code smells [23]. Hence, IDEs do not
fulfil our requirements for a legacy software rejuvenation
tool.

Agnihotri and Anyradha [3] conducted a secondary SLR
about software metrics, code smells and refactoring tech-
niques. In their paper, they conclude that most research on
refactoring and code smells is conducted on Java based pro-
grams. Hardly any research is performed on the C, C++ and
C# programming languages which are dominant in the CPS
software domain which is our target, as mentioned in Regq. 1.

Ivers et. al. [20] describe their vision on automated code
refactoring tools. In their vision, support for automated refac-
toring should be generalized for multiple programming lan-
guages, like Java, C++ and C#, because of their —sometimes
subtle— differences in semantics. This is in line with our Regq. 2.

Meta programming can be applied to large scale auto-
mated refactoring of code. Limitation of this technique is that
there must be regression test suites which provide enough
confidence that the behavior is preserved as identified by [29].
So Req. 4 is hard to guarantee for these kind of tools.

Concluding, our literature research did not reveal a tool
that adheres to the requirements we described in Section 1.

3 Background of Technologies

We provide background information about the technologies
we intent to use for the toolchain. Per technology, we also
describe their application in industry.

3.1 Model Learning

Model learning is a technique to construct behavioral mod-
els from existing software. For this, the Minimal Adequate

Uhttps://visualstudio.microsoft.com
Zhttps://code.visualstudio.com
3https://www.eclipse.org

https://visualstudio.microsoft.com
https://code.visualstudio.com
https://www.eclipse.org

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

Teacher (MAT) framework as is shown in Figure 1 is used.
The learner uses a teacher to acquire a model from the Sys-
tem Under Learning (SUL). The learner is instrumented with
a set of possible inputs it can send to the teacher. When
learning starts the learner sends sequences of inputs called
Membership Queries (MQ) to the teacher. For every sequence
of inputs, the teacher returns a sequence of outputs. Before
a new input sequence is send, the SUL is reset to its initial
state. After some MQs, the learner has “enough” informa-
tion to build a hypothesis. The hypothesis is tested with an
Equivalence Query (EQ). The teacher can either confirm the
hypothesis —in this case the hypothesis is the final model-
or otherwise it will return a counterexample. The counterex-
ample is used by the learner to continue learning and create
a new hypothesis. The resulting model is a (deterministic)
Mealy state machine [6].

Learner Teacher

—_—
MQ SUL

<

Hypothesis T

A\

—_—

EQ Model
D S

Figure 1. The MAT framework

Model learning has been applied on quite a number of non-
trivial cases. For instance, to learn models of network proto-
col implementations, such as, SSH, SIP, TCP, TLS, and models
of smart cards for banking and bio-metric passports [5]. Also
in industry model learning has been used. For instance, at
Canon a controller of a high end printing copier of 410 states
and 77 stimuli was learned [31].

Schuts et. al. [30] write about their experience with the
application of model learning in the context of refactoring
software. Model learning was used to check if a manual reim-
plementation was indeed a behavior preserving refactoring.
Models were learned from the old and the new implementa-
tion. Next they used an equivalence checker to compare the
two models. The equivalence checker found some discrepan-
cies.

3.2 Equivalence Checking

To get confidence in the correctness after manual edits, we
want to check equivalence of a model of the old implemen-
tation with a model of the new implementation. We can use
a model checker to prove the equivalence of two models.
In the domain of formal methods, different relations exist
to compare two state machines where (weak) trace is the
weakest and (strong) bisimulation is the strongest relation.
When two Mealy state machines do not contain any silent

17

Onward! 23, October 25-27, 2023, Cascais, Portugal

transitions, trace equivalence and bisimulation equivalence
coincide, and there is no difference between weak and strong
equivalences [11]. Model checkers with support for strong
bisimulation are, for instance, mCRL2 [16], CADP [15] and
TAPAs [10].

3.3 Model Based Tools

The learned state machines can become quite large. To han-
dle complexity, we want to decompose them into smaller
state machines. Model based tools like Rhapsody [17] pro-
vide ways to handle complexity. In Rhapsody, state machines
are designed using a graphical design window. To reduce
complexity it is for instance possible to design a hierarchical
state machine. Compared to a flat state machine, states are
grouped in a hierarchical state machine. This reduces the
complexity for a human reader. The way to implement a
state machine is hidden by the Rhapsody run-time. From the
graphical design a state machine implementation is automat-
ically generated. An alternative is Visual State [35].

Another category are light-weight formal tools, like ASD,
Cocotec* and Dezyne® [34]. The latter has a proprietary
version and an open source version® These three tools have
a DSL to describe state behavior. Internally, the tools convert
a DSL instance to a formal model [9]. A model checker is
applied to test the formal model for the absence of deadlock
and livelock. It also checks if the implementation conforms
to its interface specification. In addition, it checks if required
components are used according their interface specification.
This makes the approach compositional. If all checks pass,
source code can be generated and integrated into the product.

Osaiweran et. al. calculated that this technology reduces
the number of defects and increases productivity compared
to manually written source code [25].

All metioned model based tools supports the generation
of source code for multiple commonly used programming
languages in the CPS domain.

3.4 Metaprogramming

For model learning, we need to connect the SUL to the learner.
This needs to be done based on the external interfaces of the
SUL. Metaprogramming languages can be used to generate
an adapter to connect the learner to the SUL. An Abstract
Syntax Tree (AST) of the external interfaces can be used for
code generation. Examples of metaprogramming languages
with C-style language support are Rascal [21], Proteus [2]
and CodeBoost [7].

4 Proposed Toolchain

In this section, we describe how to combine the technolo-
gies of the previous section to create an embedded software

4https://cocotec.io/
Shttps://www.verum.com/
®https://github.com/dezyne

https://cocotec.io/
https://www.verum.com/
https://github.com/dezyne

Onward! 23, October 25-27, 2023, Cascais, Portugal

Mathijs Schuts and Jozef Hooman

Interactive Editing
1: Problem 2: Generate 3: Model 4: Transform | 6: Generate .
Analysis Adapter Learning Model i Code —>| 9 Done
A A
\ \ A4
5: Equivalence 8: Equivalence |_ 7: Model
Check Check -~ Learning

Figure 2. Industrial legacy software rejuvenation toolchain

rejuvenation toolchain. In Figure 2, we have depicted the pro-
posed toolchain. In the subsequent paragraphs, we explain
every step of the toolchain.

Step 1 The workflow starts with an analysis of the imple-
mentation that is a candidate for refactoring. We determine
the external interfaces of the unit that we want to refactor.
We use the term unit for a file with source code.

Step 2 To learn a model, the unit needs to be connected
to a model learner via an adapter. The adapter connects the
external interfaces of the System Under Learning (SUL) to
the learner. The adapter makes it also possible to connect the
learner to a SUL which is written in another programming
language. The adapter can be automatically generated based
on the external interfaces of the unit. We use a metaprogram-
ming tool for the adapter generation.

Step 3 A model from the old software is acquired using
model learning.

Step 4 Code smells can be removed in this step, e.g. code
duplication. The learned model is used as a starting point.
This model can be large and might lack an useful structure.
Using model to model transformations, new decompositions
for the unit can be generated. The user can choose one of
the proposed decompositions and start manual editing when
required. For instance, the learned state machine will not
contain meaningful names for states. This is something that
can be added manually.

Step 5 To gain confidence that the transformed model
has the same behavior as the learned model, an equivalence
checker is used. When the equivalence checker produces a
counter example, we go back to Step 4.

Step 6 The code smells are removed in this step. From
the model, a new implementation is generated. The gener-
ated software will be a formfit replacement of the original
software, since the external interfaces are the same. When
constructing a code generator, we can prevent that code
smells are in the generated code.

Step 7 From the newly generated software, a model is
acquired using model learning. Since the external interfaces

18

remain unchanged, the adapter we generated in Step 2 can be
reused for learning a model of the newly generated software.

Step 8 For confidence that the generated implementation
has the same behavior as the old implementation, an equiv-
alence checker is used. In this step, we can potentially find
issues in the code generator of Step 6. When the equivalence
checker produces a counter example, we need to inspect the
code generator.

Step 9 When the generated code is equivalent to the be-
havior of the old implementation, the generated code can be
delivered to the archive and we are done. A new unit can be
selected for refactoring and for this unit we start at Step 1.

5 First Prototype

We present an artificial case for which we execute all steps
of Figure 2 to illustrate our approach. The case is about a
vending machine for which we provide a C++ implementa-
tion with a few code smells. We choose C++ because it is
one of the popular programming languages practiced in the
CPS domain’. The aim is to generate a formfit replacement
of the legacy implementation in which the code smells are
removed. Note that our aim for formfit replacement (see also
Req. 4) implies that the removal of any bugs is out of scope.
For every step, we describe which artefacts flow in (its input)
and out (its output).

5.1 Step 1: Problem Analysis

Input. The implementation of a vending machine, i.e. the
C++ interfaces and C++ implementation.

Listing 1 shows the provided interface. A class Vending-
Machine is declared together with some public functions.
The implementation of the vending machine also relies on
some private declarations. It has:

e an enum class for Drink selection;

e a handleOneCoin, handleTwoCoins and handleThree-
Coins functions;

e an mCoinsEntered integer variable;

Thttps://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

1 #include "Hardware.h"

2 class VendingMachine {

3 public:

4 VendingMachine();

5 ~VendingMachine() = default;

6 void startUp();

7 void enterCoin();

8 void returnCoins();

9 void selectSugar();

10 void selectCoffee();

11 void makeDrink();

12 private:

13 enum class Drink { NothingSelected, Coffee, Sugar,
CoffeeWithSugar 3;

14 void handleOneCoin();

15 void handleTwoCoins();

16 void handleThreeCoins();

17 int mCoinsEntered;

18 Drink mDrink;

19 Hardware mHardware;

Listing 1. Provided Interface

1 class Hardware {
2 public:
3 void started();
void startFirst();
5 void diplayEnterCoin();
void displayMakeYourChoice();
void returnCoins();
void diplayCoffeeSelected();
void diplaySugarSelected();
10 void diplayCoffeeWithSugarSelected();

11 void returnCoffee();
12 void returnCoffeeWithSugar();
13 };

Listing 2. Required Interface

e an mDrink variable storing the chosen drink.
e an instance of an object that implements the required
Hardware interface.

The vending machine has a required interface to drive its
hardware. Listing 2 shows this required interface. A class
Hardware is declared together with some public functions.

The source code in C++ of the vending machine can be
viewed in Appendix A, Listing 11.

The vending machine has the following behavior. It first
needs to be started by calling the startUp function on its
provided interface. When the vending machine is started, a
global variable is set to true. After startup, the vending ma-
chine can return coffee with or without sugar, but only when
two coins have been inserted. For this, the user first needs to
call the enterCoin function twice. The number of coins en-
tered is stored in an mCoinsEntered member variable. After

Onward! 23, October 25-27, 2023, Cascais, Portugal

that, the user can call the selectSugar and selectCoffee func-
tions. This choice is stored in the mDrink member variable.
Next the user can call the makeDrink function. This function
resets the mCoinsEntered and mDrink member variables.
For the user, it is possible to get the entered coins back.

The aim is to improve the presented implementation be-
cause its maintainability is hampered by the presence of the
following code smells described in [23].

e Code duplication. The handleOneCoin and handle-
TwoCoins functions have the same body.

e Dead code. The private handleThreeCoins function is
never called.

e Repeated switches. The selectSugar, selectCoffee and
makeDrink functions implement switch-statements.
Would we add a new drink such as tea then we need
to update these three functions.

e Magic number. The code has many if-statements
checking if mCoinsEntered is 2. This 2 is a magic num-
ber. Ideally, 2 is defined once in a variable declared as
a constant. If 2 needs to be changed to for example 4,
then we need to change it at 1 place instead of 5 places
with the risk of missing a place.

e Spaghetti code. The state is coded using the isStarted
global variable in combination with the mCoinsEn-
tered and mDrink member variables. This makes the
code hard to comprehend.

5.2 Step 2: Generate Adapter

In this step, we create an adapter to connect the System Un-
der Learning (SUL) to the model learner. Most learning algo-
rithms are implemented in LearnLib [19]. However, the latest
L# (2022) [33] algorithm is not implemented in LearnLib yet.
Since the L# algorithm is implemented in the Isharp_app,?
we will use this application. This learner is implemented in
the Rust programming language while our SUL is in C++.
Hence, we need to connect a learner implemented in Rust
with a SUL implemented in C++.

C++
Rust Standard 1/O Adapter
Learner _(O— SUL

Figure 3. Model-learning setup

As Schuts et. al. have observed in [30], the time the model
learner has to wait after supplying an input for the output
and to reset the implementation has a large impact on the
time the learner needs to learn an implementation. In their

8https://gitlab.science.ru.nl/bharat/Isharp_app

https://gitlab.science.ru.nl/bharat/lsharp_app

Onward! 23, October 25-27, 2023, Cascais, Portugal

#include <string>
<iostream>

"VendingMachine.h"

#include
#include

#include "Hardware.h"

1
2

3

4

5 std::string mReturn = "-";

6 void Hardware::started()

7 { mReturn = "Hardware::started()"; }
3
9

void Hardware::returnCoffeeWithSugar()
10 { mReturn = "Hardware::returnCoffeeWithSugar()"; 3}
11 void main(void) {
12 VendingMachine* sul = new VendingMachine();
13 while (true) {

14 std::string symb = "";
15 getline(std::cin >> std::ws, symb);
16 if (symb.length() == 0) {
17 getline(std::cin >> std::ws, symb);
18 }
19 if (std::string(symb) == "RESET") {
20 delete sul;
21 sul = new VendingMachine();
22 } else {
23 mReturn = "-";
24 if (std::string(symb) ==
25 "VendingMachine::startUp()") {
26 sul->startUp();
27
28 } else if (std::string(symb) ==
29 "VendingMachine: :makeDrink()") {
30 sul->makeDrink();
31 } else {
32 std::cout << "\tUnknown symb " << symb << std::endl;
33 }
34 std::cout << mReturn << std::endl;
35 }
36}
37 }
Listing 3. Adapter
1 cargo run -- -I VendingMachine::startUp()
2 -I VendingMachine::enterCoin()
3 -I VendingMachine::returnCoins()
4 -1 VendingMachine::selectSugar()
5 -1 VendingMachine::selectCoffee()
6 -I VendingMachine::makeDrink() -M SUL.exe

Listing 4. Run batch file

setup, a SUL is placed in a separate executable and the learner
connects to this executable using a TCP/IP socket connection.
This is sub optimal because it takes a lot of time to send and
receive messages over a TCP/IP stack, and to stop and start
an executable for a reset.

To improve the learning time, we propose a learning setup
as depicted in Figure 3. Both the learner and the adapter that
includes the SUL are separate executables. These executables

20

Mathijs Schuts and Jozef Hooman

connect to each other using the standard input and output.
On a special RESET command, the adapter destructs the SUL
and constructs a new instance of the SUL. Using the standard
input and output is much faster than sending commands over
a TCP/IP connection. Additionally, it is faster to delete and
create a new object than to stop and start an executable, and
establish a new TCP/IP connection.

Input. The following artefacts are input for the adapter
generation:

e Provided interface in Listing 1.
e Required interface in Listing 2.

We use a Rascal script to automatically generate the adapter.
Because we need to parse the provided and required C++
interface files, we use Rascal’s C++ front-end called ClaiR [1].
The Rascal code can be found in Listing 12 of Appendix B.
Listings 3 & 4 provide the output of the Rascal script for the
vending machine case.

Listing 3 depicts the adapter. The adapter includes the
provided and required interfaces. Next it declares an mRe-
turn string member variable. Then for all public functions
in the required interface, a function is declared which stores
its name in the mReturn string upon invocation. Because
of space limitations, we only printed the first and last func-
tion. The main function creates an instance VendingMachine
and stores a pointer to the object in the sul variable. When
a RESET string is read from the standard input, the Vend-
ingMachine object is deleted and a new one created. Other
strings are matched with a string describing a function from
the provided interface. When there is a match, the function
is called on the SUL. After the function call has returned,
the contents of the mReturn string is printed to the standard
output.

The implementation, adapter, provided interface and re-
quired interface are placed in a Microsoft Visual Studio’
project. The project is compiled into an executable: SUL.exe.

The learner needs to be instructed with an input alphabet.
Listings 4 shows the generated batch file we used to utilize
the model learner. Listing 12 of Appendix B shows how this
batch file is generated.

Output. The following artefacts are the outputs of this
step:
e Adapter in Listing 3.
e SUL.exe compilation of Listings 11 & 3.
e Run.bat in Listing 4.

5.3 Step 3: Model Learning
In Step 3, we are going to learn a model from the SUL.

Input. Inputs for this step are the outputs of Step 2. When
we run the Run.bat file on the vending machine case, the
learner needs 77 resets and 364 inputs during the MQ phase

®https://visualstudio.microsoft.com/

https://visualstudio.microsoft.com/

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

1 // source file : VendingMachine.cpp

2 // provided interface : VendingMachine.h
3 // required interface : Hardware.h

4 digraph g {

5 s99 [shape = "circle" label="s99"];

6 s76 [shape = "circle" label="s76"1];

7 s212 [shape = "circle" label="s212"];

8 sl [shape = "circle" label="s1"];

9 s0@ [shape = "circle" label="s0"];

10 s48 [shape = "circle" label="s48"];

11 s97 [shape = "circle" label="s97"];

12 s@ -> s1 [label="VendingMachine::startUp() /
13 Hardware::started()"];

15 s1 -> s48 [label="VendingMachine::enterCoin() /

16 Hardware::diplayEnterCoin()"];

17 ...

18 s48 -> s76 [label="VendingMachine::enterCoin() /
19 Hardware::diplayEnterCoin()"];

20 s48 -> s1 [label="VendingMachine::returnCoins() /
21 Hardware::returnCoins()"J;

2 ...

23 s76 -> s1 [label="VendingMachine::returnCoins() /

24 Hardware::returnCoins()"J;

25 s76 -> s97 [label="VendingMachine::selectSugar() /

26 Hardware: :diplaySugarSelected()"];

27 s76 -> s99 [label="VendingMachine::selectCoffee() /

28 Hardware: :diplayCoffeeSelected()"];

29 ...

30 s97 -> s1 [label="VendingMachine::returnCoins() /

31 Hardware::returnCoins()"J;

2 ...

33 s97 -> s212 [label="VendingMachine::selectCoffee() /

34 Hardware: :diplayCoffeeWithSugarSelected()"];
35 ...

36 s99 -> s1 [label="VendingMachine::returnCoins() /

37 Hardware::returnCoins()"J;

38 s99 -> s212 [label="VendingMachine::selectSugar() /

39 Hardware::diplayCoffeeWithSugarSelected()"1;
40 ...

41 s99 -> s1 [label="VendingMachine: :makeDrink() /

42 Hardware::returnCoffee()"1;
43 ...
s212 -> s1 [label="VendingMachine::returnCoins() /

Hardware: :returnCoins()"];

44
45
46 ...
s212 -> s1 [label="VendingMachine: :makeDrink() /
Hardware: :returnCoffeeWithSugar()"];
__starto [label="" shape="none" width="0" height="0"];
__starteo -> s0;

47
48
49
50

51 }
Listing 5. Learned Model (Removed Self-Transitions)

21

Onward! 23, October 25-27, 2023, Cascais, Portugal

1 // source file : VendingMachine.cpp

2 // provided interface : VendingMachine.h

3 // required interface : Hardwareh

4 digraph g {

5 coffeeSelected [shape = "circle" label="coffeeSelected"];
6 sugarSelected [shape = "circle" label="sugarSelected"];

7 coffeeWithSugarSelected [shape = "circle"

8 label="coffeeWithSugarSelected"];

9 started [shape = "circle" label="started"];

10 idle [shape = "circle" label="idle"];

11 oneCoinEntered [shape = "circle" label="oneCoinEntered"];
12 twoCoinsEntered

13 [shape = "circle" label="twoCoinsEntered"];

14 idle -> started [label="VendingMachine::startUp() /

15 Hardware::started()"1;

17 coffeeWithSugarSelected -> started

18 [label="VendingMachine: :makeDrink() /
19 Hardware: :returnCoffeeWithSugar()"1;

20 __start@ [label="" shape="none" width="0" height="0"];
21 __starto -> idle;

Listing 6. Transformed Model

and 2530255 resets and 41164449 inputs during the EQ phase.
This results in a state machine with 7 states and 42 transi-
tions. The output of the model learner is the Dot file [14],
partly shown in Listing 5. Because of its size, we removed
the self-transitions. Observe that dead code (function han-
dleThreeCoins) is not present in the learned model.

Output. The following artefact is output of this step:
e Learned Dot file in Listing 5.

5.4 Step 4: Transform Model

In this step, we edit the learned state machine. For the mo-
ment, we just change the Dot file manually; more advanced
editing support is part of future work.

Input. The input for this is the learned Dot file.

For our case, we apply a trivial editing by only renaming
the state names. Listing 6 depicts part of the new model,
showing only the first and last transition.

Output. The following artefact go the the next step:
e Edited Dot file in Listing 6.

5.5 Step 5: Equivalence Checking

The equivalence of the learned and edited models can be
determined using a model checker. For our case, we use the
mCRL2 model checker [16].

Input. The two Dot files from Step 4 are the inputs for
this step.

To perform an equivalence check using mCRL2, we need
two models in the mCRL2 language. These two models are

Onward! 23, October 25-27, 2023, Cascais, Portugal

1 sort

2 States = struct Sidle | Sstarted | SoneCoinEntered |
3 StwoCoinsEntered | SsugarSelected |

4 ScoffeeSelected | ScoffeeWithSugarSelected;

5 Events =
6 EselectSugar | EselectCoffee | EmakeDrink;

struct Astarted | AstartFirst

8 AdiplayEnterCoin | AreturnCoins

9 AdisplayMakeYourChoice | AdiplaySugarSelected |

10 AdiplayCoffeeSelected | AdiplayCoffeeWithSugarSelected |
11 AreturnCoffee | AreturnCoffeeWithSugar;

12 act iProvided:Events;

struct EstartUp | EenterCoin | EreturnCoins |

7 Actions =

13 act iRequired:Actions;
14 proc Spec(s:States) =
15 (s==SoneCoinEntered) -> (

16 iProvided(EstartUp) . iRequired(Astarted) .

17 Spec(SoneCoinEntered) +

18 iProvided(EenterCoin) . iRequired(AdiplayEnterCoin) .
19 Spec(StwoCoinsEntered) +

20 iProvided(EreturnCoins) . iRequired(AreturnCoins) .

21 Spec(Sstarted) +

22 iProvided(EselectSugar) . iRequired(AdiplayEnterCoin) .
23 Spec(SoneCoinEntered) +

24 iProvided(EselectCoffee) . iRequired(AdiplayEnterCoin) .
25 Spec(SoneCoinEntered) +

26 iProvided(EmakeDrink) . iRequired(AdiplayEnterCoin) .
27 Spec(SoneCoinEntered)) +

29 (s==StwoCoinsEntered) -> (

30 iProvided(EstartUp) . iRequired(Astarted) .
31 Spec(StwoCoinsEntered) +

32 iProvided(EenterCoin) .

33 iRequired(AdisplayMakeYourChoice) .

34 Spec(StwoCoinsEntered) +

35 iProvided(EreturnCoins) . iRequired(AreturnCoins) .
36 Spec(Sstarted) +

37 iProvided(EselectSugar) .

38 iRequired(AdiplaySugarSelected) .

39 Spec(SsugarSelected) +

40 iProvided(EselectCoffee) .

41 iRequired(AdiplayCoffeeSelected) .

42 Spec(ScoffeeSelected) +

43 iProvided(EmakeDrink) .

44 iRequired(AdisplayMakeYourChoice) .

45 Spec(StwoCoinsEntered));

46 init Spec(Sidle);
Listing 7. mCRL2 Model

generated from the learned and edited Dot files using a Rascal
script. Listing 7 shows parts of the resulting mCRL2 model
when translating the Dot file in Listing 6 to mCRL2. The
model starts by defining structs for the states, events and
actions. Next the events are related to the iProvided inter-
face and actions to the iRequired interface. Then the Spec
process is defined. Per state, all events are listed including

22

Mathijs Schuts and Jozef Hooman

mcrl22lps.exe edited.mcrl2 edited.lps --verbose
lps21lts.exe edited.lps edited.lts --verbose
mcrl22lps.exe final.mcrl2 final.lps --verbose
lps2lts.exe final.lps final.lts
ltscompare.exe edited.lts final.lts --counter-example

[T

w

--verbose

(LIS

6 —-equivalence=branching-bisim --verbose

Listing 8. mCRL2 Commands

the resulting action of an event and the next state. On the
last line, the Spec is initialized with the Sidle state.

In Appendix C, we provide the Rascal scripts to translate
the Dot files to mCRL2 models. In Listings 13 & 14, we de-
scribe the concrete syntax of our Dot language dialect as
described in Section 5.3. The Rascal code that performs the
translation can be found in Listings 15 & 16.

To check equivalence, we execute the commands provided
in Listing 8. We first convert the mCRL2 files to Linear Pro-
cess Specifications (LPS) files from which we can generate
Labeled Transition System (LTS) files. With the LTS files,
we can compare the two models using strong bisimulation
as introduced in Section 3. The outcome of the equivalence
check will be a pass or a fail. When it fails, the tool can pro-
vide a counter example. This counter example is a sequence
of events and actions that leads to a difference in result. A
counter example can be presented, for instance, as a UML
sequence diagram to the user of the toolchain [27].

In our example case, we compared Listing 5 and Listing 6
and the equivalence check passed, since the externally visible
behavior of the two state machines is the same.

Output.

e Pass or fail. In case of a fail, a counter example is
provided.

5.6 Step 6: Generate Code

When the model is edited (Step 4) and the equivalence
check holds (Step 5), we generate a new implementation.

Input. The following artefact is input for this step:
e Edited Dot file in Listing 6.

For our new implementation, we use Rascal to generate
a new provided interface as shown in Listing 9. In this in-
terface, the public functions are the same as in the original
interface. However, because the implementation is different,
the private section is different as well. Concerning the code
generator for the new implementation, there are many ways
to represent the state machine'’. We have chosen to create
the private functions createTransition and triggerTransition.
As shown in Listing 9, the createTransition function takes
a State enumeration as first and fourth input arguments. It
also takes an Event enumeration as its second argument. The

1We were inspired by the examples from https://stackoverflow.com/
questions/1647631/c-state-machine-design/1647679#1647679

https://stackoverflow.com/questions/1647631/c-state-machine-design/1647679#1647679
https://stackoverflow.com/questions/1647631/c-state-machine-design/1647679#1647679

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

1 #include "Hardware.h"

2 class VendingMachine {

3 public:

4 VendingMachine();

5 ~VendingMachine() = default;

6 void startUp();

7 void enterCoin();

8 void returnCoins();
9 void selectSugar();
10 void selectCoffee();
11 void makeDrink();

12 private:

13 enum class State { Sidle, Sstarted, SoneCoinEntered,
14 StwoCoinsEntered, SsugarSelected, ScoffeeSelected,

15 ScoffeeWithSugarSelected, nrOfValues };

16 enum class Event { EstartUp, EenterCoin, EreturnCoins,
17 EselectSugar, EselectCoffee, EmakeDrink, nrOfValues };
18 typedef void(Hardware::xAction)(void);

19 void createTransition(State currentState, Event event,
20 Action action, State nextState);

21 void triggerTransition(Event event);

22 State mCurrentState;

23 std::vector< std::tuple<Action, State> > mTransitions;
24 Hardware mHardware;

25 3
Listing 9. Generated C++ Interface

enumerations are declared just above the declaration of the
createTransition function. The third argument is an Action.
An Action is a function pointer pointing to a public function
of the required Hardware interface. There are three member
variables: one for storing the current state, one for storing
the transitions, and another one for a reference to the object
that implements the required interface.

In Listing 10, we provide part of the new implementation.
In the constructor (lines 3-29) all transitions are created (in
the listing we show it for the first two states) and it initializes
the mCurrentState member variable to the Sidle state (line
3). The implementation of the private createTransition func-
tion (lines 42—-47) is responsible for creating and storing a
transition. Based on the current state and event, it calculates
a position in the mTransitions vector (kind of array) and
inserts a tuple with the action and next state at the calcu-
lated position. On lines 30-41, the provided functions are
implemented by calling the triggerTransition function. The
triggerTransition function (lines 48—53) calculates the posi-
tion of the transition in the mTransitions vector based on the
current state and the event. It stores the transition tuple in
the transition variable. Next the function pointer associated
with the transition is invoked. Finally, the mCurrentState
member variable is updated (line 52).

Listings 17 & 18 in Appendix D presents the Rascal code
for generating a new implementation and the accompanying

23

Onward! 23, October 25-27, 2023, Cascais, Portugal

1 #include "VendingMachine.h"

2 #include "Hardware.h"
3 VendingMachine: :VendingMachine() :

10
11

13
14

16
17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

mCurrentState(State::Sidle), mHardware() {

createTransition(State::Sidle, Event::EstartUp,
&Hardware: :started, State::Sstarted);
createTransition(State::Sidle, Event::EenterCoin,
&Hardware::startFirst, State::Sidle);
createTransition(State::Sidle, Event::EreturnCoins,
&Hardware::startFirst, State::Sidle);
createTransition(State::Sidle, Event::EselectSugar,
&Hardware: :startFirst, State::Sidle);
createTransition(State::Sidle, Event::EselectCoffee,
&Hardware::startFirst, State::Sidle);
createTransition(State::Sidle, Event::EmakeDrink,
&Hardware::startFirst, State::Sidle);
createTransition(State::Sstarted, Event::EstartUp,
&Hardware: :started, State::Sstarted);
createTransition(State::Sstarted, Event::EenterCoin,
&Hardware: :diplayEnterCoin, State::SoneCoinEntered);
createTransition(State::Sstarted, Event::EreturnCoins,
&Hardware: :diplayEnterCoin, State::Sstarted);
createTransition(State::Sstarted, Event::EselectSugar,
&Hardware::diplayEnterCoin, State::Sstarted);
createTransition(State::Sstarted, Event::EselectCoffee,
&Hardware: :diplayEnterCoin, State::Sstarted);
createTransition(State::Sstarted, Event::EmakeDrink,
&Hardware: :diplayEnterCoin, State::Sstarted);

void VendingMachine::startUp()

{ triggerTransition(Event::EstartUp); }

void VendingMachine::enterCoin()

{ triggerTransition(Event::EenterCoin); }
void VendingMachine::returnCoins()

{ triggerTransition(Event::EreturnCoins); }
void VendingMachine::selectSugar()

{ triggerTransition(Event::EselectSugar); }
void VendingMachine::selectCoffee()

{ triggerTransition(Event::EselectCoffee); }
void VendingMachine: :makeDrink()

{ triggerTransition(Event::EmakeDrink); 3}
void VendingMachine::createTransition(State currentState,

Event event, Action action, State nextState) {
auto index = mTransitions.begin() +
((int)currentState * (int)Event::nrOfValues)
+ (int)event;
mTransitions.insert(index,
std: :make_tuple(action, nextState));

void VendingMachine::triggerTransition(Event event) {

auto transition = mTransitions[((int)mCurrentState *
(int)Event::nrOfValues) + (int)event];
(mHardware.*std: :get<@>(transition))();

mCurrentState = std::get<1>(transition);

Listing 10. Generated C++ Implementation

Onward! 23, October 25-27, 2023, Cascais, Portugal

interface header file. It takes the edited Dot file and uses the
Dot syntax of Listings 13 & 14 to parse this file.

Output. The following artefacts go to the next step:

e New provided interface in Listing 9.
e New implementation in Listing 10.

5.7 Step 7: Model Learning

Input. The outputs of the previous step are the inputs for
this step. In addition, we use the required Hardware interface
and reuse the adapter of Step 2.

We utilize model learning to check that the generated file
has equivalent behavior as the edited Dot file and is thus also
equivalent with the original learned model from Step 3. The
new implementation, new provided interface, adapter and
required interface are placed in a Microsoft Visual Studio
project and a SUL.exe executable is compiled.

Using SUL.exe, the model learner is executed as described
in Section 5.3. The model learning results in a new Dot file.
The learned state machine has 7 states and 42 transitions.
These values are the same as for the learned state machine
from Step 3. We do not show this file as it looks very similar
to the one in Listing 5.

Output. The following artefact is the output of this step:
e Newly learned Dot file.

5.8 Step 8: Equivalence Checking
Input. The following artefacts go to this step:

e Edited Dot file in Listing 6.
e Newly learned Dot file of Step 7.

Here we follow exactly the same steps as described in
Section 5.5. Assuming a correct code generator, we expect
the equivalence check to pass.

Output.

e Pass or fail. In case of a fail, a counter example is
provided which is useful to debug the code generator.

5.9 Step 9: Done
Input. The following artefacts are inputs to this step:

e New provided interface in Listing 9.
e New implementation in Listing 10.

In this step, the generated provided interface and imple-
mentation need to be integrated in the target code base.
When done with this step, one can start rejuvenating an-
other unit at the start of our toolchain in Step 1.

Per code smell that was present in the original implemen-
tation, we describe how it is removed in the rejuvenated
version of the source code in Listing 10.

e Code duplication. Since learning algorithms merge
equivalent states, the code duplication in the original
code is not present in the new implementation.

24

Mathijs Schuts and Jozef Hooman

e Dead code. Dead code is not touched by the learner
and therefore did not end up in the learned model and
the resulting implementation.

e Repeated switches. In our code generator, we do not
generate code that make use of switch-statements.

e Magic number. The code generator does generate
any number, so also not magic numbers.

e Spaghetti code. The current state is stored in one
mCurrentState member variable.

6 Discussion

In this section, we identify research challenges, we discuss
our approach and describe considerations for the steps in
our approach.

6.1 Step 1: Problem Analysis

For this paper we kept our case small, but one can imagine
that the implementation one wants to rejuvenate has the
large unit code smell (i.e. when a file contains more than
1000 lines) and long method code smell (i.e. when a method
has more than 100 lines). In Section 6.6, we describe how a
code generator can also remove these code smells.

We choose C++ for our case, but we could as well have
chosen C or C# which are also popular in the CPS domain.
The approach can also be applied to other programming
languages, as long as there is a clear distinction between an
implementation, and its provided and required interfaces.

6.2 Step 2: Generate Adapter

As a metaprogramming tool, we choose to use Rascal to
parse files containing the provided and required interfaces.
Because our SUL is in C++, we used ClaiR, Rascal’s C/C++
front-end. We can also use ClaiR for a SUL implemented in
the C programming language. However, when the SUL is in
another programming language, we should choose another
front-end for Rascal or choose another way of generating
the adapter. For Rascal there are also language front-ends
available for Java and Ada, other languages used in the CPS
domain.

The SUL described in Section 5 always invokes exactly
one function on the required interface when stimulating
the vending machine with a function call on its provided
interface. This is a simplification; in general, we have to deal
with any number of function calls on the required interface(s)
after a single stimulus on the provided interface. Observe
that the adapter would return a “-” when no function is
called on the required interface of the SUL when a function
is called in its provided interface. To generalize our adapter
for multiple function calls, we could return a string with a
list of function calls. To support zero or multiple function
calls on the required interface, we also need change the
transition strings of the Dot file which has consequences for
the interfaces to the Steps 5 & 8 and Steps 6. Moreover in

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

Steps 6, the code generator needs to be adapted to handle the
zero or multiple function calls on the required interface.

The assumption is that the adapter stubs all required in-
terfaces, including for instance system calls to the operating
system. Hence, all function calls by the implementation to be
learned will result in an output string. From this assumption,
it follows that the compiled SUL.exe will not have side-effects
when it is executed by the learner.

In our case, we used functions on the provided and re-
quired interfaces with a void return and no parameters in
the argument list. Future work for this step is to create a
generic adapter generator that can handle functions with
return types and parameters, and to do this for multiple
programming languages.

6.3 Steps 3 & 7: Model Learning

Since there are many manipulation and visualization tools
that support Dot files this could be the format of choice for
our tool. Regarding Steps 3 & 7 in the toolchain, it should be
easy to replace the Isharp_app by another model learning
tool that implements different learning algorithms such as
LearnLib. Both L# and LearnLib produce Dot files as output.

The first three lines of the Dot file (in Listing 5) are not
generated by the model learner, but are added manually be-
cause this information is required in subsequent steps. We
have chosen to add them as comments according the lan-
guage definition of GraphViz!!. The benefit of this approach
is that standard dot visualization tools still accept this file.

Duhaiby et al. observed in [4] that it could take substantial
time to learn a model from an implementation. For this rea-
son, we need to scope the problem domain for our approach
and improve the learning setup.

We think our first version can learn models from industrial
software with the following limitations:

o Single Threaded The unit shall be single threaded.
The reason for this is that if there are more threads the
number of possible states could potentially explode
—because of all possible interleavings between threads—
which makes it impossible to learn.

Data Independent Data provided to the unit may
not lead to control decisions. We have this restriction
because if we need to take all values of a possible vari-
able into account this would lead to at least one state
per value of a variable. This again would potentially
explode the number of states.

Model learning algorithms need to improve to overcome
these limitations. With improved learning algorithms, the
single threaded and data independent control units con-
straints might change. For instance, we could climb up the
hierarchy of Figure 4 or include data. We have observed the
development of new algorithms such as the TTT (2014) [18]
and L# (2022) [33]. This gives us the indication that in the

Mhttps://www.graphviz.org/doc/info/lang.html

25

Onward! 23, October 25-27, 2023, Cascais, Portugal

1
sub-system|
component [= 1
| component |
Class | Module |

Figure 4. Usage levels

future with improved algorithms, we can learn larger sub-
assemblies of programs.

Despite the described limitations, model learning has been
applied in industry to learn parts of CPS'2. At AMSL, a com-
pany that produces high-end lithography systems, 33 models
have been learned. Ten models have been learned from med-
ical systems at Philips. At high-end printer copier company
Canon, 1 very large model has been learned [24]. Hence,
Steps 1-3 of our toolchain have already been performed in
industry.

Another approach would be to apply the toolchain many
times instead of learning ever larger portions of the source
code. This would not change the design of the rejuvenated
implementation, but only the contents of the units of which
it is composed. Learning smaller units also has the benefit
that the learned models can more easily checked by the user
of the tool for their correctness.

In Section 5 Step 2, we describe a novel way of creating
a learning setup that is more efficient than the common
approach [30]. The time to learn an implementation depends
on the time to perform MQs and EQs, and the time required
to reset an implementation. Furthermore, this time depends
on the number of states and the number of inputs. In our
setup, we decrease the query and reset time because the
SUL is no longer in separate executable and connected via
standard I/O to the learner instead of TCP/IP. Since model
learning cannot learn models of computations or algorithms
on data [5], our toolchain cannot rejuvenate all parts of a
CPS.

6.4 Step 4: Transform Model

In Section 5.4, we only edited the state names for the case.
For more complex programs, the learned model can become
quite large. To manage such models, it is useful to decom-
pose them. For this, we want to use algorithms to propose
different decompositions to the user of the toolchain. The
tool does not have domain knowledge, so choosing the right

Zhttps://automata.cs.ru.nl/

https://www.graphviz.org/doc/info/lang.html
https://automata.cs.ru.nl/

Onward! 23, October 25-27, 2023, Cascais, Portugal

decomposition is the responsibility of the user. We see the
chosen decomposition as a starting point for manual editing.

We think graph-based algorithms can be applied to pro-
pose new decompositions to handle complexity and remove
the code smells.

Unit

Figure 5. Two ways of decomposing the learned model

Figure 5 shows two ways to split up an unit. The unit in
the middle of the figure is split up using either:

e Krohn & Rhodes algorithm [22], see the left drawing.
This algorithm creates a cascading decomposition of
the unit where the output of one automaton is fed as
input to another automaton.

o Biggar et al. algorithm [8], see the right drawing. Other
than the Krohn & Rhodes algorithm, this algorithm
creates an hierarchy of new units. The algorithm is
based on graph theory about modular decomposition.
In earlier work, modular decomposition has been ap-
plied to digraphs. For instance, in their paper, Biggar
et al. describe that digraphs are very similar to finite
state machines and they describe the translation.

As mentioned, the input and output of this step are Dot
files. As long as we can translate the format of an algorithm
or tool in this step to and from a Dot file, we can integrate
such an algorithm or tool in our toolchain.

For our first version of the toolchain, we have chosen
for the Dot file format. In future work, we will investigate
whether this format is expressive enough. The Dot file format
does support a notation to describe hierarchical state ma-
chines, but is it also possible to express the decompositions
as generated by the Krohn & Rhodes algorithm?

Another challenge for this step is to provide a user friendly
graphical user interface to edit and change the models.

6.5 Step 5: Equivalence Checking

In Step 5, we employ equivalence checking to make sure that
changing the learned model does not change the externally
visible behavior of the implementation.

When the number of states are in the millions, equiva-
lence checkers can suffer from state space explosion. But
we do not expect to encounter state space explosion with
our approach, because today learning an unit of millions of
states is impossible given the time required to query and
reset the SUL.

26

Mathijs Schuts and Jozef Hooman

From Dot files, it is very easy to write model generators.
We created one for mCRL2, our equivalence checker. With
little effort we could create a model for another equivalence
checker. With this approach, we can easily change our tool
to use another equivalence checker without affecting the
other steps in our toolchain.

6.6 Step 6: Generate Code

In the code generator described in Section 5.6, the construc-
tor could become quite large if many transitions need to be
created. The number of generated transitions is the number
of states times the number of events. Hence, with 10 states
and 10 transitions, we would violate the long method code
smell (i.e. when a method has more than 100 lines). To pre-
vent this, we could add a check in the code generator that if
the number of createTransition function calls becomes larger
than 100 that we create a private function per state and call
these private functions from the constructor. For this to be-
come too long, we need to learn a system with more than
100 events and the number of states should be less than 100.
Another way to deal with the long constructor is to generate
a completely different implementation based on the object
oriented state pattern as described by Gamma et.al. [13].

Another code smell is large unit i.e. when a file contains
more than 1000 lines. Our current generator leads to two
lines per event plus eleven lines for the private functions
(lines 42-53 of Listing 10). When the constructor is shorter
than 100 lines, the complete unit will not be larger than
1000 lines. Should the file contain more than 1000 lines, then
the file can be split up into one file per state as done in the
object oriented state pattern. Hence, the code generator can
be adapted such that the generated code is free of the large
unit code smell.

In Section 5.9, we described that in the rejuvenated version
of the source code in Listing 10 the code duplication, dead
code, repeated switches, magic number and spaghetti
code code smells are removed. Further research need to take
place on more cases to check if we can generalize our results
and if there are other code smells that can potentially be
removed by the toolchain.

The Steps 2 & 6 are the only steps that are programming
language specific. Hence, if we want to support another pro-
gramming language, we need to change the code generators
or tools in these steps.

As mentioned in Section 6.2, our current version only
supports functions with an empty parameter list and a void
return. We could extend the support with functions that pass
data from the provided interface to the required interface.

An alternative is the use of a state-based tool such as
Rhapsody, Visual State, ASD, Cocotec or Dezyne which are
described in Section 3. We could, for instance, choose Dezyne
because of its open source release. Instead of generating code,
we need to generate a Dezyne model from which the Dezyne

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

tool can generate source code in multiple programming lan-
guages. The advantage is that we only need to create one
code generator towards the Dezyne language to be able to
generate code for multiple programming languages. An ad-
ditional benefit is that we can maintain the Dezyne model
and have a more abstract way to describe the behavior of
the system instead of maintaining its generated code.

7 Concluding Remarks

In this paper, we presented our vision of a toolchain for
the semi-automated code smell removal in industrial stateful
legacy software. In Section 1, we identified four requirements
for the toolchain and here we describe how they are met.

We target our tool to refactor industrial software of Cyber
Physical Systems (CPS) and generate state machines which
are commonly used in these kind of stateful systems. The
toolchain combines existing techniques such as model learn-
ing to acquire a state machine of the behavior of a software
unit, graph based algorithms to interactively propose re-
structuring of the learned state machine, and equivalence
checking to test if the changes of the state machine are in fact
a refactoring. With this we satisfy Regq. 1 for state based CPS
and Regq. 2 for supporting multiple programming languages
by means of model learning.

The toolchain can remove many code smells as required by
Req. 3. By learning the behavior of the legacy code, smells like
dead code and code duplication are removed automatically.
Other code smells can be removed or avoided by the code
generator.

Compared to existing refactoring tools, our proposed tool-
chain provides confidence —-by means of equivalence check-
ing—- that the code after refactoring behaves the same as
before refactoring. Because of this, the toolchain satisfies
Req. 4 as well.

We described a case for which we executed all steps of
a preliminary version of the toolchain. In addition, we de-
scribed challenges for further generalization of the toolchain.
One of these challenges is to increase the capabilities of
model learning algorithms to deal with multi-threaded and
data-dependent control units. To remove these restrictions,
model learning algorithms need to be improved. Since the
learned models can be quite big and complex, new algo-
rithms need to be developed to restructure these learned
state machines. Furthermore, we expect challenges in mak-
ing the toolchain modular. We described a first attempt to
define interfaces between the steps of the toolchain in such
a way that we can replace a tool or algorithm by another
one without impacting the previous or next steps.

As future work, we want to make the step towards indus-
try. Potts describes an approach which he calls “industry-
as-lab” [26]. With this approach the researcher and the in-
dustrial partner work closely together where the research
results are iteratively tried and implemented. While applying

27

Onward! 23, October 25-27, 2023, Cascais, Portugal

this approach, we want to gain feedback and improve our
toolchain.

Acknowledgments

We would like to thank Bharat Garhewal for the creation
and support on the Isharp_app.

The anonymous reviewers are gratefully acknowledged
for their many useful comments and suggestions.

A Source Code of The Vending Machine

1 #include "VendingMachine.h"

#include "Hardware.h"

bool isStarted;

VendingMachine: :VendingMachine() :mCoinsEntered(0),
mDrink(Drink: :NothingSelected), mHardware()

{ isStarted = false; }

void VendingMachine::startUp() {

s if (!isStarted) isStarted = true;

9 mHardware.started();

10 }

11 void VendingMachine::enterCoin() {

12 if (mCoinsEntered <= 1) handleOneCoin();

13 else handleTwoCoins();

14 3}

15 void VendingMachine::handleOneCoin() {

16 if (!isStarted) { mHardware.startFirst(); return; }

17 if (mCoinsEntered == 2) mHardware.displayMakeYourChoice();

18 else { mCoinsEntered++; mHardware.diplayEnterCoin(); }

19 }

20 void VendingMachine: :handleTwoCoins() {

21 if (!isStarted) { mHardware.startFirst(); return; }

22 if (mCoinsEntered == 2) mHardware.displayMakeYourChoice();

23 else { mCoinsEntered++; mHardware.diplayEnterCoin(); }

24 }

25 void VendingMachine::handleThreeCoins() {

26 if (!isStarted) { mHardware.startFirst(); return; }

27 if (mCoinsEntered == 3) mHardware.displayMakeYourChoice();

28 else { mCoinsEntered++; mHardware.diplayEnterCoin(); }

29 }

30 void VendingMachine::returnCoins() {

31 if (!isStarted) { mHardware.startFirst(); return; }

32 if (mCoinsEntered > @) { mCoinsEntered = @; mDrink =

I T N B N U

33 Drink::NothingSelected; mHardware.returnCoins();
3¢} else mHardware.diplayEnterCoin();
35 }

36 void VendingMachine::selectSugar() {
37 if (!isStarted) { mHardware.startFirst(); return; }

38 if (mCoinsEntered == 2)

39 switch (mDrink) {

40 case Drink::NothingSelected: mDrink = Drink::Sugar;

41 mHardware.diplaySugarSelected(); break;

42 case Drink::Sugar:

43 mHardware.diplaySugarSelected(); break;

44 case Drink::Coffee: mDrink = Drink::CoffeeWithSugar;
45 mHardware.diplayCoffeeWithSugarSelected(); break;

46 case Drink::CoffeeWithSugar:

47 mHardware.diplayCoffeeWithSugarSelected(); break;

Onward! 23, October 25-27, 2023, Cascais, Portugal

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

} else mHardware.diplayEnterCoin();
3
void VendingMachine::selectCoffee() {
if (!isStarted) { mHardware.startFirst(); return; }
if (mCoinsEntered == 2)
switch (mDrink) {

case Drink::NothingSelected: mDrink = Drink::Coffee;

mHardware.diplayCoffeeSelected(); break;
case Drink::Sugar: mDrink = Drink::CoffeeWithSugar;
mHardware.diplayCoffeeWithSugarSelected(); break;
case Drink::Coffee:
mHardware.diplayCoffeeSelected(); break;
case Drink::CoffeeWithSugar:
mHardware.diplayCoffeeWithSugarSelected(); break;
} else mHardware.diplayEnterCoin();
3
void VendingMachine: :makeDrink() {
if (!isStarted) { mHardware.startFirst(); return; }
if (mCoinsEntered == 2)
switch (mDrink) {
case Drink::NothingSelected:
mHardware.displayMakeYourChoice(); break;
case Drink::Sugar:
mHardware.displayMakeYourChoice(); break;
case Drink::Coffee: mCoinsEntered = 0;
mDrink = Drink::NothingSelected;
mHardware.returnCoffee(); break;
case Drink::CoffeeWithSugar: mCoinsEntered = 0;
mDrink = Drink::NothingSelected;
mHardware.returnCoffeeWithSugar(); break;
} else mHardware.diplayEnterCoin();

Listing 11. Source code

B Adapter Generator

module Adapter

import lang::cpp::AST;
import IO;

import String;

public void main() {

iProvidedInterface = |project://Step2/code/VendingMachine.h|;
iRequiredInterface = |project://Step2/code/Hardware.h|;
oAdapterFile = |project://OnwardsStep2/code/new/Adapter.cppl;

generate(iProvidedInterface, iRequiredInterface,
oAdapterFile, oBatFile);
3
void generate(iProvidedInterface, iRequiredInterface,
oAdapterFile,oBatFile) {

rval = "";
lrellstr, str, str, str] sm = [];
astProvidedInterface = parseCpp(iProvidedInterface);
astRequiredInterface = parseCpp(iRequiredInterface);
rval =

"#include \<string\>

'#include \<iostream\>

'#include \"<iProvidedInterface.file>\"

'#include \"<iRequiredInterface.file>\"

28

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

}

Mathijs Schuts and Jozef Hooman

'std::string mReturn = \"-\";
'<for (n <- getFunctions(astRequiredInterface)) {>
'void <getClassName(astRequiredInterface)>::<n> {
mReturn =
\"<getClassName(astRequiredInterface)>::<n>\"; }<}>
'void main(void) {
' <getClassName(astProvidedInterface)>*
sul = new <getClassName(astProvidedInterface)>();
' while (true) {
std::string symb = \"\";
! getline(std::cin \>\> std::ws, symb);
! if (symb.length() == 0) {
! getline(std::cin \>\> std::ws, symb);

Yl

! if (std::string(symb) == \"RESET\") {

! delete sul;

' sul = new <getClassName(astProvidedInterface)>();
! } else {

' mReturn = \"-\";

! <for (n <- getFunctions(astProvidedInterface)) {>
if (std::string(symb) ==
\"<getClassName(astProvidedInterface)>::<n>\") {

! sul-\><n>;

! } else <}>{

! std::cout \<\< \"\\tUnknown symb \"

\<\< symb \<\< std::endl;

' }

! std::cout \<\< mReturn \<\< std::endl;

' 3

"d

3

writeFile(oAdapterFile, rVal);
rval = "cargo run -- <for (e <-

getFunctions(astProvidedInterface)) {> -I
<getClassName(astProvidedInterface)>: :<e><}>
-M SUL.exe";

writeFile(oBatFile, rval);

str getClassName(ast) {

}

return ["<n>" | /class([], name(n), [J1, [*x_1)

:= ast J[0];

list[str] getFunctions(ast) {

rval = [];
visit(ast) {

case class([], name(c), [J, body): {
isPublicSection = false;
for (b <- body) {
visit (b) {
case visibilitylLabel(\public()):
isPublicSection = true;
case visibilitylLabel(\private()):
isPublicSection = false;
case visibilitylLabel(\protected()):
isPublicSection = false;
case functionDeclarator([], [1, name(n), [1, [1):
if (isPublicSection && !contains("<n>", "<c>"))
rval += "<n>()";

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

81
82
83
84
85
86

}

return rval;

3
Listing 12. Adapter Generator in Rascal

C mCRL2 Generator

[T T

© o

w

module Syntax

layout Layout = [\ \t\n\rl !>> [\ \t\n\r];

start syntax Build = build: Sources sources
Digraph digraph;

syntax Sources = sources: SourceFile sourceFile

ProvidedInterface providedInterface

RequiredInterface requiredInterface;

nonn

syntax SourceFile = sourceFile: "//" "source" "file

Id file;
Listing 13. Dot Syntax in Rascal

syntax ProvidedInterface = providedInterface:
"//" "provided" "interface" ":" Id file;

syntax RequiredInterface = requiredInterface:
"//" "required" "interface" ":" Id file;

syntax Digraph = digraph: "digraph" "g" "{" State+ states
Transition+ transitions Footer footer"}";

syntax State = state: Id name "[" "shape" "=" "\"circle\""
"label™ "=" "\"" Id text "\"" "I;";

syntax Transition = transition: Id curState "-\>" Id
nextState "[" "label" "=" "\"" Id event "/" Id action
"\"15"

syntax Footer = footer: "__start@" "[" "label" "=" "\"\""
"shape" "=" "\"none\"" "width" "=" "\"@\""
"height" "=" "\"@\"" "J1;" InitialState initialState;

syntax InitialState = initialState:
Id firstState ";";
lexical Id = ([a-zA-Z/.\-1[a-zA-Z0-9_/.:()1* !>>

[a-zA-Z0-9_/.:()]) \ Reserved;

" starte" "-\>"

keyword Reserved = "digraph" | "g" | "State" | "," | ";" |
"=" | "source" | "file" | "provided" | "required" |
"interface” | "{" | "}" | "[" | "1" | "on" | "state";

Listing 14. Dot Syntax in Rascal

module Mcrl2Model
import IO;

import Syntax;

public void main() {

|project://Step5/code/edited.dot |;
oFile = |project://Step5/code/edited.merl2 |;
mCrl2Model (iFile, oFile);
iFile = |project://Step5/code/learned.dot |;
oFile = |project://Step5/code/learned.merl2 |;
mCrl2Model (iFile, oFile);

3

void mCrl2Model (iFile, oFile) {

iFile =

29

15
16

18
19
20
21

23
24
25
26
27
28
29
30
31
32
33

10

12
13
14

Onward! 23, October 25-27, 2023, Cascais, Portugal

rval = "";

lrel[str, str, str, str] sm = [];

cst = parse(#start[Build], iFile);
strip(getStateMachine(cst));

states = dup([¢ | <c, _, _, > <= sm 1);

sm =

events = dup([e | <_, e, _, > <-sm 1);

actions = dup([a | <_, _, a, > <= sm]);

rval =
"sort
'States = struct S<intercalate(" | S", states)>;
'Events = struct E<intercalate(" | E", events)>;
'Actions = struct A<intercalate(" | A", actions)>;

'act iProvided:Events;

'act iRequired:Actions;

'proc Spec(s:States) =

! <printSM(sm)>

'init Spec(S<getlInitialState(cst)>);

o,
)

writeFile(oFile, rval);
3

Listing 15. mCRL2 Generator in Rascal

str printSM(sm) {
rval = "";
for (currentState <-

{ currentState | <currentState, _, _, > <-sm }) {
rval += "(s==S<currentState>) -\> (\n";
trans = [J1;
for (<c, e, a, n> <- sm, currentState == c¢) {
trans += " iProvided(E<e>) . iRequired(A<a>) .
Spec(S<n>)";
3
rVal += intercalate(" +\n", trans) + ") +\n";
}
return rval[..-3] + ";";

Listing 16. mCRL2 Generator in Rascal

D Implementation Generator

1
2
3

4
5
6

10
11

13
14

16
17

module NewImplementation
import IO;

import Syntax;

public void main() {
rval = "";
lrel[str, str, str, str] sm = [];
iFile = |project://Step6/code/edited.dot |;
cst = parse(#start[Build], iFile);
oSourceFile = |project://Step6/code/new]| +

getSourceFileName(cst);

oProvidedInterface = |project://Step6/code/new| +
getProvidedInterfaceName(cst);

sm = getStateMachine(cst);

states = dup([¢ | <c, _, _, > <= sm 1);
events = dup([e | <_, e, _, _> <- sm 1);
strippedEvents = [split("::", e)[1] | e <- events J;

Onward! 23, October 25-27, 2023, Cascais, Portugal

26
27
28
29
30
31
32
33
34
35

22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38

actions = dup([a | <_, _, a, _> <- sm 1);
iProvided = split("::", events[0])[0];
iRequired = split("::", actions[@])[0Q];
rval =

"#include \"<getProvidedInterfaceName(cst)>\"
'#include \"<getRequiredInterfaceName(cst)>\"
'<iProvided>: :<iProvided>() :
mCurrentState(State::S<getInitialState(cst)>),
m<iRequired>() {

<createTransitions(sm, iRequired)>}
'<triggerTransitions(events)>

'void <iProvided>::createTransition(State currentState,

Event event, Action action, State nextState) {
! auto index = mTransitions.begin() + ((int)
currentState * (int)Event::nrOfValues) + (int)event;

mTransitions.insert(index, std::make_tuple(action,
nextState));
'}

Listing 17. Implementation Generator in Rascal

'void <iProvided>::triggerTransition(Event event) {

' auto transition = mTransitions[((int)mCurrentState
* (int)Event::nrOfValues) + (int)event];

! (m<iRequired>.xstd::get\<@\>(transition))();

! mCurrentState = std::get\<1\>(transition);

writeFile(oSourceFile, rval);
rval =

'#include \"<getRequiredInterfaceName(cst)>\"

'class <iProvided> {

'public:

! <iProvided>();

! ~<iProvided>() = default;

! <for (e <- strippedEvents) {>

! void <e>();<}>

'private:

! enum class State { S<intercalate(", S", states)>,
nrOfValues };

! enum class Event { E<intercalate(", E",
strippedEvents)>, nrOfValues };

! typedef void(<iRequired>::*Action)(void);

! void createTransition(State currenState,
Event event, Action action, State nextState);

! void triggerTransition(Event event);

! State mCurrentState;

! std::vector\< std::tuple\<Action, State\> \>
mTransitions;

! <iRequired> m<iRequired>;

'}

writeFile(oProvidedInterface, rval);
3
private str createTransitions(sm, nameReqIface) {
rval = "";
for (<c, e, a, n> <= sm) {
rVal += "createTransition(State::S<c>,
Event::E<split("::", e)[1]>, &<a>, State::S<n>);

30

39
40
41

42 3}

Mathijs Schuts and Jozef Hooman

3

return rval;

43 private str triggerTransitions(events) {

44
45
46
47
48
49
50
51 }

52

rval = "";
for (e <- events) {
rval += "void <e>() {
triggerTransition(Event::E<split("::", e)[11>); }

o,
’

}

return rval;

Listing 18. Implementation Generator in Rascal

References

(1]
(2]

3

—_

[4

—

5

—

G

—

[7

—

8

[t

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

Rodin Aarssen. 2017. cwi-swat/clair: v0.1.0. (2017). https://doi.org/10.
5281/zenodo.891122

Rodin Aarssen and Tijs van der Storm. 2020. High-fidelity metapro-
gramming with separator syntax trees. In Proceedings of the 2020 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
27-37.

Mansi Agnihotri and Anuradha Chug. 2020. A systematic literature
survey of software metrics, code smells and refactoring techniques.
Journal of Information Processing Systems 16, 4 (2020), 915-934.

Omar al Duhaiby, Arjan Mooij, Hans van Wezep, and Jan Friso Groote.
2018. Pitfalls in applying model learning to industrial legacy software.
In Leveraging Applications of Formal Methods, Verification and Vali-
dation. Industrial Practice: 8th International Symposium, ISOLA 2018,
Limassol, Cyprus, Proceedings, Part IV 8. Springer, 121-138.

Shahbaz Ali, Hailong Sun, and Yongwang Zhao. 2021. Model learning:
a survey of foundations, tools and applications. Frontiers of Computer
Science 15 (2021).

Dana Angluin. 1987. Learning regular sets from queries and coun-
terexamples. Information and computation 75, 2 (1987), 87-106.

Otto Skrove Bagge, Karl Trygve Kalleberg, Magne Haveraaen, and
Eelco Visser. 2003. Design of the CodeBoost transformation system for
domain-specific optimisation of C++ programs. In Proceedings Third
IEEE International Workshop on Source Code Analysis and Manipulation.
IEEE, 65-74

Oliver Biggar, Mohammad Zamani, and Iman Shames. 2021. Modular
Decomposition of Hierarchical Finite State Machines. arXiv preprint
arXiv:2111.04902 (2021).

Stephen D Brookes and AW Roscoe. 2021. CSP: A practical process
algebra. In Theories of Programming: The Life and Works of Tony Hoare.
187-222

Francesco Calzolai, Rocco De Nicola, Michele Loreti, and Francesco
Tiezzi. 2008. TAPAs: A tool for the analysis of process algebras. Trans-
actions on Petri Nets and Other Models of Concurrency I (2008), 54-70.
Joost Engelfriet. 1985. Determinancy— (observation equivalence=
trace equivalence). Theoretical Computer Science 36 (1985), 21-25.
Martin Fowler. 2018. Refactoring: improving the design of existing code.
Addison-Wesley Professional.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

Emden Gansner, Eleftherios Koutsofios, and Stephen North. 2006.
Drawing graphs with dot. Technical Report. AT&T Research.

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
2013. CADP 2011: a toolbox for the construction and analysis of

https://doi.org/10.5281/zenodo.891122
https://doi.org/10.5281/zenodo.891122

Towards an Industrial Stateful Software Rejuvenation Toolchain using Model Learning

distributed processes. International Journal on Software Tools for Tech-
nology Transfer 15, 2 (2013), 89-107.

[16] Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modelling and

(17]

(18]

(19]

analysis of communicating systems. MIT press.

David Harel and Hillel Kugler. 2004. The Rhapsody semantics of
statecharts (or, on the executable core of the UML). In Integration
of Software Specification Techniques for Applications in Engineering.
Springer, 325-354.

Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT
algorithm: a redundancy-free approach to active automata learning.
In Runtime Verification: 5th International Conference, RV 2014, Toronto,
ON, Canada, September 22-25, 2014. Proceedings 5. Springer, 307-322.

Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The open-
source LearnLib. In International Conference on Computer Aided Verifi-
cation. Springer, 487-495.

[20] James Ivers, Ipek Ozkaya, Robert L Nord, and Chris Seifried. 2020.

[21]

[22]

(23]

Next generation automated software evolution refactoring at scale.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. 1521-1524.

Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. 2009. Rascal: A
domain specific language for source code analysis and manipulation.
In 2009 Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation. IEEE, 168-177.

Kenneth Krohn and John Rhodes. 1965. Algebraic theory of machines.
I. Prime decomposition theorem for finite semigroups and machines.
Trans. Amer. Math. Soc. 116 (1965), 450—-464.

Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaél
Guéhéneuc. 2020. Code smells and refactoring: A tertiary systematic
review of challenges and observations. Journal of Systems and Software
167 (2020), 110610.

Daniel Neider, Rick Smetsers, Frits Vaandrager, and Harco Kuppens.
2019. Benchmarks for automata learning and conformance testing.
Models, Mindsets, Meta: The What, the How, and the Why Not? Essays
Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday
(2019), 390-416.

31

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Onward! 23, October 25-27, 2023, Cascais, Portugal

Ammar Osaiweran, Mathijs Schuts, Jozef Hooman, Jan Friso Groote,
and Bart van Rijnsoever. 2016. Evaluating the effect of a lightweight
formal technique in industry. International Journal on Software Tools
for Technology Transfer 18, 1 (2016), 93-108.

Colin Potts. 1993. Software-engineering research revisited. IEEE
software 10, 5 (1993), 19-28.

Bernhard Rumpe. 2016. Modeling with UML. Springer.

Raghvinder S Sangwan and Colin J Neill. 2009. Characterizing essential
and incidental complexity in software architectures. In 2009 Joint
Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. IEEE, 265-268.

Mathijs Schuts, Rodin Aarssen, Paul Tielemans, and Jurgen Vinju. 2022.
Large-scale Semi-automated Migration of Legacy C/C++ Test Code.
Software: Practice and Experience (2022).

Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. 2016. Refactoring
of legacy software using model learning and equivalence checking: an
industrial experience report. In International Conference on Integrated
Formal Methods. Springer, 311-325.

Wouter Smeenk, Joshua Moerman, Frits Vaandrager, and David N
Jansen. 2015. Applying automata learning to embedded control
software. In International Conference on Formal Engineering Methods.
Springer, 67-83.

Frits Vaandrager. 2017. Model learning. Commun. ACM 60, 2 (2017),
86-95.

Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wif3-
mann. 2022. A new approach for active automata learning based on
apartness. In Tools and Algorithms for the Construction and Analysis of

Systems: 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS

2022, Proceedings, Part I Springer, 223-243.

Rutger van Beusekom, Bert de Jonge, Paul Hoogendijk, and Jan
Nieuwenhuizen. 2021. Dezyne: Paving the way to practical formal
software engineering. arXiv preprint arXiv:2108.02962 (2021).
Andrzej Wasowski and Peter Sestoft. 2002. On the formal semantics of
visualSTATE statecharts. Technical Report. TR-2002-19, IT University
of Copenhagen.

Received 2023-04-28; accepted 2023-08-11

	Abstract
	1 Introduction
	2 Related Work
	3 Background of Technologies
	3.1 Model Learning
	3.2 Equivalence Checking
	3.3 Model Based Tools
	3.4 Metaprogramming

	4 Proposed Toolchain
	5 First Prototype
	5.1 Step 1: Problem Analysis
	5.2 Step 2: Generate Adapter
	5.3 Step 3: Model Learning
	5.4 Step 4: Transform Model
	5.5 Step 5: Equivalence Checking
	5.6 Step 6: Generate Code
	5.7 Step 7: Model Learning
	5.8 Step 8: Equivalence Checking
	5.9 Step 9: Done

	6 Discussion
	6.1 Step 1: Problem Analysis
	6.2 Step 2: Generate Adapter
	6.3 Steps 3 & 7: Model Learning
	6.4 Step 4: Transform Model
	6.5 Step 5: Equivalence Checking
	6.6 Step 6: Generate Code

	7 Concluding Remarks
	Acknowledgments
	A Source Code of The Vending Machine
	B Adapter Generator
	C mCRL2 Generator
	D Implementation Generator
	References

