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ARTICLE INFO ABSTRACT

Handling Editor: D. Nance New high-resolution ID-TIMS geochronology of zircon from tuff horizons reveals a regionally traceable temporal
hiatus of ~ 3-10 Ma in sedimentation along the contact between the Middle-Upper Jurassic Walloon Coal
Measures (WCM) and the Upper Jurassic Springbok Sandstone (SS), Surat Basin, Australia. Undecompacted
sedimentation rates of 15-65 m.Ma ™! in the WCM drop to apparent sedimentation rates of 0 to 7 m.Ma ™! near
the WCM-SS transition, rising again to 15-51 m.Ma ™! during SS deposition. U-Pb geochronology identifies a
hiatus - either a cessation in sedimentation or an erosional event defining a regional unconformity — not
discernable from sedimentary features, highlighting the need for high-resolution geochronology in defining key
bounding surfaces in sequence stratigraphy of intracratonic basins. Determining the exact position of lithological
contacts and characterizing petrophysical properties of units below and above the WCM-SS transition are
particularly important in quantifying connectivity between the gas-bearing units below with regional aquifers
above the unconformity. As exploration for coal-seam and shale gas in intracratonic sedimentary basins expands
globally, identification of major stratigraphic transitions through high-resolution geochronology will help
assessing the economic potential and environmental vulnerabilities of such systems.

1. Introduction directly overlain by the Upper Jurassic and regional aquifer Springbok

Sandstone (SS) (Office of Groundwater Impact Assessment, 2021). The

Stratigraphic unconformities are notable temporal discontinuities in
the geological record, resulting from non-deposition or erosion driven
by tectonic activity, base level shifts, or climate change (Blackwelder,
1909; Miall, 2016). While unconformities constitute regional marker
horizons in sedimentary basins, identifying and tracing unconformities
in intracratonic basins can be challenging due to complex depositional
environments and the inherent spatial and temporal discontinuity of
fluvial sequences. The ~ 2500 m-thick Surat Basin, one of the most
prolific coal-methane provinces in the world (Fig. 1; Towler et al.,
2016), records terrestrial successions with minor marine incursions.
Coal and methane are primarily hosted in the Middle-Upper Jurassic
Walloon Coal Measures (WCM) (Fig. 1; Towler et al., 2016), which is
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SS contains sporadic coal seams also hosting gas resources, indicating
significant stratigraphic similarities between the WCM and the SS
(Rodger et al., 2019; Gaede et al., 2020). Importantly, the nature of the
WCM-SS transition poses environmental challenges since the degree of
reservoir interconnectedness between the units is difficult to resolve.
Protecting regional groundwater resources requires isolating the SS
when drilling coal-seam gas wells. Determining if the contact between
the two units is regionally correlated and whether it is marked by pet-
rophysical changes help to define the required depths of well isolation.
Previous investigations of the nature of the contact between the two
units using sequence stratigraphy (Hoffmann et al., 2009), biostratig-
raphy (Price, 1997; Mckellar, 1998), lithostratigraphy (Exon, 1976;
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Fig. 1. (A) Map of Surat Basin showing the major structures and well locations of this study. Red dots represent wells selected for the CA-TIMS geochronology, purple
dots and blue dots are wells from previous CA-TIMS geochronology studies (Wainman et al., 2018b; Sobczak et al., 2024). (B) Evolution of the Middle to Upper
Jurassic stratigraphic framework of the Surat Basin along with spore-pollen palynostratigraphy. Previous studies suggest a 5 Ma unconformity between the WCM and
Springbok Sandstone (Fielding, 1996). In contrast, recently published high-resolution geochronology using zircons from air-fall tuff beds suggests continuous
deposition between the two units, with a 4.5 Ma hiatus occurring only within the WCM (Wainman et al., 2018b).
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Green et al., 1997; Hamilton et al., 2014), detrital zircon LA-ICP-MS
geochronology (Hentschel, 2018; Andrade et al., 2023; Asmussen
et al., 2023), and local high-resolution ID-TIMS zircon U-Pb geochro-
nology (Wainman et al., 2018a; Wainman et al., 2018b) have signifi-
cantly advanced our understanding of the transition; however, some
issues remain unresolved. Similar lithological characteristics between
the WCM and the SS, longevity of bio-zones, lack of precision in detrital
zircon geochronology by laser-ablation ICP-MS analysis (Horstwood
et al., 2016), and paucity of high-resolution ID-TIMS U-Pb zircon
geochronology (Wainman et al., 2018b) make defining the WCM-SS
boundary at a regional scale a challenge. Here, new ID-TIMS U-Pb
zircon geochronology permits correlating tuff ages across the basin and
identifies a regional unconformity within the fluvial-dominated se-
quences, providing a more precise chronostratigraphic framework for
the Jurassic strata in the Surat Basin. Our approach and results also
outline the steps required to properly calibrate and correlate chro-
nostratigraphic successions in cratonic basins elsewhere.

2. Geological context

The Upper Triassic-Lower Cretaceous Surat Basin spans ~ 300,000
km? extending 450 km east-west and 800 km north-south across
southern Queensland and northern New South Wales, Australia (Exon,
1976; Cook et al., 2013). It hosts up to 2,500 m of sediments with
complex depositional histories that reflect an interplay between eustatic
sea level changes and climate, partially controlled by reactivation of
basement structures that border a downwarping basin (Cook et al.,
2013). Underlying geological structures reactivated throughout the
Jurassic impacted sedimentation, subsidence, and geometry of the Surat
Basin (Hamilton et al., 2014; He et al., 2021; Andrade et al., 2023).
There are numerous unresolved hypotheses for the origin of the Surat:
back-arc extension (Korsch et al., 1989), retro-foreland (Raza et al.,
2009; Babaahmadi et al., 2019), intracratonic sag (Fielding et al., 1996),
or dynamic platform tilting (Waschbusch et al., 2009; Foley et al., 2021).
The WCM and SS consist of similar lithologies, including lithic-quartzose
sandstones, siltstones, shales, carbonaceous mudstones, coals, and thin
ash-fall tuff layers, all deposited in a fluvial-lacustrine setting (Exon,
1966; Green et al., 1997; Hamilton et al., 2014). Despite the similarities,
the WCM contains a higher concentration of siltstones, shales, carbo-
naceous mudstones, tuffs, and, importantly, coal beds when compared
to the sandstone-dominated SS (Green et al, 1997). In Well Completion
Reports (WCR), the WCM-SS contact is demarked by petrophysical ap-
proaches (gamma-ray, resistivity, sonic or density logs) or the abun-
dance of stacked sandstones at the base of the SS (Green, et al., 1997;
Geological Survey of Queensland — GSQ Open Data (Well Completion
Reports). Thus, the position of this contact is not consistent across the
basin or among coal-seam gas operators. Despite evidence of widespread
volcanism during sedimentation, recorded by the presence of numerous
tuff beds, the location and nature of the volcanic source, whether intra-
or extra-basinal, remains contentious (Fielding et al., 1996; Wainman
et al., 2018b; Foley et al., 2021).

2.1. The WCM-SS transition

Some investigators suggest that the WCM-SS boundary marks a
major regional unconformity dated at ~ 163-157 Ma based on spore-
pollen assemblages (Price, 1997; McKellar, 1998). While Middle-Late
Jurassic biostratigraphy provides useful chronostratigraphic controls
on the transition from the WCM to the SS, uncalibrated biozones results
in large uncertainties that challenge placing a defined age on the tran-
sition between the two units. For that reason, other authors propose
continuous deposition across the two units (Exon, 1976; Green et al.,
1997; Wainman et al., 2018b). For some of these authors, the thicker and
more abundant coal beds in the WCM and the more prominent
sandstone-dominated horizons in the SS indicate two distinct deposi-
tional cycles, named Second and Third Sedimentary Cycles (Exon, 1976;
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Exon and Burger, 1981). Other investigators interpret erosional
unconformable surfaces at the base of the SS to represent local rather
than regional features because lithologies and siliciclastic facies are
similar across both units (Green et al., 1997; Wainman et al., 2018b).
Interestingly, Green et al. (1997) observed decreased gamma-ray read-
ings with increased resistivity at the contact, interpreting this as a po-
tential regional erosional surface, although they only noted local
depositional discontinuities. These apparent discontinuities vary
throughout the northern segment of the basin, and the lithological
similarities both above and below them makes it difficult to confidently
define the WCM-SS boundary (Wainman et al., 2018b; Asmussen et al.,
2023). High-precision zircon CA-TIMS geochronology of ash-fall tuffs
has refined the stratigraphic age of the Walloon Coal Measures (WCM),
indicating that this unit is Upper Jurassic rather than the previously
suggested Middle Jurassic (Wainman et al., 2018a). This approach ap-
pears ideally suited for addressing the chronostratigraphic questions
regarding the WCM-SS transition.

Recent U-Pb detrital zircon geochronology on lithic sandstones in-
dicates a lateral and vertical provenance change along the WCM-SS
contact. An increased contribution of Triassic material (235-225 Ma)
occurs towards the east (Andrade et al., 2023), and a short-lived regional
basement input is observed at the contact (Asmussen et al., 2023).
Although these recent studies have advanced the understanding of the
stratigraphy of the Surat Basin, additional high-precision geochrono-
logical data are required within the WCM-SS transition to better define
the nature of the stratigraphic boundary. As accurately determining the
boundary between the WCM and SS and understanding their inter-
connectivity is crucial for calibrating groundwater flow models and
assessing the impact of coal seam gas extraction on surrounding aquifers
(Kieft et al., 2015; Office of Groundwater Impact Assessment, 2016,
2019, 2021), we have placed additional effort in sampling and dating
regionally representative samples: 124 zircons from 25 additional tuff
beds from 10 regionally distributed wells.

3. Samples and methods

Detailed stratigraphic description of 10 drill-cores permitted identi-
fying and sampling 25 possible volcanic ash horizons from the northern
basin segment. After zircon separation and cathodoluminescence anal-
ysis, samples containing detrital zircons of plutonic origin were screened
out and 25 samples from 10 drill cores were deemed to represent true
ash falls containing volcanic zircons (Supplementary Material 1). High-
resolution geochronology by chemical-abrasion-isotope-dilution ther-
mal ionization mass spectrometry (CA-ID-TIMS) on 124 volcanic zircon
grains from the 25 samples, following established procedures outlined in
Supplementary Material 1, provides a comprehensive chronostrati-
graphic record for the northeastern part of the basin. These new high-
resolution results, combined with 34 published U-Pb CA-ID-TIMS tuff
ages for the WCM and SS intervals (Wainman et al., 2018a; Wainman
et al., 2018b), permit correlating tuff ages on the northern segment of
the basin. Apparent sedimentation rates for time-calibrated intervals or
units were estimated from basic age-depth relationships (depth 2-
depthl) + (age 2-age 1), without correcting for compaction (Fig. 2).

4. Results

The 124 high resolution U-Pb zircon dates obtained for 25 samples
from 10 wells sampled the WCM-SS transition (see Supplemental Ma-
terial 2) at various depths. The combined dataset clusters into two age
groups, with apparent hiatuses within the ~ 160-150 Ma interval
(Fig. 2; Supplemental Material 2). In the western segment of the basin, a
depositional hiatus of ~ 3.5 Ma is defined by two tuff units separated by
2.5 m of sediments in the Grafton Range 25 well (Fig. 3). In the more
centrally placed CCKML well, two tuff units separated by 7 cm of sedi-
ments record zircon U-Pb ages of 157.41 + 0.04 and 151.13 + 0.04 Ma
for two ash layers, representing a gap in sedimentation or an erosive
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Fig. 2. Depth versus age graph illustrates the sedimentation rate for the WCM and SS. Both units record sedimentation rates in the 15 — 65 m.Ma ' range before and
after the unconformity. However, apparent sedimentation rates drop to ~ 0-7 m.Ma ™! in the interval containing the inferred unconformity.

phase that lasted ~ 8.5 Ma. In the eastern segment of the basin —
Longswamp 34 well — two tuff units separated by 1.5 m of sediments
represent an age gap of ~ 6 Ma (157.25 + 0.03 to 150.46 + 0.03 Ma).
Less well-defined sedimentation hiatuses occur in six other wells
(Fig. 3). In those wells, thin sedimentary sequences exist in the 160-150
Ma interval, but apparent sedimentation rates drop precipitously (4.17
m.Ma~! at Pine Hills 380; 1.43 m.Ma~! at Byme Creek; 1.61 m.Ma~! at
Talinga; 7.57 m.Ma™! at Hopeland 27; 2.38 m.Ma™! at Plainview 2A;
Fig. 3) from the estimated undecompacted sedimentation rates of 15-65
m.Ma~! during the WCM and 15-51 m.Ma~! during SS deposition
(Supplementary Material 2; also Wainman et al., 2018b).

5. Discussion

5.1. CA-ID-TIMS U-Pb tuffs zircon ages and interpretation of the WCM-
SS unconformity

The presence of recognizable — based on color, texture, clay miner-
alogy, zirconium content (measured by hand-held XRF), and sudden
appearance within organic-rich horizons - tuff beds, the effective
screening of sedimentary zircons not associated with ash falls, and the
comprehensive high-resolution geochronology carried out on volcanic
zircons in this study clearly identify changes in sedimentation at or near
the WCM-SS contact. The nearly complete absence of sediments between
two adjacent tuff units of very distinct ages in three wells — Grafton
Range 25, CCKML 01, and Longswamp 34 (Fig. 3) — is best explained by
an unconformity caused by either non-deposition or erosion. The sedi-
mentation gaps in these three wells define a diachronous unconformity
across the basin, and we interpret that unconformity as the stratigraphic
contact between the WCM-SS.

In other wells, located in both eastern and western segments of the
basin, sedimentation hiatuses also occur but are less well defined
because thin sedimentary units occur between the two tuff beds defining
the age gaps (Fig. 3). The thin sedimentary units in these intervals could
be possibly interpreted as condensed sections, representing periods in
the history of the Surat basin when sedimentation slowed significantly,
or they could alternatively result from differential compaction (Shields
et al., 2017). Differential compaction in this interval alone is unlikely
because the lithologies in those units are very similar to units immedi-
ately above and below them. A period of significantly slowed
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sedimentation, as opposed to non-sedimentation or erosion, is possible;
but to determine if erosion or slowed or non-sedimentation occurred
along all contacts, we need greater sampling density and additional
geochronology along the WCM-SS contact. A likely scenario in the wells
that contain thin sedimentary layers between the disparate tuff ages is
that in these wells we most likely did not sample the exact tuff units that
truly define the unconformity (i.e., the last tuff horizon in the WCM and
first tuff within the SS), as suggested by the following observations: 1)
large variations in apparent sedimentation rates are present in this group
of wells without significant trends across the basin; 2) a verified hiatus is
documented in a well (Longswamp 34) adjacent to wells showing
apparent sedimentation rates of 7.57 and 2.38 m.Ma ™! (Plainview 2 A
and Hopeland 27; Fig. 3); 3) undated tuff beds (Fig. 3) are present within
the sedimentary interval where the apparent unconformity should
occur. Thus, for those wells we have constrained the approximate in-
terval but not precisely identified the unconformity. Significantly, the
abrupt decrease in apparent sedimentation rates, and the definition of
true unconformities in at least three wells clearly indicate that an un-
conformity exists within the intervals illustrated in Fig. 3, and that this
unconformity must define the WCM-SS contact. The exact position and
ages of the unconformities at each of the other wells remains to be
determined through more detailed sampling and geochronology. Also
importantly, the geochronological age gaps identified in this study fall
within those found in previous research; however, these earlier studies
either applied lower-resolution methods (e.g., Andrade et al., 2023;
Asmussen et al., 2023) or did not sample the ash beds immediately
adjacent to the hiatuses identified here. Importantly, high resolution
geochronology by Wainman et al. (2018b) also measured an ~ 4.5 Ma
age gap (157.57 + 0.05 to 152.99 + 0.06 Ma) in the Alderley 1 well,
which the authors interpreted as an unconformity within the WCM. In
contrast, we identify the recurrent age hiatuses across the basin as the
WCMS-SS contact.

Our geochronologically-defined unconformity is near but slightly
younger than a proposed unconformity — ~163-158 Ma — previously
identified based on U-Pb methodology, its more robust calibration, and
the increased sampling density presented here permit better defining the
age gaps along the WCM-SS contact.

Operationally important, in some places the U-Pb age gap corre-
sponds to the WCM-SS boundary as defined in well completion reports
(e.g., Grafton Range 25), but in other places the U-Pb age gap falls above
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(e.g., CCKM 01) or below (e.g., Byme Creek 02) it (Fig. 3). The
discrepancy arises from the fact that the WCM-SS contact has been
traditionally identified either by petrophysical approaches (gamma-ray,
resistivity, sonic or density logs) or by the increased presence of stacked
sandstones at the base of the SS (Green, et al., 1997; Well Completion
Reports). Defining stratigraphic units based on physical properties has
led to conflicting views on the position of the WCM-SS contact (Green
et al., 1997; Wainman et al., 2018b). To be consistent with modern
approaches in chronostratigraphy (Gradstein and Agterberg, 2022;
Miall, 2022), we propose that age gaps as measured in this study are the
most robust identifiers of major stratigraphic boundaries in the northern
segment of the Surat Basin. Thus, the WCM-SS boundary is a regional
and diachronous unconformity defined by an age gap between ~ 160
and ~ 150 Ma. Exact chronostratigraphic positions of the gaps are
precisely defined for three wells (Fig. 3); for the other wells, only
approximate positions are defined by the U-Pb zircon ages, as shown in
Fig. 3. Our geochronologically-defined stratigraphic contacts provide
the opportunity for better calibrating petrophysical discontinuities
across the basin and possibly using the cheaper and more readily
available petrophysical data to better define the WCM-SS regionally (e.
8., Andrade, 2024).

The regional unconformity is diachronous along the northern
segment of the Surat Basin, and it probably reflects differential basin
uplift and/or subsidence — as suggested by changes in provenance —
during the transition between the WCM and the SS (Babaahmadi et al.,
2019; Andrade et al., 2023; Asmussen et al., 2023). An important
consequence of this study is that we now have a chronostratigraphically
calibrated reference horizon — the unconformity between the WCM and
the SS — to evaluate the post Kimmeridgian tectonic and structural
evolution of the Surat Basin.

Another important implication is that the diachronous nature of the
unconformity indicates that Surat Basin sedimentation resumed in the
west before sediments started to accumulate again in the east. A possible
explanation for this feature is that the eastern section of the basin
remained more elevated longer than its western counterpart, focusing
sediment supply into the western segment of the basin from 156.12 +
0.05 to 152.99 + 0.06 Ma, when sedimentation on the eastern segment
of the basin resumed. Further support for this interpretation is the brief
influx of hinterland material at the WCM-SS transition, which is more
prominently observed along the western margin of the basin (Asmussen
et al., 2023). Alternatively, more complex sedimentation patterns may
have resulted in resumption of sedimentation irregularly across the
northern segment of the basin. Only more detailed high-resolution
geochronology — provided tuff units can be identified and sampled —
can resolve this issue. Importantly, sediment sources also appear to have
shifted after the unconformity, as suggested by the increase in 235-225
Ma detrital zircons in the western segment of the basin immediately
after the unconformity (Andrade et al., 2023; Asmussen et al., 2023).

Curiously, the unconformity identified by geochronology does not
appear to result in any obvious change in sediment type, composition, or
texture. In the wells we investigated (Fig. 3), the unconformity sits
within variably coarse to very fine-grained lithic sandstones, siltstones,
carbonaceous mudstones, coal-bearing units, + tuff beds, without
drastic changes in sediment type, depositional feature, or cementation
below or above the unconformity, as documented in Andrade (2024).
Therefore, defining the WCM-Springbok chronological contact solely
based on the occurrence of the last thick-coal bed or first amalgamated
sandstones is only feasible at a few locations, if at all.

5.2. Possible Causes of the WCM-SS unconformity

The Upper Jurassic is a period of major global tectonic reorganiza-
tion (Seton et al., 2012), such as the “Argoland breakup” event along
northwestern Australia (Gallagher et al., 1994; Turner et al., 2009),
increased magmatic activity in eastern Gondwana (Mortimer et al.,
2015; Wainman et al., 2019), and changes in subduction dynamics along
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eastern Australia (Korsch et al., 2009; Waschbusch et al., 2009). Intra-
plate faulting in eastern Australia — e.g., the 162-152 Ma Demon fault —
probably drove deformation within intracratonic basins and resulted in
differential uplift of faulted blocks within these basins (Babaahmadi
et al., 2019). The Upper Jurassic WCM-SS unconformity defined here —
~160 to ~ 150 Ma - is coeval with those events.

The diachronous unconformity and differential basin infilling
defined in this study may have resulted from this heightened Upper
Jurassic tectonism.

5.3. Implications for the chronostratigraphy of intracratonic sedimentary
basins

High-resolution zircon U-Pb geochronology has become a necessary
tool in the calibration of global biostratigraphy (Vail et al., 1984) and
climatic excursions (Grocke, 2002), but to our knowledge it is not often
used in chronostratigraphic calibration in hydrocarbon-rich intra-
cratonic basins. Such intracratonic basins, such as the Solimoes and
Parnaiba Basins, Brazil, the Michigan and Williston Basins, USA, and the
Murzuk Basin, Libya, are examples of systems where stratigraphic
complexities and differential compaction hinder proper regional corre-
lation of hydrocarbon-bearing strata (Kingston and Matzko, 1995;
Davidson et al., 2000; Burgess, 2019). For example, the lateral vari-
ability of the fluvial-dominated depositional system of the Early Devo-
nian Murzuk Basin, combined with multiple regional tectonic events
that drove uplift and produced unconformities, complicates regional
correlation of hydrocarbon rich strata basinwide (Najem et al., 2015).
On the other hand, the Solimoes and Parnaiba Basins exhibit intense
magmatic activity that complicates thermal histories and hamper
regional correlations of hydrocarbon-bearing strata (Filho et al., 2008).
Thus, the absence of reliable regional age controls poses significant
challenges in accurately assessing the hydrocarbon potential and envi-
ronmental sensitivities in these basins. Refining their chronostrati-
graphic framework with ID-TIMS U-Pb geochronology of volcanic
zircons from tuff horizons, as illustrated here, is the most robust
approach for resolving the chronostratigraphic evolution of intra-
cratonic basins that in places may lack precise biostratigraphic zones to
permit the high-resolution chronostratigraphy commonly carried out in
open marine basins.

6. Conclusions

High-resolution ID-TIMS geochronology of zircons from interbedded
tuffs reveal a regional unconformity of variable duration - ~3 to 10 Ma—
at the Jurassic Walloon Coal Measures- Springbok Sandstone transition
in the Surat Basin, Australia. Apparent sedimentation rates drop
abruptly from ~ 15-65 m/Ma ! below the unconformity to 0-7 m/Ma !
near the unconformity, rising again to 15-51 m/Ma ! above it. The
exact position of the unconformity is identified in three wells, one in the
west, one in the center, and one in the east segment of the basin, con-
firming that the unconformity is regional. The position of the uncon-
formity is approximated in several other wells. The WCM-SS
unconformity is diachronous across the northern segment of the basin,
possibly reflecting differential deformation patterns or complex sedi-
mentary supply systems. Major shifts in global plate reorganization and
increased tectonic activity in eastern Gondwana are contemporaneous
with the Middle-Upper Jurassic unconformity identified in the Surat
Basin.
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