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ARTICLE INFO ABSTRACT
Keywords: The topology of low-voltage distribution networks (LVDNSs) is crucial for system analysis, e.g., distributed
Distribution networks energy resources (DERs) integration, network hosting capacity analysis, state estimation, and electric vehicle

Topology generation
Open source data
Incomplete data
Optimization

charging management. However, it is frequently unavailable or incomplete. This paper develops a data-driven
topology identification approach for LVDNs with a high proportion of underground cables. The proposed
approach exploits the fact that underground cables usually follow the street pattern, thus relying on open
street map (OSM) and smart meter (SM) data. Three stages compose the proposed approach: In the first stage,
a hierarchical minimum spanning tree algorithm is proposed to generate the initial topology with an accurate
number of sub-branches from the pre-processed OSM data and peak demand. In the second stage, based on
the limited SM data, the location of breakpoints in mesh topology caused by circle roads is verified and
reconstructed to guarantee the radial structure of LVDNs. Finally, given multiple incomplete SM datasets, three
data-driven optimization models based on a state estimation model are constructed to mitigate the error of
cable length induced by OSM data. The feasibility of the proposed topology identification approach is verified
on three actual LVDNs in The Netherlands and multiple incomplete SM datasets. Furthermore, the minimal
amount of SM data needed to minimize the error of cable length is analyzed.

1. Introduction identification is considered a binary classification problem or regression
problem that aims to identify the stage of the edge and switches. The

Distribution network topology is fundamental for distribution sys- complete SM data of each user is always assumed to be known and
tem operators (DSOs) in operation analysis, DERs hosting capacity accessible, including the time-series voltage, active power, and a part of
analysis and integration, among other applications. However, DSOs the connecting information of the networks. Meanwhile, the measure-
usually do not keep full records of the updated topology due to wrong, ments are used as synchronous data. Based on a state estimation model
missed, or outdated recordings. On top of that, the increasing uncer- and a regression model, a hybrid topology identification approach was

tainty of DERs, including household photovoltaic (PV) systems, electric
vehicles (EVs), etc. [1,2], impacts the topology reconfiguration fre-
quency and the relationship between measurements, challenging the
identification of LVDN topology. Moreover, the low deployment rate of
SM hinders the application of the topology identification methods used
in transmission networks and MV networks [3,4], usually developed
considering assumptions not suitable for LVDNs, such as available
connection points (i.e., the location of the MV/LV transformer), straight
connection lines between transformers, etc. Although open synthetic
networks and benchmark models are available [5,6], flexible topology ] : -
identification methods for already deployed LVDNs are required. and SM datasets. While voltage angles are normally unavailable in

To overcome this challenge, multiple topology identification meth- the distribution network (DN), [10] establishes a data-driven model
ods are proposed, which are roughly classified into SM data-based and based on an impedance matrix to identify topology and regress the
open data-based methods. In SM data-based methods [7-14], topology line parameter from SM data. In [11], a hybrid data-driven approach

proposed to handle the impact of the uncertainty of DERs [7]. To
restrict the propagation of SM data error, a probabilistic graphical
model-based topology estimation method was developed in [8]. How-
ever, these methods only reveal the connection between buses without
estimating line parameters, which is a necessary part of modeling an
LVDN using a power flow formulation.

Based on an alternating direction method of multipliers, the work
in [9] proposed a robust topology identification method to jointly
estimate the network’s parameters and its topology, relying on x-PMUs
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integrating a partial correlation analysis strategy and a linear regression
model is proposed to generate topology from limited SM data. Consider-
ing the error in SM data and dynamic topology changes while collecting
measurements, a maximume-likelihood-based joint estimation approach
is established [12]. Based on multiple linear regression models, [13]
presents a comprehensive topology identification approach to simulta-
neously estimate the topology, line parameters, and phase connection
from raw SM data. Although the above methods can generate an
accurate topology, the requirements of SM data and prior topology
information (e.g., the topology candidates) make them infeasible in
practice due to the low deployment rate of SM in LVDNs and data
privacy-related problems. Moreover, the generated topology, without
using geographic information systems (GIS) data, may not accurately
depict the actual deployment of connection lines. Furthermore, the
resistance and reactance of the lines are optimized as independent
variables, which is not suitable for accurate estimation of the deployed
cable. In general, the impedance ratio of the deployed cable is fixed
and may be slightly influenced by environmental factors, such as
temperature.

In the second category, LVDN topologies are generated making
use of open GIS data and planning rules [15], such as Open Street
Maps (OSM) [16], OpenGridMap [17], etc. Well-designed physical
constraints, such as the cable routing based on street layouts and build-
ing locations, can significantly enhance the accuracy of the generated
LVDN topologies [18]. To make the topology inferred from OSM data
match the actual structure of LVDNSs, a simplified optimization model
for line power flow is designed and verified in [19]. A comprehen-
sive method is proposed in [20] to generate large-scale distribution
networks with different voltage levels. Besides, based on detailed GIS
data, some methods are introduced to generate benchmark models
or representative networks in specific countries [21-23]. However,
the characteristics of LVDNs vary among different countries, so the
generated topology based on supply tasks in one country may not be
consistent with the LVDNs in other countries [24]. Additionally, the
identification accuracy of LVDN topology is influenced by various geo-
graphic constraints specific to different regions, such as the proportion
of underground cables, the number of road loops, etc. Specifically, the
complex mesh roads in urban environments challenge the construction
of radial topologies, i.e., the identification of breakpoint locations. Al-
though these methods based on open GIS data show high performance
without relying on SM data, the generated topology is only consistent
with the topology of the initial stage of construction, which is one
of the main disadvantages. This means that the extracted topology
is still outdated without further modification based on the latest SM
data. Moreover, the error in the cable length caused by the missed
or inaccurate OSM data is not optimized in the above papers, which
assume the location of connection points on the street is correct.

To fill this research gap, this paper introduces a data-driven topol-
ogy identification approach that leverages the strengths of the afore-
mentioned two kinds of approaches. The proposed approach consists
of three stages: graph topology generation, topology reconfiguration,
and topology optimization. In the first stage, the aim is to generate
an initial topology with an accurate number of cables from OSM data
that satisfies geographic constraints, e.g., no connecting lines cross a
building or a river. To do this, this paper uses a hierarchical minimum
spanning tree (HMST) algorithm to check the number of underground
cables according to the maximum capacity of the deployed cable and
the peak demand. The traditional MST is first adopted to connect
power connecting points along the streets while ensuring the shortest
total cable length and the radial structure of the distribution networks.
Then, the number of cables under the streets with households on both
sides is verified and modified. In the second stage, the street-to-street
connection lines are verified and reconstructed based on a voltage mag-
nitude residual. Finally, in the third stage, to mitigate errors in cable
length induced by inaccurate OSM data, three data-driven optimization
models based on a power flow model [25] are constructed based on
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Nomenclature

Index/Set

s Index of streets

I, Index of the non-root nodes of trees

I /1y Index of nodes with negative/positive
voltage magnitude residual

Ip1/Tg Index of 1-degree nodes of cables with
negative/positive residual

I;.:/BL Index/set of start nodes of cables with
negative residual

Iyi1/By Index/set of start nodes of cables with
positive residual

Inp Index of the nearest upstream node
of the node in B,

i/i Index of iteration and its threshold

mn/L/L Index/set of mainline and service line

C Index vector of SM

Loni Connecting line at middle of the ith branch

Inis Connecting line in the ith sub-branch
between start point and middle point

m/ N Index/set of nodes in the networks

t/T Index/set of time step

D Set of lines from transformer to bus n

Parameter

Ny/N,/N, Number of houses/branches/streets

N, Number of unmetered houses

D/Dy; Shortest path matrix among all buildings/
buildings located at the ith side of street s

D,y Shortest path matrix between buildings
and the transformer

Y0 Flag parameter for street, i.e., 0/1

Sy Number of streets with buildings
on two sides

¢ Flag parameter for SM, i.e., 0/1

T Annual growth of demand

Cy Concurrency factor for households

Py, Average peak demand

cosf Power factor of households, set as 0.95.

T Maximum capacity of the deployed cable

k Planning period

Foun/ Xmn Real resistance/reactance of lines

T Extracted cable Length from OSM data

P! Xmn Resistance/reactance of the cable whose
length is extracted from OSM data

T Dimension of time-series data

Rypm Unmetered rate in DN

n Threshold for variable »*

AV Threshold for voltage magnitude residual

PO /QD0/VY Active/reactive power/voltage magnitude
measurement at node m at time step ¢

[l - Upper/lower limit for mainline length ratio

Emn /Bon Upper/lower limit for service line length ratio

T* Pseudo-time horizon

T Dimension of daily sample

7/1 Upper/lower limit for voltage magnitude

Kf’n’t /V?M Daily minimum/maximum voltage magnitude

232 /Eﬁ? Daily minimum/maximum active power

QZ? /Fﬁ? Daily minimum/maximum reactive power

wy/w,/w, Weight for residual of active power/reactive

power/voltage magnitude
NIH Number of households integrated in
objective function
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Variables

r/ry/r, Generated minimum spanning tree/
sub-trees/Edges of trees

G/G* Initial/Final Graph topology

I, Estimated maximum load for street s

n* Number of nodes with excessive residuals

avd Voltage drop on line mn at time ¢

AV,i ; Total voltage drop from the transformer
to bus m at time ¢

AV, Voltage magnitude residual at node m

AV* Maximum voltage magnitude residual

n Margin for voltage magnitude residual

Pt/ Qs Active/reactive power at line mn at time step ¢

P, / 0, Injection active/reactive power at node m
at time step ¢

PP/OPD, Active/reactive power at node m at time step ¢

EF/ES/EV Residual of active power/reactive power/
voltage magnitude

Vit Estimated voltage magnitude at node
m at time step ¢

Lon Ratio of optimized and extracted length
of cable mn

Acronyms

HV/MV/LV High/Medium/Low voltage

LVDN Low-voltage distribution network

DN Distribution network

SM Smart meter

DSO Distribution system operator

DERs Distribution energy resources

GIS Geographic information systems

PV Photovoltaic

EV Electrical vehicles

OSM Open street map

HMST Hierarchical minimum spanning tree

multiple incomplete SM datasets. The parameters used in this paper are
summized in Table 1 and Table 2 summarizes the approaches discussed
in the aforementioned papers and the proposed approach. The cells
marked with “Y” or “N” indicate whether specific issues and data are
considered in each approach. “P/Q/V/0” represents reactive power,
voltage magnitude, and phase, respectively. The proposed approach
is finally tested on three LVDNs in the Netherlands and incomplete
SM datasets. The main contributions of this paper are summarized as
follows:

+ A HMST algorithm integrating geographic constraints and a peak
demand-based refinement strategy is proposed to generate a ra-
dial feasible topology from the pre-processed GIS data. The pro-
posed refinement strategy can identify the number of cables based
on the street layout, considering their maximum capacity.

To ensure accurate radial structure, a power flow model-based
topology reconstruction strategy is proposed to verify and revise
street-to-street connections (i.e., the location of the breakpoints)
in graph topology when there are loops in LVDNs.

Three data-driven optimization models are proposed to mitigate
the error in the length of the cables using multiple smart meters
datasets, including a complete SM dataset, an SM dataset with
randomly missed data, and an SM dataset composed of only daily
maximum and minimum data. The minimum amount of SM data
needed to identify the actual length of underground cables is
analyzed.

International Journal of Electrical Power and Energy Systems 164 (2025) 110395

Table 1
Parameter settings.

Parameter name Setting approach

% Set based on OSM data, i.e., 0/1

¢ Provided by DSO, i.e., 0/1

[ Set by DSO at planning period

C, Set by DSO or based on the statistical features

of electricity usage in LVDN
Average peak demand in the LVDN,
provided by DSO or open websites
T Based on the type of cable, provided by DSO
k Planning period, provided by DSO
Foun! Xonn Calculated based on extracted length 7, ,
and type of the deployed cable.
Number of the houses located on one of the
streets in LVDN, obtained from OSM data
V% Estimated from historical voltage data by DSO
or preliminary results
a/p The limits of «/p are estimated based on OSM
data and revised by DSO according to the
available recording of cable length
714 Set by DSO, normally set as 0.95-1.05 p.u.
w,/w,/w, Obtained through cross-validation using
historical data. w, should be much larger
than w, and w,.
R, Set by DSO based on the number of
the unmetered households.
NIH Set by DSO based on accuracy requirement
Note: Ny,N,,N.,N,,,D/D,;,D,,,S, are extracted
from OSM by Dijkstra’s algorithm, and the
detailed information is illustrated in

Section 2.2.
—D0
D0 /(DO /170 d pDO
cos0,T, Pm,l /Qm,I/Vm.t’T*’T ’Bm,r/PmJ’

Q":i' and P2 are provided by DSO,

mt

B

i.e., the collected measurements.

5 OSM Data Pre-processing
( Transformer location and supply area 0

‘ Raw OSM data extraction ‘

Input

( Incomplete SM datasets 0 [ Pre-processing |

Graph Topology Generation
[ MST ]

Topology Optimization

Objective function

Constraints 1

Geographic constraint
checking and edge revision

Over-loading
checking and branch revision

Revise
connection lines

Constraints n |

Optimized Topology ‘

Fig. 1. Framework of the proposed data-driven topology identification approach
for distribution networks: Stage I: graph topology generation, Stage II: topology
reconstruction and Stage III: topology optimization.

The remainder of this paper is organized as follows: Section 2 illus-
trates the framework of LVDN topology identification, OSM data pre-
processing, graph topology generation, topology reconstruction, and
topology optimization. Besides, the reorganization of daily maximum
and minimum SM data is also illustrated. Sections Section 3 describe
the case of studies and results. Section 4 presents the conclusions of
this paper.

2. LVDN topology identification framework

The proposed topology identification approach is illustrated in this
section, which is shown in Fig. 1. The proposed approach comprises
three stages: Stage I: graph topology generation, Stage II: topology
reconstruction, and Stage III: topology optimization.

Given the location of the MV/LV transformer and the boundaries
of the supply area, raw OSM data in the area are first extracted and
pre-processed. The first stage is the application of the proposed HMST
algorithm. An initial graph topology for the LVDN is generated based
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Table 2

Topology identification methods comparison.
Ref. Input Approach Topology

OSM  SMs Cable  Cable Sub-branch  Incomplete  Length error  Voltage Service line
data type outline  checking data mitigation level

[8] N A N N N N N MV/LV N
[9] N P/Q/V N N N N Y MV N
[10] N P/Q/V N N N N Y MV N
[11] N P/Q/V N Y Y N Y MV N
[12] N P/Q/V/0 N N N N Y MV N
[13] N P/Q/V Y Y Y Y Y LV N
[16] Y N N Y N N N HV/MV Y
[17] Y N Y Y N N N LV Y
[18] Y N N Y N N N HV/MV/LV. N
[19] Y P Y Y N N N LV Y
[20] Y N Y Y N N N HV/MV/LV Y
Our work Y P/Q/V Y Y Y Y Y LV Y

on pre-processed OSM data and the average peak demand. In the
second stage, the locations of the breakpoints are verified and revised
based on the voltage magnitude residual. The revised topology approxi-
mately reveals the connection information among the households in the
LVDN, i.e., the potential outlines of underground cables. Finally, in the
third stage, considering the data privacy and the existing unmetered
customers, the error in cable length is mitigated by the constructed
data-driven optimization models depending on the available SM data.
The output of the proposed approach is a refined LVDN topology of
the area, which is generated only relying on the given location of the
transformer, its supply area, the type of cables, and the available SM
data. The generated topology is similar to the available feeder test
cases and close to the latest topology for the LVDN, which includes the
connecting points, the impedance of each cable segment, and the root
node index (i.e., the location of the LV transformer). Before introducing
each stage in detail, the pre-processing applied to the OSM is described.

2.1. OSM data pre-processing

The process of OSM data extraction and pre-processing is depicted
in Fig. 2. Given the location of the transformer and supply areas in
Fig. 2(a), all related buildings and streets are first extracted as shown
in Fig. 2(b). The raw OSM dataset includes the buildings and streets
located outside the area, which is due to their interconnections with the
streets within the supply area. These redundant elements are removed.
Then, the shortest lines between streets and buildings are extracted and
taken as service lines, as depicted in Fig. 2(c). The endpoints of service
lines are defined as the connection points of buildings. The connection
points of the buildings that are aligned in a linear arrangement should
be connected to linear cables that are similarly deployed, such as the
buildings located at street s in Fig. 2(c). Thus, the connection points are
verified and revised. Besides, the node pairs whose distance is less than
a certain threshold are merged into one node, and extra connection
nodes are added to the crosspoints of streets. Finally, the basic datasets
for generating a graph topology are obtained, including the outline
of streets, the coordinates of buildings’ centers, the connecting point
of buildings, and the number of households in each building (i.e., N
buildings).

2.2. Stage I: Graph topology generation

Radial LVDNs with underground cables can be represented as undi-
rected graphs, where the nodes depict the connection points of each
household and the edges depict the underground cables. The outline
of streets is assumed to be the potential deployment outline of under-
ground cables, which is normally correct and verified in [18-20,26].
Dijkstra’s and MST algorithms are adopted to generate a potential graph
LV topology.

Dijkstra’s algorithm calculates the shortest path matrix D;, be-
tween buildings and the MV/LV transformer and the shortest path

Algorithm 1: Hierarchical Minimum Spanning Tree

Input: y,, D, D, Dy, Dy, Dyy,Ny, 1
Initial tree I' <M ST (D)
if I, ¢ D;, then

‘ D<adjust the weights in D

I «MST(D)
end
if y, = 1 then

for s < S, do
Obtain I; by Eq (1)
if I, < I then
Sub-tree I, «M ST(D,)
‘ Index I, of the non-root nodes in I},
else
Sub-tree Iy «MST(D,,), MST(D;,)
‘ Index I, of the non-root nodes in I},
end

end
D,«<Update D based on I,
end
Main tree I' <« M ST (D,)
Graph topology G I' + I
for i <N, do
Obtain I; by Eq (1)
if I, > I then
Remove /,,; in the cable
Add an edge /,,; ; between the nearest 3 degree point
and the breakpoint
end

end
Output: Graph topology: G*

matrix D among buildings, which is subjected to the outline of the
streets. The matrix D;, is used as the geographic constraint, and the
matrix D is used as the weight of edges while constructing the initial
graph topology. The geographic constraints (e.g., the road segments
under maintenance, the shortest path-related constraints) about the
topology will contribute to the accurate LVDN topology generation.
Besides, there may be two cables deployed beneath the street s with
buildings on both sides. The path matrices D,, D,; and D, for the
buildings located on the street s and its two sides streets are extracted
from the path matrix D. The flag parameter y, is set as 1. On the other
hand, when there is no street with households on both sides in LVDNSs,
the extraction of the supplementary OSM data is skipped and y, is set
as 0.

The generated topology should be radial and connect all the house-
holds in the supply area, which is the operation requirement of LVDNs.
To verify the number of cables under streets while generating a radial
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Fig. 2. Illustrative example of OSM data pre-processing: (a) is OSM with LV transformer and boundaries, (b) is raw OSM data in the LVDN and (c) is pre-processed OSM data.

— Added cable in step 3

— Cables — Added cable in step 2

Sub-branch 3

(c)

()

Fig. 3. Illustrative example of the output in each step: (a) is the initial graph topology,
(b) is the revised topology in step 2 and (c) is the output of Algorithm 1.

topology, a hierarchical minimum spanning tree (HMST) algorithm ap-
proach is constructed by incorporating a traditional MST algorithm and
a peak demand-based refinement strategy, presented in Algorithm 1.
The proposed HMST follows network planning principles and economic
rationale: if street current does not surpass single line maximum capac-
ity, deploying one cable is more cost-effective than two parallel cables.
The input for the HMST algorithm consists of path matrices (D, D,
Dy, Dy, Dyy), coordinates of N, and y. S, is the number of streets
with buildings on both sides. The traditional MST algorithm is adopted
to generate a radial tree with the shortest length of cables, represented
by MST(:) and the edge in the generated tree is represented by T,
The peak demand-based refinement strategy is proposed to verify the
number of cables under special streets based on the maximum capacity
of underground cables and peak demand. The maximum load I of the
street s is estimated using (1).
B (r)*-Ny-C, - Py,

T 3.cos0-V,
where r, is the annual growth of demand and & is the planning period.
C, represents the concurrency for the N, households located at street
s, representing how many households reach peak load simultaneously,
set as 0.46. P,, is the average peak demand value. cosf is the power
factor of households.

Algorithm 1 can be divided into three main steps. In the first step,
the weight in D is adjusted to ensure that all edges in the generated tree
I are in D; ;. The output of this step is shown in Fig. 3(a). In the second
step, for the streets with buildings on both sides, if the calculated
maximum capacity I, is larger than the rated maximum capacity I of
the deployed cable. Two underground cables are assigned for this street
(i.e., one cable for each side), and two sub-trees I3, for the buildings
located on each side of the street are obtained. If I, < I, one sub-tree
is generated for all buildings located on this street. The topology I' of
the main feeders is generated based on the updated path matrix D,. The
initial graph topology of the LVDN is obtained by combining the sub-
trees I}, and the main tree I'. The output of the second step is shown
in Fig. 3(b). In the third step, the maximum load of all sub-branches in
the topology is verified, and N, is the number of the sub-branch. The
degree of a node refers to the number of cables connecting the node.
If the sub-branch is overloading, the connection line in the middle of
the cable is removed, and the new connection line is placed between

@

S

Negative voltage
error points

Inaccurate
connected
branch

(a) Real topology (b) Identified topology

Fig. 4. Illustrative example for real and identification topology with inaccurate

connection lines.

the breakpoint and the nearest 3-degree point (i.e., the intersections
between the main street and the four sub-branches in Fig. 3(c)), which
means that two cables are added for the front and back half of the
street, respectively. Fig. 3(c) presents the generated graph topology G*
of the LVDN in the supply area, which includes the length of each cable
and the connecting points.

On the other hand, the generated graph topology is close to the
topology during the construction period, while the topology may have
been updated due to component maintenance. Furthermore, the length
of cables is only estimated using OSM data, whereas the length of
deployed cables may be different from these values due to practical
deployment factors. These problems will be illustrated and mitigated
based on SM data in Sections 2.3 and 2.4.

2.3. Stage II: Topology reconstruction

The voltage drop AV¢ on line mn, total voltage drop 4V¢ from the
transformer to bus m and voltage V,, at bus m are expressed as:

P, N3 + -IQ N4 .
AV s = = ot ) @
m,
d
avd = Y av,, 3)
mnED'lV
Ve =1- 4V, 4
where P,,,0,, are active and reactive power on line mn. r,,, x,,, are

resistance and reactance of line mn, respectively. D! is the line set from
transformer to bus n.

When the output power of DERs is insufficient to reverse the direc-
tion of line flow (i.e., P,, and Q,,, are positive), the voltage magnitude
at node m decreases as its load increases. Therefore, if a branch is
connected incorrectly in the identified topology, as illustrated by the
line in Fig. 4(b), the load flowing through the green line will be
reduced, leading to a diminished voltage drop. This means that the
estimated voltage magnitude of the green nodes will be larger than the
actual voltage magnitude (i.e., negative voltage magnitude residual).
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Fig. 5. Flowchart of proposed topology reconfiguration strategy. The upper part is
voltage magnitude residual calculation based on a power flow model, the lower part
is the street-to-street connection lines identification and reconstruction.

Conversely, for the yellow nodes, the estimated voltage magnitude
will be smaller than the actual voltage magnitude and the voltage
magnitude residual of these will be negative.

As previously discussed, the meshed streets in maps impact the
final radial topology (i.e., the location of breakpoints). Thus, to obtain
the accurate breakpoints of the underground cables, it is necessary to
verify and revise the initial radial topology obtained from Stage I. A
topology reconstruction strategy is introduced to revise the street-to-
street connection lines with the assumption that two-time step SM data
are available for each node, including voltage magnitude, net active
power and net reactive power. The flowchart is illustrated in Fig. 5.

The AV* represents the maximum voltage magnitude residual be-
tween the real topology and the extracted radial topology from Stage I.
The voltage magnitude residual of each node is formulated as in (5).
The threshold AV of systemic error is pre-set by DSO or obtained from
historical SM data. n* represents the number of nodes with voltage
residuals greater than AV and its upper limit is 4. Meanwhile, to
mitigate the impact of measurement errors, a margin # is introduced.
The errors that are smaller than AV — g are ignored.

1
AV, == >V = Va), meN 5)

teT

where m represents the index of the nodes N, T represents the dimen-
sion of time-series voltage data, ¢ is the index of time, and V¢ is the
calculated voltage amplitude by the power flow model based on the
extracted graph topology obtained from Stage L.

As shown in Fig. 5, the process of topology reconfiguration consists
of voltage residual calculation and connection line modification, which
is summarized as follows:

(1) Calculate the voltage residual AV* and »* based on the extracted
graph topology and limited SM data.

(2) Check the topology based on AV, AV*, n* and 7. If AV* is larger
than 4V and n* is larger than 7, the index I;; and index I, of
nodes with positive nodes (e.g., the yellow points in Fig. 4(b))
and negative residuals (e.g., the green points in Fig. 4(b)) are
recognized, respectively. The nodes with positive errors indicate
that they are connected to one cable with an additional load,
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resulting in a lower voltage magnitude than the actual value. If
not, the extracted topology is the final topology. These two steps
are illustrated in the orange dashed box in Fig. 5.

(3) Recognize the indexes Iy, and I;; of the terminal node (1-
degree node) of the cables with voltage residual and recognize
the indexes I,; and I;,; of the intersection nodes nearest to
these 1-degree nodes.

(4) Identify the indexes in I;,; that are the same as the indexes in
Iy, s, and remove them from I; ;. Steps 3 and 4 are shown as
the right part of the bright blue dashed box in Fig. 5.

(5) Revise connection lines. A new connection line is constructed
between the node pairs in I, and I;,; with the shortest paths,
i.e., one node By, in I; and one node B, in I;,;. The connec-
tion line between node B, and its upstream node is removed,
avoiding the meshed structure.

(6) If the number of iterations reaches the threshold i, exit the
reconstruction and label the extracted graph topology as final.
Otherwise, return to Step 1. The left part of the bright blue
dashed box in Fig. 5 depicts the steps 5 and 6.

After topology reconstruction, the location of the breakpoints in the
topology is defined, and the modified topology depicts the fundamental
connection information of LVDNS.

2.4. Stage III: Topology optimization

Although the network topology obtained from Stage I and II is a
feasible one, the length of deployed LV cables may be different from the
actual length due to practical deployment factors, such as the crossing-
street lines at crossroads. Moreover, the network topology may have
been updated due to component maintenance. To address this issue,
most traditional topology identification approaches are developed with
the assumption that the time series measurements of each household
are available [27,28], such as the regression-based topology identifica-
tion. However, there may be a large number of unmetered households,
or the deployed SMs fail to provide data for a short period. In this
situation, only incomplete and sparse SM datasets are available, and
the traditional power flow formulation based on the obtained topology
is infeasible. Thus, to optimize the length of cables based on incomplete
SM data, three data-driven optimization models are constructed based
on the SM datasets with different incomplete rates as illustrated in
Fig. 6. In Fig. 6, the blue blocks represent the available SM data, and the
red blocks represent the unavailable or missed SM data. The complete
SM data contains the voltage magnitude and demand profiles of each
household at each time step, as shown in Fig. 6(a), while the incomplete
SM data only consists of the partial profiles or the daily maximum and
minimum measurements, as depicted in Fig. 6(b) and (c), respectively.
Compared to the incomplete SM dataset in Fig. 6(b), the incomplete
SM dataset in Fig. 6(c) is not only sparser but also asynchronous,
leading to extra challenges for the proposed topology optimization pro-
cedure, which is based on a mathematical programming formulation,
as presented next.

The topology optimization problem aims to define the length of
cables, and it is formulated as a power-flow-based mathematical for-
mulation based on the model in [25]. The LVDN is assumed to be
balanced and is modeled as a single-phase network. Based on the three
SM datasets with different incomplete rates in Fig. 6, three data-driven
optimization models are stated as:

+ Case I: a mathematical formulation that considers complete time-
series SM data (i.e., Fig. 6(a)) is constructed. In this formula-
tion, the net active and net reactive power of households are
considered as input parameters.

+ Case II: given the sparse SM dataset in Fig. 6(b), a mathematical
formulation is developed to deal with the unavailable SM data,
which takes net reactive and net active power as variables rather
than parameters.
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Fig. 6. Diagram of SM dataset with different incomplete rates: (a) complete dataset, (b) dataset with unmetered houses and (c) dataset with daily maximum and minimum values.

+ Case III: when given the sparse and asynchronous SM dataset
(i.e., the incomplete SM data in Fig. 6(c)), a mathematical formu-
lation is stated by combining Case I and Case II. In this case, the
daily SM data are utilized as the boundary for decision variables
rather than variables.

2.4.1. Casel

To optimize the extracted topology from Section 2.3, we first assume
that time series voltage magnitude and load profiles are accessible,
and then the optimization problem is simplified into a single-level
optimization model, given by formulation (6)-(14). The mathematical
formulation for Case I aims to optimize the length of underground
cables by minimizing the total voltage residuals of N nodes for the time
horizon T. The voltage residual is defined as the square of the differ-
ence between the measured voltage magnitude V? and the estimated
voltage magnltude ;. The objective function is deplcted in (6).

min 2 Z WV, (6)

£ 1€T meN
subject to:
2 Pkm t + P, 2 mn,t
kmeL mnGT
2 2 ~ 0
- Z (Pmnt + O M mnTon = Pﬁ,t
mneT mt
Vme N VieT )
2 ka,t + any - 2 an.t
kmeT mnET
2 g 0
- Z (Pmnt + an nXn = Qg,t
mneT mt
Vme N VieT (€]
V2 - V2 = 2(lmn mn mnt +lmn mn mn,t)

(sz + 05 MUy Tonn)® + L X))

mt
Vmne N,Ymne LNtET 9
V<V <V VmeN,VteT 10)
. <y, < @pn Vmn € L an

where m and n represent the index of node N, mn and km are the index
of lines L.

In Case I, the constant parameters (i.e., input data) are the SM data,
including the historical voltage magnitude V,, o, net active power P, ;o
and net reactive power Q,, ;o at node m at time . The decision variables
are the length rate of cable /,,, and the variables in the power flow
model (i.e., (7)=(10)), including line power flow P, ., nodal voltage
Viu» active power P, and reactive power Q; , injected into the DNs.
We assume that the LV transformer can prov1de sufficient active power
and reactive power at the root node. Therefore, except for the root
node, the active power P, and reactive power Q; , at other nodes
are set as 0. The power balance is ensured by constraints (7) and (8).
Expression (9) models the voltage magnitude drop in the lines. The
parameters T,,, and X, represent the impedance of the cable whose
length is extracted from OSM data. The fourth item in constraints (7)
and (8) represents the active power loss and reactive power loss. The
variables Py, , and P,,, represent the power flowing into and out of

node m at time 1, respectively. The voltage magnitude is limited by
constraint (10).

The decision variables /,,, represent the ratio of optimized cable
length and extracted length 7., (i.e., the estimated cable length from
OSM data), which is limited by constraint (11). The optimal solution
is the ratio between the actual cable length and the extracted length.
The parameters ¢, and w,, are pre-set based on the quality of OSM
data. Specifically, more accurate OSM data will provide more accurate
information to estimate the length of underground cables, which means
that the |a, - @,,| can be set to a smaller value. Meanwhile, a smaller
value of |e¢, —a,,| means a smaller solution space, reducing the
solving time of the before-presented mathematical formulation.

2.4.2. Case II

When there are several unmetered households, the formulation for
Case II can be stated based on a state estimation model [29,30].
Compared to traditional methods in [31], the main advantage of the
proposed mathematical formulation is that it does not need to check the
location of the unmetered nodes and does not require that the parent
or grandparent nodes of unmetered nodes are known. Compared to
Case I, four additional variables are added to represent the unknown
data of the unmetered households, including net active power Pm%, net
reactive power QP s the residuals of active power Efn’ and the residual
of reactive power E,g The active power residuals and reactive power
residuals are calculated by using expressions (14) and (15). Meanwhile,
EP and E% are added to the objective function, as shown in expression
(12). The parameters w,), wpy, and w, are the weights for the three
residuals, respectively. Besides, constraints (7) and (8) are revised as
constraints (16) and (17). The complete mathematical formulation for
Case II is then:
min Y @,Ey +w,Ep +w,ED) (12)

" meN €T

subject to: (9)-(11) and (13)—(17).

Ey = ¢,V = Vo) Vvme N VieT 13
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where C is an index vector of the metered nodes, i.e., [c|, ..., ¢,

.., ¢y]. When node m is equipped with a smart meter, c,, is set as
1. Otherwise, c,, is set as 0, and the variables EV, EF and E? all equal
0, which means that the residual of this household contributes nothing
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Fig. 7. Illustrative example of incomplete SM data reorganization: the sparse asyn-
chronous dataset in (a) is converted into a stepped diagonal matrix in (b) with NIH
set to 4.

to the objective function. Besides, it is flexible to pre-set parameters c,,
according to the situation in LVDNs.

On the other hand, the error in the service line length is normally
less than the error in the main feeder length. Thus, extra constraints
for service lines may tighten the solution space for service lines. The
constraint (18) is added to Case II. The limits for « and g are set
according to the quality of OSM data, while the range of « should be
set as larger than that of f.

Emn Slmnsﬂ_mn

where mn is the index of service line L.

Vmn € L (18)

2.4.3. Case III

If only the daily maximum and minimum SM data (i.e., voltage
magnitude and load profiles) are available, the input data for the
mathematical formulation is sparse. As the maximum and minimum
voltage magnitude do not occur simultaneously, the sparse SM data
is also asynchronous, as shown in Fig. 6(c). To manage the impact
of asynchronous data on the mathematical formulation, the SM data
is reorganized into a stepped diagonal matrix, including the voltage
magnitude and load profiles, as shown in Fig. 7. The pseudo-time
horizon T* is introduced as the x-axis for the reorganized SM data,
which is defined as in (19).

_ 2N - T’ (19)
T,
where T, represents the dimension of the daily sample in Case-I.

The data point of each house is taken as the only known data in
each sample (i.e., the blue block at each moment #*) since the time of
the daily maximum and minimum value is unknown. The remaining
dimensions at each time t* (i.e., the orange block) are then regarded
as variables in the proposed mathematical formulation, constrained by
the maximum and minimum values on the same day.

Constraint (10) in Case I is reformulated as constraint (21) in
Case III. The active power and reactive power of each house are limited
by constraints (22) and (23). The objective function of Case III is the
same as that of Case I, but an additional weight (i.e., w,,) is introduced,
as shown in the expression (20). The parameter c,, here represents
whether the reorganized SM data of the house m is incorporated into
the objective function. If the reorganized SM data of the houses 1-4
are integrated into the objective function (i.e., the blocks located in the
green dashed box in Fig. 7(b)) then ¢, , ;4 = 1. Thus, as more nodes are
integrated into the objective function, the reorganized SM data becomes
more sparse. Additionally, a longer time horizon results in wider steps,
consequently leading to sparser data. The number of integrated houses
(NIH) is the sum of vector C, as in expression (24). Thus, a smaller time
horizon T is adopted to decrease the sparseness of incomplete data.

The complete mathematical formulation for Case III is as follows:

min Z w, Z eVt — V(n)u ) (20)

LveT  menN
subject to: (9), (11), (16)-(17) and (21)—(23).

Vme N,VteT* 21
Vme N,VteT* (22)

T*

0 /0
Kmﬂt < VmJ < Vm,t
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where Km,t’ Vm,t’ £m,r’ Pm.t’

Q'[n’? and P20 are the daily maximum and
minimum SM data. |

t

3. Case of study

In this section, the feasibility of the proposed topology generation
approach is verified on three actual LVDNs in the Netherlands. The real
topologies are illustrated in Fig. 8(a), (b), and (c), respectively, which
are obtained from [32]. The base three-phase voltage is 0.4 kV. The
extraction and pre-processing of raw OSM data is conducted in QGIS
3.28.1. The proposed hierarchical minimum spanning tree algorithm
and all mathematical formulations are implemented in Python and
Pyomo. All mathematical formulations are solved using the IPOPT
solver. The time-series load profiles for each household are selected
and scaled from reference [33], and the cosf is set at 0.95 for each
household. The voltage magnitude profiles are generated by using a PF
model [25] and the real topologies. The voltage amplitude is limited
to [0.90, 1.05] p.u., and the cable length is restricted to be within the
range [02-7,,4-T,.1 (ie., a, and @,, are set at 0.2 and 4). For
service lines, B and p,, are set as 0.7 and 1.3, respectively. Based
on the preliminary results, the voltage residuals contribute more to
the optimization problem, so w, should be set much larger than the
other two weights. The weights w,, w, and w, in the objective function
in (12) are set as 100, 1, and 1, respectively.

3.1. Graph topology generation

Different assumptions and data requirements make it challenging
to directly compare the proposed approach with existing methods. The
primary objective of the proposed approach is to generate a feasible
near-real topology for low-voltage distribution networks. Therefore,
this sub-section focuses on comparing the topology extracted by the
proposed method with the actual topology for a number of case studies
in The Netherlands.

Two residential LVDNs and one urban LVDN are selected to test the
proposed HMST approach. The residential LVDN in Fig. 8(a) consists
of 54 households and 52 nodes on the main feeders, which is named
LV-52. The residential LVDN in Fig. 8(b) consists of 59 households and
62 nodes on the main feeders, which is named LV-62. The LVDN in
Fig. 8(c) comprises 93 households and 95 nodes on the main feeders,
which is named LV-95. The parameter y,, is set as O for LV-62 and LV-95,
while it is set as 1 for LV-52. There are two streets with households on
both sides in LV-52. The OSM data pre-processing for LV-52 is depicted
in Fig. 9. Compared to the other two LVDNS, six sub-matrices (i.e., D,
D,,, Dy,, Dy, D,, and D,,) are extracted from matrix D,. Moreover,
there is a circular road in LV-95 and LV-52, so the connection lines
among households are not only subjected to the outline of streets but
also limited by the physical constraint (i.e., the path matrix D, ).

The generated graph topologies of the three LVDNs are shown in
Fig. 8(d), (e), and (f). The generated topologies of LV-62 and LV-
95 are very close to the actual topologies. However, compared to
Fig. 8(a), there is an inaccurate connection line at the 39th node in
the generated topology of LV-52 (i.e., Fig. 8(d)), which is caused by
GIS data. Specifically, the path between the 39th node and the 31st
node is smaller than the path between the 39th node and the 27th node.
However, in the actual network, the 39th node is connected to the 27th
node. This inaccurate connection line /39_3; should be revised by the
suggested topology reconstruction strategy in the second stage.

Table 3 presents the total length of the main feeders and the number
of nodes with different degrees. There is a difference between the
estimated and real lengths of cables in the LV-52 and LV-62 networks,
which is induced by missing OSM data (e.g., the missed houses and
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Fig. 8. Topology for (a) actual LV-52, (b) actual LV-62, (c) actual LV-95, (d) extracted LV-52, (e) extracted LV-62 and (f) extracted LV-95.
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Fig. 9. Pre-processing of raw OSM data in LV-52: the yellow blocks represent buildings,
the green lines are the outline of streets, and the straight blue lines represent the service
lines.

the missed data of streets). The generated urban topology of the LV-
95 network has higher accuracy due to the complete and precise OSM
data. The shortest lines between buildings and main feeders are taken
as service lines, which are directly extracted from OSM data. The
extracted service lines are assumed to be connected accurately. The
error in the main feeder length and service line length induced by
inaccurate OSM data and deployment-related factors will be mitigated
by making use of the proposed mathematical formulations for Cases I,
II, and III.

3.2. Topology reconstruction

Based on preliminary results, the threshold 4V for these three sys-
tems is set as 0.005 p.u. and 7 is set as the number of the houses located
at one of the sub-branches in the network. For the LV-62 and LV-95,
the voltage magnitude residuals are 0.0029 p.u. and 0.0053 p.u. and
n* is 0 and 2, respectively, meaning that the connection information in
these two systems is correct. However, the voltage magnitude residual

Table 3
Parameters of real topology and generated topology.

Network Topology Total length/m Node degree

1 2 3
e h e B
W Goomed  es0s s s s
W95 Goemed 10736 5 6

in LV-52 is 0.0108 p.u. and »* is 20, indicating a connection error,
which can be seen from the extracted graph topology in Fig. 8(d).
The 39th household should be connected to the 27th household but
is wrongly connected to the 31st household, which leads to a larger
error. The LV-52 network and three modified LVDNs are used to
test the proposed topology reconstruction strategy in this section and
illustrated in Table 4. The parameter i in LV-52 is 7. The modified
topology is used to analyze the impact of the number of sub-branches
around the breakpoint on the topology reconstruction, i.e., relocating
the breakpoints. The network LV-52 represents the network with one
sub-branch located far away from the breakpoint, while the network
LV-52-I and the network LV-52-II represent the network with one sub-
branch located near the breakpoint. The network LV-52-III represents
the network with two wrongly connected sub-branches around the
breakpoint. Besides, the length of line /,,_3; in the network LV-52-III is
added 40 meters to make it close to the length of line /59_3; since the
40th household is next to the 39th household.

After applying the proposed topology reconstruction strategy, the
revised topology and the voltage magnitude residual in each iteration
are shown in Table 5. Given the pre-set voltage magnitude threshold,
the extracted LVDN topology with only one wrongly connected sub-
branch is revised to the correct one after one iteration. The voltage
magnitude residual and parameter n* in LV-52-III decreases with iter-
ations, indicating that the extracted LVDN topology with two wrongly
connected sub-branches is revised to the accurate topology after two
iterations. Table 6 shows that the proposed topology reconstruction
strategy efficiently identifies the location the of breakpoint and revises
the wrongly connected sub-branches using data with errors. Compared
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Table 4
Modified topology and extracted topology.

Network True Modified Modified Extracted
topology topology length/m topology
ly 7 0 lg27

LV-52 Lao-30 0 Lao-30
3927 0 L3931
19—27 19—27 -100 19—27

LV-52-1 Lyo30 0 Lio-39
L3957 0 L3931
loo7 0 lga7

LV-52-11 Lio39 L3 +40 L3
L3957 0 L3931
loa7 0 ly x

LV-52-111 Lios0 . +100 Lo
L3997 0 L3931

Table 5
Topology reconfiguration results.
Network Iteration Voltage n* Extracted Revised
residual/p.u. topology topology
0 0.0108 20 1
LV-52 39-31
V-5 1 0.0001 0 Lo a7
0 0.0108 9 Lyg s
Lv-521 1 0.0001 0 Iyg.27
0 0.0054 13 5““1
LV-52-1 931 ,
1 0.0001 0 0-31
l39.27
0 0.0108 20 Lo
L3931
LV-52-I1I 1 0.0089 15 lio-n
139727
2 0.0024 0 laor
L3927
Table 6
Topology reconfiguration for LV-52 under measurement error.
Error Iteration Voltage n* Feasibility
percentage residual/p.u. flag
0 0.0112 19~23
. 2% 1
0-2% 1 0.0016 0
0 0.0119 22~29
0,
0-5% 1 0.0031 0 !
0 0.0142 26~31
0,
1% 1 0.0063 1~4 E
2% 0 0.0184 34~38 0

to the traditional topology reconfiguration approaches, the proposed
strategy focuses on modifying the street-to-street connection lines in
the graph topology instead of optimizing the grid structure based on
SM data.

The impact of measurement errors in voltage magnitude impacts the
feasibility of the proposed topology reconstruction strategy. According
to the IEC 62053-21 standard [34], we considered four classes of SM,
including 0.2%, 0.5%, 1% and 2%, which represent the maximum
relative error compared to real data. The margin 5 is set as 0.2%.
The experiments were executed five times, and the averaged voltage
magnitude residual and the range of parameter n* are summarized
in Table 4. As the magnitude of error increases, both the averaged
voltage magnitude residual and »* show an upward trend, indicating
that measurement errors affect the reconstruction process. For highly
precise SMs (0.2%, 0.5%, and 1%), the proposed strategy remains
feasible. However, it becomes infeasible when the error magnitude
reaches 2% due to two main reasons: (1) Larger errors make it unable to
identify the real potential connection points for inaccurate connection
lines, resulting in IL and IH containing too many duplicated nodes. (2)

10
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Fig. 10. Extracted graph topology with service lines of LV-62.

Larger errors may lead to the identification of incorrect potential con-
nection points, triggering the method termination upon reaching the
maximum iteration limit. Nevertheless, the proposed strategy ensures
the accuracy of topology reconstruction when applied to datasets with
smaller error magnitudes.

However, the length of the underground cables in the revised topol-
ogy may be incorrect due to the cable replacement and inaccurate OSM
data. In the next section, these errors will be mitigated in the topology
optimization stage. Meanwhile, the service lines between houses and
main feeders are integrated into the topology, while the above two
stages only focus on the main feeders. The LV-62 with service lines is
shown in Fig. 10.

3.3. Topology optimization

3.3.1. Case I

To analyze the impact of the amount of SM data, SM datasets with
different time horizons (i.e., T) are taken as the input for the Case I
mathematical formulation. The mean and maximum relative errors of
length rate /,, in three LVDNs are illustrated in Fig. 11. The mean
relative error of estimated cable length is less than 0.2%, indicating
that the proposed mathematical formulation effectively obtains the real
length of cables based on complete SM data. As expected, the maximum
relative errors for the LV-52, LV-62, and LV-95 networks are larger
than 10%, 30% and 7%, respectively, if only SM datasets with shorter
horizons are available. The maximum relative error of estimated cable
length decreases by less than 6% when more SM data is accessible,
such as one-day SM data with a 15-minute resolution. Meanwhile, high-
dimension SM data increases the complexity of the Case-I, making it
time-consuming to solve the proposed optimization model, which is
depicted in Fig. 11(d). Nevertheless, when given a one-day SM dataset
with a 15-minute resolution, the solving time is less than 1 min.

3.3.2. Case-II

An incomplete SM dataset with missing data from five unmetered
households is taken as an example for Case II. The number of un-
metered households with missing SM data in the LV-52, LV-62, and
LV-95 networks are [72, 76, 80, 89, 102], [75, 78, 98, 101, 113], and
[141, 153, 174, 176, 1871, respectively. Fig. 12 illustrates the error
in length ratio /,,, of all lines when using the proposed mathematical
formulation for Case II, solved without and with constraint (18). Fig. 12
shows that including constraint (18) in the proposed mathematical
formulation improves the general accuracy. Specifically, the maximum
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Fig. 11. Relative error of /,,, and calculation time in Case I. As shown in (a), (b) and
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is less than 30 s (d).

I Without Constraint [ With Constraint

—_—

[ os

T T T
0
- 1
- 2
05 3 X
r 4
I L .

1
1020 30 40 50 8186 91 95

'S

DB ON
SO OoOOoOOO

20 ! I I
0 10 20 30

Relative Error (%)

40 50

Line
(a) LV-52

60 70 80

120 —
100 |1

65 70 75 80 85

F1

Los
Pl N EE—
05

1
s
1520 25 30 35

[ =
SO OO
e o

e

Relative Error (%)
[=]

)
S

0 10 20 30

40 50 60 70 80 90 100 110 120
Line
(b) LV-62
100 . - . . ‘ ‘
T
%
4

“i00 105 110 115 120

Relative Error (%)

Line
(c) LV-95

Fig. 12. Relative error of /,, of each cable in Case-Il. The red bars illustrate that
constraint (18) for the service lines enhanced the accuracy.

relative error in the service lines in the LV-52 and LV-62 networks
is below 4%, and that in the LV-95 network is below 6%. Thus, as
expected, specific constraints for each type of cable tighten the solution
space, increasing the accuracy of the estimation of underground cable
length.

To analyze the impact of the unmetered houses on the performance
of Case II, the time horizon 7 is set as 50 and 90, which means that
there are 50 or 90 data samples (i.e., V, P, and Q) for each available
household. Meanwhile, different unmetered rates R,,,, in the LVDNs
are set for the three LVDNs, defined as:

m

% 100%

R — NM}'I
N,

unm
0

(25)
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Fig. 13. Distribution of relative error of /,,, in Case-II under multiple unmetered rates
and different time horizons The relative error experiences a rapid increase when R,,,
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Fig. 14. Mean relative error of /,, and calculation time in Case-III under multiple NIH
and different time horizons. The intersection of the two curves falls within the NTH
range of 20 to 60.

Here, R,,, represents the ratio of the N,, houses without available
smart meters to the total N,, houses in the LVDNs. The higher the ratio
of unmetered nodes, the fewer available SM data, resulting in a sparse
input SM dataset.

Fig. 13 shows the relative error of /,, under different unmetered
rates and time horizons. Only the relative errors that are lower than
100% are shown in this paper. The points represent the larger error,
and the boxes depict the interval of the rest of the relative error.
Compared to the LV-95 network, the cable length in the LV-52 and
LV-62 networks is accurately identified when using less sparse input
SM data. Specifically, when T is set as 90 and R,,, is up to 40%,
the relative error in cable length for the LV-52 network remains below
10%, and below 20% for the LV-62 network. For the LV-95 network,
the relative error in the cable length is less than 20% with T set as 90
and R,,, as 20%. These errors are located in the acceptable interval,
according to [35]. However, the relative error increases rapidly as the
unmetered rate increases, especially for networks LV-62 and LV-95.
Given the same unmetered ratio R,,,, more SM data (i.e., a larger time
horizon) improves the accuracy of the proposed mathematical formu-
lation in Case II. In conclusion, the location of the unmetered houses
also impacts the feasibility of the proposed mathematical formulation
and its accuracy.

3.3.3. Case III
For Case III, the proposed mathematical formulation is tested on the
LV-62 network. The time horizon 7 is set as 2 and 7. A larger 7 leads
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Fig. 15. Distribution of relative error of /,,, in Case-III under multiple HIN and different
time horizon. The relative error experiences a rapid decrease when NIH exceeds 10%.

to a wider ladder in the reorganized data format, which also affects
the accuracy of the proposed mathematical formulation. Meanwhile,
to analyze the impact of NIH, this is set at [1, 5, 10, 20, 40, 60, 80,
100, 121]. The mean relative error of /,,, and the average calculation
time are depicted in Fig. 14, which depicts that the solving time of
the model increases with the increase of NIH. The complexity of the
optimization model concerning NIH is approximately between O(n) and
O (n2). The intersection of the two lines represents the local optimal
point, meaning that the actual lengths are identified with lower relative
errors and less computational time is required. In Fig. 14, the local
optimal NTH is located between 20 and 60, where the mean relative
error of cable length remains below 10% and the computation time
is below ten minutes. On the other hand, solving time is influenced
not only by the complexity of the model but also by factors such
as the location of nodes whose voltage residuals are integrated into
the objective function, hardware limitations, long-term computational
processes on a single laptop, and other factors. Thus, the intersection
could be used by DSO to set a proper NIH value according to the
accuracy requirements. The relative error distribution under the above
scenarios is illustrated in Fig. 15. The red points represent the larger
error, and the boxes depict the interval of the rest of the relative error.
When NTH is set between 20 and 60, the relative errors predominantly
distribute within 0%-10%, with a few falling within the 10% to 80%
interval. Thus, the proposed mathematical formulation in Case III is
feasible, given the well-designed parameters N/H and T.

Compared to Case I, the datasets used in Case II and III are more
sparse and asynchronous, which leads to the error magnitude increases,
as expected. Based on Figs. 11, 13 and 15, the longer the period of
the available SM data and the more households with SM installed, the
closer the estimated cable length is to the true value, i.e., the smaller
length error. The ideal situation is that all households are assumed
to have smart meters and can provide more than one month of high-
resolution SM data, which is the assumption of most papers. Moreover,
in case III, the longer period of the available SM data will lead to
sparser transformed data (as shown in Fig. 7), which will increase the
calculation burden, as shown in Fig. 14. Thus, the models in cases I to I
can be selected and the parameters in the models can be set according
to the period of the available data and the number of available SM, to
ensure that the estimated cable length is close to the true value.

4. Conclusion

The network topology is significant for the efficient operation and
planning of distribution networks, while it is challenging to obtain
accurate topologies due to missing recordings, high-frequency mainte-
nance, and user phase shifting. This paper proposes a topology iden-
tification approach for LVDNs with high-proportion underground ca-
bles based on graph topology generation, topology reconstruction,
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and topology optimization. The proposed approach is tested in three
actual LVDNs in the Netherlands and multiple incomplete SM datasets.
According to the obtained results, the proposed HMST algorithm can
generate a graph topology with an accurate number of cables for each
street. However, inaccurate street-to-street connections in the graph
topology can be found, induced by mesh streets. These inaccuracies
are then successfully revised by the topology reconstruction strategy.
The generation of graph topology only relies on open map data and
SM data, which makes it more flexible than existing approaches. Nev-
ertheless, the inaccurate OSM data and the deployment environment
lead to inaccurate cable length. Considering that only metered houses
or daily maximum and minimum SM data are available, three data-
driven optimization models were stated. The results showed that the
proposed mathematical formulations successfully decreased the error in
cable length. Moreover, the results also illustrated the minimal amount
of SM data needed to minimize the error of cable length under multiple
incomplete SM datasets.
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