
Original article

Feasibility of digital phenotyping based on continuous glucose monitoring 
to support personalized lifestyle medicine in type 2 diabetes

Willem J. van den Brink a, Tim J. van den Broek a, Suzan Wopereis a, Sonia Difrancesco a,  
Frans A.L. van der Horst b, Iris M. de Hoogh a,c,*

a Unit Healthy Living and Work, Netherlands Organization for Applied Scientific research (TNO), Sylviusweg 71, 2333 BE Leiden, the Netherlands
b Department of Clinical Chemistry, Reinier Medical Diagnostic Center, Reinier de Graafweg 7, 2625 AD Delft, the Netherlands
c Department of Internal Medicine, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands

A R T I C L E  I N F O

Keywords:
Continuous glucose monitoring
Digital biomarkers
Personalized medicine
Diabetes subtypes
Oral glucose tolerance test

A B S T R A C T

Objectives: Type 2 diabetes is a highly prevalent age-related chronic condition, with complex and heterogeneous 
pathogenesis. A 5-point oral glucose tolerance test can identify type 2 diabetes subtypes or “diabetypes” based on 
the degree of insulin resistance in muscle and/or liver, and beta-cell dysfunction. Due to its costly and invasive 
nature, the oral glucose tolerance test is not scalable. Presuming that differences in glucose and insulin dynamics 
manifest in continuous glucose monitoring profiles, we explore the potential of continuous glucose metrics to 
replace the oral glucose tolerance test for diabetyping.
Study design: In a prospective intervention study, 41 people with type 2 diabetes on lifestyle and/or metformin 
treatment wore a continuous glucose monitor during 3 control periods of 4 days. During each control period, 
participants underwent a 5-point oral glucose tolerance test after an overnight fast.
Main outcome measures: Continuous glucose monitoring data from the control periods, excluding the day of the 
oral glucose tolerance test, was retrospectively analyzed for associations with diabetypes, as well as Spearman 
correlations between bootstrapped continuous glucose features, including physiology-based and other time- 
series features, and oral glucose tolerance metrics.
Results: Significant associations were observed between continuous glucose metrics (e.g., low and high blood 
glucose index, eA1c, and glucose excursions) and oral glucose tolerance metrics (e.g., 2-h glucose, disposition 
index, insulinogenic index). Furthermore, data-driven metrics (e.g., maximum shift, lumpiness) showed more 
selective correlations, indicating that data-driven metrics may contain additional information associated with 
oral glucose tolerance metrics.
Conclusions: These results indicate the potential of continuous glucose monitoring to replace the oral glucose 
tolerance test for diabetyping, driving proactive and personalized (lifestyle) treatment.
Netherlands trial register: NL7848

1. Introduction

Type-2 diabetes (T2D) is a chronic condition, associated with diffuse 
complications [1] and an increased risk of premature death [2], and 
affecting nearly 500 million people globally in 2021 [3]. The prevalence 
of T2D is projected to rise to over 700 million people in 2045. The 
introduction of continuous glucose monitoring (CGM) has been a game 
changer allowing real-time and continuous insight into glucose 

dynamics in relation to diabetes management. Utilization of CGM was 
shown to improve clinical and economical outcomes through improved 
diabetes management, in particular for people with T1D and T2D 
treated with multiple daily insulin injections [4]. Not surprisingly, CGM 
has recently been included in the American Diabetes Association 
guidelines to serve as a minimally invasive solution to enhance diabetes 
management [5].

Indeed, CGM allows for more granular insight into glycemic health 
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and diabetes monitoring than traditional fasting glucose and HbA1c 
measurements can provide. Insight in CGM parameters, including time 
in range (TIR) and average glucose, can support self-management and 
shared decision making for people with diabetes and their healthcare 
professionals. In addition, integration of CGM and consumer-generated 
lifestyle data can drive personalized lifestyle management. Interestingly, 
CGM has the potential to identify novel T2D subgroups based on tem
poral glucose patterns [6]. In 2018, Ahlqvist et al. identified and char
acterized five phenotypes and their association with disease progression 
and complications in age-related diabetes [7]. This was based on six 
variables, i.e., glutamate decarboxylase antibodies, age at diagnosis, 
BMI, HbA1c, β-cell function and insulin resistance. Insulin resistance is 
an early metabolic disturbance that precedes the development of diverse 
metabolic diseases. Due to heterogeneity in the primary organ affected 
by insulin resistance different metabolic phenotypes can be distin
guished [8]. These T2D subgroups, or ‘diabetypes’, based on their 
different underlying etiology in insulin resistance and beta-cell function, 
respond differently to lifestyle interventions, highlighting the impor
tance of personalization [9–11]. A 5-point oral glucose tolerance test 
(OGTT) can identify twelve diabetypes, by analyzing hepatic insulin 
resistance (HIR), muscle insulin resistance (MIR) and beta-cell 
dysfunction and using these data combined with fasting insulin to 
assign participants to one of these diabetypes [12,13].

Unfortunately, the OGTT is costly and time consuming for the, and 
intrusive and invasive for the subject, therefore, difficult to implement 
in health care at scale. Moreover, it only provides an episodic assessment 
and has shown to have a significant inter-test variation [14]. Presuming 
that the different glucose and insulin dynamics manifest in CGM pro
files, we here aim to explore the potential of CGM-based digital bio
markers for diabetyping following post-hoc analysis of the Gluco-Insight 
trial. Taking OGTT data from this trial, we defined the diabetypes ac
cording to the methods described earlier [12,13] to explore the differ
ences in CGM-based metrics among them. Additionally, correlation 
analyses were performed to compare the underlying OGTT-metrics with 
the CGM-metrics. This study anticipates providing a first indication for 
future CGM-based diabetyping, which after further validation could be 
used to support personalized (lifestyle) treatment.

2. Methods

2.1. Clinical study and data selection for retrospective analysis

Data from the Gluco-Insight study were used for retrospective anal
ysis. In short, 41 individuals with T2D using lifestyle and/or metformin 
for diabetes management were included. Eligibility criteria included a 
body mass index (BMI) below 40 kg/m2 and no previous insulin treat
ment. The study consisted of eleven 4-day self-monitoring periods, 
which included 3 control periods and 8 lifestyle intervention periods, 
each separated by a 7-day washout period. The control periods consisted 
of self-monitoring during habitual daily life. During each self- 
monitoring period participants used a CGM system (Dexcom G6, Dex
com Inc., San Diego, USA), which measured the amount of glucose in 
interstitial fluid every 5 min and transformed these data into estimated 
blood glucose levels. Participants applied the CGM sensor one day 
before the start of each monitoring period. During each control period 
(week 2, 13 and 24), participants came to the clinic after an overnight 
fast for an OGTT. The study protocol was approved by the Medical Ethics 
Committee Brabant (NL70771.028.19), performed in accordance with 
the Declaration of Helsinki and good clinical practice and registered at 
the Netherlands Trial Register: NL7848. All participants provided writ
ten informed consent.

2.2. Diabetyping

During the OGTT, venous blood samples were collected before and at 
30, 60, 90 and 120 min after consumption of a water solution containing 

75 g glucose. The glucose and insulin response were used to calculate 
three indices: (1) hepatic insulin resistance index (HIRI); (2) muscle 
insulin sensitivity index (MISI); and (3) disposition index (DI) as a 
measure of pancreatic beta-cell function (BCF) [15,16]. See Supple
mentary File 1A for calculations. Taking these indices (HIRI, MISI, and 
DI) and combining this with fasting insulin results in a total of 12 distinct 
diabetypes (Fig. 1) [11]. For data analysis, only diabetypes with sample 
sizes n > 10 were included.

2.3. CGM feature extraction

To create features from CGM data, we processed the raw CGM data 
and extracted a wide range of features. For this, we only retained control 
period days with a full set of 288 data points per day (5 min sample 
frequency). The CGM data was then organized by subject and date. We 
applied a series of functions to each group to calculate various 
physiology-based and other time-series features. The physiology-based 
features are clinically-validated metrics of glucose and glucose vari
ability and encompass the average daily risk range (ADRR), estimated 
A1c (eA1c), interday coefficient of variation, interday standard devia
tion, J-index, mean amplitude of glycemic excursions (MAGE), low 
blood glucose index (LBGI), high blood glucose index (HBGI), time in 
range (TIR), time outside range (TOR), percentage in range (PIR), per
centage out range (POR). Physiology-based features were extracted 
using the cgmquantify package [17]. As CGM devices can measure a rich 
time-series dataset of interstitial glucose levels, time-series features were 
calculated to capture information about glucose variability and dy
namics that may not be represented by traditional clinically validated 
measures. Time-series features were calculated using the R package 
tsfeatures [18]. Details on the extracted features are provided in Sup
plementary File 1B.

2.4. Statistics

All statistical analysis and visualizations were performed in R, 
version 4.1.2. ggplot2 was used for all visualizations [19,20].

2.5. Ambulatory glucose profiles

To visualize ambulatory glucose profiles, we employed quantile 
regression (package quantreg) with periodic B-splines (package pbs), 
which are particularly suited for modeling cyclical glucose fluctuations 
[21,22]. Our plots show median glucose values and variability across the 
selected diabetypes with a sample size >10.

2.6. Bootstrapped Dunn-test

We included CGM data within an 8-day period surrounding each 
OGTT test date, while excluding CGM readings from the exact days of 
OGTT tests. This led to a dataset where each OGTT-derived metric was 
associated with several days of CGM data. We utilized a bootstrapping 
method to manage the multiple CGM data points corresponding to a 
single OGTT metric. This involved repeatedly resampling and analyzing 
randomly selected matched pairs of CGM and OGTT data, enabling 
statistical examination of relationships between the two datasets. Each 
subset included only one pair of CGM and OGTT data per subject, to 
maintain independence between samples. This process was replicated 
500 times, each time creating a distinct data subset for analysis.

For each subset, we employed the a non-parametric pairwise statis
tical (package rstatix) to evaluate differences in metrics among the 
selected diabetypes (n > 10) within our dataset [23]. Each diabetype 
classification of a subject was associated with several days of CGM 
metrics. Mirroring the approach used for correlation analysis, we 
generated 500 subsets by randomly selecting a unique pair of data points 
for each subject for every subset. We then calculated the mean test 
statistics and associated p-values from the generated Dunn tests.
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2.7. Bootstrapped Spearman correlations

Following a similar rationale and procedure as used for Dunn test, we 
calculated Spearman correlations between the CGM and OGTT metrics 
on the full dataset. In each iteration, we also generated a set of null 
correlations, which were compared with the actual correlations to 
determine if the observed relationships were statistically significant. 
This was achieved by randomly shuffling the values within each subset 
prior to correlation calculation. The shuffling of data removes any 
original relationships between variables, creating a baseline of ‘null’ 
correlations.

Finally, we aggregated actual and null correlations from all iterations 
and then calculated the mean correlations and their corresponding p- 
values. In this context, a p-value represents the chance of observing an 
equally strong correlation under the hypothesis that CGM and OGTT 
metrics are uncorrelated. Thus, a low p-value indicates that a correlation 
is unlikely to be coincidental.

2.8. Mutual information heatmap

Mutual information between all pairs of time series features was 
calculated using the infotheo package [24]. A shrinkage estimator was 
used for increased robustness against noisy estimates. A distance matrix 
was calculated from the mutual information matrix by subtracting each 
element of the mutual information matrix from the maximum value in 
the matrix. Density-based spatial clustering of applications with noise 
(DBSCAN) was performed on this distance matrix using the dbscan 
package to identify clusters of features with high mutual information 
[25]. DBSCAN was chosen because it is robust to noise and does not 

force all points into a cluster, allowing for the identification of features 
with unique information content.

3. Results

3.1. Study population

Table 1 shows baseline characteristics of the study population 
included for retrospective data analysis. The study population 
comprised 41 participants with an average age of 62 years and 46 % 
being female. BMI was 29.1 kg/m2 (SD 3.8 kg/m2) and average diabetes 
duration since diagnosis was 9.7 years (SD 6.5 years). A total of 118 
OGTTs were available for retrospective analysis, with an associated 3 
valid CGM days per OGTT on average (Table 2). Diabetypes with a total 
sample size >10 (from all three visits) included the MB-HIR phenotype 
(n = 54; moderate beta cell function and liver insulin resistance, but not 
muscle insulin resistance), MB-HMIR phenotype (n = 16; moderate beta 
cell function, liver insulin resistance, and muscle insulin resistance 
combined), and PB phenotype (n = 20; poor beta cell function, without 
organ insulin resistance). Albeit that the sample sizes at baseline are too 
small to allow for statistical comparison, notable differences in baseline 
characteristics between the MB-HIR and MB-HMIR phenotypes, as 
compared to the PB phenotype were the duration of diabetes (8.9 and 
9.5 vs. 13.0 years) and BMI (31.0 and 28.2 vs. 24.3 kg/m2) (Table 1). 
Baseline HbA1c concentrations were 48.8 (SD = 6.08), 67.3 (SD = 23.8), 
and 74.4 (SD = 13.5) mmol/mol in the MB-HIR, MB-HMIR and PB 
phenotypes, respectively.

Differences in OGTT profiles in the total data sample were observed 
among the selected diabetypes, with a faster decline in glucose in the 

Fig. 1. Overview of the determination of the 12 distinct diabetypes. Marked diabetypes were selected for data analysis. NB: normal beta-cell function; MB: moderate 
beta-cell function; PB: poor beta-cell function; HIR: hepatic insulin resistance; MIR: muscle insulin resistance; HMIR: hepatic and muscle insulin resistance.
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MB-HIR phenotype as compared to the MB-HMIR phenotype, and the 
highest glucose peak in the PB phenotype (Fig. 2). The MB-HIR pheno
type showed the highest insulin release, followed by the MB-HMIR 
phenotype.

3.2. CGM profiles differ among diabetypes

Significant differences in CGM profiles and metrics were observed 
among the selected diabetypes. The MB-HMIR phenotype showed 
increased glucose levels and glycemic variability (Fig. 3, upper panel) as 
compared to the MB-HIR phenotype. This observation was confirmed by 
significantly higher levels of ADRR, eA1c, HBGI, J-index, and MAGE, 
and lower levels of LBGI (Fig. 3, lower panel, p < 0.05), suggesting that 
muscle insulin resistance influences these parameters by increasing 
glucose fluctuations, but also basal glucose levels in the context of 
moderate beta cell function and hepatic insulin resistance. The PB 
phenotype presented with higher basal glucose levels, and even more 
elevated levels during the night (Fig. 3, upper panel). The resulting CGM 
metrics were positioned between the other two diabetypes, showing a 
significant increase of eA1c, HBGI, and MAGE, and decrease in LBGI as 
compared to the PB-HIR phenotype (Fig. 3, lower panel, p < 0.05). Other 
features did not significantly differ among the diabetypes.

3.3. CGM features correlate with OGTT-derived metrics

Further exploration of physiology-based CGM features revealed sig
nificant Spearman correlations in the bootstrapped datasets (also 
including diabetypes with n < 10) with several OGTT-derived metrics, 
including disposition index, insulinogenic index, and insulin AUC, as 
well as standard clinical glycemic markers such as fasting glucose, 2-h 
glucose, and HbA1c (Fig. 4).

Among the features, ADRR, eA1c, HBGI, J-index, MAGE, and LBGI 
stood out due to their consistent correlations with many OGTT metrics 
and clinical glycemic variables. ADRR, eA1c, HBGI, J-Index and MAGE 
all showed significant positive correlations with fasting glucose, 2-h 
glucose, and HbA1c, and negative correlations with disposition index, 
insulinogenic index, and insulin AUC. Contrastingly, LBGI (Low Blood 
Glucose Index) was found to be significantly negatively correlated with 
fasting glucose (ρ = − 0.654, p < 0.001), 2-h glucose (ρ = − 0.540, p <
0.001), and HbA1c (ρ = − 0.577, p < 0.001), indicating its sensitivity to 
lower glucose values. It also showed positive correlations with the 
disposition index (ρ = 0.313, p = 0.038), insulinogenic index (ρ = 0.401, 
p = 0.012), and insulin AUC (ρ = 0.510, p = 0.004). Intraday SD only 
showed a significant correlation with HbA1c (ρ = 0.36, p = 0.02). 
Interestingly, both TIR and CV, core CGM metrics that are recognized in 
diabetes guidelines, showed no significant association with OGTT met
rics (p > 0.05).

On the other hand, specific non-physiology-based time-series 

Table 1 
Baseline characteristics.

Total sample 
(n = 41)

MB-HIR 
(n = 18)

MB-HMIR 
(n = 6)

PB (n 
= 4)

Demographics
Age [years], mean (SD) 62.3 (7.2) 59.3 (6.3) 66.5 (7.1) 63.2 

(9.0)
Female, n (%) 19 (46.3 %) 7 (39 %) 2 (33 %) 1 (25 

%)

Clinical characteristics
BMI [kg/m2], mean 
(SD)

29.1 (3.8) 31.0 (3.4) 28.2 (2.5) 24.3 
(3.1)

Duration of diabetes 
[years], mean (SD)

9.7 (6.5) 8.9 (6.8) 9.5 (6.4) 13.0 
(8.5)

Treatment, n (%)
Exercise and diet 16 (39 %) 4 (22 %) 3 (50 %) 1 (25 

%)
Metformin 14 (34 %) 7 (39 %) 2 (33 %) 2 (50 

%)
Both 11 (27 %) 7 (39 %) 1 (17 %) 1 (25 

%)

MB-HIR: moderate beta-cell function and liver insulin resistance; MB-HMIR: 
moderate beta-cell function and liver and muscle insulin resistance; PB: poor 
beta-cell function, without organ insulin resistance.

Table 2 
Total data sample characteristics.

Sample (n =
118)

Observational
Total number of OGTT observations, N 118
Total number of OGTT observations per person, median (min, 
max)

3 [2,3]

Total number of CGM days per person, median (IQR) 8 [6, 10]
Number of included CGM days per OGTT, within 8 days from 
OGTT, median (IQR)

3 [3, 4]

Diabetypes, > ± 10 prevalence, n (%)a

Moderate beta-cell function and liver insulin resistance (MB-HIR) 54 (46 %)
Moderate beta-cell function and liver and muscle insulin 
resistance (MB-HMIR)

16 (14 %)

Poor beta-cell function, without organ insulin resistance (PB) 20 (17 %)

a For statistical comparison of CGM-features among the different diabetypes, 
only diabetypes with a sample size >10 were selected to ensure enough power. 
Therefore, the total number of diabetypes does not add up to 118.

Fig. 2. Glucose (mmol/L) and insulin (mU/L) responses after OGTT administration in three diabetypes (MB-HIR, MB-HMIR, and PB). Only diabetypes with a sample 
size >10 were included in the analysis. Data is presented as the mean concentration at each time point during the OGTT, with error bars representing the interquartile 
range. MB-HIR = moderate beta cell function & liver insulin resistance; MB-HMIR = moderate beta cell function, liver insulin resistance & muscle insulin resistance; 
PB = low.
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features such as Lumpiness and Max_KL_shift showed more selective 
correlations (Fig. 5). Lumpiness was significantly correlated with 
disposition index (ρ = 0.35, p = 0.03) and 2-h glucose (ρ = − 0.364, p =
0.018), indicating its relevance in assessing these specific metrics. 
Max_KL_shift, instead was correlated with 2-h glucose (ρ = − 0.329, p =
0.034) and HbA1c (ρ = − 0.29, p = 0.05). A substantial number of time- 
series features, such as Time KL shift and Max var. shift, show no sig
nificant correlation with OGTT-derived standard clinical glycemic 

metrics, and physiology-based features. For instance, the correlation 
between J-index and Time KL shift is very close to zero (ρ = − 0.0995), 
indicating no meaningful relationship.

These findings show the potential of certain CGM features, like 
ADRR, eA1c, HBGI, J-index, and MAGE, as indicators for a range of 
OGTT-derived and standard clinical glycemic metrics, while features 
like Lumpiness and Max_KL_shift may provide more targeted insights. A 
substantial number of other time-series features, such as Time KL shift 

Fig. 3. Differences of CGM profiles and features in comparison to diabetypes. Only diabetypes with a sample size >10 were included in the analysis. The upper plots 
show 24-h CGM profiles for the different diabetypes within 8 days from the OGTT, with shaded bands indicating the range between pairs of quantiles. The lower plots 
show statistically significant differences among the diabetypes in six CGM-derived features based on bootstrapped 24-h CGM profiles. MB-HIR = moderate beta cell 
function & liver insulin resistance; MB-HMIR = moderate beta cell function, liver insulin resistance & muscle insulin resistance; PB = low beta cell function without 
organ insulin resistance. ADRR: average daily risk range; eA1c: estimated A1c; HBGI: high blood glucose index; J-index: calculated from the mean blood glucose and 
SD, LBGI: low blood glucose index; MAGE: mean amplitude of glycemic excursions.
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and Max var. shift, show no significant correlation with OGTT-derived 
and standard clinical glycemic metrics.

The large overlap in physiology-based features correlating with 
OGTT metrics and clinical glycemic variables is reflected by the high 
mutual information between these physiology-based features, as visu
alized in a heatmap (Fig. 6), whereas there is much less redundancy in 
some non-physiology-based features, such as Lumpiness and 
Max_KL_shift.

4. Discussion

T2D diabetypes differentially respond to lifestyle interventions due 
to variations in underlying metabolic dysregulation. A five-point OGTT 
can identify these diabetypes by analyzing hepatic- and muscle insulin 
resistance in combination with beta-cell dysfunction. However, the 
OGTT is burdensome and invasive, and therefore difficult to implement 
at scale. The purpose of this work was to explore the differences in CGM- 
metrics among different diabetypes and in correlation with indices un
derlying diabetyping. This supports the potential of less-invasive CGM- 
based digital phenotyping as an alternative for the OGTT, allowing for 
continuous and scalable diabetyping in daily contexts. >100,000 CGM 

data points and 118 OGTT responses were retrospectively analyzed from 
a total of 41 people with T2D. Significant associations were observed 
between the diabetypes and OGTT-derived metrics and CGM-based 
metrics, underlining the potential of CGM as an alternative for OGTT 
based diagnosis and phenotyping.

The three selected diabetypes, MB-HIR, MB-HMIR and PB showed 
differential glycemic profiles and OGTT responses. These differences are 
explained by differences in organ specific insulin resistance and insulin 
production capacity in the beta-cells between diabetypes [26]. In the 
MB-HIR diabetype increased basal glucose and insulin levels and a larger 
initial rise in glucose levels are to be expected, because of increased 
gluconeogenesis by the liver driven by hepatic insulin resistance. In the 
MB-HMIR diabetype, both muscle and liver suffer from insulin resis
tance, resulting in higher basal glucose levels as well as decreased 
clearance after meals. In this diabetype, glucose may not be sufficiently 
cleared from the blood before the next meal occurs, resulting in an up
wards spiral with a higher steady state after each meal moment. This is 
also reflected in the significantly higher HBGI, ADRR and eA1c as 
compared to the MB-HIR diabetype. In the PB-diabetype, not a lack of 
insulin sensitivity but a severe reduction in insulin production is driving 
high postprandial glucose responses, which was indeed apparent during 

Fig. 4. Significant bootstrapped Spearman correlations between physiology-based time-series CGM features and OGTT derived indices and glycemic biomarkers. DI: 
disposition index; IGI: insulinogenic index; Interday SD: interday standard deviation; ADRR: average daily risk range; eA1c: estimated A1c; HBGI: high blood glucose 
index; LBGI: low blood glucose index; MAGE: mean amplitude of glycemic excursions. Unshaded regions encompass 5 % of values, with 95 % of data points in the 
shaded regions.
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the OGTT and reflected by an increased eA1c and MAGE as compared to 
the MB-HIR diabetype. Also, due to the lack of insulin secretion to keep 
glucose levels within homeostasis basal glucose levels are high in the PB- 
diabetype and even increase further during the night.

Various other studies have explored the relationship between OGTT- 
metrics and CGM-metrics in different populations, including healthy 
volunteers and type 2 diabetes [27], T1D [28], prediabetes and obesity 
[29], and gestational diabetes [30]. However, this is the first study to 
investigate differences in CGM dynamics taking diabetes sub- 
phenotypes as a starting point. Hall et al. also identified subgroups 
based on continuous glucose patterns which were associated with clin
ically meaningful outcomes, such as fasting plasma glucose, 2-h glucose, 
and HbA1c [31]. In our study, we found a similar correlation between 
CGM-derived features and fasting and 2-h glucose. Interestingly, in the 
study by Hall et al., high variability was also observed in normoglycemic 
and prediabetic people, as diagnosed by traditional biomarkers. The 
authors argued that this is likely explained by underlying pathophysi
ology not yet visible in static biomarkers. We connect to existing 
meaningful metrics related to this underlying pathophysiology, by using 
OGTT-based indices for insulin resistance and beta-cell functioning and 
diabetyping. Interestingly, continuous glucose patterns appeared to 
contain information of insulin dynamics, as disposition index, IGI, and 
insulin AUC were significantly correlated with CGM-derived features 
such as ADRR, eA1c, HBGI, J-Index and MAGE. This is also reflected in 
previous studies, showing significant correlations between glycemic 
variability, as measured by CV and SD, and fasting C-peptide (as a 
measure of endogenous insulin secretion) in people with T2D, especially 
those treated with insulin [32,33]. Although, in our study, no correla
tions between CV and SD and OGTT-metrics were found. We hypothe
size that these metrics, although sensitive to overall glycemic 
management, they are less discriminative for different etiologies of in
sulin resistance or beta cell function in our population with relatively 
well-controlled diabetes. Of note, the positive correlation between LBGI 
and disposition index and IGI may suggest that people with higher 
disposition index and IGI are at increased risk of hypoglycemia. 

However, in this particular population, the LBGI did not exceed a value 
of 2 (Fig. 2), indicating that hypoglycemia were of no concern Predicting 
diabetypes may additionally allow for early diagnosis, as insulin sensi
tivity is already deteriorating before changes in glucose response are 
observed [34]. Besides, especially diabetypes with isolated muscle in
sulin resistance, which appears as sustained elevation of glucose levels 
upon glucose intake, may be misdiagnosed with currently used 
screening methods that on fasting plasma glucose and HbA1c [35].

It should be noted that this is a retrospective study, and boot
strapping was used to manage the multiple CGM datapoints corre
sponding to a single OGTT metric. Additionally, variation in the used 
dataset may be overall small, as the study population consisted of people 
with T2D using only lifestyle and/or metformin as treatment. Indeed, for 
the results to be generalized to a larger population, future studies must 
include normoglycemic people and people with prediabetes as was, for 
example, been done by Hall et al. [6]. Additionally, only three dia
betypes had sufficient sample sizes to be included in data analysis. If 
CGM data and models can be used to discriminate between all dia
betypes will be investigated in a prospective validation study. Lastly, 
some of the included features are validated for calculation over 14 days, 
while we used about 3 CGM days per OGTT, which may limit construct 
validity of these specific features in our study. In future applications it 
may be advisable to utilize 14-days of CGM data to ensure reliability of 
included features.

In this study, continuous glucose monitoring data was collected in a 
real-life, non-controlled setting, whereas OGTTs are performed under 
highly standardized conditions. In future research or application, it may 
be considered to introduce some control factors, such as standardized 
meals or protocols for physical activity. However, such control measures 
should be well balanced against usability and adherence. Nevertheless, 
from our results it seems that data collected in a non-controlled setting 
still holds information with potentially good signal-to-noise. Also, our 
study included a large dataset with a total number of 118 OGTTs and 
repeated measures within persons, as well as extensive CGM data.

Fig. 5. Significant bootstrapped Spearman correlations between other time-series CGM features and OGTT derived indices and glycemic biomarkers. DI: disposition 
index; X ACF10: lag 10 autocorrelation function; Max KL shift: largest Kulback-Leibler divergence between two consecutive windows. Unshaded regions encompass 5 
% of values, with 95 % of data points in the shaded regions.
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5. Conclusion

Here we explored the potential of non-invasive digital phenotyping 
based on continuous glucose monitoring as an alternative for OGTT in 
people with T2D on lifestyle and/or metformin treatment. Pending their 
prospective validation in a follow-up study, these digital biomarkers 
may eventually replace non-scalable OGTT for early diagnosis and dia
betyping in the home environment driving proactive and personalized 
(lifestyle) treatment. This would drastically increase the potential 
impact and accessibility of diabetyping and subsequent personalized 
treatment, especially anticipating the rapid developments in continuous 
glucose monitoring allowing for better availability and affordability in 
the future.
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R. Järvelin, J. Kettunen, V.P. Mäkinen, M. Ala-Korpela, Insulin resistance and 
systemic metabolic changes in oral glucose tolerance test in 5340 individuals: an 
interventional study, BMC Med. 17 (2019), https://doi.org/10.1186/S12916-019- 
1440-4.

[35] F. Guo, D.R. Moellering, W.T. Garvey, Use of HbA1c for diagnoses of diabetes and 
prediabetes: comparison with diagnoses based on fasting and 2-Hr glucose values 
and effects of gender, Race, and Age, Https://Home.Liebertpub.Com/Met 12 
(2014) 258–268, https://doi.org/10.1089/MET.2013.0128.

W.J. van den Brink et al.                                                                                                                                                                                                                     Maturitas 194 (2025) 108188 

9 

https://doi.org/10.1016/j.maturitas.2024.108188
https://doi.org/10.1016/j.maturitas.2024.108188
https://doi.org/10.1007/s00125-018-4711-2
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0010
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0010
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0010
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0010
https://doi.org/10.1016/J.DIABRES.2022.109825
https://doi.org/10.1016/J.DIABRES.2022.109825
https://doi.org/10.1016/j.amjms.2019.07.003
https://doi.org/10.1371/journal.pbio.2005143
https://doi.org/10.1016/S2213-8587(18)30051-2
https://doi.org/10.1016/S2213-8587(18)30051-2
https://doi.org/10.1007/s11154-023-09830-4
https://doi.org/10.3389/fnut.2018.00077
https://doi.org/10.1007/s00125-015-3776-4
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0050
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0050
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0050
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0050
https://doi.org/10.3390/NU13072193
https://doi.org/10.3390/NU13072193
https://doi.org/10.3390/BIOMEDICINES10030643/S1
https://doi.org/10.1093/IJE/DYX227
https://doi.org/10.2337/dc06-1519
https://doi.org/10.2337/DC10-0165
https://doi.org/10.1109/OJEMB.2021.3105816
https://cran.r-project.org/package=tsfeatures
https://cran.r-project.org/package=tsfeatures
https://www.r-project.org/
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0080
http://refhub.elsevier.com/S0378-5122(24)00283-4/rf0080
https://cran.r-project.org/package=quantreg
https://cran.r-project.org/package=quantreg
https://cran.r-project.org/package=pbs
https://cran.r-project.org/package=rstatix
https://cran.r-project.org/package=infotheo
https://cran.r-project.org/package=infotheo
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.2337/db09-9028
https://doi.org/10.2337/db09-9028
https://doi.org/10.1089/DIA.2019.0385
https://doi.org/10.1089/DIA.2019.0385
https://doi.org/10.1007/S00125-015-3761-Y
https://doi.org/10.1210/JC.2014-3612
https://doi.org/10.1155/2022/5142918
https://doi.org/10.1155/2022/5142918
https://doi.org/10.1371/journal.pbio.2005143
https://doi.org/10.1016/J.DIABRES.2014.02.003
https://doi.org/10.1038/s41598-021-88749-9
https://doi.org/10.1038/s41598-021-88749-9
https://doi.org/10.1186/S12916-019-1440-4
https://doi.org/10.1186/S12916-019-1440-4
https://doi.org/10.1089/MET.2013.0128

	Feasibility of digital phenotyping based on continuous glucose monitoring to support personalized lifestyle medicine in typ ...
	1 Introduction
	2 Methods
	2.1 Clinical study and data selection for retrospective analysis
	2.2 Diabetyping
	2.3 CGM feature extraction
	2.4 Statistics
	2.5 Ambulatory glucose profiles
	2.6 Bootstrapped Dunn-test
	2.7 Bootstrapped Spearman correlations
	2.8 Mutual information heatmap

	3 Results
	3.1 Study population
	3.2 CGM profiles differ among diabetypes
	3.3 CGM features correlate with OGTT-derived metrics

	4 Discussion
	5 Conclusion
	Contributors
	Ethical approval
	Provenance and peer review
	Funding
	Data sharing and collaboration
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


