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A B S T R A C T

A physics-informed machine learning (ML) model, which incorporates the conservation of carbon mass, was 
developed to predict the product gas yield and composition for indirect gasification of waste in a fluidized bed. A 
dataset was compiled from experimental data of an in-house reactor, encompassing a wide range of feedstocks 
characteristics (biomass to plastics) and process conditions, which served as input for the model. Four data- 
driven models were trained and evaluated, with the XGBoost model having the best predictive accuracy 
(RMSE = 1.1 & R2 

= 0.99) and being adapted for the physics-informed model. The optimum physics contribution 
was 30 % (70 % data contribution) to maintain predictive accuracy (RMSE = 2.7 & R2 = 0.95) and improve 
carbon closure. Feedstock properties were shown to have a higher feature importance compared to the operating 
conditions. The developed physics-informed model demonstrated the potential of ML models for the modelling of 
gasification of various waste streams. This is a promising first step towards improving data-driven ML models for 
application to thermochemical systems.

1. Introduction

The steady increase of waste, growing energy demand and rising 
emissions from increased fossil fuel consumption have necessitated the 
development of waste management strategies and reduction of fossil fuel 
demand by identifying renewable energy and fuel sources [1,2]. 
Currently most waste streams (plastic-rich or otherwise) are either 
landfilled or incinerated (to retrieve heat), which contributes to pollu
tion of the soil, water, and air. However, these streams are a source of 
carbon which can be utilized for the production of new chemicals and 
fuels [3]. Biomass and biogenic waste in turn have been identified as 
attractive renewable fuel and energy sources [1,4]. Thermochemical 
conversion processes, such as pyrolysis and gasification, offer promising 
routes for the valorization of these heterogenous waste streams as well 
as producing renewable fuel and energy from biomass. These technol
ogies help to reduce waste production, CO2 emissions and fossil fuel 
dependence [2,5,6].

An important step towards further development and optimization of 
these thermochemical processes is modelling. Models provide informa
tion on product yields and insights on process performance and opti
mization, as well as enabling scale-up and real-time process control 
[7–9]. Modelling these processes is challenging due to the numerous 

complex reactions and extensive range of products. There are various 
modelling approaches for predicting the thermochemical behaviour and 
product distribution based on thermodynamics, kinetics, computation 
fluid dynamics (CFD) and statistical/empirical approaches (data-driven 
modelling). Thermodynamic models are relatively simple to implement 
(based on directly measured properties such as temperature, pressure 
and composition) and are applicable to any system (independent of 
reactor design). These models are however not suited for processes that 
are kinetically and hydrodynamically controlled such as fluidized bed 
reactors and processes operating at lower temperatures (750 – 1000 ◦C) 
[8,10–12]. Kinetic models are in turn suited for non-equilibrium con
ditions and provide more accurate predictions of product gas composi
tion. These models’ are, however, restricted to one specific system and 
require an extensive range of data to determine and validate the kinetic 
parameters [10–12]. CFD models deliver accurate predictions on the 
temperature and species profiles as well as product gas yield. As with the 
kinetic models, these models are limited to a specific reactor design, and 
are complex and computationally expensive to solve [7,8,10,11].

In recent years, machine learning (ML) models (data-driven) based 
on regression and neural networks (NN) have been developed for pre
dicting product gas composition and yields as well as gasification effi
ciencies. These models aim at finding correlations between a set of input 
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(features) and output (targets) variables, without knowledge on the 
behaviour of the physical system. These correlations are determined by 
employing various adaptive statistical and numerical models, which 
accurately describe linear relationships [8,10]. For thermochemical 
processes, the inputs are usually defined as the feedstock composition 
and process conditions, while the outputs are the product yields, com
positions, and process efficiencies. ML models have been applied to 
various gasification and pyrolysis processes for different feedstocks and 
were shown to have predictive capabilities comparable to, or even better 
than, conventional models [7,13,14].

Yang et al. [6] compared various ML models to predict yields and 
composition for the gasification of municipal solids waste. The devel
oped models accurately predicted, the char, tar, product gas yields and 
composition based on the feedstock characteristics and gasification 
conditions. Insights were gained into which parameters were key for 
optimizing the process in an economic and environmentally friendly 
manner. Wang et al. [15] employed various ML models to predict syngas 
composition and yields for biomass chemical looping gasification. With 
the models the key parameters were identified, which in turn reduced 
the number of experiments and led to an improved understanding of the 
design and optimization for a commercial process. To determine opti
mum gasification pathways for biomass to energy, Gil et al. [16] 
developed a ML model to predict the gas composition and yield for 
fluidized bed systems. The model enabled the selection of optimum 
process conditions for specific applications of the product gas. Xue et al. 
[17] trained five different ML models to predict the syngas composition 
during biomass gasification with steam in a fluidized bed reactor. The 
best model was selected and assisted with understanding the influence of 
various inputs and optimizing the process for the production of 
hydrogen-rich syngas.

The drawbacks of ML models in general are that they require a large 
amount of experimental data with sufficient variability for training and 
that interpretability is sometimes difficult for complex models due to the 
black-box approach [7,10]. Additionally, these models are purely 
data-driven and do not consider physical boundaries or constraints, such 
as conservation of energy and mass or governing equations, which could 
result in inaccurate predictions and scientific inconsistencies.

To overcome these limitations, models are being developed that 
combine physical mechanisms and constraints with ML algorithms to 
create physics-informed models (also known as physics-infused or 
hybrid models). The use of physics-informed models reduces the data 
requirement, as some complex relationships between variables are 
already provided, assists with model interpretability, and ensures sci
entific consistency. Furthermore, physics-informed models utilize the 
predictive capability of conventional ML models to describe relation
ships that are not always captured by physical models, and can be 
adapted and updated with new datasets to become more robust [18,19]. 
These models have been developed and applied for various chemical 
processes such as modelling the anaerobic digestion of palm oil [20], 
predicting the productivity of oil wells [21] and predicting NOx emis
sions from coal-fired boilers [22]. For the modelling of gasification 
processes, Ren et al. [19] developed a physics-informed neural network 
(PINN) model to predict the concentration of the main biomass gasifi
cation products. The physical constraint was incorporated in the form of 
physical monotonicity between the syngas composition and the pa
rameters equivalence ratio, moisture content and temperature. The 
developed PINN showed superior prediction performance compared to 
data-driven models and ensured that the results aligned with the 
established scientific principle of monotonicity.

Apart from Ren et al. [19] other studies on ML modelling for gasi
fication processes are focussed on the development of data-driven 
models only. The aim of this work is to develop a novel 
physics-informed ML model, to predict the product gas yield and 
composition, based on feedstock properties and operating conditions, 
while adhering to the conservation of mass for carbon entering and 
exiting the system. The physics-informed model includes a wide range of 

feedstocks, ranging from biomass to plastics-rich, making it applicable 
to a diverse array of waste streams. The model will be tested with 
various contributions of the physical constraint, and the optimal 
contribution will be selected based on the predictive and carbon closure 
accuracy. Furthermore, the performance of the physics-informed model 
will be compared with the data-driven model based on predictive ac
curacy and model interpretability. The developed model offers the po
tential of smart experimental design for future tests and optimizing the 
thermochemical process conditions for treating biomass or plastic waste 
streams, while ensuring scientific consistency.

2. Methodology

2.1. Experimental set-up and data collection

The data used for the development of the models, was generated 
during experiments in an in-house lab-scale bubbling fluidized bed 
reactor located at the TNO site in Petten, The Netherlands. The reactor 
consisted of two zones, namely the bottom zone where the bed was 
located (internal diameter (ID) of 74 mm and height of 500 mm) and the 
top zone which was the freeboard (ID of 108 mm and height of 600 mm). 
The reactor was equipped with a screw feeding system and had a 
maximum feeding capacity of 1000 g/h. The system operated under 
atmospheric pressure and was equipped with electrical heating at the 
walls to provide external heating, when required (maximum operating 
temperature is 1100 ◦C). Fluidization gases namely nitrogen (N2), steam 
and/or air were introduced in the bottom of the reactor. Additionally, 
tracer gases (neon or argon) were added with the fluidization gases to 
determine the product gas flow rate (through analysis of the tracer gas 
concentration at the outlet). The product gas exited at the top and passed 
through a cyclone to remove ash, chars, and entrained bed material, 
before the gas was analysed. The reactor bed could be filled with 
different bed materials (olivine, sand, sepiolite etc.), but for this study 
only sand as bed material was considered. Silica sand (dp50 = 310 µm) 
was used and the ratio of the particle diameter and internal diameter of 
the reactor was small enough to minimize the wall-effects.

The set-up was equipped with various thermocouples inside and 
above the bed to monitor the temperature profiles and to ensure that the 
temperature distribution inside the bed was uniform. Pressure sensors 
were present to measure the pressure drops over the bed. With the 
temperature and pressure drop profiles, the fluidization behaviour of the 
bed could be monitored to ensure that proper fluidization and conver
sion of feedstock were occurring during the experiments. In Fig. 1, a 
simple schematic of the reactor set-up is given.

The minimum fluidization velocity was calculated before each test 
and the flow settings were set so that the velocity in the bed was well 
above the minimum velocity. Prior to each experiment the reactor was 
heated to the desired temperature and fluidization gases (and tracer) 
were introduced to fluidize the bed. To prevent the backflow of hot gases 

Fig. 1. Bubbling fluidized bed installation.
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from the reactor to the feeding screw, 1 NL/min of N2 was added to the 
feeding screw. Once stable conditions were reached, which were 
confirmed by the temperature and pressure drop profiles in the reactor, 
the feedstock was introduced via the feeding screw and the flow of 
fluidization gases was reduced as it was substituted by the product gas 
being formed. The product gas was analysed both online and through 
offline sampling and analysis to quantify the composition. The aim of the 
experiments was to measure the main components in the product gas 
and all carbon containing species to calculate the complete carbon 
balance over the system. For the online analysis an ABB gas analyser was 
used to continuously monitor the permanent gases (CO, CO2, CH4, H2 
and O2). Furthermore a Varian micro-gas chromatographer (GC) ana
lyser was used to analyse the product gas (N2, Ne, Ar/O2, CO, CO2, CH4, 
C2H2, C2H4, C2H6, C3H6, C3H8, benzene, toluene, H2S and COS) at six 
minute intervals. For the offline analysis, gas bags were taken during 
steady state operation and analyzed using a Thermo Scientific Trace 
1310 GC with a flame ionisation detector (GC-FID) to measure the 
concentrations of the C1-C6 hydrocarbons as well as H2. Wet chemical 
sampling (tar sampling in isopropanol) of the gas was done according to 
the standardized tar measurement protocol and the samples were ana
lysed afterwards using a GC-FID to determine the concentrations of 
benzene, toluene and tar components (molecular weight > 92.1 g/mol) 
[23]. The full description of the analysis methods can be found in [24]. 
After each experiment (once feeding was stopped), the remaining char in 
the bed was combusted by introducing air to the system. The CO2 (and 
CO) concentration was measured online and used to quantify the char 
yield.

With all the analysis information, the carbon mass flow of each 
component was calculated (based on concentration and product gas flow 
rate), and the complete carbon balance of the process was calculated 
based on the analysed carbon content of the feedstock, as shown in Eq. 
(1). 

Carbon closure =

(∑
iCi,product gas +

∑
iCi,tar + Cchar

Cfeedstock

)

× 100 (1) 

Considering the experimental and analytical errors of the set-up and 
analysis equipment, as well as sampling errors, the carbon balance was 
expected to close within 100 ± 10 %. Numerous test campaigns have 
been performed with the installation, investigating different feedstocks 
and conditions including test campaigns of the European project BRISK 
2 [24–27].

From the data of these test campaigns, a dataset consisting of 231 
samples was compiled. The feedstocks ranged from biomass-rich 
(beechwood, lignin, olive pomace, miscanthus) to plastic-rich (DKR 
350, virgin polypropylene (PP) and polyethylene (PE)). The wide range 
of feedstocks ensures variability for both the feedstock characteristics as 
well as the product gas composition. For biomass-rich feedstocks, CO, 
CO2, H2 and CH4 were the main products, while for plastic-rich feed
stocks such a PE and PP, the main products were small hydrocarbons 
such as C2H4 and C3H6 as well as aromatics such as benzene. The vari
ability ensures the model’s robustness and validity across a wide range 
of feedstocks. In Fig. 2, a breakdown of the feedstock distribution for the 
compiled dataset is given.

Feedstocks with a plastic content of ≥ 50 % were regarded as plastic- 
rich feedstocks, while those with a lower plastic content (< 50 %) were 
regarded as biomass-rich. For some feedstocks the plastics content could 
be easily determined, as these were model mixtures containing virgin 
plastic pellets such as PE and PP, mixed with beechwood, while for real 
waste streams such as refuse derived fuel (RDF) and textile waste it was 
difficult to determine the exact plastic content. Since the composition of 
these feedstocks can vary greatly depending on the biogenic content, 
these were presented as in-between feedstocks. Another real waste 
stream included in the dataset was DKR-350, which is known to be 
plastic-rich waste streams and was included under plastics.

Apart from the variation in feedstock, variations in temperatures and 

steam flows were also included in the dataset. The dataset was limited to 
only include indirect (or allothermal) gasification/thermal cracking 
tests with silica sand as bed material. Furthermore, only data with a 
carbon closure of 90 – 110 % was included, as the closure falls within the 
limits of the experimental error.

2.2. Data analysis and pre-processing

The first step in data analysis and pre-processing was to divide the 
complied data into input features and output targets. The input features 
were operating parameters (temperature, steam-to-carbon ratio (StC) 
and feed rate) and feedstock characteristics (elemental composition and 
ash yield). The output targets were the product gas yield and concen
trations (vol.%, dry, tar-free, N2-free basis) of the main components in 
the product gas (H2, CO, CO2, CH4, C2H4, C2H6, C3H6 and benzene). In 
order to calculate the carbon balance for the system the carbon flow 
rates of the remaining C2-C6 hydrocarbons, char and tar (including 
toluene) were also added as output features. For each input feature and 
output target the statical parameters (namely mean, median, maximum, 
and minimum) were calculated to have an indication of the distribution 
and variation in the data.

The Spearman’s correlation coefficients were calculated, to have an 
indication of the linear correlation between any two parameters. The 
correlation coefficient is a non-parametric statistic and does not require 
the data to be normally distributed as it utilizes monotonic functions to 
determine the correlation. The correlation coefficient ranges from − 1 to 
1, with a negative value indicating a negative linear correlation and 
positive value indicating a positive linear correlation. Strong correla
tions are considered to have values of < 0.8 for theoretical data [6,28].

The correlations will not be used for the feature selection as the in
puts have already been selected. The correlations will be used in support 
of the explainability of the model i.e. explaining the relations between 
certain inputs and outputs based on the corelations with other inputs. 
The heatmap with the correlation coefficients can be seen in the sup
porting information (SI).

After pre-processing (filter data for the mass balance closure and 
normalizing of the data for the support vector regression (SVR) model 
(see below)) and evaluation, the dataset was randomly divided into a 
training and test set. The training set consised of 80 % of the data and 
was used to train different ML models (see Section 2.3.1) for the com
parison purposes and also the physics-informed model. The test set, 
consisting of the remaining 20 % of the data, was used for model 

Fig. 2. Distribution of feedstock in the dataset.
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evaluation.
Four machine learning models namely, decision tree (DT), random 

forest (RF), SVR and extreme gradient boosting (XGBoost) were trained 
and compared, before the physics-informed model was developed (see 
Section 2.3). The DT, RF and XGBoost models are insensitive to the 
variable scale and thus no data scaling was applied for these models. For 
the SVR model, the training and test sets were normalized using the Z- 
score standardization [15].

2.3. Modelling

2.3.1. ML model development
Four ML models were evaluated namely DT, RF, SVR and XGBoost. 

These models have been applied in previous studies for ML modelling of 
gasification and pyrolysis of both biomass and waste [6,7,16,17,29–31]. 
DT, RF and XGBoost are decision tree-based methods that can be used 
for classification and regression problems. The advantages of decision 
tree-based methods include simple implementation, minimal data 
pre-processing, and the ability to fit complex non-linear relationships, 
which is the case for thermochemical conversion processes. Tree-based 
models are also less sensitive to outliers which is the case with some 
experimental data points due to experimental errors. Depending on the 
complexity, the interpretability of the models is also easier compared to 
artificial neural networks (ANNs). Clear interpretability is important 
when trying to understand the influence of input parameters on the 
resulting product gas composition and optimizing conditions for 
maximum yield. It should, however, be mentioned that for ensemble 
methods the interpretability can also become complicated.

DT models are prone to overfitting, but with the use of ensemble 
methods the models are more robust as these algorithms have built-in 
regularization mechanisms. Two key ensemble methods are RF and 
XGBoost. The RF algorithm is based on a combination of tree predictors, 
with each tree being trained through bootstrapped samples from the 
training data. The trees are thus trained independently and combined by 
averaging the prediction to form the final model. RF models are able to 
handle complex datasets with interactions among variables and provides 
insights into feature importance which in turn assists with understand
ing the key drives in the thermochemical process. XGBoost is a gradient 
boosting algorithm where several weak leaners (small trees which are 
shallow) are created and combined to form one strong learner. With this 
algorithm (based on the greedy method) the fitting of each new tree is 
done to correct for the errors (residuals) of the combined previous trees, 
thus improving the overall model in a sequential manner [6,7]. XGBoost 
has a high predictive accuracy (compared to DT and RF), can handle 
complex interactions, which is the case for complex thermochemical 
processes and has built-in mechanisms to prevent overfitting which 
could happen with smaller datasets that include noise due to experi
mental errors [32].

The SVR model is the regression form of the support vector machine 
(SVM) model which is used for classification problems. The SVR algo
rithm constructs a hyperplane (or set of hyperplanes) in a higher- 
dimensional space to predict the continuous output of values and is 
applicable to both linear and non-linear regression problems. The 
advantage of this algorithm is that it yields good prediction accuracy for 
both small and large datasets, it is robust against outliers and can cap
ture complex interactions between variables. It does, however, require 
more data pre-processing than decision tree models [7,33].

The ML models were programmed in Python using the Scikit learn 
library. The hyperparameters were tuned using Optuna which is an 
automatic hyperparameter optimization framework and is computa
tionally less expensive compared to Grid Search as well as allowing for 
better integration with some ML frameworks [34].

The models’ performance was evaluated and compared by 
comparing statistical performance parameters namely, the coefficient of 
determination (R2) and the root-mean-square-error (RMSE). The model 
with the best performance will have a high R2 value (close to one) and a 

low RMSE. The parameters were calculated for both the test and training 
sets and compared.

2.3.2. Physics-informed model
Following the evaluation, the XGBoost was selected to continue with 

the development of the physics-informed model (see Section 3.2). 
XGBoost is based on the gradient boosting algorithm, but is optimized by 
having built-in regularization to avoid overfitting and performs paral
lelization for faster computing time. Furthermore it has better handling 
of missing data, has various tree pruning methods and built-in cross- 
validation techniques [21,32]. XGBoost also supports custom loss 
functions, which is important when incorporating the physics-guided 
section to the model [35].

Physics were incorporated in the form of conservation of carbon 
mass. For training the model, the objective function is defined and 
optimized, which combines the loss function (L) and the regularization 
term (Ω) and is written as follow [32]: 

Obj =
∑

i
Li(ŷi, yi) +

∑

k
Ω(fk) (2) 

The loss function is the measure of the predictive capability of the 
model and the mean squared error (MSE) was chosen as the loss function 
in this study: 

Li = (yi − ŷi)
2 (3) 

Eq. (3) depicts the loss function for a data-driven model, where yi is 
the actual value and ŷi is the predicted value. For the physics-informed 
model, the loss function is modified in the following manner (see Eq. 
(4)): 

Li = (1 − λ)(yi − ŷi)
2
+ λ

(
Ci,in(experimental) − Ci,out (predicted)

)2
(4) 

Where Ci,in represents the carbon entering the system (mass flow 
rate), which is calculated from the input parameters namely the feed 
rate and carbon content of the feedstock. Ci,out is the carbon exiting the 
system which is calculated from the predictions made for the product gas 
composition and product gas yield as well as the tar, char and C2-C6 
carbon flow rates. Lastly, λ is a parameter with a value between 0 and 1, 
employed to balance the data-driven part and the physics-informed part 
of the model. The higher the value of λ, the more physics-driven the 
model will be. The second term of the objective function is the regula
rization term that is used to penalize model complexity and avoid 
overfitting of the model (see, Eq. (5)): 

Ω(fk) = γT +
1
2

β ‖ ω‖2 (5) 

Where γ is the minimal loss reduction required for splitting a new 
leaf, Tis the number of leaf nodes of the tree, β is the penalty term for the 
weight values of ω. During training these hyperparameters are tuned to 
optimize the trade-off between bias and variance of the model [18]. To 
train the model the following form of the objective function is optimized 
(see Eq. (6)): 

Obj = −
1
2
∑T

j=1

(∑
iϵIj gi

)2

∑
iϵIj hi + β

+ γT (6) 

Where Ii is the total set of leaf nodes. The gradient gi (first derivative 
of the loss function) and hessian hi (second derivative of the loss func
tion) also needs to be estimated. Based in the loss function defined in Eq. 
(4), the gradient and hessian are given as follow (see Eqs. (7) and (8)): 

gi = − 2(1 − λ)(yi − ŷi) − 2λ
(

Ci,in(experimental) − Ci,out (predicted)

)
(7) 

hi = 2 (8) 

The derivation of the traditional XGBoost model as well as the 
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explanation of the algorithm steps can be found in [32]. The same sta
tistical parameters defined in Section 2.3.1 were also used for evaluating 
the performance of the physics-informed model. The procedure for 
fitting the physics-informed models is shown in Fig. 3.

Input features for the model are the elemental composition, feed rate 
and operating conditions, while the outputs are the product gas yield, 
concertation (vol.%) of the main gas components and the carbon flows 
of the char, tar and C2-C6 hydrocarbons. These input features were 
chosen as they are easily measured and can be directly used as input. The 
outputs can be easily compared with the product gas composition 
measured with the online analysers. For the training and testing of the 
physics-informed model, the inlet and outlet carbon flows were calcu
lated beforehand. This saves computational time and simplifies the 
fitting and hyperparameter tuning, as the carbon outlet flows do not 
have to be calculated iteratively. The carbon entering the system was 
however calculated during the training procedure from the input pa
rameters. From Fig. 3, it is seen that carbon outlet flows, based on the 
gas composition and product gas yield, are calculated prior to splitting 
the data into training and test sets. The training was done by minimizing 
the MSE for the carbon flows of the individual components (with the 
exception of the hydrogen which is kept as a concentration in vol.% and 
the product gas yield) and the total carbon entering and exiting the 
system (Eq. (4)).

The hyperparameters were tuned once more using the Optuna opti
mization framework and were tuned separately for each selected λ. The 

hyperparameters tuned were; gamma, subsample, min_child_weight, 
max_depth and eta. For the training and tuning, the multi_output_tree 
was selected as the multi_strategy parameter. This is a recent addition to 
the XGBoost model, where a single tree predicts all outputs simulta
neously instead of the default method where a single tree is built for each 
strategy [35]. This method is useful for datasets where the outputs are 
correlated as in the case of gasification/pyrolysis products i.e. the 
presence of some components in the product gas promotes/inhibits the 
formation of others. Also, for the yields of the products i.e. more char 
can lead to lower tar and gas yields etc. The multi_output_tree was also 
selected when comparing the different data-driven models. In Fig. 4a 
simple layout of both strategies are compared.

After the models were trained and evaluated, the predicted carbon 
flows of the major components were converted back to volume con
centrations using the predicted product gas yield and carbon flow rates. 
The carbon flows of the test and training sets were also converted back to 
product gas concentrations and compared with the predicted values.

The next step was to explore the model interpretability, and to gain 
insight into feature importance. For this, a Shapley Additive Explana
tions (SHAP) analysis was performed, which is a flexible technique 
developed from game theory, to assess both the global and local inter
pretability of the models. For the global interpretability, the sum of 
absolute SHAP values gives the overall importance of each feature. For 
the local interpretability, SHAP values are calculated for individual 
predictions, which shows the contribution of each feature and indicates 

Fig. 3. Workflow for the development of physics-informed ML model.
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whether it has a negative or positive effect on the prediction [15,36,37].

3. Results and discussion

3.1. Data analysis

In Table 1, the statics of the input features and output targets are 
provided.

For the feedstock composition, it is seen that the minimum values of 
the ash, oxygen and nitrogen were zero, which are for the virgin plastics 
pellets (PP or PE) used in some experiments. The use of these pellets also 
corresponds with the maximum carbon and hydrogen content. The el
ements with the widest range were carbon and oxygen, while nitrogen 
had the smallest range. For the process conditions the feed rate ranged 
from 136 to 519 g/h. The temperature extended from 693 to 856 ◦C and 

was more in the range for low temperature gasification and pyrolysis. 
The StC ratio varied from 0.3 to 1.3 (g/g). The value was never zero, 
because the moisture content of the feed also contributed to the StC 
ratio. The value was not too high as too much steam in the system would 
lead to quenching, making it difficult to reach the desired operating 
temperature. For the product gas, there were notable variations in the 
concentrations and flows, which is due to the variation in feedstock 
composition. The components C2H6 and C3H6 had the lowest maximum 
values and the smallest ranges (compared to the other concentrations in 
vol.% on dry basis (db)). These components are reactive and readily 
converted to other components especially at higher temperatures. For 
the thermochemical conversion of biomass-rich feedstocks the concen
tration of these hydrocarbons are usually low and in the case of C3H6 
below the detection limit. The syngas components (H2 and CO) had the 
highest maximum concentrations, which is mainly related to the ther
mochemical conversion of biomass-rich feedstocks. In general, when 
comparing median and mean with one another, it is seen that not all the 
data was normally distributed. In most cases the data was skewed to the 
right (positively-skewed, mean > median).

The distribution of the carbon closure of the dataset is shown in 
Fig. 5. The distribution of the carbon closure was skewed to the right 

Fig. 4. Comparison of the multi_strategy feature for XGBoost.

Table 1 
Statical parameter for dataset.

Unit Min Max Mean Median

Input features ​ ​ ​ ​ ​
Feedstock composition a ​ ​ ​ ​ ​
Ash (db) wt.% 0.00 15.4 2.43 1.40
C (db) wt.% 47.0 85.7 61.3 54.8
H (db) wt.% 4.30 14.3 8.06 6.00
O (db) wt.% 0.00 48.8 26.2 32.2
N (db) wt.% 0.00 1.80 0.85 0.60
Operating conditions ​ ​ ​ ​ ​
Feed rate (db) g/h 136 519 274 215
Temperature ◦C 693 856 767 754
StCb g/g 0.30 1.27 0.78 0.78
Output (Target) c ​ ​ ​ ​ ​
Product gas yield d Nm3/kgfeed(db) 0.42 1.25 0.83 0.81
H2 vol.% 6.14 42.3 27.9 29.2
CO vol.% 0.28 45.7 21.1 25.2
CO2 vol.% 0.16 33.8 13.9 16.0
CH4 vol.% 4.47 33.9 15.8 13.3
C2H4 vol.% 2.18 37.8 11.6 5.66
C2H6 vol.% 0.00 4.42 1.06 0.73
C3H6 vol.% 0.00 10.2 1.49 0.57
Benzene vol.% 0.43 11.9 3.05 2.54
Char gcarbon/h 1.49 67.1 20.1 13.4
Tar gcarbon/h 2.16 77.6 19.4 14.3
C2-C6 gcarbon/h 0.00 17.6 3.10 1.66

a db – dry basis.
b StC includes the moisture content of the feedstock.
c All gas concentrations are on a dry, N2-free, tar-free basis.
d Product gas yields refers to dry, N2-free, tar-free product gas flow divided by 

feed rate on db basis.
Fig. 5. Carbon closure distribution of the dataset (90 – 95: 51.5 %; 95–100: 
38.5 %; 105–100: 9.1 %; >105: 0.9 %).
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(positively skewed), and the majority of the carbon closures were below 
100 %. More than half of the carbon closures were below 95 %, with 
only 10 % of the data having a carbon closure greater than 100 %. This 
indicates that in most cases the carbon exiting the system was under
estimated, which is due to experimental error or a minimal amount of 
missing carbon. The values were however still within the experimental 
error range (see Section 2.1).

3.2. Data-driven models

After the evaluation of the data statistics, different ML models (only 
data-driven) were trained and compared. The comparison of the models 
in terms of RMSE and R2 is given in Fig. 6.

From Fig. 6a it is seen that the tree-based ML models performed 
better than the SVR model by having lower RMSE values for the test set. 
For the tree-based models, the ensemble methods RF and XGBoost 
performed better than the DT model, by have lower RMSE scores for 
both the training and the test sets. XGBoost had the lowest RMSE value 
for the training (0.37) and test (1.12) set. For the R2 values, all models 
had values close to one for both the training and test sets. The XGBoost 
model also had the highest R2 value (0.955) for the test data, followed by 
the RF model (0.954), while for the training data the DT model had the 
highest R2 (0.994) followed by XGBoost (0.991).

As stated in Section 2.3.1, ensemble methods, compared to tree- 
methods, are more robust due to their built-in regularization terms 
and are able to handle complex interactions among variables, which is 
the case for the complex thermochemical conversion process where the 
variables are interrelated. Furthermore, due to the algorithm design of 
the XGBoost, it generally has a high predictive accuracy, compared to 
other tree-based models, which was also seen for this study. The SVR 
model is also able to handle complex interactions between variables (see 
Section 2.3.1), however for this case its predictive accuracy was less 
compared to XGBoost.

Overall, the SVR model demonstrated the lowest performance, 
whereas the XGBoost model exhibited the highest performance, fol
lowed by the RF model, in terms of prediction accuracy. The superior 
performance of the XGBoost model (and gradient boosting regression 
(GBR) ML models in general) in predicting the product yields and gas 
composition, has been shown in past studies for gasification as well as 
for various other thermochemical processes such as hydrothermal 
liquefaction and carbonization, and pyrolysis [6,16,17,29,30,33,37,38]. 
For gasification specifically, Yang et al. [6] indicated that the GBR 
model had the highest prediction accuracy (in comparison to SVR and 
RF) in terms of predicting the syngas yield and composition from the 
gasification of municipal solids waste. Li et al. [29] compared the 

performance of NN, SVR, RF and GBR for predicting the product yields 
and syngas composition of biomass waste gasification and indicated that 
GBR showed superior prediction accuracy compared to other models. 
Lastly, Xue et al. [17] evaluated five different ML models including DT 
and RF, and indicated that XGBoost was the best performing model for 
predicting the syngas properties of biomass gasification with steam. 
Based on the results in Fig. 6 as well as the results of previous studies, the 
XGBoost model was selected for further development of the 
physics-informed ML model.

3.3. Physics-informed ML model

For the physics-informed ML model, multiple models were trained 
and optimized (hyperparameter tuning) based on the selected λ, which 
assigns the weight given to physics-informed part of the ML model. λ was 
varied from 0 to 0.5 in steps of 0.1 and the RMSE and R2 values were 
calculated to evaluate the model’s predictive accuracy. To evaluate the 
improvement of the carbon balance closure, the following approach was 
employed. The total number of data points with a carbon balance 
closure between 95 and 105 % was calculated for each model based on 
the predictions of the test set and compared to the total number of 
experimental data points in the test set for the same carbon closure in
terval. The ratio between the two was then estimated as shown in the Eq. 
(9). 

Ratio ± 5% =
Nmodel, test(95% ≤ Carbon closure ≤ 105%)

Nexp,test (95% ≤ Carbon closure ≤ 105%)
(9) 

The ratio for carbon closure between 99 and 101 % was also esti
mated and used for the comparison. In Fig. 7, the comparison for the 
different λ values is shown.

The results show that as the contribution of physics increased, the 
predictive capability of the model decreased due the RMSE increasing 
and R2 decreasing. The increase of the RMSE was minimal going from a 
pure data-driven model to a model with 10 % physics contribution, 
however, as the physics contribution increased (λ > 0.2), the increase 
became more notable. For λ > 0.5, the predictive accuracy rapidly 
decreased (RMSE > 4.5 & R2 < 0.80), and for this reason higher λ values 
were not evaluated. The carbon closure improved with the physics 
contribution. The improvement was indicated by the increase in ratios of 
predicted carbon closure to the experimental carbon closure (Eq. (9)) for 
the chosen intervals (100 ± 5 % and 100 ± 1 % respectively). For the 
data-driven results, the closure remained the same as for the experi
mental set for Ratio ± 5 % (equal to 1.0) and slightly decreased for Ratio 
± 1 % (equal to 0.33). The ratio of carbon closure between 95 and 105 % 
(Ratio ± 5 %) increased for λ of 0.1, while for higher λ values the ratio 

Fig. 6. Comparison of the performance of different data-driven ML a) RMSE b) R2.
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remained the same. The ratio of carbon closure between 99 and 101 % 
increased exponentially with the addition of physics constraint. The 
trend in the ratios suggest that for a λ ≥ 0.1 the amount of data points 
with a carbon closure between 95 and 105 % is not increasing, but the 
distribution is only becoming narrower around a median of one (100 % 
carbon closure).

Fig. 7 was also drawn for the training set and can be found in the SI. 
Similar trends were seen for the statistical parameters. For λ > 0.1, the 
increase in the RMSE was more significant than for the test set pre
dictions, but the absolute values were lower, e.g., for λ of 0.5, RMSEtest 
was 3.3 and RMSEtrain was 2.9. For the carbon closure, the Ratio ± 5 % 
increased up to λ of 0.3 after which the ratio decreases minimally, which 
is due to the overprediction of carbon exiting the system leading to 
carbon closures greater than 105 %. This was not seen for the test data 
where the ratio remained constant, however as will be shown below, the 
distribution of carbon closure does shift towards higher values. The 
Ratio ±1 % increased exponentially similar to Fig. 7.

Fig. 8 shows the distributions of the carbon closures based on the 
predictions from the test set for different λ values as well as the carbon 
closure of the experimental test set.

It is seen that for the data-driven model and models with a low λ, the 
carbon exiting the system was underpredicted, leading to a carbon 
closure lower than 100 %. This was due to the training data (and test 
data) mainly having data points with a carbon closure less than 100 %, 
as shown in Fig. 5 (see Section 3.1, right-skewed distribution). As λ 
increased the distribution of the carbon closure improved, with the ratio 
of carbonout to carbonin, becoming normally distributed with a median 
of one. The distribution also became narrower. For a λ of 0.1, all carbon 
closures were already ≤ 95 %, which was why no significant increase 
was seen in the Ratio ± 5 % for higher values of λ (see Fig. 7). Fig. 8
shows that already with a 10 % physics-contribution, a significant 
improvement was made in the distribution of the carbon closure. In 
Section 3.1 it was shown that for the overall dataset, 51 % of the data 
points were below 95 % carbon closure (see Fig. 5). It is, however, noted 
that as λ continued to increase the distribution of the carbon closures 
shifted more to the left (higher carbon closures). In some cases, the 
carbon exiting the system was overpredicted, leading to carbon closures 
greater than 100 %. For a λ of 0.3, 85 % of the carbon closures were 
between 95 and 100 %, while the 15 % were above 100 % (2.12 % was 
above 105 %).

The effect of changing the carbon closure threshold for the data se
lection to 85 and 95 % respectively was also investigated with the results 
shown in Fig. 9.

From Fig. 9a & b, it is seen that the trends for both the statistical 
parameters and carbon closure evaluation were comparable with Fig. 7. 
For Fig. 9a, the amount of data points in the total dataset increased to 
324 by lowering the carbon closure threshold to 85 %. Compared to 
Fig. 7, the RMSE values were higher for the given λ values, due to the 
larger changes in concentrations (carbon containing species) and prod
uct gas yields for many data points to improve the carbon closure. The R2 

remained similar to that of 90 % carbon closure threshold. The increase 
in the Ratio ± 5 % followed a similar trend i.e., increasing up to a λ of 
0.2 and then remaining constant. The Ratio ± 1 % continued to increase 
with λ, however when comparing the results with Fig. 7, it is seen that 
the ratio increase was less than for the dataset with a 90 % carbon 
closure threshold.

Upon increasing the carbon closure threshold to 95 %, the amount of 

Fig. 7. Comparison of statistical parameters and carbon closure improvement for physics-informed models with different λ-values (Predictions are based on the 
test set).

Fig. 8. Comparison of carbon distributions with experimental test data and 
models with different λ values.
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data points in the complete dataset decreased to 112 and the variability 
of the data decreased as many feedstocks were removed from the 
dataset. By comparing the results with Figs. 7 and 9a it is seen that the 
RMSE was higher and also continued to increase with the increase in λ. 
For R2, both the values and trends were similar. The Ratio ± 5 % did not 
increase with λ values as the threshold for the experimental data was 
already 95 %. The Ratio ± 1 % increased up to a λ of 0.3 after which it 
decreased together with the Ratio ± 5 % due to the overprediction of 
carbon exiting the system, leading the closures to be higher than 101 and 
105 %, respectively. Overall, when comparing the results, it is seen that 
a carbon threshold of 90 % was the optimum selection based on the 
statistical parameters and carbon closures.

3.3.1. Model performance for individual outputs and selection of λ
To further assess and compare the predictive capability of data- 

driven and physics-informed models, the statistical parameters for the 
individual outputs were compared for different values of λ. The results 
are reported in the SI. An increase in the RMSE with the increase in λ, is 
seen for all outputs, while R2 in turn decreased with λ. The largest in
crease in RMSE was seen for concentrations of H2, CO and CO2 and the 
char carbon flow, while for the C2-C6 carbon flow the RMSE was 
consistently higher. For the concentration of H2, CO, CO2 and also for 
the tar carbon flow, the largest increase in RMSE was seen for λ > 0.3 
(for the char flow it was λ > 0.2). The results suggest that λ should not be 
greater than 0.3 in order to maintain the predictive capabilities of the 
model. The parity plots (for both test and training set) of the data-driven 
model and that of the physics-informed model (λ = 0.3) are presented in 
Fig. 10.

The RMSE and R2 for both models are also compared in a separate 
figure for each output to have a better overview. The figure can be found 
in the SI. From the results it is seen that for both models (data-driven and 
physics-informed) the RMSE value for the various outputs was 〈 3, while 
the R2 was 〉 0.6 and for most outputs > 0.9. The highest RMSE (and 
lowest R2) value for both models was seen for the C2-C6 carbon flow, 
where the output was scattered and most of the predictions for the 
training and test data were outside the ± 10 % interval. The deviation 
was normally distributed, it is thus not a systematic over- or under
prediction of the data. The output that had the lowest RMSE score (≤
0.06) for both the data-driven and physics-informed model was the 
product gas yield, which is important as this output parameter in
fluences the predictions of the concentrations for the major gas com
ponents (see Fig. 3). The highest R2 value (1.00) was seen for various 
outputs for the data-driven model and for the physics-informed model 
for the tar output.

In general, it is seen that the predictive capability of the model 
decreased with the contribution of the carbon balance constraint, which 

is in line with the results of previous sections. The largest change was 
seen for the RMSE values, while for the R2 values only slightly decreased 
with the physics contribution. The majority of the predictions (both test 
and training) fall within a 10 % deviation from the experimental results. 
For lower concentrations, some of the data points were above the 10 % 
deviation (overpredicted). From the Fig. S.3 in the SI, it is seen that the 
largest changes would be seen for the concentrations of H2, CO and CO2 
as well as the char carbon flow, however upon comparing the parity 
plots of these outputs it is seen that the majority of the predictions fell 
within the ± 10 % deviation, only for the lower concentrations the some 
values were above the + 10 % threshold.

From the results of the overall comparison, as well as for the indi
vidual outputs, it is concluded that for the physics-informed model the 
optimum value of λ is 0.3. For a value of 0.3, it is seen that the carbon 
closure improved to 2.2 for Ratio ± 5 % and to 6.7 for Ratio ± 1 %. From 
the carbon distribution it is seen that the majority of the carbon closures 
were between 95 and 100 %, which was a significant improvement 
compared to the experimental dataset. Furthermore, the predictive ac
curacy was maintained with the model having an overall RMSE of 2.68, 
which was only 0.55 higher than that of the data-driven model (RMSE =
2.13). The overall R2 of the data-driven model was 0.95, while that of 
the physics-informed model was 0.93.

3.3.2. Model interpretability
To have a better understanding of the feature importance and gain 

meaningful insights from the model results, the SHAP analysis was 
performed. It should be noted at the time of writing this paper the 
TreeExplainer did not yet support the vector leaf output of the multi- 
output feature of XGBoost V2.0 and thus the normal explainer was 
used for the interpretability analysis. The analysis was performed for 
both the data-driven and physics-informed model (λ = 0.3) and 
compared to evaluate how the feature importance changed with the 
carbon closure constraint. The analysis was done for the total dataset, 
five randomly selected datasets (47 datapoints in each set) taken from 
the main dataset as well as for a dataset containing only biomass and 
plastics feedstock respectively. The results for the total dataset, one 
randomly selected dataset, the biomass and plastics are presented in 
Fig. 11 for the data-driven model. The SHAP results for the other four 
datasets tested can be found in the SI for both the data-driven and 
physics-informed model. Note that the outputs presented are in the form 
of the direct outputs of the model, thus in g/h of carbon flow (except H2 
vol.%), instead of concentrations as presented in the parity plots.

The SHAP plots present the absolute mean feature importance score 
of all the model inputs. The higher the score the more important the 
feature and the features are also ranked according to the score. The 
absolute mean score is sum of the feature importance scores for the 

Fig. 9. Comparison of statistical parameters and carbon closure improvement for physics-informed models with different λ-values a) Dataset with carbon closure 
interval 85 – 115 % b) Dataset with carbon closure limit interval 95 – 105 %.
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individual outputs, which is indicated with the different colours (see the 
legend of Fig. 11a–d). The larger the impact, the larger the mean ab
solute value. For the data-driven model, the carbon content of the 
feedstock was the most important feature, followed closely by the feed 
rate. For the analysis of the whole dataset, four of the five randomized 
datasets and the biomass dataset, the carbon content had the highest 
feature importance score, while for set two, the feed rate had the highest 
feature importance score (see SI). The process conditions namely bed 
temperature and StC where in most cases the third and fourth most 
important feature, however, the scores were significantly lower 

compared to the carbon content and feed rate. The concentrations of the 
other components in the feedstock appeared to have minimal effect, 
with the nitrogen content of the feedstock having the lowest feature 
importance for all the datasets. For the plastics dataset, the feature 
importance scores differed notably from the other datasets, with the feed 
rate being the most important feature, followed by the process condi
tions, StC and bed temperature. The feedstock composition appeared to 
have a minimal feature importance, with nitrogen again having the 
lowest score.

For the datasets where the carbon content had a high feature 

Fig. 10. Parity plot comparison of model outputs a-l) data-driven model m-x) physics-informed model (λ = 0.3).
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importance, the main targets that contributed most to the feature 
importance score were the H2 concentration, CO, C2H4, benzene and tar 
carbon flow rates. This indicates that the carbon content had the largest 
impact on these outputs. For the feed rate feature importance score the 
CH4, CO, CO2, C2H4 and char carbon flow rates were the outputs with 
the highest scores and thus most influenced by the feed rate. Based on 
the complete dataset, the SHAP analysis was also done for each indi
vidual target to have an indication of the influence of each feature on 
each output. The results of the analysis can be found in the SI (Fig. S.7).

Same as for the global overview the feed rate and carbon content 
were the two inputs that had the highest feature importance for all 

outputs. Most outputs increased with the increase in feed rate, which 
was expected as more products are formed when the feed rate increases. 
The product gas yield was the only output that decreased with the feed 
rate, which could be due to the manner in which it was presented, 
namely the volume of gas divided by the feed rate. Additionally, for the 
biomass-rich feedstocks, the feed rate was usually higher (average 291 
g/h). Compared to plastic gasification, biomass gasification typically 
results in higher char yields and consequently lower product gas yields. 
This in turn could cause the model to display the feed rate as having a 
negative impact on the product gas yield. The carbon content of the feed 
also had a negative correlation with the product gas yield. This is once 

Fig. 10. (continued).
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more related to the feed rate, meaning that for the plastic-rich feedstocks 
the feed rate was generally lower (average 207 g/h), but the carbon 
content of the feed was usually higher.

Next to the feed rate and carbon content, the bed temperature and 
StC both had a positive contribution to the product gas yield. For higher 
temperatures, more gas was typically produced, and the addition of 
steam promotes the formation of products such as H2, CO and CO2 which 
in turn increased the product gas volume. For the H2 concertation, the 
carbon content had the highest feature importance, having a negative 
influence on the output. Next to the carbon content, the feed rate had the 
highest importance, although the results were inconclusive on the effect 
of the feed rate. The StC had the third highest feature importance and 
promotes the formation of H2. The increase was due to the steam 
reacting with either solid carbon to form H2 and CO (water-gas reac
tion), or with CO to form H2 and CO2 (water-gas shift reaction). Steam 
also reacts with CH4 (and other hydrocarbons) to form CO and H2 (steam 
reforming) [15,39]. Wang et al. [15] and Xue et al. [17] both showed the 
positive influence of steam (in the form of steam-to-biomass ratio) on the 
production of H2 as well as the gas yield. For this reason, the CO2 flow 
rate was also shown to increase with the StC ratio. The influence of the 
StC ratio for CO shows no clear correlation, most likely due to steam 
either promoting formation CO (water-gas reaction) or consuming the 
CO for the water-gas shift reaction. Furthermore, for the CO and CO2 
flow rates, the carbon content was shown to have a negative influence on 
both outputs, which was due to the correlation with the oxygen content 
in the feed. A higher carbon content in the feed would mean a lower 
oxygen content (see Fig. S.1), which would lead to lower CO and CO2 
flows, as the only source of oxygen comes from the feed and some steam 
(no air in the reactor, indirect gasification).

The hydrocarbons, as well as benzene, and tar flow rates all increased 
with the carbon content, which was also seen from the correlations in 
Fig. S.1. As mentioned, plastic-rich feedstocks had a higher carbon 

content compared to the biomass-rich and in-between feedstocks. The 
plastic feedstocks for this study mainly consisted of PP, PE and DKR-350 
(polyolefin-rich waste) and thus the thermal cracking of these compo
nents to the monomers would lead to the production of olefins as well as 
benzene (due to secondary reactions). Additionally, for gasification of 
biomass the carbon content has also been shown to contribute to the 
production of CH4 [15,17]. For the C3H6 carbon flow rate, the bed 
temperature was shown to be an important feature, having a negative 
influence. Higher temperatures lead to the conversion of C3H6 to smaller 
molecules such as C2H4 and CH4 and other secondary reactions to form 
more complex molecules [9]. For the C2-C6 carbon flow rate, the bed 
temperature was once more the third most important input feature, 
however, the results were inconclusive on the impact that the operating 
parameters had on the flow.

The char carbon flow appears to decrease with the carbon content 
(second most importance input feature). Carbon in the feed undergoes 
thermal cracking and other reactions such as water gas-shift, resulting in 
the formation of gaseous products such as hydrocarbons, CO and CO2. 
Additionally, carbon reacts to form tar (see Fig. S.7 l & x), which 
consequently reduces the char yield. The decrease in the char yield with 
carbon content was also seen by Li et al. [29]. Lastly, as previously 
mentioned, higher carbon content was associated with plastics-rich 
feedstocks which yield less char compared to gasification of biomass.

The results for the whole dataset, one randomly selected dataset, the 
biomass and plastics are presented in Fig. 12 for the physics-informed 
model.

Similar to the data-driven model, the carbon content and the feed 
rate were the two most important features, for the total dataset as well as 
the randomly divided datasets and the biomass dataset. The main targets 
that contributed to the feature importance of the two inputs were also 
similar to that of the data-driven model. Furthermore, for the total 
dataset as well as for the five randomly divided datasets (Fig. S.6 in the 

Fig. 11. SHAP results for data-driven model a) complete dataset b) randomly selected dataset 1 c) biomass dataset d) plastics dataset.
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SI) the nitrogen content of the feed had a high feature importance, which 
was not the case for the data-driven model. For the model training as 
well as for the SHAP analysis, the datasets used were the same for the 
data-driven and physics-informed models, thus there was no difference 
in variability. The increased feature importance was due to the model 
training and physics. The nitrogen content was not directly used for the 
physics-contribution (based on the carbon content) and thus indirectly 
became an important feature. The SHAP analysis was also done on the 
total dataset for the other values of λ and it was seen that for λ ≥ 0.2, the 
nitrogen content feature importance does increase but always remains 
the third most important feature (after feed rate and carbon content). 
For the biomass and plastics datasets, the variability in the nitrogen 
content was less than for the whole datasets and randomly divided 
datasets and for this reason the nitrogen content did not have a high 
feature importance. The feedstock with the highest nitrogen content was 
the textile waste (in-between feedstock) which was due to the presence 
of components such as polyamide (nylon) and polyurethane (used for 
elastane), which are commonly used in textiles. Furthermore, for the 
plastics dataset, the feed rate was once more the most important feature, 
followed by the StC same as for the data-driven model. It was also seen 
that the ash yield of the feedstock became a more important feature, 
compared to the data-driven model.

The results of the feature importance on the individual outputs for 
the physics-informed model are presented in Fig. S.7 m to x. The results 
for most output features were comparable to that of the data-driven 
model in terms of both feature importance and correlation with the 
outputs. For the data-driven models, carbon content and feed rate were 
the two most important input features while for the physics-informed 
model, the nitrogen content of the feedstock became important as 
well. The nitrogen content had a negative influence on all output fea
tures. In the study of Yang et al. [6] on municipal solid waste gasifica
tion, the nitrogen content was also identified as a significant feature, 
ranking among the top three. In general, nitrogen exhibited a negative 

correlation with components such as H2, CO2 and CH4 (mol.%), while 
showing a positive correlation with the tar yield. Li et al. [29] also 
concluded that nitrogen content was an important input feature for the 
syngas (negative correlation) and tar yield (positive correlation). For the 
H2 concentration, the negative correlation was related to the nitrogen in 
feedstock reacting to form ammonia and hydrogen cyanide, which in 
turn reduced the hydrogen yields in the product gas. Fig. S.1 also indi
cated a negative linear correlation between the nitrogen content and 
various features. Notably, strong negative correlations were observed 
for the model outputs rather than the inputs, with the exception of the 
hydrogen content in the feed.

In general, it is seen that the feedstock properties had a higher 
feature importance compared to the operating conditions. As the dataset 
contains a wide variety of feedstocks, the composition in the feedstock 
also varies greatly. The greater variability in the feedstock properties 
(compared to operating conditions) could be why stronger correlations 
were seen. To better highlight the feature importance of the operating 
conditions, a suggestion is to split the dataset into a biomass-rich and 
plastics-rich sets and to train two separate ML models. The variation in 
the feedstock properties would reduce and the effect of operating con
ditions would become more apparent.

4. Outlook

The physics-informed ML model, developed in this study, enables the 
prediction of all carbon containing products for the indirect gasification 
of both biomass and plastic waste feedstocks, while ensuring scientific 
consistency. The wide range of feedstocks makes the model applicable to 
various fluidized bed processes, from biomass gasification to produce 
renewable fuels and chemicals to the chemical recycling of plastic waste. 
Performing calculations for waste valorization (through chemical recy
cling) helps to promote a circular economy, to reduce landfilling and 
emissions. Predicting the complete carbon distribution enables the 

Fig. 12. SHAP results for physics-informed model a) complete dataset b) randomly selected dataset 1 c) biomass dataset d) plastics dataset.
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tracking of both desired products and unwanted carbon byproducts 
(such as tar, CO2 etc.) and thus process optimization can be done by both 
increasing product yields and minimizing unwanted byproducts.

On a potential industrial scale, the versatile model can be used for 
evaluating the product slate of new feedstocks under various conditions, 
assisting with the optimization of the process for the desired yields. 
Using the model as a screening tool, reduces cost and time associated 
with extensive feedstock characterization and experimental work. 
Furthermore, the model can be integrated with the process control 
system for real-time adjustments based on variations in feedstock 
composition. This in turn assist with making the process more 
economically viable and has environmental benefits by improving 
feedstock utilization and conversion, increasing product yields and 
reducing operation costs through process optimization.

Currently the model is limited to one technology namely bubbling 
fluidized beds on lab-scale and only considers indirect gasification. The 
model can be broadened to include direct gasification data, various bed 
materials, and parameters such as the equivalence ratio and calorific 
values of the feedstock (for energy balance calculations). Currently, the 
model considers the elemental composition as the only input for the 
feedstock characteristics, however, some plastics feedstocks are similar 
in chemical composition (e.g. PE and PP) but result in different product 
distributions. Incorporating polymer composition as input would 
expand the model applicability and assist with understanding the in
fluence of polymer composition on the product distribution. On a 
physics basis, the mass balance of other components such as hydrogen 
and oxygen could be added together with the energy balance. Including 
more physical contributions would reduce the data demand for training 
the models.

To further broaden the industrial application of the model, other 
technologies such as dual fluidized beds, internal circulating fluidized 
bed reactors should be considered as well as different scales of tech
nologies. This would, however, require incorporating literature data as 
complete experimental datasets are not readily available for each tech
nology at different scales. Test campaigns are also time consuming and 
costly. Incorporating literature data is challenging due to limited 
availability of complete datasets necessary to calculate the carbon bal
ance. Expanding the model (both for different technologies and scales), 
while still incorporating the physical mechanism (or adding more con
straints) would require a combination of literature data and experi
mental data (for extensive campaigns to gather complete datasets). 
Alternatively, simulated data could also be used for training and 
evaluation.

5. Conclusions

A novel physics-informed ML model to predict the yields and 
composition for indirect gasification/thermochemical conversion of 
various feedstocks (biomass to plastics) was developed. As opposed to 
prior developed data-driven models, which only predicted the main 
products without scientific constraints, this physics-informed ML model 
predicted the entire carbon product slate, while ensuring scientific 
consistency in the form of carbon closure over the system. For the study, 
four data-driven models were trained and evaluated to select the ML 
model for the development of the physics-informed model. It was 
concluded that tree-based models were more suited for modelling the 
complex thermochemical process. XGBoost was the best model overall 
(based on R2 and RMSE statistical parameters) and selected for further 
development. From the physics-informed model, it was concluded that 
already with a 10 % physics contribution, the carbon closure improved 
significantly compared to the experimental values. The λ could not be 
too high as this leads to an overprediction of the carbon outlet (carbon 
closures greater than one) and decrease in the predictive accuracy of the 
model. A 30 % physics contribution (70 % data-driven contribution) was 
the optimal value for the model. At 30 %, the predicative capabilities of 
model with regards to the overall model and well as of the individual 

outputs was maintained and carbon closure notably improved. From the 
feature importance analysis, it was concluded that the most important 
input features were related to feedstock properties, rather than the 
operating conditions (apart from feed rate). The feature importance 
results were comparable for both the data-driven and physics-informed 
models in terms of absolute feature importance and the correlations with 
the outputs.

The developed physics-informed model is first step towards 
improving data-driven ML models for application of waste gasification/ 
thermal cracking. The model covers a broad range of feedstocks, making 
it versatile for applications to different processes from biomass conver
sion for the production of renewable fuels and chemicals to the chemical 
recycling of plastic waste. Due to the model predicting the entire carbon 
product slate (wanted and unwanted products), while ensuring scientific 
consistency, the model offers economic and environmental benefits for 
optimizing process conditions to both maximize product yields and 
minimizing waste streams. Currently, the model is limited to indirect 
gasification in fluidized bed reactors, but can be broadened to include 
more technologies (and scales) and have more inputs such as bed ma
terial type, equivalence ratio, calorific values of feedstocks and the 
polymer/biomass composition of the waste feedstocks. For the physics 
contribution, the model can be extended to include the hydrogen and 
oxygen balance as well as the energy balance. Including these contri
butions would assist with further ensuring scientific consistency and 
would reduce the data demand for training the models.

Nomenclature

Ci Carbon flow rate of component i (g/h)
gi Gradient
hi Hessian
Ii Total set of leaf nodes
Li Loss function
N Number of points
R2 Coefficient of determination
T Number of leave nodes of the tree
yi Experimental value
ŷi Predicted value
β Penalty term
γ Minimal loss reduction required for splitting a new leaf
λ Weight of physics contribution to ML model
Ω Regularization term
ω Weight values for regularization

Abbreviations

ANN Artificial neural networks
CFD Computational fluid dynamics
db Dry basis
DT Decision tree
GBR Gradient boosting regression
GC Gas chromatographer
GC-FID GC with a flame ionisation detector
ID Internal diameter
ML Machine learning
MSE Mean squared error
NN Neural networks
PE Polyethylene
PINN Physics-informed neural networks
PP Polypropylene
RDF Refuse derived fuel
RF Random forest
RMSE Root-mean-square-error
SHAP Shapley Additive Explanations
SI Supporting information
StC Steam-to-carbon ratio
SVM Support vector machine
SVR Support vector regression
XGBoost Extreme gradient boosting
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