

Reinforcement
Learning for
Intelligent
Diagnostics

TNO Public TNO 2024 S12781

11 September 2024

ICT, Strategy & Policy
www.tno.nl
+31 88 866 50 00
info@tno.nl

 TNO Public

TNO 2024 S12781 11 September 2024

Reinforcement Learning for
Intelligent Diagnostics

 TNO Public

Author(s) Noah Farr

Classification report TNO Public

Title TNO Public

Report text TNO Public

Number of pages 24 (excl. front and back cover)

Number of appendices 0

 TNO Public TNO 2024 S12781

 TNO Public

All rights reserved

No part of this publication may be reproduced and/or published by print, photoprint,

microfilm or any other means without the previous written consent of TNO.

© 2024 TNO

 TNO Public TNO 2024 S12781

 TNO Intern 3/24

Contents

Table of Contents
No table of contents entries found.

 TNO Public TNO 2024 S12781

 TNO Intern 4/24

1 Introduction

Efficient and accurate diagnostics is crucial for minimizing downtime of complex cyber-

physical systems. However, locating the root cause of failures in such systems is challenging

due to their scale, complexity, and the potential for fault propagation across subsystems.

This research proposes a novel methodology that integrates elements of the SD2Act

diagnostic approach1 with reinforcement learning (RL) techniques to optimize and guide the

diagnostic process for large-scale systems.

RL is a subfield of machine learning where an autonomous agent learns through interaction

with its environment, receiving rewards or penalties for the actions it takes with the ultimate

goal of maximizing its cumulative reward over time. RL has shown great success in

sequential decision making problems ranging from robotics and autonomous vehicles to

game playing and recommendation systems. By modeling the diagnosis task as a sequential

decision process and applying RL algorithms, diagnostic agents can learn efficient

troubleshooting strategies that balance the value of information gained against the cost of

performing different diagnostic actions.

The SD2Act approach leveraged in this work provides a systematic methodology to

transform system design information, such as functional hierarchies and component

dependencies, into a unified diagnostic network. This network takes the form of a graph

representation capturing the key components, functions, and relationships that govern fault

propagation in the system. The diagnostic network serves as the basis for automatically

generating a probabilistic reasoning model, such as a Bayesian network, which the RL agent

uses to iteratively infer the most probable fault hypotheses and recommend optimal next

steps for a service engineer to efficiently isolate the root cause.

Integrating RL with the SD2Act framework enables learning customized diagnostic policies

that minimize the expected total cost of diagnosing a specific system. By training the RL

agent on historical maintenance data or simulations of the target system, it can discover

optimal decision strategies that account for component reliabilities, failure modes,

diagnostic action costs, and other system-specific factors. This approach takes a step

towards intelligent, adaptive diagnostic assistants that can improve their troubleshooting

efficiency over time by learning from experience.

The remainder of this report details the proposed methodology, covering the core steps of

diagnostic network creation, reasoning model generation, and RL-based diagnostic policy

optimization. Implementation details and results of initial proof-of-concept experiments are

presented to demonstrate the feasibility and potential of this approach for enhancing

complex system diagnostics. The long-term vision is to develop practical tools that enable

faster, more economical diagnosis and maintenance of critical cyber-physical systems.

1 TNO 2025 R10010 Guided diagnosis of functional failures in cyberphysical systems

 TNO Public TNO 2024 S12781

 TNO Intern 5/24

2 Problem Definition

In today's increasingly sophisticated and interconnected high-tech systems, such as

advanced manufacturing equipment, aerospace systems, and data centre infrastructures,

diagnosing and resolving issues efficiently is a critical challenge. The complexity of these

systems, often comprising hundreds or thousands of interrelated hardware and software

components, makes pinpointing the root cause of a malfunction a difficult task.

When a system experiences a failure or performance degradation, there are typically

numerous potential causes, ranging from faulty hardware components to software bugs,

misconfigurations, or environmental factors. Exhaustively testing every component and

subsystem can be extremely time-consuming and costly, leading to longer downtimes,

reduced productivity, and customer dissatisfaction.

2.1 Problem in the field
The key problem lies in determining the optimal sequence of diagnostic tests to identify the

root cause as quickly and efficiently (and therefore, cheaply) as possible, given the current

system state and the results of diagnostic tests performed so far. Field service engineers and

technicians often rely on their experience, intuition, and trial-and-error to guide their

troubleshooting efforts. However, the growing complexity of modern systems makes it

increasingly difficult for human experts to keep pace.

2.2 Diagnostic Problem
In the methodology proposed in the SD2Act project, a simple weighted sum approach is

used to select the next test, considering both the cost and information gain associated with

each available test. The information gain represents the expected reduction in uncertainty

about the root cause based on the test outcome, while the cost reflects the time, resources,

and potential risks involved in conducting the test. A fixed weight is assigned to balance the

trade-off between cost and information gain, guiding the diagnoser to choose tests that

provide the most valuable information at the lowest cost.

2.3 Reinforcement Learning Problem
This challenge can be formulated as a reinforcement learning (RL) problem, where an RL

agent learns a policy to select the best next diagnostic test based on the current state of the

system and the outcomes of previous tests. The agent's goal is to minimize the total time

and cost required to identify the root cause and resolve the issue.

Developing an effective AI-assisted diagnostic solution involves several key challenges:

1. State Representation: Defining a suitable representation of the system state that

captures the relevant information for decision-making, such as the current operational

status of components, error codes, performance metrics, and previous test results.

 TNO Public TNO 2024 S12781

 TNO Intern 6/24

2. Action Space: Defining the set of available diagnostic tests and actions that the agent can

choose from, considering factors such as test coverage, execution time, cost, and potential

risks.

3. Reward Function: Designing an appropriate reward function that incentivizes the agent to

identify the root cause quickly and efficiently, balancing the trade-offs between test costs,

time, and accuracy.

The goal of this project is to develop and train an RL-based diagnostic agent that can

demonstrate the potential for AI-assisted root cause analysis in complex high-tech systems.

By learning to intelligently select and sequence diagnostic tests based on the current system

state and previous test results, the agent aims to reduce the time and cost associated with

troubleshooting, ultimately leading to improved system availability, productivity, and

customer satisfaction. The successful implementation of such an agent could pave the way

for more advanced AI-driven diagnostic and maintenance solutions in various industrial

domains.

 TNO Public TNO 2024 S12781

 TNO Intern 7/24

3 Background

3.1 Reinforcement Learning
Reinforcement Learning (RL) is a subfield of machine learning that focuses on how agents

can learn to make sequential decisions through interaction with an environment. Unlike

supervised learning, where an algorithm learns from labelled examples, or unsupervised

learning, where it finds patterns in unlabelled data, RL is centered around the concept of an

agent learning from its own experiences and the consequences of its actions.

The core idea of RL is inspired by behavioural psychology, particularly the way humans and

animals learn through trial and error. In an RL framework, an agent is placed in an

environment where it must learn to perform a task or achieve a goal. The agent is not

explicitly told which actions to take, but instead must discover which actions yield the most

reward by trying them out.

The RL process can be broken down into several key components:

1. Agent: The learner or decision-maker that interacts with the environment.

2. Environment: The world in which the agent operates and learns.

3. State: A representation of the current situation in the environment.

4. Action: A decision made by the agent that changes the state of the environment.

5. Reward: A feedback signal that indicates the desirability of the state resulting from

an action.

6. Policy: The strategy that the agent employs to determine its actions.

The learning process in RL is cyclical:

1. The agent observes the current state of the environment.

2. Based on this state, the agent chooses an action according to its policy.

3. The environment transitions to a new state as a result of this action.

4. The agent receives a reward (or penalty) based on the outcome of its action.

5. The agent uses this experience to update its policy, aiming to make better decisions

in the future.

Figure 1: Visualization of the interaction steps between the agent and the environment.

 TNO Public TNO 2024 S12781

 TNO Intern 8/24

6. This cycle continues, with the agent progressively improving its policy to maximize

its cumulative reward over time. The ultimate goal of RL is for the agent to learn an

optimal policy that consistently chooses actions that lead to the highest long-term

reward. The learning is stopped when the user considers than further training will

not meaningfully improve the cumulative reward.

3.2 Markov Decision Process
Reinforcement learning problems are often formalized using the framework of Markov

Decision Processes (MDPs).

An MDP provides a rigorous mathematical foundation for modelling decision-making in

situations where outcomes are partly random and partly under the control of a decision-

maker. It is an effective way of representing and solving RL problems because it captures the

essential elements of the task while making simplifying assumptions that make the problem

tractable, allowing for the development of algorithms with provable convergence properties

and performance guarantees. MDPs are the basis of many classic and modern RL

algorithms, including value iteration, policy iteration, Q-learning, and their deep learning-

based counterparts.

An MDP is defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), where each component has a specific meaning

and role:

1. 𝑆 - State space: This is the set of all possible situations or configurations in which the

agent might find itself. In a chess game, for example, the state would be the current

configuration of pieces on the board. In a more complex scenario like autonomous

driving, the state might include the car's position, speed, direction, and information

about nearby vehicles and obstacles.

2. 𝐴 - Action space: This is the set of all possible actions the agent can take. Actions

cause transitions between states and can be discrete (like moving a chess piece) or

continuous (like adjusting the steering angle of a car).

3. 𝑃 - Transition probability function: This function, often denoted as 𝑃(𝑠′|𝑠, 𝑎), defines

the dynamics of the environment. It gives the probability of transitioning to state 𝑠′

when action 𝑎 is taken in state s. This probabilistic nature allows MDPs to model

environments with inherent uncertainty or stochasticity.

4. 𝑅 - Reward function: Denoted as 𝑅(𝑠, 𝑎), this function defines the immediate reward

(or penalty) the agent receives for taking action 𝑎 in state 𝑠. The reward function is

crucial as it encodes the goal of the task and guides the learning process. Designing

an appropriate reward function is often one of the most challenging aspects of

applying RL to real-world problems.

5. - Discount factor: This parameter, ranging from 0 to 1, determines the importance

of future rewards. A discount factor close to 0 makes the agent "myopic", focusing

almost entirely on immediate rewards, while a factor close to 1 makes it "far-

sighted," valuing future rewards almost as much as immediate ones. The discount

factor helps manage the trade-off between short-term and long-term rewards and

ensures that the cumulative reward remains finite in tasks with no clear endpoint.

The Markov property, which gives MDPs their name, is a crucial assumption in this

framework. It states that the future depends only on the current state and action, not on

the history of previous states and actions. While this might seem limiting, many complex

 TNO Public TNO 2024 S12781

 TNO Intern 9/24

problems can be modelled effectively within this framework by carefully designing the state

representation to include relevant historical information.

3.3 Agent

3.3.1 Policy
In the context of Reinforcement Learning, a policy is the core component that defines an

agent's behaviour. It is essentially the strategy or set of rules that the agent follows to make

decisions in any given state. More formally, a policy is a function that maps states to actions,

determining which action the agent should take when it finds itself in a particular state.

There are two main types of policies in RL:

1. Deterministic p 𝑠

to a specific action 𝑎. For any given state, a deterministic policy will always choose

the same action. This type of policy is straightforward and can be optimal in fully

observable environments with deterministic dynamics. However, it may struggle in

stochastic environments or situations where exploration is crucial.

2. Stochastic policy: A stochastic policy, denoted as 𝜋(𝑎|𝑠), defines a probability

distribution over actions for each state. Instead of always selecting the same action

for a given state, a stochastic policy assigns probabilities to each possible action. The

action is then chosen by sampling from this distribution. Stochastic policies are more

flexible and can be beneficial in partially observable environments by helping to

manage uncertainty, competitive scenarios, or situations where exploration is

important by using randomness to encourage exploration of the state space.

The choice between deterministic and stochastic policies often depends on the nature of the

problem and the characteristics of the environment.

the expected cumulative reward over time. This is typically achieved through an iterative

process of policy evaluation and policy improvement:

1. Policy evaluation: This step assesses the value of the current policy by estimating the

expected cumulative reward from each state when following that policy.

2. Policy improvement: Based on the evaluation, the policy is updated to increase the

probability of taking actions that lead to higher expected rewards.

These steps are repeated until the policy converges to an optimal or near-optimal solution.

Various RL algorithms implement this process in different ways:

• Value-based methods (like Q-learning) implicitly represent the policy by learning a

value function and selecting actions that maximize this value.

• Policy-based methods directly optimize the policy, often using gradient-based

approaches to adjust the parameters of a parameterized policy.

• Actor-critic methods combine both approaches, using a value function (the critic) to

guide updates to an explicit policy representation (the actor).

In practical applications, policies are often represented using function approximators such as

neural networks, especially when dealing with large or continuous state spaces. These

neural network policies can be trained using techniques like policy gradient methods or

evolutionary strategies.

 TNO Public TNO 2024 S12781

 TNO Intern 10/24

For diagnostic testing applications, the policy guides the selection of diagnostic tests based

on the current knowledge state. The goal is to efficiently diagnose the system while

minimizing costs, such as the number of tests performed or the time taken to reach a

diagnosis. The policy in this context might be represented as a decision tree, a set of rules, or

a neural network that takes the current state (e.g., observed symptoms, test results) as

input and outputs the next most informative test to perform.

3.3.2 Value Function
Value functions are fundamental concepts in reinforcement learning that the expected

return associated with being in a specific state or performing a particular action within a

state. They provide a way to evaluate the long-term desirability of states and actions, taking

into account not just immediate rewards but also the potential for future rewards. There are

two main types of value functions:

1. State-value function V(s):

The state-value function V(s) represents the expected cumulative reward an agent

Mathematically, it's defined as:

𝑉𝜋 (𝑠) = 𝐸𝜋[∑ 𝛾𝑡𝑅𝑡| 𝑆0 = 𝑠]

 where

• 𝐸𝜋

•

•

• 𝑅𝑡 is the reward received t time steps into the future

• 𝑆0 is the current state

The state-value function allows the agent to assess the long-term value of being in

different states, which is crucial for making informed decisions.

2. Action-value function 𝑄(𝑠, 𝑎):

Also known as the Q-function, the action-value function 𝑄(𝑠, 𝑎) represents the

expected cumulative reward an agent can obtain by taking action 𝑎 in state 𝑠 and

then following policy 𝜋 thereafter. It's defined as:

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋[∑𝛾𝑡 𝑅𝑡 |𝑆0 = 𝑠, 𝐴0 = 𝑎]
The Q-function provides more detailed information than the V-function, as it

quantifies the value of each action in a given state. This makes it particularly useful

for action selection and policy improvement.

Learning value functions is a key challenge in RL. Understanding and effectively estimating

value functions is crucial for developing efficient RL algorithms and solving complex

decision-making problems. In simple environments with small, discrete state spaces, value

functions can be represented as tables and learned through direct experience. However, in

more complex environments with large or continuous state spaces, function approximation

techniques (often involving neural networks) are used to estimate value functions.

 TNO Public TNO 2024 S12781

 TNO Intern 11/24

3.3.3 Deep Q-Networks
Introduced by DeepMind in 2013 and further refined in subsequent years, the DQN algorithm

has become a cornerstone of modern RL, capable of learning effective policies in complex

environments with high-dimensional state spaces.

The core idea behind DQN is to use a deep neural network to approximate the action-value

function 𝑄(𝑠, 𝑎). This approach offers several advantages:

1. Handling high-dimensional state spaces: Traditional tabular Q-learning becomes

intractable in environments with large or continuous state spaces. Neural networks

can effectively generalize across similar states, allowing DQN to handle complex,

high-dimensional input data such as images.

2. Feature learning: The neural network learns to extract relevant features from raw

input data, eliminating the need for manual feature engineering.

3. Scalability: a DQN can be applied to a wide range of problems without significant

modifications to the core algorithm.

The DQN algorithm incorporates several key innovations to stabilize learning and improve

performance:

1. Experience replay: DQN stores the agent's experiences (state transitions, actions,

rewards) in a replay buffer. During training, random batches of experiences are

sampled from this buffer. This technique breaks the correlation between consecutive

samples and allows the network to learn from a more diverse and representative set

of experiences.

2. Target network: DQN uses two neural networks; a main network for selecting actions

and updating Q-values, and a separate target network for generating target Q-

values. The target network is periodically updated with the weights of the main

network. This helps stabilize learning by reducing the moving target problem that

arises from trying to optimize two co-varying parameters, the Q-values and actions,

at the same time.

3. 𝜀-greedy exploration: To balance exploration and exploitation, DQN typically uses an

𝜀-greedy policy. With probability 𝜀, the agent chooses a random action, and with

probability 1 − 𝜀, it chooses the action with the highest predicted Q-value. The value

The training process for DQN involves the following steps:

1. Initialize the main Q-network and target Q-network with random weights.

2. For each episode:

a. Reset the environment and get the initial state.

b. For each time step:

i. -greedy policy based on the main Q-

network.

ii. Execute the action and observe the reward and next state.

iii. Store the experience (𝑠, 𝑎, 𝑟, 𝑠′) in the replay buffer.

iv. Sample a random batch of experiences from the replay buffer.

v. Compute the target Q-values using the target network.

vi. Update the main Q-network by minimizing the loss between

predicted and target Q-values.

 TNO Public TNO 2024 S12781

 TNO Intern 12/24

c. Periodically update the target network weights with the main network

weights.

Figure 2: Visualization of the DQN algorithm. Observe how this is a more complex view of the basic diagram
depicted in figure 1 where the internal structure of the agent is fully detailed.

Several extensions and improvements to the original DQN algorithm have been proposed.

We used the following extensions:

1. Double DQN: Addresses the overestimation bias in Q-learning by using the main

network for action selection and the target network for value estimation.

2. Prioritized experience replay: Assigns priorities to experiences in the replay buffer

based on their TD error (i.e. the absolute difference between what the agent is

estimating and what the true value is), allowing the agent to learn more effectively

from important or rare experiences.

Despite its successes, DQN has some limitations. It is primarily designed for discrete action

spaces and may struggle in environments with continuous actions. Additionally, as a value-

based method, it can be less sample-efficient than some policy-based or actor-critic

methods. Nonetheless, DQN remains a powerful and widely-used algorithm in the RL toolkit,

serving as a foundation for many advanced deep RL techniques.

 TNO Public TNO 2024 S12781

 TNO Intern 13/24

4 Methodology

The methodology employed in this research combines elements from the SD2Act project's

diagnostic approach with reinforcement learning techniques to optimize the diagnostic

process. The core steps are as follows:

1. Diagnostic Network Creation: System design information is transformed into a

diagnostic network, which is a graph representation with clearly defined types of

nodes (e.g., hardware, functions, observables) and relations between nodes. This

transformation can be done automatically if the design is documented in a

structured manner, such as in a model-based systems engineering (MBSE) approach,

or manually using tools like the Excel template presented in the SD2Act report

(pending publication).

2. Reasoning Model Generation: A reasoning model is generated from the diagnostic

network. Both Bayesian Networks and Tensor Networks are evaluated as potential

reasoning formalisms. The reasoning model takes system observations and human

input to iteratively suggest the next diagnostic test for a service engineer, guiding

them efficiently to identify the fault.

3. Diagnostic Test Recommendation: The reasoning model incorporates both the

expected information gain and the cost of performing diagnostic tests when

recommending the next action. A loss function is defined to balance these two

factors, aiming to minimize the total diagnostic costs by reducing the number of

steps and the cost per action. The balancing of information gain and cost is a key

challenge.

4. Reinforcement Learning for Optimization: To optimize the balance between

information gain and cost in the diagnostic process, reinforcement learning

techniques are employed. The diagnostic process is modelled as a Markov Decision

Process (MDP), where the state represents the current knowledge about the

system's state, actions correspond to diagnostic tests, and rewards are based on the

reduction in diagnostic uncertainty and associated costs.

5. Policy Learning: Using the defined MDP, a reinforcement learning algorithm, such as

DQN, is used to learn an optimal policy for selecting diagnostic actions. The policy

aims to maximize the expected cumulative reward, effectively minimizing the total

diagnostic costs over multiple episodes.

By combining the structured diagnostic modelling approach from SD2Act with reinforcement

learning for optimization, this methodology aims to create an intelligent and adaptive

diagnostic system that can effectively guide service engineers while minimizing overall

diagnostic costs. The integration of reinforcement learning allows the system to learn from

experience and continuously improve its decision-making capabilities.

One very important observation we made was that the agent learns a lot better when there

are no root causes that are not diagnosable. Its critical to ensure that for every root cause

once all tests are executed the correct root cause will be uniquely identified. If there are root

causes that are not uniquely identifiable one should remove those during the training of the

agent to ensure better performance. Alternatively, one should develop finer stopping criteria

that can identify when a diagnostic procedure has concluded.

 TNO Public TNO 2024 S12781

 TNO Intern 14/24

4.1 Environment

4.1.1 Observation Space
The observation space of an RL environment describes what information is given to the

observation space should contain all information

Figure 3: Representation of the observation space. Each column represents one part of the observation space
of a diagnostic environment

4.1.1.1 Result of executed diagnostic tests
The state includes the outcomes of all diagnostic tests that have been performed up to the

current point in the diagnostic process. This information helps track the progress and narrow

down the potential causes of the fault based on the available evidence.

4.1.1.2 Cost of each diagnostic test
The cost associated with each diagnostic test is incorporated into the state representation.

This cost can be monetary, time-based, or a combination of factors, depending on the

specific diagnostic scenario. Including the cost in the state allows the reinforcement learning

algorithm to consider it when making decisions.

4.1.1.3 Information gain of each diagnostic test
The expected information gain of each diagnostic test is included in the state. Information

gain represents the reduction in uncertainty about the system's fault state that a particular

test can provide. By considering the information gain, the algorithm can prioritize tests that

are most likely to yield valuable insights.

4.1.1.4 Success/Failure probability of each diagnostic test
The state includes in columns 4 and 5 the conditional probability of each diagnostic test

succeeding or failing based on the currently available evidence. These probabilities are

derived from the reasoning model and are updated as new evidence is obtained. Including

these probabilities in the state allows the algorithm to make informed decisions based on

the likelihood of test outcomes.

 TNO Public TNO 2024 S12781

 TNO Intern 15/24

4.1.1.5 Healthy/Broken probability of each hardware node
The state also incorporates the probability of each hardware node being healthy or broken,

given the current evidence. These probabilities are obtained from the reasoning model and

reflect the current belief about the health status of each component. Including these

probabilities in the state enables the algorithm to focus on the most likely faulty

components.

4.1.2 Action Space
The action space of an RL environment contains the actions available to the agent i.e. the

output of the neural network .

The action space of our MDP consists of one entry for each test that can be executed. Each

action corresponds to performing a specific diagnostic test. The algorithm selects an action

based on the current state and the learned policy, aiming to maximize the expected

cumulative reward.

Figure 4: In a discrete action space, each action is assigned a number. The action recommended by the
agent is the one corresponding to the

4.1.2.1 Action Masking
Our action space includes all existing diagnostic tests, but it does not make sense to include

tests that already have been executed. To improve learning speed we can mask the action

space to include only the diagnostic tests that have not yet been executed.

4.1.3 Termination and Truncation
An episode terminates once one hardware node has a probability of being broken greater

than 85% or once all tests are executed. The 85% threshold is chosen to balance the

confidence in identifying the faulty component with the potential cost of additional tests. If

all tests are executed without reaching the threshold, the episode ends, and the component

with the highest probability of being broken is considered the most likely cause of the fault.

By choosing the termination condition in this way we incentivize the agent to choose actions

that have a higher information gain as that leads to faster termination.

4.1.4 Reward Function
The reward in our MDP is defined as the negative cost of the executed test. By assigning a

negative reward, the algorithm is incentivized to minimize the total cost of the diagnostic

process. The goal is to find the optimal policy that maximizes the expected cumulative

reward, effectively minimizing the overall diagnostic costs.

4.2 Diagnostic System Generator
To evaluate the RL agent on systems of arbitrary size, we developed a generator that

generates random diagnostic systems of desired size. This generator allows us to create

synthetic diagnostic systems with varying complexity and characteristics, enabling a

 TNO Public TNO 2024 S12781

 TNO Intern 16/24

thorough evaluation of the agent's performance across a wide range of scenarios. The

generated models follow the methodology outlined in the MBDLyb diagnostics library2.

 Generating the network topology: Expander graphs.

The generator begins by creating an expander graph with n nodes, where n is the desired

size of the diagnostic system. Each node in this graph represents a function within the

system. Expander graphs are chosen for their connectivity properties, because they ensure

good connectivity (every node is just a few hops away from any other node) while keeping

the graph almost tree-like. Mathematically, expander graphs have high vertex expansion,

meaning that every subset of nodes has a large number of neighbours while having

bounded degree, leading to good mixing properties and fast information propagation while

maintaining sparsity. This property is crucial for modelling realistic diagnostic systems where

clusters are interconnected but functions are locally influenced by just a few other nodes,

largely within their cluster and following a clear causal structure.

Figure 5: Example topology of the function nodes in the generated model.

4.2.1.1.1 Enhancing the graph

Once the expander graph is generated, we proceed to add hardware nodes to each function

node. These hardware nodes represent the physical components associated with each

function in the diagnostic system.

2 2 TNO 2025 R10010 Guided diagnosis of functional failures in cyberphysical systems

 TNO Public TNO 2024 S12781

 TNO Intern 17/24

Figure 6: The model from figure 5 expanded with hardware and function nodes. Each function is assumed to
be realized by a unique hardware piece.

For each function node, we then randomly assign either a diagnostic test or a direct

observable. With an 80% probability, a diagnostic test is added to the function node.

Diagnostic tests are procedures or methods used to assess the health or functionality of the

associated hardware component. They provide valuable information for troubleshooting and

identifying potential issues within the system. It is possible for two or more function nodes

to be tested by a single diagnostic test.

In the remaining 20% of cases, a direct observable is assigned to the hardware node instead

of a diagnostic test. Direct observables are measurable or observable characteristics of the

system that can be directly monitored or inspected without the need for explicit testing.

These observables serve as indicators of the component's state or performance.

 TNO Public TNO 2024 S12781

 TNO Intern 18/24

4.2.1.1.2 Genedfd

Figure 7: Fully realized diagnostic model. Observe how each hardware node has associated a unique function
node, but the same is not true for diagnostic tests.

4.2.1.1.3 Generation of costs

In the last step, we add costs to the diagnostic test nodes. We use a Log-normal distribution

to generate these costs, with a mean of 3 and a variance of 0.5. This distribution is

particularly useful because it gives us a good spread of values without too many extremes,

while still allowing for some higher-cost outliers. Other distributions, namely the Normal,

Zipf and Gamma distributions, were tried but yielded either too flat or too peaked

histograms. The advantage of the Log-normal distribution is that the orders of magnitude

are distributed normally, leading to exponentially decaying probabilities for values that are

several orders of magnitude bigger or smaller than the mode, but relatively flat probabilities

for values that are just one or even two orders of magnitude above or below the mode.

Then we assign the costs to the diagnostic tests based on the centrality of the respective

observable node in the graph. This ensures that more central tests in the graph have higher

costs than those positioned farther from the center.

4.2.1.1.4 Export to MBDlyb

After generating the diagnostic system structure, we perform a series of transformations to

export the system as an Excel file. This process involves organizing the system's data,

including the functions, hardware nodes, diagnostic tests, and direct observables, into a

structured format that can be stored and accessed using MBDlyb.

The exported Excel model serves as a comprehensive representation of the generated

diagnostic system. It captures the hierarchical relationships between functions, hardware

 TNO Public TNO 2024 S12781

 TNO Intern 19/24

components, and their associated diagnostic tests or observables. This Excel file can then be

loaded using MBDlyb.

Figure 8: Example of an excel sheet that can be parsed with MBDlyb

The diagnostic system generator provides a flexible and scalable approach to creating

diverse test cases for the RL agent. By generating systems of varying sizes and complexity,

we can assess the agent's ability to handle a wide range of diagnostic scenarios. This

comprehensive evaluation helps ensure the robustness and generalization capabilities of the

agent, making it more suitable for real-world applications.

PowerSystem CDReader RadioReceiver AudioSystem Direct Direct DiagnosticTest

Cluster Type Name PlayCD PlayRadio ProvidePower ReadCD ReceiveRadio GenerateAudio No_CD No_Radio_Signal ListenAudio

PowerSystem Function ProvidePower X X X X X

PowerSystem Hardware PowerSystem X

CDReader Function ReadCD X X X

CDReader Hardware CDReader X

RadioReceiver Function ReceiveRadio X X X

RadioReceiver Hardware RadioReceiver X

AudioSystem Function GenerateAudio X X X

AudioSystem Hardware AudioSystem X

Time 5

Functions

CDRadioPlayer

Observables

Cost

 TNO Public TNO 2024 S12781

 TNO Intern 20/24

5 Results

To evaluate our methodology we trained the RL agent on multiple systems with varying

number of nodes and edges.

5.1 CD Radio Player
To begin our experiment, we initially trained the agent using the CDRadioPlayer diagnostic

model, which is designed to simulate fault diagnosis in complex hardware systems. The

CDRadioPlayer model consists of 19 distinct hardware nodes, each representing a different

component or subsystem of a CD radio player. Additionally, the model includes 12

diagnostic tests that can be performed to detect faults in the system. However, out of the

19 hardware nodes, 11 were found to be non-uniquely diagnosable, meaning that the faults

in these nodes could not be distinguished from other hardware nodes using the available

diagnostic tests. This is an issue of the model, regardless of diagnostic strategy. As a result,

these non-uniquely diagnosable nodes were excluded from the training process to

streamline the model and ensure that the agent focused on more actionable data.

Figure 9: Diagnostic network corresponding to the CDRadioPlayer system. A detailed discussion of this system
can be found in the MBDlyb report.

During the training phase, the agent was tasked with minimizing the diagnostic cost, s. In

this particular case, this is equivalent to the number of tests since all tests are given a cost of

1. After the training process was complete, the agent demonstrated its ability to outperform

the baseline approach on the CDRadioPlayer model, although not by a large amount.

Specifically, the agent achieved a mean diagnostic cost of -17.625. For comparison, the

baseline approach, which uses the best fixed weighting scheme (with weight 0.95 on

entropy and 0.05 on cost for test selection),s resulted in a higher total diagnostic cost of -

 TNO Public TNO 2024 S12781

 TNO Intern 21/24

18.75. This indicates that the agent was more efficient in diagnosing faults, utilizing fewer

tests and reducing overall diagnostic costs in comparison to the baseline.

Figure 10: Orange line indicates negative cost of diagnosis averaged over root causes as a function of the
number of training steps of the RL agent (in thousands). Blue line indicates the (negative) cost of the best
fixed policy based on balancing entropy and cost.

5.2 Diagnostic System Generator
Following the initial training on the CDRadioPlayer model, we extended the complexity of the

task by training the agent on a more challenging, randomly generated diagnostic model.

This new model, created using the diagnostic system generator, consisted of 30 hardware

nodes and 30 diagnostic tests, significantly increasing the difficulty due to the larger number

of components and possible fault scenarios. The increased number of hardware nodes and

diagnostic tests introduced more variability and complexity, making it harder for the agent

to find optimal diagnostic strategies.

As a result of this added complexity, the agent was unable to surpass the performance of

the baseline during training with every initialization seed. However, despite not always

outperforming the baseline, the agent demonstrated consistent improvement throughout

the training process and came close to matching the baseline's level of performance.

Specifically, the agent achieved a mean diagnostic score of -54 across five different random

seeds, while the baseline, which utilized a fixed strategy for test selection, achieved an

average score of approximately -50.

Notably, in one of the five seeds, the agent managed to outperform the baseline, achieving

a score of around -47, which demonstrates the agent's potential to surpass the baseline.

While the average result didn't exceed the baseline, the agent's ability to approach and, in

one case, surpass the baseline highlights its potential to handle more complex diagnostic

scenarios with further training and optimization.

 TNO Public TNO 2024 S12781

 TNO Intern 22/24

Figure 11: Mean negative cost of diagnosis of the five RL agents trained. One of the five agents succeeded in
beating the baseline. Steps in thousands, blue line indicates the cost of the best fixed policy based on
balancing entropy and cost.

 TNO Public TNO 2024 S12781

 TNO Intern 23/24

6 Conclusion

This report provided a first investigation into the application of reinforcement learning for

intelligent diagnostics, particularly within the domain of system diagnostics. The results here

detailed indicate that integration of reinforcement learning techniques can enable the

development of more efficient and adaptive models that have the potential to improve

diagnostic accuracy over time. Throughout this research, various methodologies were

explored, and the results showed promising potential for real-world applications, particularly

in systems where dynamic and complex decision-making is required.

One roadblock we encountered was dealing with the slow environment. Due to having to

calculate the conditional entropy of the hardware nodes at every timestep, we only manage

to get around 10 steps per second on small models and even fewer on larger models. This

means that we did not have time to run an exhaustive hyperparameter search for optimal

hyperparameters. It is likely that there exists a hyperparameter configuration that manages

to beat the baseline more consistently even on larger models.

We learned that making all root causes uniquely identifiable is crucial to the agent being

able to learn good policies. When having multiple undiagnosable root causes, the agent

seems unable to learn a sophisticated policy. That can be attributed to our termination

condition only ending an episode once one of the hardware nodes has a >85% probability of

being broken. For some nodes this may not be possible and thus for some root causes it

does not matter which actions you take at what step. One way to solve this would be to

have an adaptive broken limit that changes with the root cause to make every root cause

identifiable. Alternatively one can exclude undiagnosable root causes from training.

Regarding future work, there are several areas that can be explored. One possibility is to

experiment with more advanced reinforcement learning algorithms specifically designed for

discrete action spaces, such as proximal policy optimization (PPO), DreamerV3, MPO or soft

actor critic (SAC) for discrete action spaces. These algorithms may provide better

convergence and performance, especially in scenarios with complex state-action mappings.

We already provided an implementation of PPO in the project codebase.

A promising attempt at speeding up the environment could be experimentation with

environment vectorization. We tried the native gymnasium vectorization and it did not

provide any notable speedup, but there are libraries that implement a much more

sophisticated vectorization like PufferLib. These libraries could offer a noticeable speedup.

One drawback of using PufferLib is that the only implemented algorithm they have is PPO.

Additionally, there was a case with DQN where the agent overestimates the Q-values of

initial states. That means the learned Q-function is not very accurate. This may be improved

by testing different variants of DQN or experimenting with the hyperparameters.

Another key area for future exploration is applying the reinforcement learning model to

diagnostic problems where certain actions do not yield new information but impact the cost

distribution of the diagnostic process. Addressing these scenarios will help in developing

https://arxiv.org/pdf/1812.02256
https://arxiv.org/pdf/2406.12905

 TNO Public TNO 2024 S12781

 TNO Intern 24/24

models that are not only accurate but also cost-effective, balancing the trade-off between

action efficiency and the quality of information gathered.

ICT, Strategy & Policy

High Tech Campus 25

5656 AE Eindhoven

www.tno.nl

	1 Introduction
	2 Problem Definition
	2.1 Problem in the field
	2.2 Diagnostic Problem
	2.3 Reinforcement Learning Problem

	3 Background
	3.1 Reinforcement Learning
	3.2 Markov Decision Process
	3.3 Agent
	3.3.1 Policy
	3.3.2 Value Function
	3.3.3 Deep Q-Networks

	4 Methodology
	4.1 Environment
	4.1.1 Observation Space
	4.1.1.1 Result of executed diagnostic tests
	4.1.1.2 Cost of each diagnostic test
	4.1.1.3 Information gain of each diagnostic test
	4.1.1.4 Success/Failure probability of each diagnostic test
	4.1.1.5 Healthy/Broken probability of each hardware node

	4.1.2 Action Space
	4.1.2.1 Action Masking

	4.1.3 Termination and Truncation
	4.1.4 Reward Function

	4.2 Diagnostic System Generator
	Generating the network topology: Expander graphs.
	4.2.1.1.1 Enhancing the graph
	4.2.1.1.2 Genedfd
	4.2.1.1.3 Generation of costs
	4.2.1.1.4 Export to MBDlyb

	5 Results
	5.1 CD Radio Player
	5.2 Diagnostic System Generator

	6 Conclusion

