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ABSTRACT: One of the challenges in the plastic industry is the cost and time spent on the -;,5,—,— - m

characterization of different grades of polymers. Compressed sensing is a data reconstruction
method that combines linear algebra with optimization schemes to retrieve a signal from a limited
set of measurements of that signal. Using a data set of signal examples, a tailored basis can be
constructed, allowing for the optimization of the measurements that should be conducted to
provide the highest and most robust signal reconstruction accuracy. In this work, compressed
sensing was used to predict the values of numerous properties based on measurements for a small
subset of those properties. A data set of 21 fully characterized acrylonitrile—butadiene—styrene
samples was used to construct a tailored basis to determine the minimal subset of properties to
measure to achieve high reconstruction accuracy for the remaining nonmeasured properties. The
analysis showed that using only six measured properties, an average reconstruction error of less
than 5% can be achieved. In addition, by increasing the number of measured properties to nine,
an average error of less than 3% was achieved. Compressed sensing enables experts in academia
and industry to substantially reduce the number of properties that must be measured to fully and accurately characterize plastics,
ultimately saving both costs and time. In future work, the method should be expanded to optimize not only individual properties but
also entire tests used to simultaneously measure multiple properties. Furthermore, this approach can also be applied to recycled
materials, of which the properties are more difficult to predict.
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1. INTRODUCTION Therefore, researchers have strived to predict individual
properties independent of the chemical structure, although

The experimental characterization of plastic properties can be
with limited success. Qiu et al. predicted the viscosities of a

both time-consuming and costly." Therefore, as an alternative,

many modeling approaches have been developed for computa- common bisphenol A-l;gsed epoxy resin at room temperature
tionally predicting material properties. One method is through and high temperature. © Comparing their results with those
quantitative structure—property relationships (QSPRs),”” obtained using the classical viscosity—temperature model, the
where the chemical structure of a molecule is linked to robustness of the predictions was substantiated.'” In another
corresponding physical, mechanical, and chemical properties. study, an ML algorithm was trained using 46 training data
Conventionally, QSPRs have been modeled through physical points to predict the optimal tensile strengths of polyur-
relations and high-fidelity molecular modeling techniques. The ethane—wood ash composites with a high degree of
recent progress in the field of machine learning (ML) has precision.13 An ML model was recently developed for
substantially contributed to the rise of data-driven models for predicting polypropylene (PP) properties based on the
QSPRs. With the help of large amounts of data, hidden morphology’s contribution to the polymer. Four ML
correlations can be identified and complemented by physical algorithms were applied to predict the a- and S-polymorph
relationships.*” contents and mechanical properties of PP injection moldings.

However, QSP R models have limited training data, leading The study results demonstrated the relationships among the

to low predictivity.'” Moreover, the use of structure—property
relationships relies on the knowledge of the chemical structure,
in this context, of polymers. However, in practice, commodity
and engineering polymers are limited and despite possessing
limited chemistry, their properties can vary depending on the
crystallization, copolymer ratio, molecular weight, additives,
etc. Regardless of the chemical structure, several propertles can
vary by changes in the polymer’s molecular weight.” Because of
chain folding, polymers typically can only possess partially
crystalline structures. In addition, the degree of crystallinity
substantially impacts a polymer’s mechanical properties."’

injection pressure, shear rate, and crystal formation."* ML
models were also applied to predict the tensile strengths of
polymeric films. The results suggested the superior classi-
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Figure 1. Use of the Fourier transform to transform a complex time signal to a sparse representation. The top plot (a) shows an example signal in
the time domain. The middle plot (b) shows this same signal in the frequency domain after application of the Fourier transform. The bottom plot
(c) shows the original signal in the time domain and a nearly identical signal reconstructed through the inverse Fourier transform from only the

dominant frequencies seen in the middle plot (b).

fication capability of the algorithms for sorting films into
conforming and nonconforming parts."> The polydispersity
index (PDI) was also investigated using a similar approach to
relate the chain length distribution with the macroscopic
mechanical properties (e.g,, tensile modulus, elongation at
break, and tensile strength at break).'®

Although these models have powerful predictive capabilities,
they typically must be tuned using numerous data to accurately
generalize to new previously unseen instances. Unfortunately,
large amounts of good data are often lacking. One approach to
solve this problem is to combine data from multiple sources,
but this often leads to data gaps, where one source contains
data for a certain set of properties that are not included in a
different data set and vice versa.

In this work, we propose a method based on the concept of
compressed sensing”” (sometimes also referred to as
compressive sensing) that allows for the reconstruction of
large sets of properties based on a much smaller set of carefully
chosen measured properties.

Compressed sensing is based on the assumption of signal
sparsity: the fact that most of (if not all) the natural signals can
be transformed to signals in a different domain, where they can
be represented in a more compact (sparse) manner. For
instance, a temporal waveform (as shown in Figure 1a) can be
transformed using a universal transform, such as the Fourier
transform, to a waveform in the frequency domain, where it
can be represented by only a few dominant frequencies (Figure
1b). By discarding all the other frequencies besides these
dominant ones, the time signal can be stored using only a few
parameters and reconstructed by simply applying the inverse
Fourier transform (Figure 1c). The goal of compressed sensing
is to find these sparse frequencies by measuring only a small
subset of the original signal. This is typically done using an
optimization scheme, and is explained in Section 2.1.
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As applied in this work, the set of all the properties of a
plastic can be interpreted as the complete signal, while the
known measured properties are the sampled parts of the signal.
This is schematically depicted using a visual analogy in Figure
2. In addition, instead of a universal transform, such as the
Fourier transform, a tailored transform basis is used in this
work. The tailored basis is derived from example data (e.g., a
complete set of measured properties) and allows for more
efficient solving of the compressed-sensing problem. There-
fore, the optimization of the measurements that should be
performed to maximize the signal reconstruction’s accuracy
becomes computationally tractable, as further detailed in
Section 2.2.

Previously, compressed sensing has been widely applied in
various fields, particularly audio and visual signal processing.
For instance, Sreenivas and Kleijn used compressed sensing to
accurately reconstruct speech patterns from a moderate
number of audio signal samples.”* In the medical field,
compressed sensing has been used to reduce the number of
samples required for measuring electrocardiogram (ECG)
signals, reducing the costs of the otherwise sampling-intensive
measurements.”> In addition, Manohar et al. used compressed
sensing for accurately reconstructing the total two-dimensional
fluid flow field comprising 90,000 points from only 42 known
point measurements.’’ A good overview of various applications
of compressed sensing has previously been published.””

Acrylonitrile—Butadiene—Styrene (ABS) is an engineering
thermoplastic block copolymer used in automotives, toys, and
electric and electronic equipment. Compared with other
plastics, ABS is less studied because of its complex structure.
ABS is synthesized by coupling the styrene acrylonitrile
copolymer (SAN) with polybutadiene (PB) (Figure 3). Several
properties, including hardness, tensile and flexural moduli, and
tensile and impact strengths, have been reported as key ABS
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Figure 2. Visual analogy between (a) classical application of

compressed sensing for (continuous) signal reconstruction and (b)
application of compressed sensing for unknown (discrete) property
estimation.

property reconstruction accuracy indicators.'’~*° ML models,
such as linear regressions, decision trees, random forests (RFs),
and Adaptive Boosting (AdaBoost), have previously been used
to predict ABS hardness values. The accuracy of the RF model
was superior to those of the other ML models. For the various
models, the coefficients of determination (R*) ranged from
0.8437 to 0.9136, with the RF model possessing the highest R*
value (0.9136).”"*

The literature overview reveals a clear need for methods that
can help in predicting the values of unknown molecular
properties based on known property data. Because of their
powerful and flexible modeling capabilities, data-driven
methods have attracted increased research interest. While
many methods applied in previous studies require large
amounts of data and extensive tuning of parameters to provide
satisfactory results, the proposed compressed-sensing method
is data efficient and requires neither hyperparameter tuning nor
extensive training. As such, the proposed method is simple to
set up and fast to execute, even with limited available data. To
the best of the authors” knowledge, this manuscript describes
the first instance of compressed-sensing applied for predicting
polymer properties, providing a simple and effective tool for

reducing the costs and time associated with characterizing
polymer properties.

The remainder of this paper is structured as follows: In
Section 2, the theoretical background is provided for universal
and data-driven tailored-basis compressed sensing. Section 3
describes the test case used to demonstrate the methods and
provides the results of three analyses, starting with an
investigation of the effects of the total number of measurable
properties on the reconstruction accuracy. Using only six well-
chosen measured properties, the total data set was
reconstructed to within an average error of 5%. In the second
analysis, the impact of the original size of the data set used to
develop the tailored basis on the reconstruction accuracy was
studied. Using only 16 fully characterized samples, good
accuracy, comparable to those achieved using more data
samples, was achieved. Finally, the effect of the data scaling on
the reconstruction accuracy was evaluated. The results
suggested that data scaling offered no additional benefits
over retaining the original data magnitude (and, in fact,
decreased the reconstruction accuracy). Lastly, in Section 4,
the main findings and their importance are summarized, and
recommendations are provided for future work.

2. METHODS

In this section, the theory behind the applied methods is
provided, starting with an introduction of universal com-
pressed sensing. Then, the more specific data-driven tailored-
basis compressed-sensing problem is discussed. After this, the
type of tailored-basis used in this work (the singular value
decomposition) is further explained. Finally, the last subsection
provides a brief description of the experimental methods used
to generate the data reported in this paper.

2.1. Universal Basis Compressed Sensing. Compressed
sensing is based on sparsity (where a signal vector/matrix
primarily contains zeros).”* More concretely, it is based on the
fact that most of (if not all) the natural “signals” (e.g., images,
waveforms, or measurements) occupy only a very small
segment of their possible signal space. For instance, a 1000
X 1000 pixel image can be used to display millions of possible
objects from dogs to mountains and cars, but for a randomly
generated set of pixels, the probability is close to 100% that the
pixel set will contain nothing more than random noise.” In fact,
the probability that even a small subset of pixels lines up to
form any recognizable structure is incredibly slim.

Therefore, most signals can be transformed to signals in a
different domain, where they can be represented in a much
more compact, sparser manner. For instance, a complex
waveform can be represented with just a few dominant
frequencies by transformation through a Fourier transform,”’
as shown in Figure la,b. Clearly, the signal is much sparser in
the frequency domain, where only a few frequencies are
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Figure 3. ABS synthesized through emulsion polymerization of styrene and acrylonitrile with polybutadiene (PB).
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important, than in the time domain. By discarding all but these
nonzero frequencies and performing the inverse Fourier
transform, the original time signal can be accurately
reconstructed from limited information.

Sparsity in different domains not only forms the basis for
many file compression algorithms but also allows for the
reconstruction of complex signals by measuring only a few
select samples, i.e., compressed sensing.”

Referring to the above example, the goal of compressed
sensing is to find the dominant frequencies from the middle
plot (Figure 1b) by measuring only a small subset of the
original signal in the top plot (Figure 1a). Mathematically, the
aim is to reconstruct a (large) signal (x) from a much smaller
subset (y) of measurements of x. Using a universal basis
transformation matrix (W, such as a Fourier or wavelet
transform), the original signal (x) is transformed to a sparse
representation (s), which is a vector primarily comprising zero
entries and a limited number of nonzero elements. Through
optimization methods, (an approximation of) the sparse vector
(s) can be recovered from the known y and ¥ arrays and used
to reconstruct x with high accuracy.

The measurement array (y € x) is given by

y==Cx (1)

where C is the measurement matrix and specifies the elements
of x that are measured and known in y. Assuming it is sparse in
some other domain, signal x can be transformed to sparse
vector s using transform W as follows:

x=Ws ()

The measurement vector (y) can be similarly transformed to
a sparse vector:

y = (C¥P)s = Os (3)

where @ is a subset of the transformation matrix (¥) given by
the measurement matrix (C). Because eqs 2 and 3 both share
the common sparse vector (s), x can be reconstructed from y
by first solving eq 3 for s before substituting it in eq 2 to
produce x. However, although W (and, therefore, ®) and y are
both known, eq 3 provides an underdetermined system of
equations, meaning that there are infinitely many possible
solutions for s, while only one version of s returns x when used
in eq 2. As such, eq 3 cannot simply be solved for s.**

In order to circumvent this issue, the fact that s is expected
to be sparse is used. By minimizing the I, zero-norm (the
number of nonzero elements in an array) of s while
simultaneously solving eq 3, the sparsest vector (5) that solves
eq 3 can be obtained, as summarized by the following
optimization problem:

s = argmin

s

subject to y = (C¥)s
o 4)

Unfortunately, finding the minimum I, zero-norm is a
combinatorial optimization problem that can only be globally
solved by evaluating all the possibilities for 5, which is
practically intractable for most real-world problems where s is
large. Instead, under certain conditions on the C matrix, the [,
taxicab norm can be used in place of of the zero-norm. The
taxicab norm defines the distance between two vectors as the
distance traversed between them on a right-angled grid (such
as how a taxi would drive in a grid-based city layout). This is
otherwise expressed as the sum of the absolute values of the
elements of s. Using the I, norm, eq 4 becomes

s

7260

s = argmin
s

subject toy = (CW¥)s
1 (8)

S

and the optimization problem becomes convex, rendering the
problem much quicker (and practically feasible) to solve using
standard optimization methods while still ensuring a sparse
solution is found. This does not happen when using the
Euclidean I, norm, which still produces solutions where all the
coordinates of the solution vector are active.”®

For the I, norm simplification to work, certain conditions
must be satisfied. The main condition is on the C matrix, and
specifies that the resulting ® matrix should function as a near-
isometry map on the sparse vector s (i.e., ® preserves the
distances of transformed vector s).”® This comes down to the
fact that the number of measurements in C should be sufficient
and incoherent (produce a small inner product with the
columns of W). Intuitively, this means that the information in
the measurements should not be too structured or
concentrated in a few rows. In practice, most random
measurement matrices produce sufficiently incoherent meas-
urements such that the conditions for the I; simplification are
satisfied.”® For example, referring to Figure 1, if the
measurements would be evenly spread over the entire signal
in the top plot (or bunched together within a small window),
they would likely miss many of the finer signal details. Of
course, by increasing the number of measurements, the
probability for capturing more of these details increases.
However, a more efficient approach would be to simply
distribute the samples randomly over the signal instead, as this
is more likely to capture different levels of detail with fewer
measurements.

Although these conditions can be further quantified and
formalized by introducing a coherence measure and the
restricted isometry property,”® as this work primarily uses
tailored-basis compressed sensing (introduced in the next
section), where these conditions are less important, the theory
behind these additional conditions will not be provided herein.
Interested readers are referred to the publication by Brunton
and Kutz.”®

Once s is found, it can be used in eq 2 to reconstruct x. It
should be noted that because § approximates s, ¥ will not be
perfectly accurately reconstructed. For instance, although
solution s may be found using the right sparse elements,
these elements’ values might be incorrect. As such, although
the correct frequencies are used in a Fourier transform, their
relative magnitudes might slightly deviate, producing a
reconstructed signal approximating, but not necessarily
perfectly matching, the true value of x. Thus, although it is a
powerful tool, compressed sensing is not a magical solution for
flawless signal reconstruction.

2.2, Tailored-basis Compressed Sensing. Universal
basis compressed sensing, as discussed in the previous section,
is already a powerful signal reconstruction technique. However,
the use of a universal basis also constrains the number and
distribution of the measurements required to feasibly and
practically solve the reconstruction problem.

Typically, in compressed sensing, a universal basis is used
where the structure of the signal to be reconstructed is not well
understood. For example, when the image to be reconstructed
is unknown, e.g., a dog or a car, a universal basis allows for the
reconstruction of both possibilities. However, to ensure all
these possibilities are covered in the universal basis approach,

https://doi.org/10.1021/acs.jcim.4c00622
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certain measurement conditions must be satisfied; primarily
that there are sufficient randomly spaced measurements.

In contrast, when the type of signal to be reconstructed is
known (e.g., only pictures of dogs have to be reconstructed),
the number of measurements can be significantly reduced, as
measurements no longer have to cover all the possibilities. This
can be achieved by slightly changing the compressed-sensing
formulation of (eq 3) and using a tailored transform basis
instead of a universal transform basis.

In essence, a tailored basis is a transform basis constructed
based on example data from the signal type to be reconstructed
(e.g., a database of dog images). Using the information in the
example data on the structure of the signal to be reconstructed,
a more informed decision can be made for the measurements
that produce the most accurate reconstruction of signals
similar to those in the example database.*

Mathematically, in tailored-basis compressed sensing, the
universal transform matrix () is replaced by a smaller tailored
library matrix (¥,). This tailored library is constructed from X,
which is a set of examples of the signal x. In ¥, r denotes the
rank of the tailored basis. Because the tailored basis is an
approximation of X, the rank denotes how many terms of this
approximation comprise ¥, (which is similar to the number of
terms used in a Fourier/Taylor series approximation).
Depending on the problem, different methods for constructing
W, can be used, such as the proper orthogonal decomposition,
dynamic mode decomposition, and singular value decom-
position (SVD).”® In this work, the SVD was used for
constructing W, (see Section 2.3 for more details).

Using a tailored basis, eqs 2 and 3 respectively become the
following expressions’’:

x=Wa (6)

(7)

where s in the original equation is replaced with the tailored-
basis coefficients (a), a vector of length r that is no longer
necessarily sparse and indicates the linear combination of ¥,
(the approximation of X) that is needed to reconstruct signal x
from measurements y. When the number of measurements in y
is the same as the rank (r), matrix @ becomes square, and the
system of equations is no longer underdetermined. Therefore,
the pseudoinverse of @ can be used to relatively easily solve for
a.

To further clarify, in the universal basis approach, the reason
for requiring sparsity in the universal basis approach is that the
main system of equations to be solved (eq 3) is under-
determined and, thus, has infinitely many solutions. To still
find a solution that can be used to reconstruct x from y, the
universal basis must transform the original signal to a signal in
a domain where the signal is sparse (with nonsparse entries
being the dominant modes, e.g., signal frequencies for
waveforms), as this condition can be used as a constraint to
find the best solution of eq 3. That is, if it is known that the
solution to eq 3 should be sparse, an optimization scheme
(possessing the proper objective function) can be used to find
the sparsest solution among all the (infinitely many) possible
solutions to eq 3. If the transform basis does not provide a
sparse result, s is unconstrained and, therefore, cannot be used
to narrow the solution space of eq 3. In this case the right
solution would be impossible to find without evaluating all
possible solutions (which is practically infeasible for most
problems).

y=(C¥)a=ba
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However, when a tailored basis is used, the system of
equations (eq 3) is no longer underdetermined, and a solution
can simply be found using the pseudoinverse, directly
providing the solution to a required for reconstructing the
original signal (x). Because the solution to eq 3 is now easy to
find, the “trick” of requiring a sparse solution is no longer
required. The reason for using a data-derived tailored basis
(instead of any other random transform matrix) is that the
tailored basis provides an (optimal) approximation (¥,) of the
original signal matrix (X). Then, the direct solution for a
provides a linear combination of this approximation that can
be used to reconstruct x. If a random transform was used,
matrix ¥, would not approximate the original data (X), and
thus, the use of this basis for reconstructing ¥ would lead to
very poor results.

Therefore, as the solution for a no longer requires solving an
optimization problem, the optimization of the measurements
(C) that maximize the reconstruction accuracy of x under
noisy conditions in y becomes feasible instead. This is typically
conducted by minimizing the condition number of (), which
indicates the degree to which an output vector is affected by
the noise in the input vector when @ is used to transform the
input vector. Although the condition number of (6) can be
minimized by correctly choosing C, this again leads to a
combinatorial optimization problem that is intractable to solve
for large problems.”® Instead, the QR pivot matrix decom-
position can be used to efficiently find a greedy near-optimal
solution.”®

Regular QR factorization decomposes a matrix into a unitary
Q matrix and an upper triangular R matrix as follows:

¥ = QR (8)
The introduction of pivot columns (C") as follows:
Y'c" = Qr (9)

forces the QR matrix to become better conditioned, which is
the original criterion for choosing the measurement matrix
(C). In essence, the pivoting procedure sequentially (i.e.,
greedily in descending order of importance) selects the rows in
¥, that contain the most columnar variance and, therefore,
samples the signal’s dominant modes the most efficiently.”**°
As such, these pivot points provide a near-optimal solution for
the choice of C. In addition, QR factorization is a ubiquitous
and fast algorithm, making it a very practical method for
optimizing C.

QR factorization can be implemented using numerous
methods, such as the Gram—Schmidt process or Householder
reflections.”” In this work, QR factorization was implemented
using LAPACK (linear algebra routines in the Python package
SciPy).>® For simplicity, the detailed specifications of these
methods are omitted herein. Interested readers are referred to
the literature*® for more details.

Using a tailored basis, measurements can be optimized to
reconstruct entire signals with highest accuracy and robustness
possible.

2.3. The Singular Value Decomposition. As mentioned
in the previous subsection, many data-driven transforms can be
used as a tailored basis for optimizing the choice of
measurements for compressed sensing—based signal recon-
struction. Because of its general applicability to a variety of
different {)roblems, the singular value decomposition
(SVD)***! was used in this work instead of other
decompositions, which are typically the most useful for specific
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types of systems or data sets. In addition, the SVD is
guaranteed to exist for any matrix and is, therefore, a reliable
method for generating tailored bases.”®

SVD-based matrix decomposition can provide low-rank
approximations of high-dimensional matrices. The primary
application of the SVD is in dimensionality reduction, allowing
for large data sets to be accurately represented by much smaller
approximation matrices. However, the SVD has been applied
in many other areas, such as forming the foundation for other
decomposition methods and as the tailored basis in com-
pressed sensing.**

For an original data set in the following matrix form:

T

T T
X=[x,%,...,%,]

(10)

where each column in X comprises an individual signal (x) of
length n (such as a reshaped image, an audio waveform, or a
set of experimentally measured properties of a single plastic
sample). The SVD decomposes the n X m matrix X into the
following three matrices, which, when multiplied, return X:

(11)

where U is an n X n left-singular matrix, V is an m X m right-
singular matrix, X is an n X m matrix, and * indicates the
complex conjugate transpose. U and V are both unitary
matrices (meaning that their conjugate transposes are also
their respective inverses, such that, for example, U*U = UU* =
I) containing orthonormal columns. X is a matrix comprising
zeros everywhere apart from on its diagonal, which contains
the singular values of the SVD.*®

For all matrices larger than 2 X 2, the SVD must be
calculated using an iterative approach. One such example is the
one-sided Jacobian algorithm, which uses a Jacobian matrix to
iteratively transform the original matrix to one containing
orthogonal columns.” The approach used in this work, is a
numerical approach that makes use of the facts that the left-
singular columns in U are orthonormal eigenvectors of
matrices XX*, the right-singular vectors V are orthonormal
eigenvectors of the matrix X*X, and the singular values of X
are the square roots of the nonzero eigenvalues of both U and
V.*° More specifically, this work makes use of the LAPACK
implementation of these routines (accessed through the
Python package NumPy) for solving the SVD.**

The SVD can be interpreted as being a matrix analog of the
Fourier analysis of periodic time signals. A Fourier series
decompose complex waveforms into sums of differently
weighted sine and cosine functions, where, with each
additional term in the sum, the original waveform is
approximated more accurately. Similarly, the SVD approx-
imates complex matrices, where each additional column and
row in U and V, respectively, scaled by corresponding singular
values in X increasingly accurately approximate the original
matrix (X) on which SVD was based. Thus, like Fourier
transform, the SVD allows for the determination of a low-
dimensional approximation (i.e., the dominant modes) of a
complex high-dimensional signal. However, although the
Fourier transform is universal, the SVD directly extracts the
low-dimensional approximation from the data.

In addition, matrix U can be used as an effective tailored
transform for optimizing the measurement location in
compressed sensing to transform an original high-dimensional
data set to a lower-dimensional approximation, similar to a
Fourier or wavelet transform.”®

X=Uzv*
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2.4. Experimental Methods. To demonstrate the
proposed methods, ABS compounds were prepared by mixing
six grades of SAN (possessing various molecular weights and
acrylonitrile percentages) with seven rubber loadings. A
standard additive package, including stabilizers and a mold
release agent, was used in all the formulations. The compounds
were prepared using a ZSK-25 twin-screw extruder (length: 46
L/D) operating at 250 rpm and 17 kg/h.

Tensile bars and plaques were molded using a Demag
Ergotech 80/420—200 injection-molding machine.

Molecular weights were determined using gel permeation
chromatography with an Agilent 1260 high-performance liquid
chromatography system. The styrene, acrylonitrile, and rubber
contents were measured using Fourier-transform infrared
(FTIR) spectroscopy with a PerkinElmer Spectrum One
spectrometer. Tensile and flexural tests were performed
according to ISO 527 and ISO 178 standards, respectively,
using a Zwick/Roell Z010 tensile testing machine. Charpy
notched impact tests were conducted according the ISO 179—
leA standard using a Zwick/Roell HITS.5P pendulum impact
tester. Falling-dart impact properties were measured according
to the ISO 6603—2 standard using a Zwick/Roell HIT230F
drop-weight tester. Melt volume indices (MVIs; 220 °C; 10
kg) were measured according to the ISO 1133 standard using a
Zwick/Roell Aflow extrusion plastometer. Vicat softening
temperatures were measured according to the ISO 306
standard using a Zwick/Roell HDT/Vicat A apparatus.

3. RESULTS

In this section, the results obtained using the methods
described in the previous section are discussed. In the first
subsection, the problem is defined, and the associated data sets
are described. Then, the main error metrics used to evaluate
the methods’ property reconstruction accuracies are briefly
described. Finally, the last three subsections discuss the results
of the different analyses performed, which investigate the
impact of various factors on the outcomes of the method.

3.1. Problem Definition and Data Description. The
characterization of the chemical and mechanical properties of
plastics (that is, additive-modified polymers, such as ABS) is
key in determining the effectiveness of the plastic for different
practical applications. Ideally, all the possible (or, at least, the
most relevant) properties of a plastic are measured to obtain
the optimal insights into the plastic’s practical utility. However,
the measurement of these properties is both time and cost
intensive, and, in many cases it is economically not feasible to
measure a large number of properties for all samples involved
in a process.

Of course, because they depend on the plastic’s chemical
composition, many properties are related. Therefore, the value
of one property may be predicted based on the values of
others, allowing for a reduction in the number of properties
that must be measured. Using compressed sensing, not only
can an entire set of properties be reconstructed from a known
smaller subset of these properties but through the use of a
tailored basis it is even possible to determine the optimal set of
measurements that maximize the reconstruction accuracy. This
enables the following question to be answered: If only five of
the 18 properties are measurable, which five should be
measured to most accurately predict the remaining 13
nonmeasured properties?

In this work, a data set comprising extensive measurements
of 18 ABS properties each for 42 samples was used to
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demonstrate the compressed-sensing methods. Table 1
provides an overview of all the properties in the data set
alongside some basic data statistics.

Table 1. Overview and Basic Statistics of All the Properties
in the ABS Dataset”

property mean st. dev. min. max.
butadiene % 26.00 6.07 17.00 35.00
Mn 63.96 12.16 48.00 82.90
tensile yield stress 43.68 3.84 37.57 51.56
tensile elongation at yield 2.19 0.07 2.04 2.33
tensile rupture stress 34.17 2.95 29.56 40.06
tensile elongation at rupture 16.35 4.07 9.10 28.00
tensile modulus 2423.83  244.68  2043.00  2843.00
flexural strength 69.81 6.78 59.48 83.76
strain at flexural strength 4.56 0.13 4.37 4.90
flexural modulus 2420.59 23852  1987.80  2881.20
Charpy impact 19.71 7.87 S.75 33.33
Dart impact (energy to peak) 23.70 10.36 1.52 34.08
Dart impact (energy to 31.46 15.24 1.73 50.50
break)
displacement to peak 10.98 2.72 4.90 14.17
displacement to break 13.17 391 5.17 17.72
force at peak 3618.64  869.58 903.63  4499.43
MVI 28.26 18.12 8.72 85.66
Vicat 96.07 3.24 91.80 113.30

“Mn and MVI refer to the number-average molecular weight of the
polymer and melt volume index, respectively.

To show the potential for predicting certain property values
based on the values of others, Figure 4 provides a scatterplot
matrix where all the properties are plotted against each other.
As can be seen, numerous properties show clear linear or
nonlinear relationships to other properties. For instance, the
flexural strength is clearly correlated with the tensile yield
stress. As such, by learning the appropriate relations between
the properties, all the properties can be reconstructed using
only a limited set of the key properties. Compressed sensing
not only enables such property reconstruction in a rapid and
relatively easily implementable manner but also allows for the
optimization of the known properties for most accurately
reconstructing the other properties.

Mn does not have any trivial relationships with any of the
other properties. Because many properties have been proven to
have an asymptotic relationship with Mn, the relationship
disappears above a certain threshold.”® A relationship was
previously reported between viscosity (17) and Mn for ABS,
where log (1) plotted as a function of lo§ (Mn) exhibited a
slope of 3.64 (i.e., i scales with Mn*>**).>> In this study, Mn
simultaneously increased with changes in the copolymer ratios,
which affected the average monomer friction coefficient ({,),
which, in turn, influenced both the viscosity and MVL*
Therefore, the reported relationship is more complicated to
obtain. Nevertheless, in line with other reports, with increasing
butadiene content, MVI decreased.>® The tensile modulus and
strength both decreased with increasing butadiene content and
increased with increasing styrene and acrylonitrile contents.
The impact stren%t_h had the opposite relationships, as
previously reported.”*°

To demonstrate the tailored-basis compressed-sensing
workflow, the data set was divided into two subsets: one
where all 18 properties were used to create the singular value
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decomposition matrices, and the other for evaluating the
property reconstruction accuracy. For the test subset, only the
properties determined using the optimal measurement
selection workflow were known; the remaining properties
were reconstructed using the SVD, and the property
reconstruction accuracy was evaluated. Numerous analyses
were conducted to evaluate the effects of different factors,
including varying the number of measured properties used to
reconstruct the remaining properties, the effect the size of the
data set used to create the SVD matrices has on performance,
and the impact of scaling the data in various ways.

3.2. Error Metric. In this work, because the number of
included properties was relatively high and the properties
covered a wide range of values, the mean absolute percentage
error (MAPE) was used to evaluate the property reconstruc-
tion accuracy of the compressed-sensing method. The MAPE
calculates the error as a percentage of the true value and, thus,
provides an easily interpretable number independent of
property magnitudes. The MAPE is defined as follows:

i

MAPE = :

Iy — 3!

X 100%

n (12)

where y; and yA,- are the true and predicted values of sample i,
respectively, and n is the number of samples.

As the MAPE provides dimensionless relative errors, it
facilitates easier comparisons between the properties. However,
the exclusive use of the MAPE can be risky, as it suffers a lot
from outliers, is not symmetrical (although underpredictions
cannot exceed 100% of the error, overpredictions can become
arbitrarily large), and cannot be calculated for true values of 0
(since it leads to division by zero issues). In addition, for true
values near 0, the MAPE can become very large for minor
absolute errors.

The analysis results revealed that these disadvantages
negligibly influenced the study’s outcomes and conclusions.
Moreover, because the results obtained using the mean
absolute error (MAE) and MAPE metrics showed the same
main trends, only the results obtained using the MAPE are
included herein. For completeness, the Supporting Information
provides Figures S1—S3, showing all the analysis results
obtained using the MAE instead of the MAPE.

3.3. Influence of Number of Property Measurements
on Property Reconstruction Accuracy. The main factor
influencing the property estimation accuracy is the number of
measured properties available to reconstruct the remaining
unknown properties. Likely, the more properties that are
measured, the better the reconstruction for the unknown
properties. In this study, tailored-basis compressed sensing was
used to determine the properties to measure for different
numbers of measurements. For each number of measurements,
the average reconstruction accuracy per property was provided,
and the results were compared to quantify the influence of the
number of properties to measure on the property reconstruc-
tion accuracy.

To set up the SVD decomposition matrices used to optimize
the properties to measure and reconstruct the remaining
properties, all 18 properties of 21 out of the total 42 available
samples were used. All 21 samples were randomly selected in a
stratified manner to ensure they properly represented all the
ABS types in the data set. The remaining 21 samples were used
for evaluating the property reconstruction accuracy. Only the
properties selected using the tailored-basis optimization were
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Figure 4. Scatterplot matrix of all the properties in the ABS data set.

known, while the remaining properties were predicted using
these known values and the SVD matrix.

Figure S provides an overview of the optimal properties that
the tailored-basis property reconstruction method selected for
different sizes of the measured property set. To interpret the
information in Figure S, the number of measured properties is
listed at the bottom. Then, for each number of measurements,
all the elements shown in green in the corresponding column
indicate the properties the method selects to include in the set
of measured properties. Thus, when only one property is
measurable, that property should be force at peak; if two
properties are measurable, they should be the force at peak and
tensile modulus; if five properties are measurable, they should
be the force at peak, tensile and flexural moduli, MVI, and Mn.

Clearly, the method usually simply expands the existing set
of measured properties. However, in a few instances, the
method initially adds a property to the list before choosing
another property instead when the total number of measured
properties increases, indicating that the optimal solution might
not always be simply adding more measurements but may also
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depend on the specific combination of measured properties.
Thus, when the method determines that another property
combines more favorably with the other measured properties
(for the current total number of property measurements), a
property that was previously included might sometimes be
excluded.

Notably, the characterization results are not derived from
standalone measurements. For instance, using a simple tensile
measurement, modulus, strain at break, stress at break, strain at
yield and stress at yield can all be measured at once. Thus,
even though the algorithm helps choosing one individual
property over the other (to be measured), practically, they
might still have to be measured together.

According to the first few properties, including the peak
force, tensile and flexural moduli, Mn, and MVI, that the
method selects, some choices are more easily interpretable
than others. For instance, as shown in Figure 4, both the
flexural and tensile moduli are clearly correlated with many of
the other properties. As such, the method logically selects
these, as they can provide insights into the values of many
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properties.

other properties. Similarly, the force at peak property is also
clearly correlated with other properties not covered as well by
the tensile and flexural moduli, which somewhat explains why
the method chooses it. However, because the MVI and Mn are
only slightly correlated with the other properties, under-
standing why the method chooses these properties is less
intuitive. One reason could be that because these and other
properties are negligibly correlated, the method can only
accurately reconstruct these properties by including them in
the list of properties to measure.

In addition, the method clearly emphasizes some properties
the least, including the tensile elongation at yield, strain at
flexural strength, and displacement to peak. As shown in Figure
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4, for a high number of measurable properties, the reason the
method chooses to include these properties is difficult to
understand because they are negligibly correlated with the
other properties; thus, the method should prioritize their
selection. However, as shown in Figure 6, these properties are
already relatively accurately reconstructed, even after only a
few measurements. As such, the method prioritizes the
selection of other properties over these ones.

Another interesting aspect of how the method chooses
properties is related to the property magnitudes. Table 1 shows
that many of the earliest-chosen properties possess relatively
high magnitudes, with the first three chosen properties
possessing the highest magnitudes. Similarly, most of the

https://doi.org/10.1021/acs.jcim.4c00622
J. Chem. Inf. Model. 2024, 64, 7257—7272


https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00622?fig=fig6&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00622?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

25
—8— Number training samples: 33
Number training samples: 25
—8— Number training samples: 21
—8— Number training samples: 16
'OE‘ 20 —8— Number training samples: 8
—
[e]
=
—
(Y]
&
2154
o)
c
(]
2
()]
o
9104
E
(e}
[
Q
©
& 5
© J
()]
=
0 4

a 5 6 7

8

9 10

11 12 13 14 15 16 17

Number of measured properties
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sizes used for reconstructing all the properties.

last-chosen properties possess relatively low magnitudes. Thus,
while the method does not just choose only based on
magnitude, it does seem to have a big impact on the preferred
properties. One simple reason is that because the method aims
to reduce the effects of noise on the data reconstruction, this is
the most easily accomplished by selecting high-magnitude
properties whose absolute levels of noise are comparatively
higher than those for low-magnitude properties. Therefore, as
described in Section 3.5, the analysis was repeated for a data
set where all the properties were normalized in the same range
to investigate the impact of the normalization on the method’s
decisions about the properties to choose.

An examination of the properties selected by the method (in
addition to the data presented in Figure 4) provides some
insight into why the method might have selected these
properties. However, as this method is data driven, most of the
results are attributed to the underlying data structure and,
therefore, case specific and inherently difficult to interpret.
Thus, these findings should not be generalized or extrapolated
to other plastics without first evaluating the compressed
sensing method’s performance on them.

To further investigate the property reconstruction accuracy,
Figures 6 and S1 (in the Supporting Information) show the
MAPEs and MAEs plotted as functions of the number of
properties measured to reconstruct the 18 properties,
respectively. As expected, the more property measurements
that were included, the more accurate the property
reconstruction was, especially for the overall combined
average. However, there are a few interesting deviations from
this general behavior. Most notably at the 5 measured property
mark, there is an increase in error, both for the average error as
well as for the errors of individual property. Because tailored-
basis compressed sensing is data driven, this behavior can be
difficult to fully explain. One reason could be that because the
measurements are imperfect, the addition of a measured
property introduces additional noise to the available measured
property data, which could slightly worsen the overall property
reconstruction accuracy. The fact that these deviations are
potentially related to noise in the data is further substantiated
by the fact that when a different random seed is used to divide
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the data between training and test sets, the deviations either
appear for different measurement set sizes, or are not present
at. That said, when present, the effects of this noise on
performance are typically minor.

Ultimately, these results show that by measuring only six of
the 18 properties, the average reconstruction error for all the
properties was approximately 5%. However, the variation in the
property reconstruction error for the individual properties was
still rather high, with some properties still exhibiting
reconstruction errors above 20—30%. By increasing the
number of property measurements to nine, the overall average
error percentage was further decreased to below 3%, while all
the individual properties exhibited mean error percentages
below 10%. Finally, for 12 property measurements, the average
error decreased to 1%, and all the individual properties were
reconstructed to within a 4% error. Beyond 12 property
measurements, although the overall average error would
continue improving (and eventually reaches 0% when all the
properties are included in the measured set), the number of
measured properties would be so high that the trade-off
between the number of additional measured properties and
error improvement might no longer be worthwhile.

3.4. Influence of Training Data Set Size on Property
Reconstruction Accuracy. This section describes the effect
of the data set size on the selection of the optimal set of
properties to measure and reconstruct the missing properties.
The previous methods were used with different “training” data
set sizes. To ensure a fair comparison between the various data
set sizes, the set of samples used for evaluating the property
reconstruction error was identical for each analysis.

Figure 7 shows the MAPE plotted as functions of the size of
the measured property data sets. For simplicity, only the
average MAPE over all properties are given (corresponding to
the black line in Figure 6). Figure S2 in the Supporting
Information shows the MAE plotted as functions of the size of
the measured property data sets. As expected, with increasing
training set size, the property reconstruction accuracy
improved. For six or more measured properties, the MAPE
was almost identical for training sets comprising 33, 25, 21,
and, to a lesser extent, 16 measured properties.
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Figure 9. Mean absolute percentage error (MAPE) plotted as functions of the total number of measured properties for reconstructing all the
properties using the same data set as shown in Figure 6 but scaled such that all the properties are in the range (0,1).

Notably, both the 8 sample and 16 sample data set sizes stop

significantly improving in MAPE at a certain point. This is due
to the nature of the tailored basis compressed sensing method
itself, in which the number of measured properties the method
can optimize for is limited by the size of the training set. For
instance, when the training data set is limited to only eight data
samples (e.g, eight fully characterized plastic samples), the
method can only optimize eight measured properties. Thus,
when the method is used to select more than eight properties,
only the first eight are optimized, and the others are simply
selected in the order in which they are originally defined in the
data set. As such, as can be seen in Figure 7, the reconstruction
accuracy for the training data set of size 8 stops improving after
8 measurements have been included.
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The mathematical reason for the fact that the method stops
improving is that the number of measurements that can be
optimized is limited to the number of singular values that can
be extracted from the training data in X. As the number of
singular values corresponds one-to-one to the number of
samples in X (X and X are both n X m matrices, where m is
both the numbers of data samples in X and singular values on
the diagonal in X), the number of training samples directly
limits the method’s effectiveness. Therefore, when less training
samples are present than the number of measurements that
must be optimized, not all the measurements are optimizable.
The training data set’s size not only influences the property
reconstruction accuracy of the tailored-basis compressed
sensing but also directly impacts the properties the method
selects as the optimal combinations for reconstructing
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Figure 10. Properties that compressed sensing indicates are optimal to include in sets of measured properties for different total numbers of
measured properties using the same data as shown in Figure S but scaled such that all the properties are in the range (0,1).

properties. To investigate the importance of this impact, the
number of times each property was selected based on the size
of the measured property set is plotted in Figure 8. Essentially,
the same analysis as presented in Figure S was performed for
all five training set sizes, and the results were summed and
combined into one figure. Thus, if a property was always in the
set of measured properties for a given set size, the property was
scored as 5. A good example is the force at peak property,
which was selected first for all the training set sizes. Similarly,
the tensile and flexural moduli were always selected second and
third, respectively. Additional variation appears in, for instance,
the Vicat and MVI properties. For these properties the plot
indicates that the MVI property is selected fourth for three out
of five data set sizes, while in the other two out of five of these
cases the Vicat property was selected fourth instead. On the
other hand, although the strain at flexural strength was usually
chosen as one of the final properties, in one case it was already
selected when the size of the measured property set was nine.
It is also clear that the method considered the tensile
elongation at yield as being the least important property for
reconstructing properties, as this property was consistently
added last to the set of measured properties.

Figure 8 shows that the most (and least) important
properties to measure are mostly independent from the
training set size. In contrast, the properties that fall somewhere
in between showed considerably more variation. However, as
shown in Figure 7, in this range, the property reconstruction
accuracies were mostly independent from the training set size,
indicating that once the most important properties have been
included, the specific combination of the other properties is
less important to the overall property reconstruction error.

3.5. Influence of Relative Property Magnitude. Section
3.3 discussed how tailored-basis compressed sensing typically
selects high-magnitude properties first. This phenomenon was
further investigated by applying compressed sensing to the
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same data scaled such that the absolute magnitudes of all the
properties were equal. The data were scaled using the following
standard minimum—maximum (minmax) approach, where for
each property, the minimum value was subtracted from all the
other values before they were divided by the difference
between the maximum and minimum property values:

x—x

Xscaled =
max

(13)

This produced a data set where each property value was in
the range (0,1).

Figure 9 shows the MAPEs of the property reconstructions
using the minmax-scaled data (the corresponding MAEs are
shown in Figure S3 in the Supporting Information). A
comparison of the results obtained using the scaled and
nonscaled data revealed that the method’s overall property
reconstruction errors were much worse using the scaled rather
than the nonscaled data, with the initial overall error being
approximately 200% and Mn reaching an error of approx-
imately 1400%. Although this overall error did decrease with
increasing number of property measurements, many more
measurements were required using scaled data rather than
nonscaled data. For example, using scaled and nonscaled data,
12 and four measurements were required respectively before
the overall error decreased below 10%, and 16 and six
measurements were required before it decreased below 5%.
Furthermore, as shown in Figure 10, the chosen property sets
were very inconsistent. Often, the method selected, quickly
deselected, and then reselected properties. As such, the results
were much less robust for scaled rather than nonscaled data.

Thus, these results show that predictions made using
tailored-basis compressed sensing are quite sensitive to data
scaling and that nonscaled data reconstruct properties far more
accurately than scaled data. Although not reported herein, the
same analysis was performed for the same data scaled using a

~ %min
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Figure 11. (a) First 18 singular values and (b) corresponding cumulative energies of the SVD for differently scaled data sets.

standard-scaling approach (by subtracting the mean of the
property data before dividing by the standard deviation), which
also gave poor and unstable results.

To help explain why scaled data produced far worse
property reconstruction accuracies than nonscaled data, the
first 18 SVD singular values produced using nonscaled,
minmax-scaled, and standard-scaled data are plotted in Figure
11a. In addition, the plot also shows the respective cumulative
energies (indicating the fraction of the total sum achieved by
adding each subsequent singular value to all the previous ones)
for the different scaling approach (Figure 11b). For example,
for nonscaled data, the first singular value contributed
approximately 80% of the total sum of all the singular values.

When the SVD is used for reducing the number of data, the
magnitude of each singular value determines the degree to
which the original data set is represented by the corresponding
columns and rows of matrices U and V, respectively (Section
2.3). Therefore, if the first few singular values are much higher
than the remaining ones (i, they provide a very high
percentage of the cumulative energy), fewer columns and rows
of U and V, respectively, are required to accurately
approximate the original data set (similar to how in a Fourier
transform, certain frequencies might dominate most of the
others, such that the original signal can be accurately
approximated using only a few terms).

Similarly, when the SVD is used for compressed sensing, if
the first few singular values are dominant, far fewer property
measurements are required to accurately reconstruct proper-
ties. As such, as shown in Figure 11b, for nonscaled data, the
cumulative energy was already close to 1 when fewer than five
singular values (corresponding to fewer than five measure-
ments) were included. However, for both minmax- and
standard-scaled data, either 12 or 13 measurements,
respectively, were required to approximate a cumulative energy
of 1, which explains why the method performs far worse using
these data.

Finally, as for why the singular value distribution changes so
much when scaling the data, this a known (and primary)
downside of the SVD: it can be very sensitive to the data
format in X and depends heavily on the data’s coordinate
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system.28 Thus, when the columns in X are translated, rotated,
or scaled (which, of course, happens when a scaling
transformation is applied), all the resulting U, V, and X
matrices can change drastically (and often detrimentally),”® as
clearly revealed in the singular values shown in Figure 11a.
However, if the importance for data processing is considered
and the proposed method is consciously applied to consistently
generated and processed data, this SVD downside does not
necessarily impact the method’s practical applicability.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions. Because the characterization of plastic
properties is time-consuming and costly, only as few properties
as required should be measured. As such, data-driven
predictive methods have attracted considerable research
interest, as they allow for the prediction of unknown properties
based on known properties by directly learning (nonlinear)
correlations between properties from example data. This allows
them to be used to fill gaps in nonmeasured properties solely
based on the values of properties that have been measured.

In this work, one such data-driven method was demon-
strated for reconstruction of a large number of plastic
properties based on measurements of a much smaller subset
of these properties. The method was based on compressed
sensing using a tailored basis constructed from a limited set of
fully characterized plastic samples (for which all the properties
were measured). Tailored-basis compressed sensing enabled
the optimization of a set of properties to measure such that the
remaining nonmeasured properties can be estimated at
maximum accuracy and robustness. In contrast to many
other data-driven methods, the compressed-sensing framework
is easy to set up, requires no hyperparameter tuning, and can
accurately reconstruct properties from very few “training” data.
In addition, the use of a tailored basis allows for the efficient
optimization of the measured properties to reconstruct the
nonmeasured properties as accurately as possible.

The method was demonstrated using a data set comprising
42 ABS samples possessing a total of 18 measured properties.
One-half of this data set was used for developing the tailored-
basis SVD, while the other half was used for evaluating the
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property reconstruction accuracy. The use of this data set
revealed that when only six properties were measured (force at
peak, flexural and tensile moduli, MVI, Mn, and Charpy
impact), all 18 properties were reconstructed within an average
of 5% error (although some properties were more difficult to
reconstruct than others). By adding three additional properties
(energy to break, Vicat, and tensile elongation at rupture) to
the set of measured properties, increasing the number of
measured properties to nine, the error was further reduced to
below 3% on average.

The force at peak and flexural and tensile moduli were the
most important properties to measure using compressed
sensing, as they were always the first properties selected for
most analyses. On the other hand, the tensile elongation at
yield, strain at flexural strength, and displacement to peak were
typically selected last, most likely because these properties
were substantially correlated with many of the other properties
and, thus, provided less additional information for reconstruct-
ing properties.

An analysis of the effect of the data set size (used to develop
the tailored basis) on the property reconstruction accuracy
revealed that properties were accurately reconstructed using as
few as 16 samples. However, the use of too few samples
substantially reduced the property reconstruction accuracy, as
compressed sensing only allows for the optimization of as
many measurements as the number of samples used to develop
the tailored basis.

Finally, properties were the most accurately reconstructed
using unscaled rather than scaled data. Data scaling, such that
all the properties were in the range (0,1), detrimentally
affected the SVD, and the method’s property reconstruction
accuracy substantially dropped. Thus, to practically apply the
proposed method, the data should be carefully handled and
consistently gathered and used.

In theory, the proposed method only requires one to fully
characterize a specific plastic for a limited number of samples
(the exact number will, of course, vary); however, in as shown
in this work, approximately 20 samples were required to be
measured to accurately reconstruct the 18 properties. Of
course, this will initially incur substantial monetary costs and
time investment but must be performed only once. Moving
forward, according to the outcomes obtained by applying
compressed sensing, a substantially smaller set of properties
can be characterized to estimate the values of the other
nonmeasured properties, eventually saving considerable costs
and time. Additionally, if another plastic must be analyzed,
although the full characterization must be repeated for the
additional plastic, this is likely to be an upfront cost that will
eventually pay for itself in the long term.

4.2. Recommendations. The focus of this work has been
on optimizing individual properties to find the Dbest
combination of properties to measure and estimate the
remaining nonmeasured properties. However, in reality many
properties are measured simultaneously with a single test. For
instance, in a tensile test, the force at peak, displacement at
break, and displacement at peak are simultaneously measured.
Thus, in future work, the optimization of not only individual
properties but also entire tests would be interesting and could,
in turn, further reduce the requirement for certain equipment
and its associated costs.

In addition, the results of this work show that measurement
noise can substantially impact the reconstruction error. In
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future work, this effect should be investigated and
substantiated in a more detailed and structural manner.
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Data Availability Statement

Although the source code for implementing the proposed
compressed-sensing method is not publicly available, the
Electronic Supporting Information contains a detailed
description of the Python packages and versions used to
develop the method. In addition, a pseudocode snippet is
provided for the method’s core, covering everything from the
loading of the data to the reconstruction of the properties of a
single sample from a limited number of property measure-
ments. In addition, all the data produced and used in this study
are publicly available at the following repository: https://
github.com/poortjp/eABS_data_JCIM.
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