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1 Introduction 

TNO-ESI has established five Product Market Combination (PMC) teams to maximize the 

impact of embedding world-leading methodologies in the high-tech equipment industry. 

These PMC teams are tasked with identifying socio-technical trends pertinent to the high-

tech sector. From these trends, PMCs will extrapolate both current and anticipated needs 

facing the industry. Ultimately, they will formulate a strategic roadmap to address these 

needs through collaborative efforts with ESI. The five PMCs are: 

 PMC team Engineering for System Qualities 

 PMC team Engineering for Lifecycle Excellence 

 PMC team Engineering for System Evolution/Diversity 

 PMC team Engineering for Systems of Systems Integration 

 PMC team Systems Architecting/Systems Engineering. 

This document is part of the work conducted by the PMC Engineering for Lifecycle Excellence 

(LCE), which refers to the comprehensive management and optimization of a system 

throughout its entire lifecycle. From the initial concept and design, via its usage and 

integration with other systems, through to decommissioning and disposal. Within the work 

of the PMC on LCE four key areas of interest have been identified as relevant for the high-

tech sector: diagnostics, testing, security and sustainability. This document covers the TNO-

ESI vision related to diagnostics. For the other key areas and the overarching PMC LCE, a 

vision will be provided in separate documents.  

 

Figure 1-1 Diagnostics as key area of interest within TNO-ESI Product Market Combinations (PMCs). 

The overarching PMC Systems Architecting/Systems Engineering has identified, with 

particular emphasis on the Dutch sector, eight key socio-technical trends for the high-tech 

industry. The identified trends are: 

1. Increasing dependence on complex systems 

2. Growing system diversity 

3. Growing role of Artificial Intelligence (AI) 

4. Continuous innovation and updating of long-life systems 

5. Climbing the value chain 

6. Innovation in ecosystems 

7. Growing scarcity of engineering experts 

8. Growing emphasis on Sustainability. 
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Figure 1-2 Key trends and drivers with corresponding industry needs in diagnostics. 

For their detailed description, we refer the reader to [1]. Although all eight trends to some 

extent have an impact on all PMCs, some trends are most impactful in specific PMCs. For the 

diagnostics area within the PMC engineering for LCE, we identify the four key trends 1, 5, 7 

and 8.  

Diagnostic specific trends and corresponding 
industry needs 
The rationale for the choice of these trends, together with the related industry needs is given 

below.  

 

Increasing dependence of society and economy on complex high-tech systems, Trend 1, 

directly implies that their Overall System Effectiveness (OSE) must be maximized. Here with 

OSE we mean the system's ability to meet operational requirements, maintain reliability, 

and achieve desired outcomes while minimizing costs and downtime throughout its 

lifecycle. However, the increasing complexity of these systems together with the dynamic 

environment in which they operate makes maximization of OSE more and more challenging. 

Many factors contribute to the overall effectiveness of high-tech systems, among which 

diagnostics. Here, diagnostics means a set of approaches to promptly facilitate the 

resolution of any issue in the operation of these system. Ultimately, such approaches shall 

also prevent such issues from occurring, i.e. losses of overall effectiveness, by defining 

proactive actions. We refer to this need as to maximize effective uptime. 

Increasing scarcity of engineering experts, Trend 7, is limiting the high-tech industry's 

traditional escalation-based approach to solving complex diagnostic problems.  This 

combines with a tendency to have unique systems system (related to Trend 2), i.e. a wide 

range of different system configuration that need specific service. Not only does it take too 

much time to equip service engineers with the required knowledge, but even worse, it is 

problematic to find enough engineers to match the service needs of the installed base of 

systems. Given this trend there is a need for a generalist service engineer: a service 

engineer who does not need to be an expert in a specific domain to solve complex 

escalations in this domain. 

Climbing the value chain, Trend 5, manifests as a shift from selling high-tech systems, such 

as lithography scanners, printers, and other complex equipment, to selling services, e.g. 

wafers per hour or prints per day. This shift in the business proposition has a direct effect on 

diagnostics. It introduces a strong incentive for manufacturers to build know-how to 

diagnose and repair systems as quickly and efficiently as possible, without wasting time, 

resources, or energy. This trend, coupled with the growing emphasis on sustainability, 

Trend 8, impacting many companies, results in a need for first-time-right diagnostics. 
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2 The high-tech equipment 
diagnostic challenges and 
needs 

The three needs identified in Section 1 are based on observations and feedback from the 

TNO-ESI high-tech ecosystem. In this section, each of these needs will be presented in more 

detail together with a description of the challenges specific to the high-tech equipment 

diagnostic domain. 

 

 

2.1 Diagnostics, a domain of many facets 
The high-tech diagnostics domain is one of many facets. The complexity of cyber-physical 

systems manifests in a wide variety of failure behaviours, ranging from software (SW), 

hardware (HW) and problems between SW and HW. On top of this, these systems are 

usually deployed in demanding, complex and heavily varying environments, ranging from 

complex factories to interactions with human operators using the system in very different 

ways.  

Furthermore, diagnostics inherently requires a systems-thinking approach as issues arise 

from the interplay of various components. For instance, the image quality of an industrial 

printer results from the interplay of many factors, including the life-of-ink1, life-of-paper, life-

of-droplets and the components involved in their integration. 

Analogously, in lithography, the product quality is the results of the life-of-light, the life-of-

wafer, and complex interactions between many other processes, some in control of OEM 

supplier and some out of control.  

The choice of abstraction level for diagnostic reasoning directly impacts the scope of 

potential diagnoses. A higher level of abstraction focusing on system-wide behaviours, e.g. 

on-product key performance indicators, may be insufficient to diagnose component-level 

issues. Conversely, a lower level of abstraction, considering component details, will miss 

system-level anomalies arising from the interactions between components. Finding the 

optimal trade-off between different abstraction levels is a common systems thinking 

problem, particularly relevant for diagnostics. 

All these factors together make the high-tech diagnostics domain a challenging one. This 

section addresses some of the most relevant complicating factors in the domain.  

_______ 

1With life-of-X we refer to all the factors the contribute to the handling and processing of X, throughout its journey 
in an industrial system 
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Hardware, software and system: the nature of the 
system 
Modern high-tech systems are great examples of complex cyber-physical systems (CPS). 

These systems integrate computational (cyber) and physical components to achieve specific 

goals. The cyber component, a sophisticated software stack, governs the physical 

component to fulfil these goals. System goals are typically defined as performance metrics, 

such as accuracy or throughput, quantifying desired system behaviour. The realization of a 

CPS involves the synergistic interaction of hardware and software components to meet 

these predefined goals. Recently, the increasing integration of Fault Detection, Identification, 

and Recovery (FDIR) techniques into systems has made diagnostics more complex. This is 

due to the added layers of adaptive behaviour and potential failure masking introduced by 

these techniques [2]. 

From a diagnostic point of view, an issue can occur at any place in the CPS. That holds for 

both the cyber and physical components. At the same time, failures often lead to the 

system failing to achieve its goal(s), as described above. A description of the issue would 

therefore often be at goal-level   while the real 

problem is at a much lower level, either in the hardware or the software domains, as these 

make the system. 

On top of that, most of what the system reports to the service engineer is created by 

software. Due to some hardware problem, the software may detect that it is unable to 

properly control the system, after which it reports an error and may just stop its execution. 

On the other hand, software may also fail in delivering the correct messages and may 

obfuscate failure behaviour because of that, complicating the troubleshooting a service 

engineer has to do. Furthermore, software may also have problems, requiring proper testing 

before its release. This latter topic connect to the testing, a key area of interest of PMC2 as 

shown in Figure 1-1. A separate document will describe the challenges and needs on the 

future of testing for high-tech systems. 

Overall, the hardware-software interplay of high-tech systems can be both a gift and a 

curse, depending on where the real problem is and how well the entire system can cope and 

report based on such a failure.  

Context, system and system-of-systems: the nature 
 

High-tech systems often represent a complex integration of various subsystems, some of 

which may be designed and manufactured by the same entity responsible for the overall 

system, while others may originate from suppliers. This heterogenous composition makes it 

challenging to ensure sufficient transfer of diagnostic information throughout the supply 

chain. This results in limited diagnostic knowledge, at the high-tech system level, for the 

subsystems from suppliers. Figure 2-1 (bottom left) shows the high-tech system of interest 

in light blue. It contains other systems, respectively in light and dark blue for the system 

designed and manufactured in-house and from a supplier. 

Furthermore, the deployment of these high-tech systems within a factory necessitates their 

interaction with numerous other (high-tech) systems. Often, diagnostic knowledge of these 

other systems is limited. This is not primarily a necessity for diagnosis problems within each 

system, but becomes relevant when a customer has a problem on the product itself. As a 

result, this hinders the  
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Figure 2-1 An high-tech system in its environment. What is the cause of a problem on a product? 

availability of a comprehensive diagnostics knowledge at factory level. Figure 2-1 shows this 

challenge by the interaction of the high-tech systems in light and dark blue. 

Moreover, these high-tech systems operate within physical environments, which influence 

their intended functionality; and the interactions with human operators, who configure and 

control these systems, can further introduce complexities and potential sources of 

unintended behaviour. Figure 2-1 shows the context in which the system is deployed, 

 

Reactive, performance and predictive: the nature of 
the issues to diagnose 
Diagnostics in the high-tech systems domain is a complex task with multiple dimensions. 

One crucial dimension is the type of diagnostics to perform. While all types of diagnostics 

challenges. For example, reactive diagnostics involves responding to a problem after it has 

already occurred, while predictive diagnostics aims to anticipate potential issues before they 

manifest. By monitoring system behaviour and identifying potential anomalies, it is possible 

to take corrective actions proactively. This can involve updating software, replacing 

hardware components, or adjusting system configurations or coefficient to 

avoid/compensate failures and maintain optimal performance. The biggest benefit of being 

able to predict is that maintenance can be scheduled, which also allows the production line 

to anticipate for the interruption. 

Another dimension to consider is the severity of the problem, which ranges from hard-down 

situations to performance issues. Hard-down situations, where a system completely fails to 

function, are often deemed easier to diagnose due to the clear absence of output. However, 

for high- Systems 

that operate sub-optimally are extremely hard to diagnose. Fault isolation, or root cause 

analysis, is a key aspect of diagnostics. This involves tracing a problem back to its origin to 

actively fix it and restore functionality. In the case of system down situations, fault isolation 

can help identify faulty components or software errors. For performance degradation, 

understanding the root causes can lead to adaptations that restore system functionality. 

These dimensions of the diagnostic domain are independent and combine in various 

ways. For instance, a system could experience a hard-down due to a software bug, which 

would require a reactive diagnosis. On the other hand, the same system might exhibit 

performance degradation due to hardware aging, which could be predicted through 

monitoring and proactive maintenance. In both cases, the severity and root cause are 

independent factors that can be addressed through different diagnostic approaches. 
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Therefore, for a comprehensive diagnostic approach, one may need to address all possible 

combinations of severity, root cause, and diagnostic timing (reactive or predictive). 

2.2 Industry needs 

Generalist service engineer 
Currently, customer service departments employ many service engineers with very specific 

areas of expertise. This may be limited to a certain subsystem or a specific domain. Due to 

the scarcity of experts and sometimes a lack of in-

behavior, especially for newly introduced systems, relying solely on this group of experts 

becomes infeasible. There is the need for a new class of service engineers who, while not 

deeply specialized in any particular domain, can efficiently troubleshoot a broad range of 

complex system issues, i.e. generalists. This will reduce reliance on a limited number of 

highly specialized engineering experts, as well as enlarge the pool of potential candidates to 

hire. 

In order to maintain troubleshooting efficiency, generalist service engineers need to be 

equipped with timely access to relevant information, tailored for the specific issue being 

addressed. We need to avoid an information overload towards the service engineer, to 

assure that he or she can focus on understanding what is going on in the system. By better 

scoping information presented to the service engineer, less experience is required from the 

service engineer to skim through bulky information to narrow it to the relevant parts.  

We envision that a digital assistant will become indispensable for service engineers. By 

providing rapid access to system design details, historical data, and analytics, this assistant 

will enhance the efficiency of root cause analysis. Furthermore, computer-aided 

troubleshooting powered by this digital assistant will enable engineers to identify and 

resolve issues more effectively, even with limited expertise. In cases where a better 

understanding of the system has been gained, this feedback should again be provided to the 

digital assistant to improve future diagnostics. 

Figure 2-2 shows the current approach for diagnostic knowledge build-up in many 

organizations. A subset of the design knowledge is transferred from Research and 

Development (R&D) to the customer Support (CS) department, depicted as a blue full circle, 

e.g. by conducting Failure Mode Effect Analysis (FMEA) and writing Service Manuals (SM). Of 

this subset of knowledge, only a small portion is actually used by CS, depicted as the 

intersection between the full blue circle and the full purple circle. Over time, by the 

cumulative learning process driven by solving real diagnostic cases (incidents), CS builds up 

troubleshooting knowledge. This is depicted with a full purple circle. Clearly, this process is 

inefficient, requires CS expertise, and does not allow for a generalist service engineer. 



 

 

 TNO Public  TNO 2024 R12778 

 TNO Public 10/24 

 

Figure 2-2 The current approach of building up troubleshooting knowledge starts with transferred 
information from the R&D department, as shown on the left. A part of all the available design knowledge is 
transferred to the customer support (CS) department by means of manuals or other types of documents. 
Over the lifetime of the system, only part of this transferred information is used. CS also learns how to 
troubleshoot efficiently through incidents that are solved in the field, slowly increasing the size of the filled 
purple circle on the right.  

First-time right 
The need for first-time right has multiple interpretations, but they all strive for reducing 

resources and time spent on resolving a system malfunction. First-time right is about being 

able to solve the malfunction on the first service visit, and about avoiding the unnecessary 

replacement of components that are not broken. Industry should stop following diagnostic 

trial-and-error approaches, in which parts are swapped without need.  

The main challenge to achieve first-time right is to have meaningful and sufficient data 

gathering from the system: one should only collect system data that is meaningful for the 

type of diagnostics that should be performed. This could include both automated data 

gathering, such as logging, and dynamic optimal testing 

procedures by a service engineer, where dynamic means 

tailored to the specific diagnostic issue under 

investigation. This will enable the service engineer to 

efficiently narrow down the search space for the issue 

and to make well-thought decisions on how to proceed. 

However, different types of diagnostic (strategies) may 

require different data to be collected: predictive 

diagnostics or prognosis depends mostly on 

automatically acquired data, while reactive diagnostics 

is less strict. 

The necessity and approaches for achieving first-time 

right vary between failures that occur rarely and those 

that occur frequently. Failures typically follow a Pareto 

like distribution, where 20% of the failure types account for 80% of the occurrences [3]. 

Figure 3-3 illustrates a schematic representation of this distribution, in purple and blue the 

types of failures occurring frequently and rarely, respectively. 

               

 
  
 
  
 
 
  
 

Figure 2-3 Pareto distribution of failure 
types, sorted by number of occurrences 
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A significant portion of diagnostic knowledge is built around frequent occurrences, which 

can be effectively addressed using statistical methods, such as pattern matching and 

generally data-driven approaches. To achieve first-time right for these types of failures, 

organizations should learn from field feedback quickly, by employing methods to utilize 

learnings from feedback in a structured way.  

Conversely, little diagnostic knowledge is built around the more rare issues, which cause 

long downtimes even if there is a structured method of learning from feedback is in place. 

To achieve first-time right for these types of failures, digital reasoning systems are needed, 

which gather and reason with the most relevant system information on the system given 

the current data. 

Maximize effective uptime 
The need to maximize effective uptime can be addressed by a wide range of different 

approaches. Maximizing effective uptime is about minimizing downtime and 

underperformance. There are two angles to this goal. First, the time required to resolve an 

issue, i.e. issue resolution time, could be reduced, so that the underperformance or non-

performing situation lasts as shortly as possible. Second, the frequency of having an 

underperforming or non-performing system could be minimized. 

Issue resolution time is influenced by various factors, including travelling time, diagnostic 

time, repair time, logistics, and reporting time. This document primarily focuses on 

diagnostic time, which involves identifying the necessary corrective action, however it's 

essential to acknowledge that reducing the overall frequency of interruptions requires a 

multifaceted approach. Historically, this has been addressed by enhancing system reliability 

through improved robustness or via redundancy. In the context of this document, we 

identify the need to mitigate the negative impact of unexpected system failures by 

implementing predictive maintenance and proactive measures. 

Some of the main challenges for reducing the issue resolution time have already been 

addressed in the other two industry needs: access to the relevant information and having 

meaningful and sufficient data gathering in place. The challenge to avoid unexpected 

system interruptions is to properly assess the current and future 

and suggest meaningful countermeasures, based on the collected relevant system data 

interpreted in a useful way. 

Predictive diagnostic tasks focus on predicting future system failures and improving 

maintenance efficiency rather than diagnosing issues that have already occurred. This 

temporal dimension of the prediction task requires inferring and tracking the system's 

performance over time. To address these unique aspects, predictive diagnostics often needs 

continuous variables to represent varying degrees of the system health, ranging from fully 

operational to completely broken. This contrasts with traditional diagnostic methods that 

typically rely on Boolean or multi-valued variables. Such a shift from discrete to continuous 

variables significantly increases the complexity of the problem. In addition, the temporal 

aspect of prediction adds another dimension to it.  

Figure 2-4 shows a schematic representation of the complexity build-up through different 

types of diagnostic approaches, all contributing to increased effective uptime of a system. 

Rather elementary is the situation in which the system just stops and does not work 

anymore and needs to be diagnosed. While the diagnosis itself may be challenging, 

detecting a problem is usually not in such a situation. Second is the situation in which the 

r to both 

recognize as well as to diagnose such a situation, due to many contributors, which all  
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Figure 2-4 Different types of diagnostic capabilities, ordered from less complex to more complex from left to 
right. 

combined result in the issue manifestation. Finally, prognosis not only includes diagnosing 

the present state, but it also comprises prognosing the future state of the system based on 

the observations. 
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3 State of the art 

There are three academic fields that attempt to address the previously introduced industry 

needs and challenges: Prognostics and Health Management (PHM), Reliability, Availability, 

Maintainability and Safety (RAMS), and Fault Detection and Isolation (FDI), each one with a 

somewhat different focus. Diagnostics research sits in the intersection of all three. It is 

helpful for a discussion of the state of the art of the field to analyse it from two different 

angles: what challenges is each field working on, and how are they being approached. 

The What in PHM, FDI and RAMS 
All three fields aim at minimizing risk and Total Cost of Ownership (TCO), each one focusing 

on different approaches to achieve that. 
In the RAMS field, the focus is on characterizing, already at design time, the reliability, 

availability, maintainability and safety of a system, and determining ways to change said 

design to improve its performance in these key aspects. The diagnostic challenge in this field 

is to assess the observability of failures in a given design. However, the focus in RAMS goes 

beyond fault identification and into assessing fault incidence rates, modelling fault impacts 

on system-level reliability, and development of mitigation and maintenance strategies, such 

as introduction of redundancy or modular design. 
In the FDI field, the focus is on the identification of abnormal behaviour (anomaly detection) 

and failure modes in operational conditions. FDI is specifically concerned with the impact of 

failures on controlled systems, forecasting their future behaviour, and designing robust 

control systems that can maintain performance despite the presence of faults. FDI is a 

subfield of control engineering and is heavily influenced by control theory and signal 

processing. 
Prognostics and Health Management (PHM) is an interdisciplinary field focused on predicting 

the future health and performance of systems to optimize maintenance and ensure 

reliability. The emphasis in PHM rests on prognostic forecasting, for which the concept of 

Remaining Useful Life (RUL) is commonly used, although anomaly detection and, to a 

smaller degree, fault identification are also studied.  
In all three fields, most research remains concentrated at the component or subsystem level 

[4], [5] (e.g., ball bearings, rotors, gears, pumps, sensors). Further, as said above, with 

different focus for each field: design for diagnostics in RAMS, reactive diagnostics in FDI, and 

prognosis in PHM. 
At the system level, research in the PHM and FDI domains is geared towards predicting 

many-to-one, non-linear regression problems. System-level assessments in the RAMS field 

are more common and considerable effort is spent on assessing overall reliability and 

availability of systems using knowledge of the same concepts related to their components. 

The How in PHM, FDI and RAMS 
Given the current trends in AI research, most efforts are nowadays directed towards 

applying deep learning to PHM, FDI and RAMS problems.  
Most AI-based approaches for diagnostics use convolutional neural networks, Long Short-

Term Memory neural networks (LSTMs) and/or autoencoders [6] combined with historical 

data of machines, such as sensor readings or time-to-failure [7] [8] [9]. Unsupervised 
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learning is used for classification and clustering in fault identification, while supervised 

learning is more common for RUL estimation and anomaly detection. 
These deep learning approaches have shown improved performance over traditional 

techniques based on signal processing and feature extraction [10]. Moreover, little domain 

expertise is required to make these models. Nevertheless, deep learning approaches still 

face several limitations common to industrial AI applications [7] [9]: 
 data rigidity: AI-based solutions require complete and consistently shaped data for 

training and usage. The necessity of existing training data limits their application at 

product introduction and for rare events. 
 poor extrapolation: AI solutions trained in specific configurations may not perform well 

under changing conditions, which is particularly challenging in high-tech domains with 

significant variations in equipment configuration and usage. 
 domain knowledge agnosticism: incorporating domain knowledge into deep learning 

methods is often difficult, if not impossible. 
 explainability: the complexity of deep learning models can make them difficult to 

interpret and explain. 
Hybrid data- and knowledge-driven approaches are just beginning to appear. Where 

detailed models exist in the form of digital twins, the models have been used to simulate 

failures and generate synthetic data on which Machine Learning (ML) models can be trained 

to do fault and anomaly detection through clustering and classification [9], or prediction [4] 

[7].  
Alternatively, purely data-driven approaches have been augmented with physics or system 

knowledge to achieve higher accuracy [11] [12] [13] [14] [15]. There is work using physics 

informed neural network architectures (PINNs) and/or graph neural networks (GNNs) [16], 

which can capture physics and structure much better than standard deep learning 

architectures. These tend to outperform the purely data-driven or knowledge-driven 

approaches at the cost of added complexity. 
A smaller portion of research is devoted to model-based techniques. Model-based 

diagnostics requires a higher degree of  domain expertise than data-driven or hybrid 

approaches. The flipside is that model-based techniques do not have any requirements on 

the availability of field data, and can be applied at design time, when field data is non-

existent, in rare cases where not enough data exist to train data-driven models, or when 

field data is incomplete or of varying size. 
At component level, model-based research is most prevalent in industries where very 

detailed models exist (energy [17], aerospace [18]) and/or high diagnosability on product 

introduction is a necessity (nuclear [19], aerospace). With detailed models at hand, fault 

identification, as well as state estimation and prognostics is to some degree possible. 
At system level, most research focuses on root-cause analysis using graphical models, 

although methodologies for system-level prognostics based on component-level prognostic 

models are beginning to emerge [20], [21], [22], [23]. 
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4 State of practice 

The reality of the state of practice of diagnostics in industry is complex and fragmented. 

Companies across all industrial domains use different ad-hoc combinations of expert, data 

and knowledge-driven diagnostic approaches with different scopes and goals. A useful way 

of making sense of the state of practice in diagnostics is to view it from two orthogonal 

directions. One point of view considers the scope of a diagnostic solution, with component-

level diagnostics on one side, system-level diagnostics on the other, and subsystem-level 

diagnostics somewhere in the middle. Another way of looking at it is through the approach 

taken, which comes roughly in three flavours: data-driven, knowledge-driven, and expert 

driven. 

At component level, data-driven diagnosis and prognosis are primarily used for the most 

critical components or the most common failures. These approaches rely on standard 

machine learning and artificial intelligence tools, which can sometimes be developed in-

house, although much off-the-shelf tooling also exists [24]. 

Model-based diagnosis and prognosis at component level is typically found only in industries 

with very high reliability and safety requirements, such as aerospace, defence, or nuclear 

sectors. For components that are not critical, model-based prognostic methods are 

generally not applied. Diagnostics, if conducted at all, are usually based on expert-driven 

documents, like Failure Modes and Effects Analysis (FMEA), Failure Modes, Effects, and 

Criticality Analysis (FMECA), and static diagnostic procedures. Alternatively, diagnostics may 

be left to the maintenance technicians. 

At system level, the most common approach to diagnostics involves the creation of expert-

driven FMEA documents for diagnosability analysis and static diagnostic procedures to guide 

technicians performing diagnostics in the field. When these methods fail, companies often 

escalate issues to experts. Data-driven models are used at the subsystem level for the most 

common failures, provided there is sufficient data and the failure signatures are uniquely 

identifiable. Integration of component and subsystem diagnostics into dashboards is also 

practiced. Model-based diagnostics at the system level, similar to the component level, are 

typically carried out only by industries that are required to do so, such as aerospace, 

defence, and nuclear power sectors. 

Tooling view 
In the course of the diagnostics projects undertaken by TNO-ESI in the last decade, the 

diagnostics expertise team has reviewed a number of commercial tools for model-based 

diagnostics, see Table 4.1. The criteria for a tool to be considered were that it must offer a 

scalable modelling approach, be already successfully applied in an industrial context, and 

offer, to some degree, both design and operational diagnostics support. 

Furthermore, the selected tools all implement a model-based diagnostic approach. Several 

tools are nowadays being introduced in the diagnostic landscape that use a more data-

driven approach, compiling a library of data-driven models at component level. As it is not 

yet clear how to use these component-level data-driven models for system-level 

diagnostics, which is TNO- . It is 

suggested that such tools are investigated in follow-up projects, in which data-driven and 

knowledge-driven approaches may strengthen each other.  

The tools that were identified as most promising were MADe and ISDD Tool Suite, see Table 

4.1. A full evaluation of MADe in the high-tech industry context was conducted as part of a 
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project carried at TNO-ESI and the conclusion was that the MADe tool does not yet offer 

enough diagnostic support to be adopted in that industry. A preliminary investigation of 

ISDD Tool Suite suggests that this tool might be a better fit for the high-tech manufacturing 

industry, especially when applied to design for diagnostics and model-based system 

engineering models are available. It is suggested that this tool is investigated in future 

projects. 

Overall, our conclusion is that, for these tools, modelling complexity is high to very high, but 

using the tools can sometimes be worth the effort since it can replace manual work that is 

also very costly and error-prone, e.g. FMEA and creation of diagnostic procedures. 

Furthermore, it can save time in diagnosing a system by avoiding inefficient trial-and-error 

maintenance or expensive escalations. Additionally, tool maturity is higher for reliability 

analysis than for diagnostics, and adoption in industries not used to work model-based is 

low. Therefore, we conclude that there is not a fit-for-all off-the-shelf diagnostic tool and 

further research is needed to bring system-level diagnostics to the high-tech industry 

 

 

 

 

Name Source 

MADe www.phmtechnology.com [25] 

TEAMS www.teamqsi.com [26] 

Kairos Workbench www.kairostech.no [27] 

RODON www.combitech.com [28] 

ISDD Tool Suite www.dsiintl.com [29] 

Table 4.1: Overview of off-the-shelf diagnostic tools, non-exhaustive. 

http://www.phmtechnology.com/
http://www.teamqsi.com/
http://www.kairostech.no/
http://www.combitech.com/
http://www.dsiintl.com/
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5 TNO-ESI diagnostic 
proposition 

Based on the identified socio-technical trends and the challenges and needs specific to the 

diagnostic domain of high-

proposition. It will present a future vision, exploring potential advancements and innovative 

approaches to address the emerging diagnostic needs identified above.  

their focus and contributions to the field. By combining the historical insights with a forward-

thinking perspective, this section aims to provide a roadmap for the future of high-tech 

system diagnostics.  
 

5.1 Diagnostic vision 
Figure 5-1. At the core of the framework sits 

the diagnostic model. The precise definition of such a mathematical model is complex and 

varies across specific diagnostic approaches or implementations. For the purpose of this 

document, we consider it as a computational entity that encapsulates all diagnostic-

relevant system information and serves three key diagnostic use cases: design for 

diagnostics, reactive diagnostics, and prognosis. Each of these three will be briefly explained 

in the following paragraphs. Our vision is that we will continue our efforts in developing 

model-based methodologies for diagnostics, in which such a diagnostic model will have a 

central role. 

  

Figure 5-1 Envisioned TNO-ESI diagnostic framework. 
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Design for diagnostics 

consider how well the system could be diagnosed once it is deployed in the field. To do this, 

diagnosability and to 

designers of the system could make an informed decision about improving the observability 

or not. This is related to the academic field of RAMS, as described in Section 3. 

Early stages of the system design phase should also build the foundation of the diagnostic 

model. All the detail that comes in later stages of the design will add granularity to the 

model, enriching its resolution and accuracy. The creation of this diagnostic model should 

not be a separate activity. The creation of the diagnostic model should fit well in existing 

model-based design processes, tapping into those other bodies of knowledge that are being 

used in industry [30]. 

-

for-diagnosis) based on the observables and tests present in the system, the notion of 

diagnosis may change in the future. Moving towards more predictive strategies may induce 

different constraints to be of effective use. Design for diagnostics will change over time, 

depending on the planned diagnostic needs from the system. 

Finally, design for diagnostics will not only help design engineers in ensuring their system to 

be diagnosable, but it will also help business to determine a fitting diagnostic strategy for 

their system. 

Reactive diagnostics 
Once the system is realized and deployed in the field, it will eventually fail. As described in 

Section 2.1, the observations of the failure may range from a complete system stop to 

unacceptable performance degradation. Either way, based on the observation of a failure, 

one needs to identify its cause to be able to resolve the issue. Fault diagnosis is usually an 

iterative process of conducting tests to acquire new information from the system to refine 

some intermediate diagnosis, until a final diagnosis is reached. 

The diagnostic model will be used as a digital assistant to guide a service engineer to come 

to a diagnosis. For large and complex systems, where humans struggle to properly oversee 

how things influence one another, such an assistant can reason beyond what the human 

could. Also, the assistant will provide unbiased suggestions, possibly suggesting hypotheses 

the engineer would not have considered. 

Data being logged by the system needs to be interpreted automatically by the assistant, as 

state, mode of operation and anything else relevant for diagnosing the system should be 

considered and properly weighed by the assistant. 

Even though such a digital assistant brings a lot of value in complex escalations in which a 

lot of knowledge needs to be combined to come to a root cause, it may also be used for the 

simpler cases. At the start of an escalation that requires root cause identification, one does 

not know the complexity of the case. As such, this reactive diagnostic assistant should be 

applicable for any diagnostic case. 

Prognosis 
While the system is in operation, a lot of data is being generated by it. This data will be used 

predictions could be made of its future health. Even though this is already being done at 

small scale for individual components, see Section 3, doing this at system scale will bring 
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could be made, as redundancy or specific use of components or modules in the system 

could be incorporated. 

Being able to 

allows for efficient maintenance scheduling. Maintenance could be scheduled based on the 

prediction that the system may no longer perform its function in the near future. By 

predic

inspect parts that are mildly degraded during a planned service visit. This results in fewer 

more effective service visits compared to when one acts just on the fully degraded parts. 

This informed way of scheduling maintenance will lead to a higher overall effectiveness of 

the system. 

While the maintenance schedule still needs a human in the loop for ensuring system 

effectiveness, it would be better if the system can self-adapt to its continuously changing 

situation. Based on predictions, the system may maximize its effectiveness by changing 

configuration by itself. For redundant components or modules, this could be condition-based 

load balancing, but it may also automatically change movement speeds or throughput to 

temporarily reduce wear to some parts. Such self-adapting actions may extend the lifetime 

of the system sufficiently long while it awaits maintenance actions.  

Field feedback 
The diagnostic model that results after the system design has been completed is based 

solely on design information. After deployment of the system in the field, observations made 

on the installed base of systems may be used to improve the model. Also, learnings from 

service visits or in-field diagnostics  preferably assisted by the model  will be included in 

the model itself. This stream of feedback improves the quality and accuracy of the model. 

The diagnostic model therefore provides a structured way of capturing these learnings. 

Combining this design-driven initial model with the data-driven feedback creates a joint 

design- and data-driven model. This model may also reveal discrepancies over time 

between the intended way the system works and the way the system actually works once it 

is deployed. This could provide valuable feedback for the next iteration of product design.  

 

5.2 Past activities 
In recent years, TNO-ESI has collaborated with high-tech industrial partners on several 

diagnostic projects. While in all the projects we have explored approaches for diagnostics of 

high-tech systems, their specific scopes and contributions have differed. Some example of 

these are given below: 

 model-based diagnostics methodologies focusing on both physical (structural) and 

functional descriptions of a system [31]. The main difference being that a structure-

based approach has a higher diagnostic accuracy at the cost of modelling effort, 

compared to the more abstract functional approach. 

 digital assistants for diagnosing hardware failures that led to hard-down situations, 

making use of probabilistic graphical models for reasoning. To achieve this, we 

introduced a method to iteratively suggest the next best service action, i.e. the reactive 

diagnostics loop in Figure 5-1 [32] [33] [34].  

 methods to compute the diagnosability of a system at the design stage, i.e. the design 

for diagnostics loop in Figure 5-1. This involved evaluating the system's ability to be 

diagnosed during operation, rather than focusing on immediate diagnostic actions [35] 

[36]. 
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 Methods and tools for predicting performance (timing) behaviour and diagnosing related 

issues [37] [38].  

Overall, TNO-ESI diagnostic activities have been on diagnosing both HW and SW failures, 

mostly separately. Further research is needed to address the interplay of SW and HW, 

particularly at system level. Despite the different scopes, the main approach adopted in the 

different projects is overlapping. All the projects implement a model-based approach with 

diagnostic computational models created or generated using knowledge on the system 

design. 

Figure 5-2 shows some of the elements that have already been (partially) addressed in past 

TNO-ESI activities. Research in three different modelling paradigms   structure, function, 

and performance   has been done, each leading to a methodology supporting one or more 

use cases. To support these use cases, algorithms have been developed to use the 

information captured in the diagnostic model by the paradigm. The types of algorithms that 

have been developed are shown by the overlapping blue circles on the purple paradigms. To 

enable the algorithms developed, one or more formalisms were used to structure 

information or to execute computations. These are shown as orange circles. Overlapping 

circles indicate tight relations between the formalism and the algorithms or modelling 

paradigm. 

 
Figure 5-2 Schematic overview of the diagnostic work already (partly) addressed by TNO-ESI 

in the past years. Overlapping bubbles indicate a tight relation between them, e.g., both the 

performance and function modelling paradigms use Markov nets as a formalism for 

reasoning. Bubble sizes are only for visualization purpose. 
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6 Conclusions 

This document outlined the TNO-ESI vision on diagnostics of high-tech industrial system, by 

addressing the three main needs identified in diagnostics: 

 generalist service engineer: make diagnostics accessible to a wider range of 

professionals, i.e. less reliance on experts in a world where these are scarce. TNO-ESI 

supports through the development of methods that provide decision support in the field 

for reactive diagnostics. Digital assistants will developed that combine knowledge of the 

system with real-time data to help service engineers in identifying and resolving system 

failures. 

 first-time right: decrease the wasting of time, materials and energy in a world of 

increased system dependability and where sustainability requirements will be enforced. 

This will be supported by model-based methods that include system knowledge and field 

learnings for assisting service engineers. Design for diagnostics methods will be 

developed to ensure availability of the right data to reason with.  

 maximize effective up-time: shift maintenance strategies from reactive to proactive, in a 

world in which there is a transition from selling systems to selling services. Prognosis 

effectiveness. Based on these assessments, maintenance plans can be made or 

mitigating actions can be taken. 

For more details on these needs and how they relate to socio-technical trends of the high-

tech sector, see Section 2. To learn more about the key diagnostic areas TNO-ESI will 

contribute to, see Section 5.1. 

 

Overall, we foresee that the high-tech sector will have to invest in model-based diagnostic 

methodologies, where the diagnostic model is not static, but is continually improved via a 

feedback loop from the field providing new knowledge. This approach leverages data-based 

and AI approaches, and will result in enhanced system reliability, reduced downtime, and 

optimized maintenance efforts. 
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