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Abstract

Exposure to manufactured nanomaterials (MNs) is a growing concern for occupational health and safety. Reliable methods for
assessing and predicting MN exposure are essential to mitigate associated risks. This study presents the development of the
Nano Exposure Quantifier (NEQ), a mechanistic model designed to assess airborne MN exposure in the workplace. By utilizing
a dataset of 128 MIN measurements from existing exposure studies, the model demonstrates its effectiveness in estimating
MN exposure levels for particles smaller than 10 um. The NEQ provides estimates in terms of particle number concentration
accompanied by a 95% confidence interval (Cl), enabling a comprehensive assessment of MN exposure. The NEQ includes 2
guantitative models: a simplified tier 1 model and a more comprehensive tier 2 model. Both tier 1 and tier 2 models exhibit ro-
bust performance, with correlation coefficients (r) of 0.57 and 0.62, respectively. The models exhibit a moderate level of error,
as indicated by residuals’ standard deviation of 4.10 for tier 1 and 3.90 for tier 2. The tier 1 model demonstrates a slightly higher
overestimation bias (1.15) compared to the tier 2 model (0.54). Overall, the NEQ offers a practical and reliable approach for
estimating MN exposure in occupational settings. Future validation studies will investigate the impact of initial calibration efforts,
heteroscedasticity, and further refine the model’s accuracy.
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What's Important About This Paper?

This paper reports on the development of a userfriendly, quantitative, and evidence-based model, the Nano Exposure
Quantifier (NEQ), for assessing manufactured nanomaterial exposure in the workplace. Due to its tiered approach, the
model is well suited to assess the exposure risks and thus help implement the stepwise approach of the European
Commission’s Safety and Sustainability by Design framework.

Introduction use of MNs continues to grow in various industries,
workers in these industries are increasingly at risk of
exposure to these materials. There is a growing con-
cern about the potential health risks of MN exposure
(e.g. lung cancer, cardiovascular diseases, respiratory
illness), prompting the need for accurate and reliable

methods for predicting and assessing exposure in the

Manufactured nanomaterials (MNs) are materials
with at least one dimension in the nanoscale range,
typically between 1 and 100 nm. Due to their small
size and unique physical and chemical properties,
MNs have found widespread use in numerous in-
dustrial, commercial, and consumer products. As the
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workplace (Borm et al. 2006; Donaldson et al. 20035;
Kermanizadeh et al. 2016). The exact prevalence of
occupational diseases resulting from nanoparticle ex-
posure is not well established. This is mainly due to the
lack of long-term epidemiology studies on the health ef-
fects of nanoparticle exposure, as well as the difficulty
in accurately measuring exposure to nanoparticles in
the workplace (NIOSH 2009). Measuring airborne
MNs can pose several challenges, primarily due to the
need for specialized equipment and trained personnel
to ensure accurate measurements. Moreover, the di-
verse nature, size ranges and exposure metrics of MNs
demand various sampling methods and analytical tech-
niques, further increasing the complexity of the pro-
cess. Therefore, it may be worthwhile to use exposure
models to estimate the level of exposure as a prelim-
Inary assessment.

In the past decade, several pragmatic control
banding tools (CB; CB nanotool, Swiss Precautionary
Matrix, IVAM Guidance, Stoffenmanager Nano 1.0,
Nanosafer, ANSES CB Tool) (Zalk et al. 2009; Hock
et al. 2013; Jensen et al. 2013; Cornelissen et al. 2011;
Riediker et al. 2012) and other qualitative tools (e.g.
NanoRiskCat) have been developed to assess and
manage the potential risks associated with exposure
to MNs in the workplace (Hansen et al. 2011). While
these tools are useful in providing a screening of poten-
tial risks associated with workplace exposures to MNs,
these tools do not provide quantitative estimates on
the levels of exposure in the workplace. Conventional
quantitative models, such as the Advanced Reach Tool
(ART; Fransman et al. 2011), also have limitations
in estimating exposure to MNs and may not provide
adequate background for risk assessment. The ART
model, while useful in predicting exposure to conven-
tional chemicals (Spinazzé et al. 2017; Landberg et al.
2017), is not able to account for the unique charac-
teristics of MNs, which can influence their dustiness
and subsequently affect exposure levels (Bekker et al.
2016). Therefore, relying solely on such conventional
models may not provide accurate estimates of MN ex-
posure and could result in inadequate risk assessments
(OECD 2021).

Overall, developing exposure models that accur-
ately predict MN exposure in the workplace remains
a challenge due to the limited availability of well-
characterized exposure measurement data, neces-
sary to develop and validate these models. This study
aims to address this challenge by the development of
the Nano Exposure Quantifier (NEQ): a quantitative
and evidence-based model for assessing MN exposure
in the workplace. The model was developed building
upon prior methodological work in the field of ex-
posure modeling, as detailed by Van Duuren-Stuurman
et al., (2012) and Kuijpers et al. (2017). Subsequent
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validation and calibration of the model were conducted
using exposure measurement data collected through a
standardized data template (Jimenez et al. in prepar-
ation), specifically tailored to capture workplace ex-
posure measurements related to MNs. This approach
facilitated the development of a tiered model for as-
sessing inhalation exposure to MNs in the workplace.

Development of the mechanistic model

Conceptual model

The NEQ is based on the source-receptor concep-
tual framework described by Schneider et al. (2011),
which provides a comprehensive understanding of
the emission pathway of MNs from the source (e.g.
manufacturing process) to the receptor (e.g. worker).
As proposed by Fransman et al. (2011) and Marquart
et al. (2008), factors that influence emission are the
emission potential, which includes the substance emis-
sion potential (SEP) and the activity emission potential
(AEP). The emission potential of a substance is deter-
mined by its characteristics, while the activity emission
potential is determined by the nature of the activity
being performed. Research on the SEP related to dusti-
ness has concluded that the emission of nanoparticles
is not determined by their specific type, but rather
by physical and chemical factors such as coating and
binding strength of the particles (Schneider and Jensen,
2009; Levin et al. 2015). Other factors that influence
worker exposure include interventions on transmission
(e.g. local controls, ventilation) and immission (e.g.
separation, personal protective equipment).

The NEQ was developed to create a practical tool
for calculating MN exposure, taking into account both
near-field (within 1 m of the worker’s breathing zone)
and far-field (remainder of the working area) sources
of exposure, the SEP, and the AEP. The NEQ also con-
siders the impact of local control measures, general
ventilation, segregation, and duration of the activities
on MN exposure (Fig. 1). Immission factors such as
personal protective equipment are not included in the
model.

Model algorithm
The NEQ calculates the relative exposure based on
a range of modifying factors (MFs) and underlying
exposure parameters, reflecting particle number con-
centrations in the air. The selection of the modifying
factors and exposure parameters was based on evi-
dence found in the peer-reviewed literature (Kuijpers
et al. 2017; Van Duuren-Stuurman et al., 2012), expert
judgment, and relations found in the exposure meas-
urement data library.

In the model, relative exposure (E) is calculated
using Equations 1-3 with: E = exposure score; £, =
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Fig. 1. lllustration of the NEQ model for inhalation exposure in the workplace. Adapted from Tielemans et al., (2008).

duration of the performed activity (minutes/day); C_ =
concentration from near-field sources; C,, = concentra-
tion from far-field sources; SEP = substance emission
potential (intrinsic emission multiplier), AEP = activity
emission potential (handling/task multiplier), MF_ .
= multiplying factor for the use of local control meas-
ures in the near-field or far-field; MF . = multiplying
factor for general ventilation in relation to room size
for near-field or far-field sources; MF_ = multiplying
factor for segregation; MF = = multiplying factor for
personal enclosure.

E = [Cu + Cq] x MFgpe x 1 (1)
Cu = SEP x AEP x MF;, s x MFy, v (2)

Cff = SEP x AEP x MFlciff X MFguiff (3)

The NEQ model adopts a systematic approach to
evaluate relative exposures to MNs by assigning base-
line exposure values to the MN-specific activity param-
eters. These baseline exposure values, established in

terms of particle number concentration (#/cm?), are
further refined through the application of multipliers
assigned to parameters that influence airborne MN ex-
posure. The NEQ was specifically designed to estimate
total MN particle number concentrations in the range
of 1 to 10,000 nm. This range was chosen to capture
agglomerated nano-sized particles which often exceed
the size of 100 nm. The choice of particle number con-
centrations as the primary metric was driven by the
availability of this data within the exposure measure-
ment library.

To develop the NEQ multipliers and baseline values,
we relied on scientific studies, primarily drawing from
the works of Van Duuren-Stuurman et al. (2012) and
Kuijpers et al. (2017). Van Duuren-Stuurman et al.
(2012) provided insights into the appropriate multi-
pliers associated with different parameters influencing
MN exposure, which served as the initial framework
for our own set of multipliers. Furthermore, Kuijpers et
al. (2017) provided essential data on particle number
concentrations for different MN-related exposure
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activities. They normalized this data, derived from
peer-reviewed exposure measurements by using a
method that adjusted for differences in workplace con-
ditions and measurement locations. These normalized
particle number concentrations formed the foundation
for establishing the NEQ baseline values, which were
further refined through expert judgment and analysis
of relationships found in the exposure measurement
data library (see the section “Database development”).

The NEQ follows a tiered approach for MN exposure
assessment. The first tier is a conservative, minimal-
information screening assessment. If this initial assess-
ment raises concerns in specific areas, the second tier
provides a more detailed evaluation requiring specific
data, including energy levels for activities.

Source domains

The exposure parameters underlying the model’s MFs
are derived from 4 main sources of worker exposure
during the lifecycle of nanomaterials, which are re-
ferred to as source domains in the model. These in-
clude synthesis of MNs (source domain 1), handling
and transferring of bulk powdered MNs and disper-
sion of solid/granular intermediates, or ready-to-use
MN:-containing products (source domain 2), handling
of liquid intermediate nano-products or application of
liquid ready-to-use nanoproducts (source domain 3)
and activities that result in the fracturing and abrasion
of MN-containing end products (source domain 4).

Source domain 1—Synthesis of nanoparticles

In the model, source domain 1 (SD1) pertains to the
emissions that occur during the MN synthesis phase,
including any unintended releases during MN produc-
tion and manufacturing, such as leaks or incidental
exposures (excluding harvesting of the materials).
During this phase, workers are potentially exposed to
pristine MNs, and the level of exposure is directly af-
fected by the production process. It was assumed that
the emission potential does not vary between different
types of MNs for the same synthesis process (Van
Duuren-Stuurman et al. 2012). Therefore, in the tier
1 assessment, the emission potential solely consists of
the AEP. The AEP is defined by the MN production
process, which is categorized into 4 different groups
in the model: gas-phase synthesis, mechanical reduc-
tion, chemical vapor condensation, and wet chemistry
(Table S1).

Defining baseline values for the SD1 processes has
posed challenges, as the tasks primarily involve con-
trolling the closed production process (Van Duuren-
Stuurman et al. 2012). Gas-phase processes (e.g. flame
pyrolysis, laser ablation, and electro-spraying) have
been identified as the only MN production methods
that can result in direct inhalation exposure to primary
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MNs through reactor leaks (Aitken et al. 2004). For
gas-phase synthesis methods, MN exposures ranging
from 100,000 to 1,000,000 #/cm? have been reported
(Leppdnen et al. 2012; Maikela et al. 2009). Mechanical
reduction has also shown relatively high exposure
compared to the other synthesis processes with expos-
ures up to 115,000 #/cm3 (Koivisto et al. 2012). Wet
chemistry and vapor condensation methods generally
result in lower exposures. Wet-chemistry methods re-
sult in lower exposure by keeping MNs in the liquid
medium, preventing dust generation. Similarly, vapor
condensation forms MNs on substrates, minimizing
airborne emissions (Kuijpers et al. 2017). The process
of calcination involves heating a substance at high tem-
peratures, typically to induce a chemical or physical
transformation. Calcination is a closed process, that
similarly to gas-phase synthesis processes can result in
inhalation exposure to MNs through reactor leaks. An
emission potential score of 80,000 #/cm? was assigned,
based on exposure measurement results by Fonseca et
al. (2018).

Source domain 2—Handling powder

Source domain 2 (SD2) covers the handling and
transfer of bulk MN powders and the dispersion of
intermediates or ready-to-use MN-containing prod-
ucts. In this domain, workers may be exposed to pure
MN:s, aerosols containing MNs, and incidentally free
MNs. The level of exposure is influenced by various
factors, including the type of activity, the dustiness of
the MN powder, the concentration of the MN in the
intermediate or MN-containing products and the mass
handled.

In SD2, the AEP is determined by the activity being
performed which was categorized into 5 different
activity groups in the model: harvesting, dumping,
mixing, cleaning (i.e. contaminated objects like a re-
actor), and transferring (Table S2). With regards to
the activities, the tier 1 activities do not require in-
formation on the energy level nor the mass handled.
For these baseline values, worst-case energy levels and
mass handled were assumed. For example, for cleaning
the mass handled was assumed to be 1 to 100 g and
therefore the activity emission potential score of
30,000 #/cm3 corresponds to 10,000 (cleaning high
energy level * 3 (mass handled 1 to 100 g, Table S3).
For dumping and mixing >1,000 g was assumed, and
for transfer 100 to 1,000 g was assumed. Dumping
and mixing are considered the highest exposure activ-
ities as they often involve handling amounts greater
than 1 kg, whereas the other activities typically in-
volve handling less than 1 kg (Kuijpers et al. 2017).
In the second tier assessment, the AEP is refined with
information on the mass handled and the energy level
of the activity performed.
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In this source domain, the SEP consists of the MN
dustiness and MN concentration parameters, of
which the categories are given in Table S3. Based on
current understanding, it is believed that exposure
modeling to MNs in this domain is comparable to the
handling of solids in the generic exposure modeling, as
nanoparticles tend to agglomerate or aggregate during
these activities (Van Duuren-Stuurman et al. 2012).

Source domain 3—Liquid nano-products

Source domain 3 (SD3) pertains to the handling of li-
quid intermediate nanoproducts or the application of
liquid ready-to-use nanoproducts. During these activ-
ities, workers may be exposed to liquid aerosols that
contain MNs. The extent of exposure primarily de-
pends on the nature of the task being performed, the
concentration of the MN in the liquid, and the degree
of dilution of the nanoproduct in water. In the tier 1
assessment, the AEP consists of the activity performed
which is categorized into 5 different activity groups in
the model: spraying, activities with open liquid sur-
faces and open reservoirs (e.g. stirring), spreading of
liquid products (e.g. brushing/rolling), application of
liquids in high-speed processes (e.g. pressure spraying)
and transfer of liquid products (Table S4). In the tier
2 assessment, the activity groups are divided into sub-
categories with specific parameters such as the appli-
cation rate, direction of the spray, and size of the open
surface that determine the energy level of the activity
(Table S4).

The SEP consists of parameters such as concentra-
tion and dilution, as outlined in Table S5. In tier 2, a
more comprehensive assessment of dilution is neces-
sary regarding the percentage dilution of the liquid
nano-product, currently limited to water.

Exposure modeling to MNs in SD3 is expected to be
similar to the handling of liquids in generic exposure
modeling, as nanoparticles have been observed to ag-
glomerate or aggregate during the activities involved
(Van Duuren-Stuurman et al. 2012).

Source domain 4—Nano-embedded objects

Source domain 4 (SD4) focuses on activities that lead
to the fracturing and abrasion of MN-containing end
products. This exposes workers to pure matrix ma-
terial, MN-embedded matrix material, and free MNs.
Exposure varies based on the type of activity (manual/
mechanical), the MN distribution (surface/bulk in-
corporated), and the MN weight fraction. The AEP in-
cludes 6 categories: (i) mechanical treatment resulting
in substantial release (e.g. sanding, sawing, grinding),
(ii) Mechanical treatment resulting in limited release
(e.g. fine cutting, drilling), (iii) Mechanical breaking of
objects (e.g. de-lumping, pulverization), (iv) Manual
treatment resulting in limited release (e.g. hand sawing,
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hand sanding), (v) Manual treatment resulting in very
limited release (e.g. hand drilling), and (vi) Manual
breaking of objects (e.g. chiseling).

Tier 2 incorporates the MN location (surface
bound/bulk incorporated), featuring surface-level (e.g.
sanding) and body-level (e.g. drilling) activity subcat-
egories (Table S6).

Both tiers account for the weight fraction of the
MN in the end product when determining the ex-
posure level (Table S7). According to Kuijpers et al.
(2017), exposures from high-energy activities such
as grinding, abrasion, and sanding were found to be
the highest with particle number concentrations ran-
ging from 4,000 to 250,000,000 #/cm?. These activ-
ities often involve the use of high-speed machinery
and tools that generate a large amount of dust.
Pulverization, which involves the breaking or grinding
of materials into smaller particles, typically generates
larger particles than those produced during sanding or
abrasive blasting. The resulting larger particles tend to
settle more quickly, reducing the potential for inhal-
ation and exposure to the dust.

Transmission factors for nanomaterials

As proposed by Van Duuren-Stuurman et al. (2012),
transmission factors affecting MN exposure are similar
to conventional particles. These factors include local-
ized controls, particle dispersion in the room (near-
field/far-field consideration), and source segregation.
Local control measures are assumed to have similar
efficacy for both nanoparticles and conventional par-
ticles, with some variations among specific control
methods (Goede et al., 2018).

In tier 1 assessment, transmission factors encompass
local control types (e.g. wetting powder, local exhaust,
containment, glove boxes/bags) and MN dispersion
(Table S8). Dispersion is assessed in the near-field
(within 1 meter of the worker’s breathing zone) and
far-field, influenced by room size and general ventila-
tion type (Table S9, S10).

Tier 2 assessment adds control measures like segre-
gation and personal enclosure. Segregation physically
separates the MN source from workers, effectively re-
ducing exposure. Personal enclosure considers workers
operating in cabins with or without an independent
clean air supply. The model assumes the same effect-
iveness for both nanoparticles and non-nanoparticles.
However, for partial segregation, efficiency decreases,
and variation increases significantly (Fransman et al.
2008), therefore, the model includes only categories for
total segregation.

For tier 2 local controls, we used efficiency values
from the Exposure Control Efficacy Library (ECEL) by
Goede et al. 2024, supported by available data. When
data were insufficient, we applied effectiveness values
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consistent with those in the ART model (Fransman et
al. 2011).

Database development

Standardized exposure measurement
template

An exposure database was created by collecting oc-
cupational exposure measurements for MNs from
various published studies and own conducted experi-
ments. A standardized data collection template from
the EU-funded project GRACIOUS (GRACIOUS 2020)
was used to ensure data quality and completeness. We
conducted background correction on measurement
data when not previously applied and background
concentrations were available. Cases, where back-
ground levels exceeded measured particle numbers (n
=11), were set to a fixed value of 0.1, maintaining data
integrity and allowing further analysis. For the calibra-
tion of the model, outliers were not included, ensuring
that the results were based on representative data.

Missing data for model parameters such as room
size, ventilation, and MN position were imputed based
on expert judgment and informed by relevant litera-
ture. When possible, missing data were inferred from
descriptions or schematics. Room size and ventilation
rates were inferred from the study context (e.g. Dylla
and Hassan, 2012) assumed a small laboratory, Tsai et
al., (2008) inferred room size from workroom images),
and nanoparticle positioning was estimated based on
the matrix type (e.g. Methner et al., (2012) assumed
body positioning in a polymer matrix).

To ensure scenario quality, independence, and reli-
ability, we established selection criteria:

1. Studies utilized by Kuijpers et al. (2017) to estab-
lish NEQ baseline values were excluded to prevent
bias.

2. Scenarios were considered of sufficient quality
when they provided geometric mean measure-
ments and complete parameter details, either dir-
ectly or derivable from cited sources.

Extrapolation for nano-sized exposures

(<10 um)

The variation in the measurement range of direct
reading devices, such as the Fast Mobility Particle
Sizer (FMPS) and the DiscMini, introduces potential
measurement uncertainty when comparing results
obtained from different instruments, which measure
different size ranges. For instance, the FMPS meas-
ures (nano)particle concentrations up to 542 nm,
while the DiscMini measures up to 700 nm. To ad-
dress this issue, we extrapolated the measurement
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results for each instrument up to 10 pm. To accom-
plish this, we consulted the scientific literature for
size distribution plots across a range of particle sizes,
from approximately 5 to 10,000 nm, for all relevant
source domains. By using this information, we were
able to estimate a typical particle number concentra-
tions up to 10 pm for each of the source domains,
which is the range of interest in our model. We used
plotdigitizer (https://plotdigitizer.com/app), a web ap-
plication, to extract particle number concentrations
per particle size from size distribution plots. In cases
where both an FMPS (range: 5.6 to 560 nm) and APS
(range: 500 to 20,000 nm) were used, we summed the
concentrations from both devices to obtain a 10-pm
particle number concentration. If this was not pos-
sible, we calculated the percentage of particles in the
size range captured by the measurement device and
the percentage of particles in the size range that was
not captured by the device, using the available typical
particle size distribution data. We then extrapolated

by:
(Particle number concentration instrument/

% of particles measured by instrument) x 100

Statistical methods

In this study, exposure concentrations (#/cm’) were
calculated for all scenarios using the entered measure-
ment data. To validate model parameters against in-
dependent measurements, we included data for MNs
with aerodynamic diameters below 10,000 nm.

It is important to note that the available data util-
ized in this study consisted of measurements obtained
using instruments that captured total aerosols (liquid
or solid), rather than individual MN particles. To en-
sure comparability, the weight fraction of MNs was
not considered in the exposure calculations.

To assess the association between estimated and
background-corrected measured particle number con-
centrations in tier 1 and tier 2 models, Pearson correl-
ation coefficients were calculated. Prior to the analysis,
the measurement data were log-transformed due to
non-normal distribution. To quantify uncertainty, we
computed 95% confidence intervals (CI) for estimated
particle number concentrations by:

CI = GMestimate + 1.96 x SD error (4)

In a first attempt to refine the NEQ, the tier 1 and tier
2 models were calibrated using mixed-effect models
(Equation 5), where vy, is the estimated particle number
concentration; f3, is the intercept, B, is the fixed effect
estimate and 9, is the random effect from the scenario.
The error terms o7, (between scenario variance) and
o2 (within scenario variance), were used to calculate
the model uncertainty factor (M) (Equation 6). This
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Tier 2
20 r=0.62
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Ln estimated total particle number concentrations

Fig. 2. Scatter plot of the natural logarithm of the measured vs. estimated total particle number concentrations with the reference line
(solid), regression line (dashed), and 95% CI (gray) for the tier 1 and tier 2 models. A black reference line represents perfect agreement

between the estimated and measured values.

uncertainty factor allows the NEQ to estimate the 90th
percentile concentrations in addition to the GM.

In (’y,‘) =fo+ 1 xIn (NEQ — score,») + 0; (5)

M = EXP [1,285,/(0}, + 02,)] )

All statistical analyses were performed using R
Studio (version 2022.07.1).

Results

Summary statistics

The database comprises data from 24 exposure studies
conducted in various industrial workplaces, with a
total of 269 exposure measurements (Table S11). After
applying the selection criteria, the final dataset included
128 exposure measurements from 14 exposure studies
(Table S11). The final dataset includes only near-field
measurements taken using direct reading instruments,
such as CPC, SMPS, and FMPS, that provide con-
tinuous, real-time data on particle number concen-
trations. In terms of source domains, the majority of
measurements were observed in SD4 (44%), followed
by SD2 (24%), SD1 (16%) and SD3 (16%). Dumping
(77%), spraying (57 %), mechanical treatment resulting
in substantial release (50%), and gas-phase synthesis
(33%) and were the most prevalent activity categories
within SD2, SD3, SD4, and SD1, respectively.

Table 1 provides summary statistics of the back-
ground corrected observed particle number concentra-
tions for the different activities per source domain. The

highest particle number concentration was observed for
spray application in source domain 1 with a geometric
mean of 5.55E+03 particles/cm? (min: 1.00E-01#/cm3,
max: 1.78E+08#/cm3), while the lowest concentration
was observed for the mechanical breaking of objects in
source domain 4 with a geometric mean of 3.03E+00
particles/cm3 (min: 1.00E-01 #/cm3, max: 1.60E+02 #/
cm?3).

Relationship measured and estimated particle
concentrations

The relationship between the log-transformed meas-
ured and estimated particle concentrations was as-
sessed for both the tier 1 and tier 2 models using both
a linear model and correlation analyses.

The linear regression for tier 1 and tier 2 showed an
intercept of respectively -0.36 (P > 0.1) and -0.32 (P
> 0.1), and a slope for the estimated score of 0.92 (P <
0.001) and 0.98 (P < 0.001), respectively. A scatter plot
was generated, showing a regression line along with
95% confidence intervals of the estimates, as calculated
with (1), to visualize the uncertainty of the estimated re-
lationship (Fig. 2). The plot illustrates a positive linear
relationship between the natural logarithm of the es-
timated and measured total particle number concen-
trations. The tier 1 model demonstrates an R-squared
value of 0.32, indicating that ~32% of the variance in
the measured data is explained by the model. Similarly,
the tier 2 model exhibited an R-squared value of 0.39,
suggesting that approximately 39% of the variance in
the measured data was explained by the model.
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Fig. 3. Residuals plot and error distribution of the tier 1 (a,c) and tier 2 (b,d) model.

Table 2. Bias, model error, and the percentage of measurements observed within the 95% ClI for the tier 1 and tier 2 models.

Tier Bias Model error (sd) % < lower bound 95% CI % > upper bound 95% CI
1 1.15 4.10 7.8 1.6
2 0.54 3.90 7.8 1.6

CI, Confidence interval; sd, standard deviation.

In addition to Fig. 2, 2 scatter plots were created 1.6% above the upper CI bound. This suggests slightly
to investigate the relationship between estimated and  larger tails in the distribution than expected (9.4%

measured particle concentrations per source domain versus the expected 5%). The tier 2 model exhibited
(SD) and activity level (Figs S1 and S2). a bias of 0.54, also tending to overestimate exposures.
] Similar to the tier 1 model, 7.8% fell below the lower
Residuals CI bound, and 1.6% exceeded the upper CI bound.
An investigation of the model error or residuals was Both models had a model error (sd) of 4.10 for tier
conducted to assess the accuracy of the estimated par- 1 and 3.90 for tier 2. These deviations from normality

ticle concentrations. Figure 3a,b indicated that the seem inconsequential given the dataset size (128),
residuals meet the assumption of homoscedasticity, =~ where a single data point represents almost 1% of the
and Fig. 3¢,d showed that the model errors followed data, suggesting that these deviations result from a few
roughly a normal distribution for both the tier 1 and  aberrant data points.

tier 2 models which is an indication for random noise. . )

However, especially for the tier 2 model a bias seems Calibration

present. Table 3 presents the outcome of the model calibra-

Table 2 displays bias as mean error and the per-  tion using a mixed-effect model to elucidate the rela-
centage of measurements within the 95% CI, calcu- tionship between NEQ scores and measured particle
lated using (1) for both tier 1 and tier 2 models. In the number concentrations. The “empty model” represents
tier 1 model, bias was 1.135, indicating a slight overesti- the model without fixed effects, while the tier 1 and tier

mation of exposures, with 7.8% estimates below the 2 models integrate NEQ scores as fixed effects and the
lower CI bound (compared to the expected 2.5%) and ~ exposure scenario as random effects.
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Table 3. Results of the linear mixed effect models for calibration of the NEQ.

Model N B, B, b 0% Explained variance (%) UF

Empty model 117 10.1 n.a. 9.30 2.30 n.a. n.a.
NEQ Tier 1° 117 4.24 0.57 6.11 2.36 21.3 42.1
NEQ Tier 22 117 3.68 0.65 5.23 2.46 28.5 35.3

*Model with NEQ scores as fixed effects and scenario as random effect; N, number of measurements used for calibration; f, Intercept; 3,

Fixed effect estimate; 0, , Between scenario variance; 02

ws?

Introducing NEQ scores as fixed effects in the tier
1 model resulted in a between-scenario variance (0%, )
of 6.11 and a within-scenario variance (0% ) of 2.36.
The calibrated tier 1 model explained 21.3% of the
variance, with an uncertainty factor (UF) of 42.1. The
calibrated tier 2 model showed a between-scenario
variance (0% ) of 5.23 and a within-scenario variance
(0%,.) of 2.46. This model explained 38.5% of the vari-
ance, outperforming the tier 1 calibrated model, with
an uncertainty factor (UF) of 35.3.

Discussion

This study presented the development of a quantitative
model for occupational exposure to MNs. The data-
base used for validation and subsequent calibration of
the model contains 128 measurements collected from
existing exposure studies. The NEQ modifiers were de-
veloped with the use of previous studies (Fransman et
al. 2011; Kuijpers et al. 2017; Van Duuren-Stuurman
etal. 2012).

The findings of this study highlight the potential of
the tier 1 and tier 2 models in estimating occupational
exposure to MNs. Moreover, the significant Pearson
correlation coefficients (0.57 for Tier 1 and 0.62 for
Tier 2) indicate a positive and moderately strong rela-
tionship between the estimated and measured particle
concentrations. Specifically, the tier 2 model exhibits
a bias of 0.54 while the tier 1 model shows a bias of
1.15 indicating that the tier 1 model tends to be more
conservative, leading to a higher proportion of over-
estimated values, which is to be expected since the sim-
pler tier 1 model is developed to be more conservative
compared to the tier 2 model. The residuals show a
standard deviation of 4.10 for tier 1 and 3.90 for tier
2, which combined with the bias show the discrepancy
between the models’ predicted- and observed values.
The calibrated tier 2 model outperformed the tier 1
model by explaining 28.5% of the variance compared
to 21.3%. Additionally, the calibrated tier 2 model
demonstrated a lower uncertainty factor of 35.3,
indicating more precise estimates. However, assessing
the performance differences between the original and

Within scenario variance; UF, Model uncertainty factor.

calibrated models will require validation with new
exposure measurement data, as planned in the forth-
coming study by Vermoolen et al. (in preparation).
Additionally, the number of measurements available
to calibrate the model was limited, model uncertainty
and explained variance might improve if more meas-
urements are added to the calibration database in the
future.

In this study, we encountered cases where the back-
ground levels exceeded the measured particle number
concentrations. The presence of higher background
levels can suggest the influence of external factors,
such as airborne contaminants or interference sources,
which may affect the accuracy of the measured particle
number concentrations. These outliers (z = 11) were
set to a fixed value of 0.1 and could have potentially
introduced variability and influenced the results, with
the exception of the calibration step, where these out-
liers were excluded.

It is important to acknowledge that certain factors
that may influence MN exposure, such as particle
coating and moisture content were not included in the
current model for several reasons. Although particle
coating has been recognized as a significant factor in
determining dustiness (Schneider and Jensen, 2009;
Levin et al. 2015) different dustiness levels have been ob-
served for powders with hydrophilic and hydrophobic
surfaces (Shandilya et al. 2019). This indicates that the
presence of a coating does not consistently effect of in-
crease or decrease in dustiness and, subsequently, ex-
posure. Moisture content is another parameter that has
been shown to impact MN exposure (Fransman et al.
2011) and is included in other exposure models, such
as Stoffenmanager Nano 1.0 (Van Duuren-Stuurman et
al. 2012). However, moisture content as well as coating
are indirectly accounted for in the dustiness parameter.
In addition, we found that the availability and accessi-
bility of moisture content data is often limited making
it difficult to include in this quantitative model. We use
respirable mass-based dustiness data due to its stand-
ardization and availability. However, this may under-
estimate exposure to the smaller particles prevalent in
nanomaterials. This method might underestimate the
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exposure to MNs, which often consist of numerous
small particles contributing more to particle number
than to mass. In addition to dustiness, repetition fre-
quency significantly influences MN exposure (Koponen
et al., 2015). The variation in exposure concentrations
from repeating tasks is captured as a random effect
in the mixed effect model and thus in the uncertainty
factor which is used to calculate the 90th percentile.
While the results demonstrate the models’ promising
potential, it is important to acknowledge certain limi-
tations. First, the data collected may not fully represent
all possible scenarios of MN exposure in occupational
settings. The data collected might be biased toward
certain industries or job tasks, such as fine chemical
manufacturing, potentially limiting the generalizability
of the findings to other occupational settings. It is im-
portant to note that approximately 16% of the meas-
urements were categorized within SD3, indicating a
slight underrepresentation of this particular domain.
Moreover, certain activities such as cleaning in SD2
and spreading of liquid products in SD3 were not in-
cluded in the final dataset. Additionally, the activities
mixing in SD2 and mechanical reduction in SD1 are
underrepresented in comparison to the other activities
in this study. When assessing the performance of the tier
1 and tier 2 models across different source domains, it
appears that the models perform most accurately for
the activities within SD3 (as shown in Figs S1 and S2).
For activities in SD1, the models tend to underestimate
concentrations, which is primarily due to outliers such
as for wet chemistry where the model’s baseline is set
to 5,000 #/cm3, but measured values are much higher.
However, with only 2 data points available for wet
chemistry, we found this insufficient to warrant model
adjustments. Additional data will be included in an up-
coming validation paper. Also, both models tend to over-
estimate particle concentrations for dumping activities
in SD2. This may be attributed to the wide variability
observed in the “dumping” measurements. Specifically,
with 23 measurements for dumping compared to only
2 for mixing and 5 for transferring, the extensive spread
in dumping measurements contributes to the decreased
performance for SD2 relative to SD3. This suggests a
potential need to introduce additional parameters for
dumping or reevaluate the chosen cutoff dump height
of 50 cm. Future model validation incorporating data
from currently underrepresented source domains will
be essential to enhance the reliability and precision of
modeling outcomes.

Second, due to the limited size of the database, we
were unable to calibrate the model as has been done in
previously developed models such as Stoffenmanager
(Tielemans et al. 2008), ART, and AREAT (Franken
et al., 2021). Calibration using a mixed effect
model, which considers both between-worker and
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within-worker variation, would provide a more so-
phisticated approach to quantifying exposure values
and characterizing model uncertainty. However, con-
sidering existing tools to estimate exposure to MNs
in the workplace and the limited number of measure-
ment data available, the NEQ has succeeded to char-
acterize the model uncertainty. Calibration, accounting
for worker variation, may be pursued in the future as
more measurements become available.

Finally, it is important to note that the extrapolation
process introduces inherent assumptions and potential
uncertainties. The accuracy of the extrapolated particle
number concentrations heavily relies on the reliability
and representativeness of the available size distribution
data and the assumptions made during the calculation.
Therefore, it is crucial to further validate the extrapo-
lated data with exposure measurements wherever pos-
sible and to continually improve the dataset as new
data becomes available.

In the near future, new measurement data will be col-
lected from both literature sources and measurements
conducted at industry sites as part of ongoing EU pro-
jects. This data will be utilized for further validation and
refinement of the model. It is worth noting that there
is a scarcity of validation studies specifically focused
on models estimating exposure to MNs. To our know-
ledge, there is only one OECD report available that as-
sesses the performance of well-known models such as
Nanosafervl.1, Stoffenmanager Nano, GUIDEnano,
and BIORIMA, among others (OECD 2021). Although
the authors of the report do not refer to it as a “valid-
ation” due to the limited number of data points used
for assessing the tools (around 50 measurements),
Nanosafer demonstrated similar Pearson correlations to
our model, ranging from 0.56 to 0.71 (OECD 2021).
GUIDEnano demonstrated a nearly perfect correlation (r
=0.96), indicating its potential for effective exposure as-
sessment. However, it is worth noting that GUIDEnano
is a complex tool, potentially less user-friendly. Notably,
the NEQ model requires fewer user inputs to estimate
exposure concentrations in contrast to GUIDEnano.
Furthermore, GUIDEnano necessitates information on
the substance release rate, which may be unavailable to
small and medium-sized enterprises (SMEs). The NEQ
model provides added value compared to existing tools,
offering promising performance while maintaining user-
friendliness, making it suitable for SMEs with limited
exposure assessment expertise. More details on its func-
tions and usability will be available in Vermoolen et
al. (in preparation). Overall, developing accurate MN
exposure models is vital for occupational health and
safety, given limited measurement data. Future research
should consider material characteristics, including ag-
glomerated MNs, for comprehensive risk assessment.
Standardized data can improve model validation and
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applicability across workplaces. Further research is
needed to address model limitations and understand
MN exposure’s health risks.

Conclusion

We developed a model, the NEQ, for estimating airborne
MN exposure in occupational settings. Calibration of
the model employed a comprehensive dataset of 128
MN exposure measurements, integrating within- and
between-scenario variance to quantify model uncer-
tainty and to be able to calculate 90th percentile ex-
posure concentrations. Future evaluation studies are
essential to further assess the model’s performance, re-
liability, and accuracy, thereby testing its usability and
robustness in diverse workplace environments.
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