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Objectives: Type 2 diabetes is a highly prevalent age-related chronic condition, with complex and heterogeneous
pathogenesis. A 5-point oral glucose tolerance test can identify type 2 diabetes subtypes or “diabetypes” based on
the degree of insulin resistance in muscle and/or liver, and beta-cell dysfunction. Due to its costly and invasive
nature, the oral glucose tolerance test is not scalable. Presuming that differences in glucose and insulin dynamics
manifest in continuous glucose monitoring profiles, we explore the potential of continuous glucose metrics to
replace the oral glucose tolerance test for diabetyping.

Study design: In a prospective intervention study, 41 people with type 2 diabetes on lifestyle and/or metformin
treatment wore a continuous glucose monitor during 3 control periods of 4 days. During each control period,
participants underwent a 5-point oral glucose tolerance test after an overnight fast.

Main outcome measures: Continuous glucose monitoring data from the control periods, excluding the day of the
oral glucose tolerance test, was retrospectively analyzed for associations with diabetypes, as well as Spearman
correlations between bootstrapped continuous glucose features, including physiology-based and other time-
series features, and oral glucose tolerance metrics.

Results: Significant associations were observed between continuous glucose metrics (e.g., low and high blood
glucose index, eAlc, and glucose excursions) and oral glucose tolerance metrics (e.g., 2-h glucose, disposition
index, insulinogenic index). Furthermore, data-driven metrics (e.g., maximum shift, lumpiness) showed more
selective correlations, indicating that data-driven metrics may contain additional information associated with
oral glucose tolerance metrics.

Conclusions: These results indicate the potential of continuous glucose monitoring to replace the oral glucose
tolerance test for diabetyping, driving proactive and personalized (lifestyle) treatment.

Netherlands trial register: NL7848

1. Introduction dynamics in relation to diabetes management. Utilization of CGM was

shown to improve clinical and economical outcomes through improved

Type-2 diabetes (T2D) is a chronic condition, associated with diffuse
complications [1] and an increased risk of premature death [2], and
affecting nearly 500 million people globally in 2021 [3]. The prevalence
of T2D is projected to rise to over 700 million people in 2045. The
introduction of continuous glucose monitoring (CGM) has been a game
changer allowing real-time and continuous insight into glucose

diabetes management, in particular for people with T1D and T2D
treated with multiple daily insulin injections [4]. Not surprisingly, CGM
has recently been included in the American Diabetes Association
guidelines to serve as a minimally invasive solution to enhance diabetes
management [5].

Indeed, CGM allows for more granular insight into glycemic health
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and diabetes monitoring than traditional fasting glucose and HbAlc
measurements can provide. Insight in CGM parameters, including time
in range (TIR) and average glucose, can support self-management and
shared decision making for people with diabetes and their healthcare
professionals. In addition, integration of CGM and consumer-generated
lifestyle data can drive personalized lifestyle management. Interestingly,
CGM has the potential to identify novel T2D subgroups based on tem-
poral glucose patterns [6]. In 2018, Ahlqvist et al. identified and char-
acterized five phenotypes and their association with disease progression
and complications in age-related diabetes [7]. This was based on six
variables, i.e., glutamate decarboxylase antibodies, age at diagnosis,
BMI, HbA1lc, B-cell function and insulin resistance. Insulin resistance is
an early metabolic disturbance that precedes the development of diverse
metabolic diseases. Due to heterogeneity in the primary organ affected
by insulin resistance different metabolic phenotypes can be distin-
guished [8]. These T2D subgroups, or ‘diabetypes’, based on their
different underlying etiology in insulin resistance and beta-cell function,
respond differently to lifestyle interventions, highlighting the impor-
tance of personalization [9-11]. A 5-point oral glucose tolerance test
(OGTT) can identify twelve diabetypes, by analyzing hepatic insulin
resistance (HIR), muscle insulin resistance (MIR) and beta-cell
dysfunction and using these data combined with fasting insulin to
assign participants to one of these diabetypes [12,13].

Unfortunately, the OGTT is costly and time consuming for the, and
intrusive and invasive for the subject, therefore, difficult to implement
in health care at scale. Moreover, it only provides an episodic assessment
and has shown to have a significant inter-test variation [14]. Presuming
that the different glucose and insulin dynamics manifest in CGM pro-
files, we here aim to explore the potential of CGM-based digital bio-
markers for diabetyping following post-hoc analysis of the Gluco-Insight
trial. Taking OGTT data from this trial, we defined the diabetypes ac-
cording to the methods described earlier [12,13] to explore the differ-
ences in CGM-based metrics among them. Additionally, correlation
analyses were performed to compare the underlying OGTT-metrics with
the CGM-metrics. This study anticipates providing a first indication for
future CGM-based diabetyping, which after further validation could be
used to support personalized (lifestyle) treatment.

2. Methods
2.1. Clinical study and data selection for retrospective analysis

Data from the Gluco-Insight study were used for retrospective anal-
ysis. In short, 41 individuals with T2D using lifestyle and/or metformin
for diabetes management were included. Eligibility criteria included a
body mass index (BMI) below 40 kg/m? and no previous insulin treat-
ment. The study consisted of eleven 4-day self-monitoring periods,
which included 3 control periods and 8 lifestyle intervention periods,
each separated by a 7-day washout period. The control periods consisted
of self-monitoring during habitual daily life. During each self-
monitoring period participants used a CGM system (Dexcom G6, Dex-
com Inc., San Diego, USA), which measured the amount of glucose in
interstitial fluid every 5 min and transformed these data into estimated
blood glucose levels. Participants applied the CGM sensor one day
before the start of each monitoring period. During each control period
(week 2, 13 and 24), participants came to the clinic after an overnight
fast for an OGTT. The study protocol was approved by the Medical Ethics
Committee Brabant (NL70771.028.19), performed in accordance with
the Declaration of Helsinki and good clinical practice and registered at
the Netherlands Trial Register: NL7848. All participants provided writ-
ten informed consent.

2.2. Diabetyping

During the OGTT, venous blood samples were collected before and at
30, 60, 90 and 120 min after consumption of a water solution containing
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75 g glucose. The glucose and insulin response were used to calculate
three indices: (1) hepatic insulin resistance index (HIRI); (2) muscle
insulin sensitivity index (MISI); and (3) disposition index (DI) as a
measure of pancreatic beta-cell function (BCF) [15,16]. See Supple-
mentary File 1A for calculations. Taking these indices (HIRI, MISI, and
DI) and combining this with fasting insulin results in a total of 12 distinct
diabetypes (Fig. 1) [11]. For data analysis, only diabetypes with sample
sizes n > 10 were included.

2.3. CGM feature extraction

To create features from CGM data, we processed the raw CGM data
and extracted a wide range of features. For this, we only retained control
period days with a full set of 288 data points per day (5 min sample
frequency). The CGM data was then organized by subject and date. We
applied a series of functions to each group to calculate various
physiology-based and other time-series features. The physiology-based
features are clinically-validated metrics of glucose and glucose vari-
ability and encompass the average daily risk range (ADRR), estimated
Alc (eAlc), interday coefficient of variation, interday standard devia-
tion, J-index, mean amplitude of glycemic excursions (MAGE), low
blood glucose index (LBGI), high blood glucose index (HBGI), time in
range (TIR), time outside range (TOR), percentage in range (PIR), per-
centage out range (POR). Physiology-based features were extracted
using the cgmquantify package [17]. As CGM devices can measure a rich
time-series dataset of interstitial glucose levels, time-series features were
calculated to capture information about glucose variability and dy-
namics that may not be represented by traditional clinically validated
measures. Time-series features were calculated using the R package
tsfeatures [18]. Details on the extracted features are provided in Sup-
plementary File 1B.

2.4. Statistics

All statistical analysis and visualizations were performed in R,
version 4.1.2. ggplot2 was used for all visualizations [19,20].

2.5. Ambulatory glucose profiles

To visualize ambulatory glucose profiles, we employed quantile
regression (package quantreg) with periodic B-splines (package pbs),
which are particularly suited for modeling cyclical glucose fluctuations
[21,22]. Our plots show median glucose values and variability across the
selected diabetypes with a sample size >10.

2.6. Bootstrapped Dunn-test

We included CGM data within an 8-day period surrounding each
OGTT test date, while excluding CGM readings from the exact days of
OGTT tests. This led to a dataset where each OGTT-derived metric was
associated with several days of CGM data. We utilized a bootstrapping
method to manage the multiple CGM data points corresponding to a
single OGTT metric. This involved repeatedly resampling and analyzing
randomly selected matched pairs of CGM and OGTT data, enabling
statistical examination of relationships between the two datasets. Each
subset included only one pair of CGM and OGTT data per subject, to
maintain independence between samples. This process was replicated
500 times, each time creating a distinct data subset for analysis.

For each subset, we employed the a non-parametric pairwise statis-
tical (package rstatix) to evaluate differences in metrics among the
selected diabetypes (n > 10) within our dataset [23]. Each diabetype
classification of a subject was associated with several days of CGM
metrics. Mirroring the approach used for correlation analysis, we
generated 500 subsets by randomly selecting a unique pair of data points
for each subject for every subset. We then calculated the mean test
statistics and associated p-values from the generated Dunn tests.
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Fig. 1. Overview of the determination of the 12 distinct diabetypes. Marked diabetypes were selected for data analysis. NB: normal beta-cell function; MB: moderate
beta-cell function; PB: poor beta-cell function; HIR: hepatic insulin resistance; MIR: muscle insulin resistance; HMIR: hepatic and muscle insulin resistance.

2.7. Bootstrapped Spearman correlations

Following a similar rationale and procedure as used for Dunn test, we
calculated Spearman correlations between the CGM and OGTT metrics
on the full dataset. In each iteration, we also generated a set of null
correlations, which were compared with the actual correlations to
determine if the observed relationships were statistically significant.
This was achieved by randomly shuffling the values within each subset
prior to correlation calculation. The shuffling of data removes any
original relationships between variables, creating a baseline of ‘null’
correlations.

Finally, we aggregated actual and null correlations from all iterations
and then calculated the mean correlations and their corresponding p-
values. In this context, a p-value represents the chance of observing an
equally strong correlation under the hypothesis that CGM and OGTT
metrics are uncorrelated. Thus, a low p-value indicates that a correlation
is unlikely to be coincidental.

2.8. Mutual information heatmap

Mutual information between all pairs of time series features was
calculated using the infotheo package [24]. A shrinkage estimator was
used for increased robustness against noisy estimates. A distance matrix
was calculated from the mutual information matrix by subtracting each
element of the mutual information matrix from the maximum value in
the matrix. Density-based spatial clustering of applications with noise
(DBSCAN) was performed on this distance matrix using the dbscan
package to identify clusters of features with high mutual information
[25]. DBSCAN was chosen because it is robust to noise and does not

force all points into a cluster, allowing for the identification of features
with unique information content.

3. Results
3.1. Study population

Table 1 shows baseline characteristics of the study population
included for retrospective data analysis. The study population
comprised 41 participants with an average age of 62 years and 46 %
being female. BMI was 29.1 kg/m2 (SD 3.8 kg/mz) and average diabetes
duration since diagnosis was 9.7 years (SD 6.5 years). A total of 118
OGTTs were available for retrospective analysis, with an associated 3
valid CGM days per OGTT on average (Table 2). Diabetypes with a total
sample size >10 (from all three visits) included the MB-HIR phenotype
(n = 54; moderate beta cell function and liver insulin resistance, but not
muscle insulin resistance), MB-HMIR phenotype (n = 16; moderate beta
cell function, liver insulin resistance, and muscle insulin resistance
combined), and PB phenotype (n = 20; poor beta cell function, without
organ insulin resistance). Albeit that the sample sizes at baseline are too
small to allow for statistical comparison, notable differences in baseline
characteristics between the MB-HIR and MB-HMIR phenotypes, as
compared to the PB phenotype were the duration of diabetes (8.9 and
9.5 vs. 13.0 years) and BMI (31.0 and 28.2 vs. 24.3 kg/m2) (Table 1).
Baseline HbA1c concentrations were 48.8 (SD = 6.08), 67.3 (SD = 23.8),
and 74.4 (SD = 13.5) mmol/mol in the MB-HIR, MB-HMIR and PB
phenotypes, respectively.

Differences in OGTT profiles in the total data sample were observed
among the selected diabetypes, with a faster decline in glucose in the
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Table 1
Baseline characteristics.
Total sample MB-HIR MB-HMIR PB (n
(n = 41) (n=18) (n=6) =4)

Demographics

Age [years], mean (SD) 62.3(7.2) 59.3 (6.3) 66.5 (7.1) 63.2
9.0)

Female, n (%) 19 (46.3 %) 7 (39 %) 2 (33 %) 1(25
%)

Clinical characteristics

BMI [kg/mz], mean 29.1 (3.8) 31.0 (3.4) 28.2 (2.5) 24.3

(SD) 3.1

Duration of diabetes 9.7 (6.5) 8.9 (6.8) 9.5 (6.4) 13.0

[years], mean (SD) (8.5)

Treatment, n (%)

Exercise and diet 16 (39 %) 4 (22 %) 3 (50 %) 1(25
%)

Metformin 14 (34 %) 7 (39 %) 2 (33 %) 2 (50
%)

Both 11 (27 %) 7 (39 %) 1(17 %) 1(25
%)

MB-HIR: moderate beta-cell function and liver insulin resistance; MB-HMIR:
moderate beta-cell function and liver and muscle insulin resistance; PB: poor
beta-cell function, without organ insulin resistance.

Table 2
Total data sample characteristics.
Sample (n =
118)
Observational
Total number of OGTT observations, N 118
Total number of OGTT observations per person, median (min, 31[2,3]
max)
Total number of CGM days per person, median (IQR) 8 [6, 10]
Number of included CGM days per OGTT, within 8 days from 313, 4]
OGTT, median (IQR)
Diabetypes, > =+ 10 prevalence, n (%)"
Moderate beta-cell function and liver insulin resistance (MB-HIR) 54 (46 %)
Moderate beta-cell function and liver and muscle insulin 16 (14 %)
resistance (MB-HMIR)
Poor beta-cell function, without organ insulin resistance (PB) 20 (17 %)

? For statistical comparison of CGM-features among the different diabetypes,
only diabetypes with a sample size >10 were selected to ensure enough power.
Therefore, the total number of diabetypes does not add up to 118.
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MB-HIR phenotype as compared to the MB-HMIR phenotype, and the
highest glucose peak in the PB phenotype (Fig. 2). The MB-HIR pheno-
type showed the highest insulin release, followed by the MB-HMIR
phenotype.

3.2. CGM profiles differ among diabetypes

Significant differences in CGM profiles and metrics were observed
among the selected diabetypes. The MB-HMIR phenotype showed
increased glucose levels and glycemic variability (Fig. 3, upper panel) as
compared to the MB-HIR phenotype. This observation was confirmed by
significantly higher levels of ADRR, eAlc, HBGI, J-index, and MAGE,
and lower levels of LBGI (Fig. 3, lower panel, p < 0.05), suggesting that
muscle insulin resistance influences these parameters by increasing
glucose fluctuations, but also basal glucose levels in the context of
moderate beta cell function and hepatic insulin resistance. The PB
phenotype presented with higher basal glucose levels, and even more
elevated levels during the night (Fig. 3, upper panel). The resulting CGM
metrics were positioned between the other two diabetypes, showing a
significant increase of eAlc, HBGI, and MAGE, and decrease in LBGI as
compared to the PB-HIR phenotype (Fig. 3, lower panel, p < 0.05). Other
features did not significantly differ among the diabetypes.

3.3. CGM features correlate with OGTT-derived metrics

Further exploration of physiology-based CGM features revealed sig-
nificant Spearman correlations in the bootstrapped datasets (also
including diabetypes with n < 10) with several OGTT-derived metrics,
including disposition index, insulinogenic index, and insulin AUC, as
well as standard clinical glycemic markers such as fasting glucose, 2-h
glucose, and HbAlc (Fig. 4).

Among the features, ADRR, eAlc, HBGI, J-index, MAGE, and LBGI
stood out due to their consistent correlations with many OGTT metrics
and clinical glycemic variables. ADRR, eAlc, HBGI, J-Index and MAGE
all showed significant positive correlations with fasting glucose, 2-h
glucose, and HbAlc, and negative correlations with disposition index,
insulinogenic index, and insulin AUC. Contrastingly, LBGI (Low Blood
Glucose Index) was found to be significantly negatively correlated with
fasting glucose (p = —0.654, p < 0.001), 2-h glucose (p = —0.540, p <
0.001), and HbAlc (p = —0.577, p < 0.001), indicating its sensitivity to
lower glucose values. It also showed positive correlations with the
disposition index (p = 0.313, p = 0.038), insulinogenic index (p = 0.401,

p = 0.012), and insulin AUC (p = 0.510, p = 0.004). Intraday SD only

showed a significant correlation with HbAlc (p = 0.36, p = 0.02).
Interestingly, both TIR and CV, core CGM metrics that are recognized in
diabetes guidelines, showed no significant association with OGTT met-
rics (p > 0.05).

On the other hand, specific non-physiology-based time-series

Glucose Insulin
20 - 100 -
5 Phenotype
= 75 4
S 15 MB-HIR
C 50
3 MB-HMIR
C
- 2 -
8 10 5 PB
: : : : 01 : : :
o 40 80 120 ® 40 80 120

Time (minutes)

Fig. 2. Glucose (mmol/L) and insulin (mU/L) responses after OGTT administration in three diabetypes (MB-HIR, MB-HMIR, and PB). Only diabetypes with a sample
size >10 were included in the analysis. Data is presented as the mean concentration at each time point during the OGTT, with error bars representing the interquartile
range. MB-HIR = moderate beta cell function & liver insulin resistance; MB-HMIR = moderate beta cell function, liver insulin resistance & muscle insulin resistance;

PB = low.
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Fig. 3. Differences of CGM profiles and features in comparison to diabetypes. Only diabetypes with a sample size >10 were included in the analysis. The upper plots
show 24-h CGM profiles for the different diabetypes within 8 days from the OGTT, with shaded bands indicating the range between pairs of quantiles. The lower plots
show statistically significant differences among the diabetypes in six CGM-derived features based on bootstrapped 24-h CGM profiles. MB-HIR = moderate beta cell
function & liver insulin resistance; MB-HMIR = moderate beta cell function, liver insulin resistance & muscle insulin resistance; PB = low beta cell function without
organ insulin resistance. ADRR: average daily risk range; eAlc: estimated Alc; HBGI: high blood glucose index; J-index: calculated from the mean blood glucose and
SD, LBGI: low blood glucose index; MAGE: mean amplitude of glycemic excursions.

features such as Lumpiness and Max KL _shift showed more selective
correlations (Fig. 5). Lumpiness was significantly correlated with
disposition index (p = 0.35, p = 0.03) and 2-h glucose (p = —0.364,p =
0.018), indicating its relevance in assessing these specific metrics.
Max KL _shift, instead was correlated with 2-h glucose (p = —0.329, p =
0.034) and HbAlc (p = —0.29, p = 0.05). A substantial number of time-
series features, such as Time KL shift and Max var. shift, show no sig-
nificant correlation with OGTT-derived standard clinical glycemic

metrics, and physiology-based features. For instance, the correlation
between J-index and Time KL shift is very close to zero (p = —0.0995),
indicating no meaningful relationship.

These findings show the potential of certain CGM features, like
ADRR, eAlc, HBGI, J-index, and MAGE, as indicators for a range of
OGTT-derived and standard clinical glycemic metrics, while features
like Lumpiness and Max_KL _shift may provide more targeted insights. A
substantial number of other time-series features, such as Time KL shift
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Fig. 4. Significant bootstrapped Spearman correlations between physiology-based time-series CGM features and OGTT derived indices and glycemic biomarkers. DI:
disposition index; IGI: insulinogenic index; Interday SD: interday standard deviation; ADRR: average daily risk range; eAlc: estimated Alc; HBGI: high blood glucose
index; LBGIL: low blood glucose index; MAGE: mean amplitude of glycemic excursions. Unshaded regions encompass 5 % of values, with 95 % of data points in the

shaded regions.

and Max var. shift, show no significant correlation with OGTT-derived
and standard clinical glycemic metrics.

The large overlap in physiology-based features correlating with
OGTT metrics and clinical glycemic variables is reflected by the high
mutual information between these physiology-based features, as visu-
alized in a heatmap (Fig. 6), whereas there is much less redundancy in
some non-physiology-based features, such as Lumpiness and
Max_KL _shift.

4. Discussion

T2D diabetypes differentially respond to lifestyle interventions due
to variations in underlying metabolic dysregulation. A five-point OGTT
can identify these diabetypes by analyzing hepatic- and muscle insulin
resistance in combination with beta-cell dysfunction. However, the
OGTT is burdensome and invasive, and therefore difficult to implement
at scale. The purpose of this work was to explore the differences in CGM-
metrics among different diabetypes and in correlation with indices un-
derlying diabetyping. This supports the potential of less-invasive CGM-
based digital phenotyping as an alternative for the OGTT, allowing for
continuous and scalable diabetyping in daily contexts. >100,000 CGM

data points and 118 OGTT responses were retrospectively analyzed from
a total of 41 people with T2D. Significant associations were observed
between the diabetypes and OGTT-derived metrics and CGM-based
metrics, underlining the potential of CGM as an alternative for OGTT
based diagnosis and phenotyping.

The three selected diabetypes, MB-HIR, MB-HMIR and PB showed
differential glycemic profiles and OGTT responses. These differences are
explained by differences in organ specific insulin resistance and insulin
production capacity in the beta-cells between diabetypes [26]. In the
MB-HIR diabetype increased basal glucose and insulin levels and a larger
initial rise in glucose levels are to be expected, because of increased
gluconeogenesis by the liver driven by hepatic insulin resistance. In the
MB-HMIR diabetype, both muscle and liver suffer from insulin resis-
tance, resulting in higher basal glucose levels as well as decreased
clearance after meals. In this diabetype, glucose may not be sufficiently
cleared from the blood before the next meal occurs, resulting in an up-
wards spiral with a higher steady state after each meal moment. This is
also reflected in the significantly higher HBGI, ADRR and eAlc as
compared to the MB-HIR diabetype. In the PB-diabetype, not a lack of
insulin sensitivity but a severe reduction in insulin production is driving
high postprandial glucose responses, which was indeed apparent during
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the OGTT and reflected by an increased eAlc and MAGE as compared to
the MB-HIR diabetype. Also, due to the lack of insulin secretion to keep
glucose levels within homeostasis basal glucose levels are high in the PB-
diabetype and even increase further during the night.

Various other studies have explored the relationship between OGTT-
metrics and CGM-metrics in different populations, including healthy
volunteers and type 2 diabetes [27], T1D [28], prediabetes and obesity
[29], and gestational diabetes [30]. However, this is the first study to
investigate differences in CGM dynamics taking diabetes sub-
phenotypes as a starting point. Hall et al. also identified subgroups
based on continuous glucose patterns which were associated with clin-
ically meaningful outcomes, such as fasting plasma glucose, 2-h glucose,
and HbA1lc [31]. In our study, we found a similar correlation between
CGM-derived features and fasting and 2-h glucose. Interestingly, in the
study by Hall et al., high variability was also observed in normoglycemic
and prediabetic people, as diagnosed by traditional biomarkers. The
authors argued that this is likely explained by underlying pathophysi-
ology not yet visible in static biomarkers. We connect to existing
meaningful metrics related to this underlying pathophysiology, by using
OGTT-based indices for insulin resistance and beta-cell functioning and
diabetyping. Interestingly, continuous glucose patterns appeared to
contain information of insulin dynamics, as disposition index, IGI, and
insulin AUC were significantly correlated with CGM-derived features
such as ADRR, eAlc, HBGI, J-Index and MAGE. This is also reflected in
previous studies, showing significant correlations between glycemic
variability, as measured by CV and SD, and fasting C-peptide (as a
measure of endogenous insulin secretion) in people with T2D, especially
those treated with insulin [32,33]. Although, in our study, no correla-
tions between CV and SD and OGTT-metrics were found. We hypothe-
size that these metrics, although sensitive to overall glycemic
management, they are less discriminative for different etiologies of in-
sulin resistance or beta cell function in our population with relatively
well-controlled diabetes. Of note, the positive correlation between LBGI
and disposition index and IGI may suggest that people with higher
disposition index and IGI are at increased risk of hypoglycemia.

However, in this particular population, the LBGI did not exceed a value
of 2 (Fig. 2), indicating that hypoglycemia were of no concern Predicting
diabetypes may additionally allow for early diagnosis, as insulin sensi-
tivity is already deteriorating before changes in glucose response are
observed [34]. Besides, especially diabetypes with isolated muscle in-
sulin resistance, which appears as sustained elevation of glucose levels
upon glucose intake, may be misdiagnosed with currently used
screening methods that on fasting plasma glucose and HbAlc [35].

It should be noted that this is a retrospective study, and boot-
strapping was used to manage the multiple CGM datapoints corre-
sponding to a single OGTT metric. Additionally, variation in the used
dataset may be overall small, as the study population consisted of people
with T2D using only lifestyle and/or metformin as treatment. Indeed, for
the results to be generalized to a larger population, future studies must
include normoglycemic people and people with prediabetes as was, for
example, been done by Hall et al. [6]. Additionally, only three dia-
betypes had sufficient sample sizes to be included in data analysis. If
CGM data and models can be used to discriminate between all dia-
betypes will be investigated in a prospective validation study. Lastly,
some of the included features are validated for calculation over 14 days,
while we used about 3 CGM days per OGTT, which may limit construct
validity of these specific features in our study. In future applications it
may be advisable to utilize 14-days of CGM data to ensure reliability of
included features.

In this study, continuous glucose monitoring data was collected in a
real-life, non-controlled setting, whereas OGTTs are performed under
highly standardized conditions. In future research or application, it may
be considered to introduce some control factors, such as standardized
meals or protocols for physical activity. However, such control measures
should be well balanced against usability and adherence. Nevertheless,
from our results it seems that data collected in a non-controlled setting
still holds information with potentially good signal-to-noise. Also, our
study included a large dataset with a total number of 118 OGTTs and
repeated measures within persons, as well as extensive CGM data.
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Fig. 6. Heatmap showing the mutual information between pairs of time series features calculated from continuous glucose monitor (CGM) data. Darker squares
indicate higher mutual information, suggesting more redundancy in information content for a given feature pair. Dashed boxes and the colored bar indicate clusters
of features with high mutual information, identified using density-based spatial clustering (DBSCAN). Features without cluster assignment show very low mutual

information with other features. Crosses indicate physiology-based features.

5. Conclusion

Here we explored the potential of non-invasive digital phenotyping
based on continuous glucose monitoring as an alternative for OGTT in
people with T2D on lifestyle and/or metformin treatment. Pending their
prospective validation in a follow-up study, these digital biomarkers
may eventually replace non-scalable OGTT for early diagnosis and dia-
betyping in the home environment driving proactive and personalized
(lifestyle) treatment. This would drastically increase the potential
impact and accessibility of diabetyping and subsequent personalized
treatment, especially anticipating the rapid developments in continuous
glucose monitoring allowing for better availability and affordability in
the future.
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