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Summary 

The systems being developed by the high-tech industry do not operate in isolation. They are 
combined with other systems to provide value to their owners. This report is concerned with 
an important type of systems of systems of which high-tech systems are a part, namely 
manufacturing systems (of systems). The report addresses the analysis of the performance 
of such manufacturing systems. The performance of a manufacturing system typically 
involves a system-specific combination multiple objectives, which we will refer as the 
system’s effectiveness or the system’s effective performance. As the effectiveness of a 
manufacturing system (of systems) cannot be expressed by a single value, this report 
considers the multi-objective analysis of manufacturing systems. 

Landscape 
The report introduces the following landscape to capture the relevant aspects of a 
manufacturing system (of systems) and to reason about these aspects using multi-objective 
analysis. 
 

 

State of the Art 
The first part of this report involves an analysis of the state of the art on multi-objective 
analysis of manufacturing systems. This analysis of the state of the art shows that each of 
the landscape’s aspects individually involves many academic publications. As it is impossible 
to be complete, this report includes a limited literature study for a selection of the 
landscape’s analysis-related aspects. The state of the art on analysis methods is 
summarised using the classification along the axes deterministic vs. stochastic and 
declarative vs. operational. This classification is shown in the picture below. 
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TNO-ESI knowledge 
The second part of this report considers the expertise related to multi-objective analysis of 
manufacturing systems that TNO-ESI has gained in its 20+ years of projects. The picture 
below summarises this knowledge using the analysis method classification introduced 
earlier. 
 

 

Recommendation 
The figure above shows that TNO-ESI’s projects over the past 20 years primarily focused on 
deterministic analysis approaches. Deterministic approaches work well for low-mix high-
volume (LMHV) manufacturing systems, involving production of large batches of few 
different products. 
 
High-mix low-volume (HMLV) systems, involving production of small batches of many 
different products, have a greater variety of behaviour. For such systems, stochastic analysis 
techniques may be valuable. To address this, we recommend performing a study project to 
assess the added value of stochastic analysis techniques for analysing HMLV manufacturing 
systems, e.g. the ones of TNO-ESI’s industrial partners’ customers. Special attention should 
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be given to the variability of resources and the workload: the study project should (1) assess 
the influence of stochastic behaviour in the different manufacturing systems and (2) 
evaluate the added value of existing stochastic analysis techniques compared to 
deterministic analysis techniques. 
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1 Introduction 

The systems being developed by the high-tech industry are not standalone systems: they 
need to be combined into a larger whole, a system of systems, to provide value to their 
owners. In this report, we will investigate the performance of one important type of these 
larger wholes: i.e. manufacturing systems (of systems) or cyber-physical production systems 
(CPPSs). Manufacturing systems are production facilities that consist of multiple (high-tech) 
machines that cooperatively manufacture products according to a production process. 
 
The focus of the report will be on the effective usage of the resources of a production 
system, i.e. a usage that optimises the production system’s performance objectives. To 
optimise the effective resource usage of a (manufacturing) system of systems, it is not 
sufficient to optimise the contained (high-tech) systems individually: one needs an integral 
look at the entire manufacturing system of system [1]. In this report, we will consider the 
aspects that play a role in the effective usage of a manufacturing system’s resources to fulfil 
its customers’ orders and ways to evaluate these aspects. 

1.1 Scope 
Manufacturing is a process using resources to perform operations on materials to produce 
products [2]. Manufacturing systems involve humans, machinery, and equipment connected 
via flows of material and information [3]. For the optimal functioning of a manufacturing 
system, many decisions must be made. The 4 Ms of manufacturing [4] can be used to 
classify decision aspects (see Table 1.1): 
1. Manpower: The labour of people 
2. Method: Production processes 
3. Machine: Tools and equipment 
4. Material: Raw material, components and consumables 

Table 1.1: 4 Ms of manufacturing [5] 

M characteristic Description Performance aspects 

1. Manpower Labour of people involved in 
delivering products and services for 
production 

Efficiency of the operators 

2. Machine Equipment, facilities, tools employed 
for production 

Usage and maintenance scheduling, 
avoiding unnecessary downtime 

3. Method Process, shipping, schedule, 
procedure 

Products flow efficiently through the 
production line, finished products quickly 
exit the line 

4. Material Raw materials, consumables, 
components used to satisfy 
production 

Parts and materials close to workstation, 
while not overcrowding the operator 

 
Later, two additional Ms were introduced [6]: 
5. Milieu: Environmental events 
6. Measurement: Inspection and other measurements 
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According to Maier [7], manufacturing systems are directed systems of systems, i.e. they are 
centrally managed to fulfil a certain purpose. This central management must make many 
decisions with respect to the optimal usage of a manufacturing system’s resources. The 
types of decisions to be made about the 6 Ms have different timelines and different scopes. 
For the timelines, Rouwenhorst et al. [8] distinguish strategic, tactical and operational 
decisions: 
 Strategic decisions have a long-term impact and concern high investments. The two 

main groups are the decisions concerning the design of the process flow and the 
decisions concerning the selection of the machine types. 

 Tactical decisions include the dimensions of resources (storage system sizes but also 
number of employees) and the determination of a layout. 

 At the operational level, processes must be carried out within the constraints set by the 
strategic and tactical decisions made at the higher levels. The main decisions at this level 
concern assignment and control problems of people and equipment. 

 
This report sketches a landscape with respect to the analysis of a manufacturing system’s 
effectiveness. The report’s focus is on the effective usage of a manufacturing system’s 
resources, i.e. the original 4 Ms of manufacturing: manpower, method, machine and 
material. Musselman [1] identifies two main steps in manufacturing system resource 
scheduling: allocation and sequencing. 
 Allocation1 is the selection which resources to use to fulfil a piece of manufacturing work. 
 Sequencing determines the order in which work is being fulfilled by the corresponding 

resources. 
 
Musselman [1] states that allocation is dominant in make-to-order/make-to-engineer 
manufacturing processes, in which customised products are manufactured upon receiving a 
customer order. Sequencing is dominant in make-to-stock manufacturing processes with a 
high product mix. In this report, we will generally use the term allocation for the 
combination of allocation and sequencing. 
 
Effectiveness is a measurement which is different per manufacturing system. It typically 
involves a combination of multiple aspects. Examples of such aspects include costs, timing, 
machine and personnel utilisation, product quality, sustainability and robustness against 
uncertainty/exceptions. 
 
As the report’s focus is on the effective usage of a manufacturing system’s resources, the 
report hence mainly considers operational decision making, but it also touches strategic and 
tactical decision making. 

1.2 Outline 
This report sketches a landscape for multi-objective analysis of manufacturing systems and 
identifies which parts of the landscape have (not) been addressed by TNO-ESI’s projects. The 
multi-objective manufacturing system analysis landscape is presented in Chapter 2. 
Chapters 3 and 4 investigate the state of the art of two of the landscape’s main elements, 
KPIs and analysis methods. Chapter 5 looks at the coverage of TNO-ESI’s (past and current) 
projects of the landscape to identify opportunities to explore new fields of knowledge, which 
help the high-tech ecosystem optimise their systems in a system-of-systems context. 

_______ 
1  Musselman [1] uses the term synchronisation instead of allocation. 
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2 Manufacturing system 
analysis landscape 

In this chapter, we will sketch a landscape for the multi-objective analysis of manufacturing 
systems. In the literature, one can find several classifications of manufacturing systems. We 
use the classifications of Dietrich [2] and Ghasemi et al. [9] to identify relevant elements for 
our landscape. Ghasemi et al. [9] consider four categories with respect to simulation 
optimisation applied to production systems (SOAPS): 
 Problem and modelling: Production environment (e.g. flow shop, job shop), optimisation 

objective(s), sources of uncertainty, modelling strategies. 
 Solving methodology: Optimiser scope (i.e. local or global), optimiser type, simulator type, 

integration method. 
 Real applications: Case studies. 
 Experimenting: Validation strategy. 
 
Dietrich [2] proposes a detailed taxonomy for discrete manufacturing systems. The three 
main categories of her taxonomy are the following. 
 Production process involves the operations needed to produce a product. This includes 

operations, material flow, information flow, and contention for resources. 
 System management involves the way a manufacturing system is managed. Dietrich 

identifies requirements generation, WIP control policy, and distribution of information 
and control as the main aspects of this category. 

 System behaviour involves the behaviour exhibited by an operational manufacturing 
system. Important elements are operational data and material handling data. 

 
Both Ghasemi et al. [9] and Dietrich [2] observe that the operations of a manufacturing 
system can be both deterministic and stochastic and that they depend on each other, e.g. 
sequence-dependent setup times. What they both do not explicitly distinguish is controllable 
and uncontrollable behaviour. Some behaviour cannot be controlled. Examples are the 
arrival of customer orders, the products being ordered, machine breakdowns and variation 
of operation durations. 
 
In Chapter 1, we discussed the 4 Ms of manufacturing: Manpower, Method, Machine, and 
Material. The 4 Ms capture the resources of a manufacturing systems and some restrictions 
on how they may be used. They correspond to the problem and modelling category of 
Ghasemi et al. [9] and the production process and system management categories of 
Dietrich [2]. The 4 Ms are, however, not sufficient for the analysis of a manufacturing system, 
especially not if the analysis involves the influence of different allocations of work to a 
manufacturing system. One must also consider the workload of a manufacturing system. In 
addition, the landscape should include aspects concerning the analysis itself. These 
corresponds to the solving methodology of Ghasemi et al.’s classification [9]. 
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Figure 2.1 Landscape for multi-objective analysis of manufacturing systems 

Figure 2.1 shows a landscape for multi-objective analysis of manufacturing systems. The 
landscape consists of four interdependent elements: 
1. The Manufacturing system element corresponds to the 4 Ms of manufacturing. We 

distinguish four aspects. 
a. The Machines aspect represents the equipment that transforms materials to create 

products. 
b. The Material aspect represents all materials being handled in the systems. These 

include raw materials, partial products and final products as well as consumables. 
c. The Operators aspect represent the people in a manufacturing system and the 

services they provide. These services include operating a machine, servicing a machine 
and transporting materials. 

d. The Material Handling System aspect represents the transportation in a 
manufacturing system. Transportation may be fully automated transportation using 
e.g. conveyor belts and AGVs, or it involves operators moving materials between 
different machines. 

2. The Workload element represents that work that needs to be performed by a 
manufacturing system. The work involves the fulfilment of customers ordering products. 
These customer orders need to be translated into manufacturing recipes that can be 
executed by the manufacturing system’s equipment. Depending on the scope of the 
analysis, the workload may involve the orders of a short or long period of time. 

3. The Analysis question element represents the question that a decision maker wants to 
answer for a given manufacturing system and a corresponding workload. There are 
many different questions. Examples include which manufacturing recipe to use, which 
resources to use to execute a recipe, and the order in which a recipe’s operations are 
executed execution. We have identified three aspects: 
a. The Variation points aspect represents the alternatives that the decision maker needs 

to select from. These variation points may involve variations of the 4 Ms, e.g. 
variations of the layout of the production system or different workloads. The variation 
points may also involve the way the 4 Ms are used in the production process, e.g. the 
allowed allocations of work to the resources. The number of alternatives is typically 
very large, too large to be analysed individually. E.g. the number of different operation 
sequences grows exponentially with the number of operations. 
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b. The KPIs/Metrics aspect represents the criteria that a decision maker uses to select 
one of the available alternatives. In case a decision maker has multiple decision 
criteria, we have a multi-objective analysis problem at hand. 

c. The Constraints aspect involves the constraints a decision maker defines to limit the 
number of allowed alternatives. These limits may also involve the resources used for 
finding an alternative, e.g. the time available for finding a feasible solution. 

4. The Analysis element represents the techniques and tools used to answer an analysis 
question for a manufacturing system and a corresponding workload. We distinguish two 
aspects. 
a. The Analysis model type aspect represents the model that is used to address an 

analysis question. This includes the formalism in which the analysis question is 
translated. 

b. The Analysis techniques aspect represents the techniques that are applied to an 
analysis model to answer an analysis question. 

 
In Sections 2.1, 2.2, 2.3, and 2.4, the four main elements are discussed in more detail. 
Section 2.1 describes the manufacturing system element, Section 2.2 the workload element, 
Section 2.3 the analysis question element, and Section 2.4 the analysis element. 

2.1 Manufacturing system element 
The landscape’s manufacturing system element of Figure 2.1 covers the resources of a 
manufacturing system. A manufacturing system can be seen as a collection of production 
devices, transport devices, human operators and materials. These (interdependent) aspects 
correspond to the original 4 Ms of manufacturing: Manpower, Method, Machine, and 
Material. The aspects are described in Sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4. 

2.1.1 Machines aspect 
The production devices, corresponding to the Machine M, are represented by the Machines 
aspect. These devices perform operations on materials. Dietrich [2] distinguishes seven types 
of operations according to the type of material being handled: bulk, kitting, fabrication, 
assembly, by-product, distribution and consumption. One production device may be able to 
perform multiple operations; Van De Ginste et al. [10] refer to this variability as process 
flexibility. 
 
The focus of this report is multi-objective analysis of manufacturing systems. To facilitate 
this, it is not sufficient to know what operations machines can perform. One also needs to 
know the “costs” of these operations with respect to the optimisation criteria (of the 
KPIs/Metrics aspect of the Analysis question element). These costs can be of various types, 
as will be explained in Section 2.3.2.  
 
There are various types of manufacturing systems depending on the amount/volume and 
the variation/mix of the work they need to fulfil. Cost-effective variants with totally different 
characteristics are Low-Mix High-Volume (LMHV) and High-Mix Low-Volume (HMLV) 
manufacturing systems (also see Section 2.2). LMHV systems have a highly repetitive 
workload: long batches of the same product. HMLV systems, on the other hand, have a 
highly varying workload, which involves changing between different operations or different 
materials being processed. Especially for such manufacturing system, the Machines aspect 
should also include the costs of setting up the machines for the next operation to be 
performed. For timing-related optimisation criteria, these costs are referred to as sequence-
dependent setup times [11].  
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Manufacturing systems come with a lot of variability and uncertainty. Part of this variability 
and uncertainty originates from the machines and should be part of the description of a 
manufacturing system’s machines. There is typically machine variability with respect to the 
costs of a performed operation. The most studied stochastic manufacturing system 
behaviour is variation of machine processing times [9]. Moreover, there may be variability in 
the quality of the performed operations and the availability of a machine (for a certain 
operation) [12]. 

2.1.2 Material aspect 
The material aspect represents all the materials handled in a manufacturing system. 
Manufacturing systems are facilities that transform raw materials into final products. These 
are, together the partial products that are created during the manufacturing process, the 
most important materials. 
 
However, there are other materials that play a role in a manufacturing system. 
Consumables are materials that are not normally included in bills of material or are not 
individually accounted for in specific production requests [13]. One can think of the glue in a 
gluing process and the ink in the printing process, but also the lubricants of a machine’s 
motor. 
 
A third type of material involves waste materials. Operations like cutting and drilling come 
with a loss of material, which may play an important role in the manufacturing process. 
Waste materials certainly play a role with respect to cost and sustainability of operations. 
 
Not all materials in a manufacturing system can be transported easily; some materials have 
dimensions, shapes or weights to make them difficult to transport [14]. These so-called non-
conveyable materials can be made conveyable by storing them in or on top of a special 
carrier. One can think of bins in which small objects can be placed or pallet on top of which 
large objects can be placed. These reusable carriers are another type of materials, and these 
may involve a complex logistic flow. 

2.1.3 Operators aspect 
A third type of resource in a manufacturing system involves its labour force. To obtain a 
smoothly operating manufacturing system, human operators play multiple roles. This is not 
expected to change with the upcoming development in AI [15] [16]. In normal operation, 
operators may be involved in performing operation at/by a machine and they may transport 
materials from one location to another. Operators may also play an important role in 
service, e.g. the replenishment of consumables, and maintenance, e.g. the cleaning and 
repair of machines. 
 
Like machines, different operators may have different capabilities. Advanced operations 
may require more experienced operators whereas simple operations can be performed by all 
operators. This is especially relevant when a manufacturing system has a flexible workforce. 
There are manufacturing systems whose workload varies periodically. E.g. manufacturing 
systems producing for the end customer often have a peak workload around the Christmas 
holidays. To scale up production, temporary staff is employed, and these labourers are 
typically less skilled than the permanent staff. 
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The behaviour of human operators varies more than machine behaviour, which can be 
highly predictable [17]. This means that there may be a higher need for stochastic analysis 
for manufacturing systems with a lower degree of automation. 

2.1.4 Material Handling System aspect 
Manufacturing a product involves multiple operations that need to be executed in a certain 
sequence (see Section 2.2). As most machines can perform only one type of operation, 
transport of materials (see Section 2.1.2) between production machines (see Section 2.1.1) is 
required. This is handled by the material handling system. In their glossary of terms [18], 
SRSI define material handling as “the movement, storage, control, and protection of 
materials and products throughout the process of their manufacturing, distributing, 
consumption and disposal.” The transport between machines can be performed by mobile 
devices like AGVs and by stationary devices like conveyor belts. Human operators (see 
Section 2.1.3) may also perform transportation tasks, typically using reach trucks, pallet 
trucks or forklifts. 
 
The material handling system defines the (allowed and/or possible) transport paths between 
the machines. Note that the allowed paths are partially determined by the stationary 
transport devices. The rest is determined by the type of process that is to be supported, i.e. 
the Method M of the 4 Ms of manufacturing [5]. Flexible processes allow more paths than 
fixed processes; Van De Ginste et al. [10] refer to allowing multiple routes as routing 
flexibility.  
 
Flow shops and job shops are common types of manufacturing systems. Both involve jobs 
that involve strict sequences of operations. In flow shops, these sequences are identical for 
all jobs and the jobs visit the same machines in the same order [19]. Job shops have more 
flexibility than flow shops: the sequences of operations may differ per job as well as the 
allocation of these operations to machines [20]. Note that job shops require a lot of routing 
flexibility, whereas flow shops require little routing flexibility. 
 
Like for the machines (see Section 2.1.1), there is uncertainty and variability in the material 
handling system, and this may have a significant influence on the effectiveness of a 
manufacturing system. There is variability with respect to the costs of transport, e.g. the 
duration. In addition, transport equipment may be unavailable because of failures and 
operators may be unavailable because of (unplanned) breaks. 

2.2 Workload element 
The landscape’s workload element refers to the customer orders that a manufacturing 
system must fulfil. These orders can be characterised along two dimensions: mix and 
volume. Mix refers to the number of different products that need to be produced, volume to 
the number of identical products. There are two extremes with restrict to this 
characterisation. Low-Mix High-Volume (LMHV) refers to large quantities of identical 
products and High-Mix Low-Volume (HMLV) refers to small quantities of a high variety of 
products [21]. The former is referred to as mass production, whereas the latter as mass 
customisation. 
 
There is a clear relation between the process supported by a manufacturing system and its 
workload. The Hayes-Wheelwright matrix (see Table 2.1) indicates that a higher mix of 
products require a more flexible manufacturing process and that a very high volume 
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requires little flexibility. Hayes and Wheelwright [22] argue that combinations far away from 
the matrix’ diagonal are rare. 

Table 2.1: Hayes-Wheelwright matrix [22] 

Product structure 
 
Process structure 

Low Volume 
Unique  
products 

Low Volume 
Multiple  
products 

High Volume 
Standardised 
products 

Very High Volume 
Commodity 
products 

Jumbled Flow Job shop  
More process flexibility than  

required, so higher cost Disconnected Line 
Flow   Batch 

Connected Line Flow  Less process flexibility than  
required, so higher cost 

Assembly line  

Continuous Flow  Continuous 

 
Besides mix and volume, customer orders may have due dates, i.e. the time at which they 
need to be fulfilled. Customer orders with early due dates, i.e. rush orders, can be very 
disruptive to a manufacturing process. Allowing rush orders requires a flexible 
manufacturing system and may requires continuous (re-)allocation of work. 
 
There is a lot of uncertainty with respect to customer orders. It is unknown when they arrive, 
and this is especially important for rush orders. When making more tactical decisions, the 
exact customer order profile is typically unknown, and one needs to predict the workload. 
Such predictions can be based on historical customer order data. 
 
To allocate customer orders to manufacturing system resources (see Section 2.1), one needs 
to translate the customer orders into (sequences of) operations that can be performed by 
manufacturing machines. As handling many small customer orders may involve a large 
overhead, customer orders can be combined. Similar customer orders can be combined into 
a larger order using batching. Another approach is nesting or ganging, which involves the 
fulfilment of multiple orders using the same piece of (raw) material, i.e. two A4 images being 
printed on one A3 paper sheet paper [23] or multiple parts being cut from the same sheet of 
metal. 

2.3 Analysis question element 
The manufacturing system and workload elements (see Sections 2.1 and 2.2) describe a 
manufacturing system and its workload. These are the most important inputs for an 
analysis. However, there can be very many ways in which a workload can be allocated to the 
resources of a manufacturing system. The analysis question element addresses this variety. 
We consider three aspects: allocation constraints, KPIs/metrics, and analysis constraints. 
These are described in Sections 2.3.1, 2.3.2, and 2.3.3, respectively. 

2.3.1 Allocation constraints aspect 
The resources of a manufacturing system have certain capabilities, which restricts the way 
in which they can be used. For instance, an operation should only be allocated to machine 
that can perform this operation. As a manufacturing system analyst, you may want to 
restrict the allowed allocations beyond the capabilities of the manufacturing system’s 
resources. Such constraints are specified in the allocation constraints aspect. 
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The number of constraints depends on the type of analysis. In case one wants to analyse 
one concrete scenario, the allocation must be given completely including the order of the 
allocated work of every resource. By leaving allocation freedom, the analysis involves an 
optimisation/exploration. In that case, the allocation constraints aspect describes an 
optimisation/configuration space. The available allocation freedom may involve allowing 
multiple resources to be used for an operation, either manufacturing or transport, or the 
resources are specified, but the order in which the operations are to be allocated is open. 

2.3.2 KPIs/Metrics aspect 
An analysis is meant to assess the quality of a concrete allocation or to finds an allocation 
with a certain quality. The quality of an allocation can be defined in terms of KPIs and 
metrics. These quantify performance aspects of an allocation. Common manufacturing 
performance criteria include latency, throughput, flow times, costs, and OEE. However, an 
analyst may also define proprietary KPIs that need to be optimised. 
 
Per KPI, one can either specify that it should be optimised, i.e. minimised or maximised, or 
one can specify a budget, i.e. a minimum and/or a maximum value. 
 
Chapter 3 addresses key performance indicators in more detail. 

2.3.3 Analysis constraints aspect 
The analysis constraints aspect involves constraints that do not involve the allocation. It 
involves the constraints of the analysis itself. Here one should think of the resource usage of 
the analysis itself, i.e. the budgets available for performing the analysis. These resources 
include computational resource and time. In an online setting, there is a limited time to find 
an (optimal) allocation. For instance, a production printer’s scheduler must decide when to 
release the next sheet of paper within hundreds of milliseconds. Finding a high-quality 
allocation in so little time involves a large challenge. 
 
Analysis constraints also include the accuracy and reliability of the analysis results. In case 
of stochastic manufacturing system behaviour, the actual values of KPIs may deviate from 
their predicted values. By considering the behaviour’s stochastics, one can calculate the 
expected deviation from the actual KPIs. 
 
A final analysis constraint involves the number of solutions to be found. In case of multi-
objective analysis or stochastic system behaviour, there is value in providing multiple 
analysis results. In case of multiple KPIs, multiple solutions allow decision makers with the 
possibility to trade off different objective functions; in case of stochastic behaviour, expected 
system performance can be traded off against performance stability/uncertainty. 

2.4 Analysis element 
The analysis element represents addressing an analysis question (see Section 2.3) for a 
given manufacturing system (see Section 2.1) and a given workload (see Section 2.2). Within 
the analysis element, we distinguish model types (see Section 2.4.1) and analysis techniques 
(see Section 2.4.2). 



 

 

 TNO Public  TNO 2024 P11832 

 TNO Public 19/53 

2.4.1 Analysis model type aspect 
The analysis model type aspect involves how an analysis question regarding the allocation 
of a workload to a manufacturing system is captured in a model. Essential in such an 
allocation are the progress of the production plan and the availability of resources over time; 
these aspects need to be captured by the analysis model. There are many modelling 
formalisms that can capture this aspect. 
 
We distinguish two main classes of model: declarative models and operational models. 
 Declarative models describe a system in terms of mathematical formulas/constraints. 

These describe the boundaries of the behaviour of a manufacturing system. Some types 
of declarative models can be used to explore a configuration space to find a high-quality 
system configuration. 

 Operational models describe a system in terms of its executable behaviour. For 
manufacturing systems, operational models are often specified as a kind of state 
transition model, e.g. state machines, Petri nets, activity diagrams. Operational models 
can only be used to evaluate individual scenarios, e.g. the execution of a specific 
allocation of work to a manufacturing system configuration. 

 
Another distinction of models is between deterministic and stochastic models. In 
deterministic models, all system behaviour is known upfront. A deterministic model does not 
have any uncertainties: the model’s behaviour is determined purely by its inputs. In 
stochastic models, some behaviour is uncertain. This uncertain behaviour is subject to a 
probability distribution, which may be known or unknown. 
 
More details about analysis models can be found in Chapter 4, which addresses analysis 
methods for manufacturing system analysis. 

2.4.2 Analysis method aspect 
The analysis method aspect represents analysis techniques and how they are applied to an 
analysis model (see Section 2.4.1) to answer an analysis question. In this report, we 
distinguish two main categories of analysis methods. 
 Prediction methods predict the performance of a manufacturing system for one specific 

scenario. 
 Optimisation methods consider multiple scenarios: they explore a configuration space to 

search for a configuration with an optimum performance. 
 
Although prediction methods evaluate only one scenario, they can be used for optimisation 
by combining them with an optimisation method, which explores the configuration space. 
The combination of simulation and optimisation is quite common; it is called simulation 
optimisation [9]. In this setting, an optimisation method selects promising candidate 
solutions, which are evaluated using simulation. The results of the simulation are used by 
the optimisation method to continue the exploration. 
 
Chapter 4 addresses analysis methods in more detail. 

2.5 Summary 
In this chapter, we have introduced a landscape that captures the most important aspects 
of multi-objective analysis of manufacturing systems. Some of the landscape’s elements are 
discussed in more detail in subsequent chapters. Chapter 3 addresses KPIs commonly used 
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in production systems. Chapter 4 discusses techniques for multi-objective analysis and 
optimisation of manufacturing systems including the types of models used. In Chapter 5, we 
discuss which parts of the landscape has been covered by TNO-ESI’s (past and current) 
projects. 
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3 Key Performance 
Indicators 

The focus of this report is on the effective usage of a manufacturing system’s resources. This 
effectiveness typically involves a combination of multiple aspects, which may be different 
for each manufacturing system. In this chapter, we give an overview of KPIs (Key 
Performance Indicators) for manufacturing systems. We will distinguish two types of KPIs: 
simple KPIs and composite KPIs. Simple KPIs involve performance measures of a single 
aspect, where composite KPIs are performance measurements for combinations of multiple 
aspects. Simple KPIs are discussed in Section 3.1, composite KPIs in Section 3.2. Section 3.3 
discusses standards which define KPIs in the manufacturing domain; these involve both 
simple and composite KPIs. Section 3.4 summarises the findings regarding KPIs. 

3.1 Simple KPIs 
Simple KPIs are measurements of individual performance aspects. There are many such 
aspects. In their well-known book Factory Physics, Hopp and Spearman [24] consider several 
KPIs to evaluate the performance of manufacturing systems. For activity-based costing 
(ABC), they distinguish several costs: labour costs, material costs, overhead costs. 
 
For factory dynamics, Hopp and Spearman [24] consider several KPIs. Throughput (rate) is 
the average output (of sufficient quality) of a production process. Capacity is the upper 
bound of a system’s throughput. Work in process (WIP) is the inventory of a system between 
the start and end of a production process. The cycle time of a product is the time it spends 
between the start and end of a production process, i.e. the time is part of the WIP. Lead time 
equals the amount of time reserved for production. Fill rate is defined as the fraction of 
orders that is fulfilled from stock. The utilisation of a piece of equipment is the fraction of the 
time that it is not idle. 
  
Musselman [1] discusses a production system which wants to optimise the number of late 
orders, average order lateness, machine utilisation, total setup time, and work in process 
(WIP). Pitombeira Neto and Vila Gonçalves Filho [25] present a cellular manufacturing 
system design to optimise three KPIs: work-in-progress (WIP), the number of intercell moves 
and the capital investment (CAPEX). 

3.2 Composite KPIs 
Section 3.1 gave an overview of common simple KPIs. To assess the performance of a 
manufacturing system, a single KPIs is typically not sufficient. To address multiple aspects , 
one can consider multiple simple KPIs simultaneously. Alternatively, one can consider KPIs 
that combine multiple aspects in one formula. The KPIs discussed in this section combine 
multiple performance aspects to provide an aggregated performance evaluation. 
 
Hopp and Spearman [24] consider multiple composite KPIs. For factory dynamics, they 
define cycle time as the ratio between a system’s throughput and its average inventory. 
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They define service level as the probability that the cycle time does not exceed the lead 
time. Herps et al. [26] define the revenue of a manufacturing system as the difference of the 
revenue of finished products and the cost of buffered products. 
 
Sections 3.2.1 and 3.2.2 discuss variants of common composite KPIs: Overall Equipment 
Effectiveness (OEE) and Overall Factory Effectiveness (OFE). 

3.2.1 Overall Equipment Effectiveness 
A well-known composite KPI is Overall Equipment Effectiveness (OEE) [12]. OEE is defined as 
a relative measure of the performance of a manufacturing system. It relates the actual 
performance of a system to its (theoretical) maximum performance. OEE distinguishes three 
types of performance loss: 
 Speed loss: Performance loss due to idling and minor stops and running at a reduced 

speed. 
 Availability loss: Performance loss due to (unplanned) downtime and setup/adjustment 

time. 
 Quality loss: Performance loss due to production of production of defective products and 

rework of products. 
 
The OEE of a system is computed as the product of the availability rate 𝐴𝐴𝐴𝐴, the performance 
efficiency 𝑃𝑃𝑃𝑃, and the quality rate 𝑄𝑄𝑄𝑄: 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂 × 𝑃𝑃𝑃𝑃 × 𝑄𝑄𝑄𝑄 [12]. These ratios can be 
computed as follows: 
 𝐴𝐴𝐴𝐴 = 𝑂𝑂𝑂𝑂−𝐷𝐷𝐷𝐷−𝑆𝑆𝑆𝑆

𝑂𝑂𝑂𝑂
, where 𝑂𝑂𝑂𝑂 represents the system’s planned operation time, 𝐷𝐷𝐷𝐷 the 

system’s delay time, and 𝑆𝑆𝑆𝑆 the system’s setup time. 
 𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃×𝐶𝐶𝐶𝐶

𝑂𝑂𝑂𝑂
, where 𝑂𝑂𝑂𝑂 represents the system’s planned operation time, 𝑃𝑃𝑃𝑃 the produced 

number of produced products, and 𝐶𝐶𝐶𝐶 the ideal cycle time per product. 
 𝑄𝑄𝑄𝑄 = 𝑃𝑃𝑃𝑃−𝐷𝐷𝐷𝐷

𝑃𝑃𝑃𝑃
, where 𝑃𝑃𝑃𝑃 represents the produced number of products and 𝐷𝐷𝐷𝐷 the number 

of defectives products produced. 
 
Muchiri and Pintelon [26] discuss two adaptations of OEE: Total Equipment Effectiveness 
Production (TEEP) includes planned downtime in the planned time horizon and Production 
Equipment Effectiveness (PEE) weights for the three loss categories. They also discuss 
Overall Asset Effectiveness (OAE) and Overall Plant Effectiveness (OPE), which include 
business-related losses. 
 
As OEE and most of its derivatives (including those discussed in Section 3.2.2) are a relative 
measure, one needs to define a reference to which the performance of a system can be 
compared. This is an additional challenge is measuring a system’s performance. Roser [27] 
warns that OEE values can be fudged: by changing the reference performance, one can 
obtain a high OEE. He mentions that an OEE of 40-60 percent is normal and lower values are 
not uncommon either. Williamson also warns about the abuse of OEE [28]; he argues that 
OEE should not be used as a benchmark for equipment performance, but only to compare a 
piece of equipment’s performance over time. 

3.2.2 Overall Factory Effectiveness 
OEE is originally intended for the performance of a single machine running long batches of 
the same product [29]. Several authors observe the limitations of OEE to measure the 
effectiveness of a production system and discuss Overall Factory Effectiveness (OFE) [30] 
[31]. Many factory-effectiveness KPIs have been defined; Muchiri and Pintelon [26] give an 
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overview of effectiveness metrics for production facilities. In this section, we will discuss 
some of these KPIs. This section is by no means exhaustive; many OEE-like KPIs have been 
defined by researchers from academia. It is highly likely that most of these KPIs are not used 
in industrial practice. 
 
Scott and Pisa [32] introduce Overall Factory Effectiveness (OFE) to address a holistic 
approach to semiconductor fab optimisation. Oechsner et al. [33] introduce the term Overall 
Fab Effectiveness (OFE). Both Overall Factory Effectiveness and Overall Fab Effectiveness are 
broader than OEE in two ways. On the one hand, both OFEs consider a full fab instead of an 
individual machine. On the other hand, the OFEs include additional performance aspects, 
e.g. a semiconductor fab’s total cost of ownership and readiness for technological 
developments. Neither Scott and Pisa [32] nor Oechsner et al. [33] provide formulas for 
computation of Overall Factory/Fab Effectiveness. 
 
Huang et al. [30] discuss Overall Throughput Effectiveness (OTE) to address activities 
performed by multiple machines. Like OEE, OTE equals the ratio of a factory’s actual 
performance and its attainable performance. Huang et al. [30] and Aleš et al. [34] explain 
how a plant’s OTE can be computed from its machines’ OEE; they consider series and 
parallel composition. In a series subsystem, OTE is dominated by the least effective 
machine; in a parallel subsystem, the effectiveness of the parallel machine is summed. 
Huang et al. [30] use simulation to run experiments to optimise an assembly line’s 
performance. Muthiah et al. [31] extend the result of Huang et al. with two additional 
patterns: assembly and expansion (i.e. disassembly). The results of Muthiah et al. do not 
suffice to compute any factory’s OTE: not all (possible) topologies can be expressed with 
these four considered patterns. 
 
Nachiappan and Anantharaman [35] introduce Overall Line Effectiveness (OLE) and Braglia 
et al. [36] introduce Overall Equipment Effectiveness of a Manufacturing Line (OEEML). Both 
consider the effectiveness of manufacturing systems that are organised as production lines. 
Both recognise that not all machines in a production line are equally important: a bottleneck 
machine determines a line’s effectiveness. TOEE and OEEML assesses the performance of a 
production line by relating the ideal performance of a bottleneck machine and the number 
of good products produced by the last machine in the line. Braglia et al. [36] indicate that 
OEEML can be misleading if the machines in a production line are decoupled by large buffers 
making the machine independent of each other. 
 
Lanza et al. [37] introduce Global Production Effectiveness (GPE) of globally network 
manufacturing systems. GPE is a combination of manufacturing effectiveness, sourcing 
effectiveness, transportation effectiveness, stock effectiveness and personnel effectiveness. 
The manufacturing effectiveness is computed from the OEE of its constituting machine 
using series, parallel, joining and expansion patterns. Depending on the context, the 
manufacturing effectiveness uses OEE, TEEP or TOEE as a basis. The sourcing effectiveness 
measures the quality and timeliness of supplier deliveries. The stock effectiveness measures 
the damages, service level of logistics and availability of storage locations. Personnel 
effectiveness measures personnel’s availability and a productivity index. Lanza et al. [37] 
propose formulas to compete each of the constituting aspects of GPE. 
 
Jauregui Becker et al. [38] consider high-mix low-volume manufacturing environments. The 
introduce the Machining Equipment Effectiveness (MEE). Like OEE, MEE is the product of an 
availability rate, a performance rate and a quality rate. To deal with multiple products being 
produced, MEE’s performance rate divides a machine’s work into periods in which only one 
product in produced. The performance loss is computed per period and aggregated into an 
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overall performance rate. MEE’s quality rate relates the cost involved in repairing defective 
products to the economic value. As MEE’s quality rate can be negative, Jauregui Becker et al. 
propose to use it as a signalling function, not as an absolute measurement. 
 
Li et al. [39] also address multi-product production systems. They propose Multiproduct 
Production System Effectiveness (MPSE). MPSE is computed by looking at the different 
products individually. MPSE is a combination of the effectiveness of the production of 
individual products. Both MEE and MPSE do not address situations in which systems are 
working on different products simultaneously. 
 
Foit et al. [40] consider two related KPIs. Overall Factory Effectiveness (OFE) assesses the 
performance of a factory. It is defined as the ratio between the number of products 
produced and the (theoretically) maximum number of products produced. Overall Transport 
Effectiveness (OTE) KPI assesses the effectiveness of the (AGV-based) transport within a 
manufacturing system. OTE is calculated relative to the production capacity of a 
manufacturing system: it is the ratio between the number of transports performed and the 
number of transports needed to achieve the (theoretically) maximum number of products 
produced. 
 
Van De Ginste et al. [41] propose OEEFlex, flexibility-induced equipment effectiveness, which 
addresses equipment flexibility. This is especially relevant for HMLV manufacturing systems, 
which have a quick switch between different products. OEEFlex is a weighted combination of 
three aspects: mobility, uniformity and range. Mobility and uniformity provide a measure for 
machine effectiveness and range for the capability of a system to adapt. 

3.3 Standards 

3.3.1 NEN-ISO 22400-2:2014 
NEN-ISO 22400-2:2014 [42] defines KPIs for manufacturing operations management (MOM). 
MOM addresses workflow/recipe control to produce desired products as well as measuring 
and optimising the process. MOM distinguishes four types of operations: 
 Production operations, 
 Maintenance operations, 
 Quality Operations, and 
 Inventory operation. 
 
NEN-ISO 22400-2:2014 defines 34 KPIs for MOM, which are built up hierarchically [43]. An 
overview of all NEN-ISO 22400-2:2014’s KPIs can be found in Table 3.1. The overview 
contains both simple KPIs and composite KPIs. Many of the KPIs in Table 3.1 are relative 
KPIs: they relate an actual value to a planned or ideal value, or they relate effort spent 
effectively to total effort spent. Many of these KPIs in Table 3.1 refer to work units. These can 
be individual machines, production cells, production lines, areas or sites.  

Table 3.1 NEN-ISO 22400-2:2014 KPIs [42] 

KPI Description 

Worker efficiency Ratio of the actual work time and the actual attendance time of an 
employee. 

Allocation ratio Ratio of the complete actual busy time of all work units for an order and the 
actual order execution time of this order. 
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KPI Description 

Throughput rate Ratio of the produced quantity of an order and the actual execution time of 
this order. 

Allocation efficiency Ratio of the actual busy time of a work unit and the unit’s planned busy 
time. 

Utilisation efficiency Ratio of a unit’s actual production time and its busy time. 

Overall equipment 
effectiveness index Combination of a work unit’s availability, effectiveness, and quality ratio. 

Net equipment 
effectiveness index 

Combination of a work unit’s ratio between processing time and planned 
busy time, effectiveness, and quality ratio. 

Availability Ratio of a work unit’s actual production time and its planned busy time. 

Effectiveness Ratio of the ideal production time of a work unit and the actual production 
time. 

Quality ratio Ratio of the number of good-quality products produced by a work unit and 
the total number of products produced by it. 

Setup ratio Ratio of the actual setup time of a machine and its processing time. 

Technical efficiency Ratio of the actual production time of a work unit and the sum of the work 
unit’s actual production time and the actual delay time. 

Production process 
ratio 

Ratio between actual production time of all work units and the throughput 
time of a production order. 

Actual to planned 
scrap ratio Ratio of the actual scrap quantity and the planned scrap quantity. 

First pass yield Percentage of produced products that do not require any rework. 

Scrap ratio Ratio of the scrap quantity and the total production quantity. 

Rework ratio Ratio of the rework quantity and the total production quantity. 

Fall off ratio Percentage of products that start but do not finish a sequence of production 
steps. 

Machine capability 
index 

Ratio of the dispersion of the specification limits of a machine characteristic 
and 6 times the standard deviation of a series of measurements of this 
characteristic. 

Critical machine 
capability index 

Ratio of the dispersion of the specification limits of a machine characteristic 
with respect to its average and 3 times the standard deviation of a series of 
measurements of this characteristic. 

Process capability 
index 

Ratio between the dispersion of the specification limits of a process 
characteristic and 6 times the standard deviation of a series of 
measurements of this characteristic. 

Critical process 
capability index 

Ratio of the dispersion of the specification limits of a process characteristic 
with respect to its average of averages and 3 times the standard deviation 
of a series of measurements of this characteristic. 

Comprehensive 
energy consumption 

Ratio of all energy consumed in a production cycle and the production 
quantity. 

Inventory turns Ratio between throughput and the average inventory level. 

Finished good ratio Ratio of good quality produced and consumed material quantity. 

Integrated goods ratio Ratio of integrated good quantity and consumed material quantity. 
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KPI Description 

Production loss ratio Ratio of material quantity lost during production and material quantity 
consumed. 

Storage and 
transportation loss 
ratio 

Ratio of material quantity lost during transport and storage and material 
quantity consumed. 

Other loss ratio Ratio of material quantity lost not during production, transport and storage 
and material quantity consumed. 

Equipment load ratio Ratio of produced quantity and equipment production capacity. 

Mean operating time 
between failure Average of time between failure measurements of a work unit. 

Mean time to failure Average of time until failure measurements of a work unit. 

Mean time to repair Average of time between failure repair measurements of a work unit. 

Corrective 
maintenance ratio 

Ratio between the corrective maintenance time and the total maintenance 
time. 

 
The overview in Table 3.1 includes two overall manufacturing performance criteria: the 
Overall Equipment Effectiveness (OEE) index and the Net Equipment Effectiveness (NEE) 
index. Both overall performance criteria are defined as the product of three ratios: an 
availability ratio, an effectiveness ratio and a quality ratio. 
 The effectiveness ratio equals 𝑃𝑃𝑃𝑃𝑃𝑃×𝑃𝑃𝑃𝑃

𝐴𝐴𝐴𝐴𝐴𝐴
, where 𝑃𝑃𝑃𝑃𝑃𝑃 equals the planned run per item, 𝑃𝑃𝑃𝑃 the 

number of items produced, and 𝐴𝐴𝐴𝐴𝐴𝐴 equals the actual production time. 
 The quality ratio equals 𝐺𝐺𝐺𝐺

𝑃𝑃𝑃𝑃
, where 𝐺𝐺𝐺𝐺 equals the number of good-quality items produced 

and 𝑃𝑃𝑃𝑃 the total number of items produced. 
 The difference between OEE and NEE concerns the availability ratio. The availability ratios 

equal 𝐴𝐴𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃𝑃𝑃

 for OEE and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑃𝑃𝑃𝑃𝑃𝑃

 for NEE, where 𝑃𝑃𝑃𝑃𝑃𝑃 is the planned busy time, 𝐴𝐴𝐴𝐴𝐴𝐴 the actual 
processing time and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 the actual unit processing time. The difference between 𝐴𝐴𝐴𝐴𝐴𝐴 
and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 as follows: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 includes setup times whereas 𝐴𝐴𝐴𝐴𝐴𝐴 does not. 

3.4 Summary 
In this chapter, we have given an overview of KPIs that are commonly used to evaluate the 
performance of a production system. Section 3.1 gave an overview of common simple KPIs. 
To assess the performance of a manufacturing system, a single KPIs is typically not 
sufficient. To address multiple aspects, one can either use multiple simple KPIs or a single 
composite KPI. Such KPIs are addressed in Sections 3.2. From a performance analysis point 
of view, using a single composite KPI is simpler than using multiple basic KPIs. Unfortunately, 
the common, OEE-based, composite KPIs are not usable under all circumstances. On the 
one hand, the OEE-based KPIs are using average information, which works well for LMHV 
systems, but poorly for HMLV systems. On the other hand, some of the OEE-based KPIs are 
not meant for performance analysis, but only for identifying performance issues. 
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4 Analysis methods 

In this chapter, we present methods to analyse the performance of manufacturing systems. 
These correspond to the analysis element of the landscape introduced in Chapter 2 and both 
its aspects. In Chapter 2, we distinguished two categories of analysis methods: declarative 
models and operation models. In Chapter 2, we also distinguished deterministic and 
stochastic models. This classification is shown in Figure 4.1, which shows a grid with four 
quadrants for all combinations of the model types. The figure also places the formalisms 
discussed in this chapter in the grid. Note that analysis techniques may be in multiple 
quadrants. The classification in Figure 4.1 shows which techniques have been applied to 
which types of techniques. It is not meant to select an analysis technique, but it may help in 
making such a decision. 
 

 
Figure 4.1 Classification of analysis techniques 

This chapter is organised along one of the axes in Figure 4.1. Section 4.1 describes 
declarative analysis methods that can be/have been applied in the manufacturing domain. 
Section 4.2 gives an overview of operational analysis methods, which as one can see in 
Figure 4.1 only involves simulation. Section 4.3 is concerned with multi-objective analysis; it 
describes methods of trading off multiple performance criteria. Section 4.4 summarises the 
chapters and reflects on the findings. 
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4.1 Declarative analysis methods 
This section considers declarative analysis methods that have been or could be applied in 
the manufacturing domain. As explained in Chapter 2, declarative methods use systems 
that are specified in terms of mathematical formulas/constraints. 

4.1.1 Mathematical programming 
Mathematical programming, or mathematical optimisation, involves a collection of 
techniques in which an optimisation space is described in terms of mathematical formulas. 
The goal of mathematical programming is finding the optimum, i.e. the point in this 
optimisation spaces which minimises or maximises a specific optimisation criterion, the 
objective function [44]. 
 
In its generic form, the constraints and objective functions of mathematical programming 
instance involve arbitrary mathematical functions. However, there are many variants that 
are more restricted. Common is the restriction to linear functions; this variant of 
mathematical programming is called Integer Linear Programming (ILP) if all variables are 
integer and Mixed Integer Linear Programming (MILP) if some variables are integer. MILP is 
the most used mathematical programming technique for scheduling problems [45]. 
 
The formulas used in mathematical program need not be deterministic; mathematical 
programming with stochastic formulas is called Stochastic Programming [46]. Stochastic 
programming aims at optimizing the expected value of a stochastic objective function. 
Sahinidis [47] compares several stochastic programming variants: stochastic linear 
programming, stochastic integer programming, stochastic non-linear programming and 
robust stochastic programming. The latter addresses a decision maker’s risk tolerance. 
 
Nearly all mathematical programming variants are NP-hard. For instance, ILP with binary 
variables is already NP-hard [48]. Hence heuristics are used to find an optimum. These 
heuristics typically involve evolutionary algorithms (see Section 4.3).  
 
There are several tools that solve ILP problems. Well-known commercial ILP solvers are IBM 
ILOG CPLEX Optimization Studio [49] and Gurobi Optimizer [50] and AIMMS [51]. Free ILP 
solvers include lpsolve [52] and GLPK (GNU Linear Programming Kit) [53]. AMPL (A 
Mathematical Programming Language) [54] provides a unified interface to several 
commercial and open-source mathematical programming tools. 
 
Fattahi et al. [55] present multiple MILP models for flexible job shop scheduling. They can 
solve small instances. To allow solving instances of a realistic size, they combine MILP with 
metaheuristics (see Section 4.1.10). Their results show that hierarchical approaches which 
consider allocation, i.e. the assignment of jobs to machines, and sequencing, i.e. the ordering 
of allocated jobs, separately provides better solutions that integrated approaches that 
combine allocation and sequencing. 
 
Birgin et al. [56] propose an MILP solution for a generalisation of the flexible job shop, which 
involves arbitrary precedence constraints. They perform computational experiments using 
IBM ILOG CPLEX Optimization Studio for jobs involving assembly only, disassembly only and 
disassembly followed by assembly. These patterns were inspired by common job in the 
printing industry. 
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4.1.2 Constraint programming 
Constraint Programming (CP) is another technique commonly used for solving scheduling 
and other combinatorial optimisation problems. Like mathematical programming, CP 
involves specifying the optimisation space in terms of constraints. However, the constraints 
used by CP are more general than those for mathematical programming and they are not 
limited to numerical constraints. This makes specification of constraint programs simpler 
than specifying MILP programs.  
 
A well-known commercial constraint optimiser is IBM ILOG CP Optimizer [57]. Hexaly [58] is 
a commercial constraint optimiser specialised in scheduling, routing and packing. A well-
known free constraint optimiser is OR-Tools CP-SAT Solver [59]. MiniZinc [60] provides a 
unified interface to multiple constraint optimisers, including several free ones. Laborie et al. 
[61] give an overview of scheduling problems that have been addressed using IBM ILOG CP 
Optimizer. This including several shop scheduling applications. They also compare multiple 
constraint solvers, and this comparison shows that (their) IBM ILOG CP Optimizer 
outperforms other solvers. 
 
Lunardi et al. [62] and Naderi et al. [45] compare ILP (see Section 4.1.1) and CP for 
scheduling of production systems. Both have used IBM ILOG CPLEX [49] for ILP and IBM ILOG 
CP Optimizer [57] for CP. Both conclude that constraint programming is more scalable than 
ILP: using CP, larger problem instances can be optimised. Hexaly has been compared to 
other constraint solvers; it performs very well on selected job shop scheduling problems [63] 
[64]. 

4.1.3 Constraint graphs 
Constraint graphs are a special kind of constraint program (see Section 4.1.2), which can be 
analysed very efficiently. Constraint graphs are directed graphs of which the nodes represent 
events, and the arcs represent minimum delays between the events [65]. These events can 
be the start and end of an operation [66]. The delays between events can be both positive 
and negative. Positive delays represent release dates, i.e. an event must occur some time 
after another event, where negative delays represent due date, i.e. an event must occur at 
most some time before another event. 
 
A constraint graph with positive cycles corresponds to infeasible timing constraints. If a 
constraint graph does not have positive cycles is feasible, an earliest schedule can be 
computed using Bellman-Ford’s shortest path algorithm [67]. 

4.1.4 Model checking 
Prediction methods (see Section 4.1) provide an estimate for the performance of a system. 
Such predictions are not fully accurate: the actual performance is probably close to the 
actual performance, but not identical to it. Model checking is a method to guarantee that 
certain properties are satisfied. Model checking involves exhaustively exploring a system’s 
state space for state that violate a desired property or satisfy an undesired property. As 
model checking involves an exhaustive search, it suffers from the same scalability problems 
as mathematical programming (see Section 4.1.1) and constraint programming (see Section 
4.1.2). 
 
Castillo and Smith [68] give an overview of formal modelling methodologies for 
manufacturing systems using cells. They observe that many formalisms used for model 
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checking are based on some notion of states and state transitions. For manufacturing 
systems, they distinguish four types of desirable properties: 
 Progress involves processes eventually performing an action if it can. 
 Liveness involves the ability of a process to make a transition. 
 Deadlock occurs when a system is not able to proceed. 
 Partial deadlock involves situations in which some processes never progress. 
 
The overview of Castillo and Smith [68] distinguish two types of formalisms: machine-based 
formalisms and, language-based based formalisms. The machine-based formalisms are 
based on notions of states and events. Castillo and Smith [68] consider automata theory 
[69], statecharts [70], Petri nets [71], and Discrete Event Control Networks (DECN) [72]. The 
language-based formalisms involve on synchronous languages, e.g. Lustre [73] and Esterel 
[74], process algebras, e.g. Communicating Sequential Processes (CSP) [75], and temporal 
logic. Castillo and Smith [68] compare the different formalisms with respect to level of 
abstraction, expressiveness, verification power and their applicability in a system’s lifecycle. 
 
In the manufacturing domain, model checking has often been done using Petri nets. Moore 
and Gupta [76] provide an overview of applications of Petri nets in the manufacturing 
domain. They consider both qualitative and quantitative analysis. Qualitative analysis 
involves non-numeric properties like reachability, liveness and freedom of deadlocks. An 
example is the work of Viswanadham et al. [77], who use Petri net to design a deadlock 
avoiding controller. Using quantitative analysis, Petri nets can also be used to optimise 
numeric properties like latency and throughput. An example is the work of Lei et al. [78] who 
use Petri nets to combine a deadlock-free controller and a makespan-minimising heuristic 
for flexible manufacturing systems. 
 
There are many model checking tools; most are academic tools, but some have commercial 
support. Uppaal [79] [80] is a model checker with both academic and commercial licensing 
based on timed automata [81]. mCRL2 [82] is based on the process algebra ACP, NuSMV [83] 
on binary decision diagrams (BDDs) and Spin on Promela [84]. Statemate [85] is a model 
checker based on statecharts [70], which has become part of IBM Engineering Systems 
Design Rhapsody [86]. 
 
Probabilistic model checking calculates the likelihood of events during system execution 
[87]. PRISM is a stochastic model checker [88], which can analyse several types of 
probabilistic models including Markov decision diagrams (see Section 4.1.5) and probabilistic 
timed automata. Uppaal’s statistical model checking extension uses techniques from the 
statistical domain for model checking of timed automata of stochastic systems [89]. 

4.1.5 Markov Decision Processes 
Markov Decision Processes (MDPs) are models for decision making when outcomes are 
uncertain [90]. An MDP involves states, actions, probabilistic transitions and rewards: 
selecting an action in a state give a reward and determines the next state based on a 
probabilistic transition function. The goal of using MDPs is finding an optimal policy, i.e. a 
policy that selects the (expected) best possible action for a state. In case of finite MDPs, an 
optimum policy can be found in polynomial time, e.g. via dynamic programming or linear 
programming [91]. This is possible because MDPs are memoryless, which means that the 
transition probabilities of a state are independent of how that state was reached. This is also 
called the Markov property. 
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In the context of manufacturing, MDPs can be used for maintenance and repair planning, 
production control and control of queues. Kallenberg [90] illustrates how MDPs can be used 
to decide when to replace components, how many products to produce and how to 
optimally control queues. He also provides pointers on how MDPs can be used for pre-
emptive scheduling of (independent) jobs with stochastic processing times. 

4.1.6 Dataflow Process Networks 
Dataflow Process Networks (DPNs) involve a general model of computation for distributed 
(computing) systems [92]. DPNs consist of parallel processes that communicate via FIFO 
queues. A process can fire if there are sufficient tokens in its input queues; after firing, it 
produces token in its output queues. There are several variants of dataflow. In synchronous 
dataflow (SDF) all firings of a process consume and produce the same number of tokens. 
This property allows the static computation of a finite schedule that is executed repeatedly 
for a network that processes an infinite stream of tokens [93]. More expressive variants like 
cyclo-static dataflow (CSDF) [94] and scenario-aware dataflow (SADF) also allow design-
time analysis [95]. 
 
Design-time analysis of dataflow networks has been applied to schedule digital signal 
processing workloads on a processing platform. It is unknown whether it has been/can be 
applied to allocation and scheduling of manufacturing operations onto a manufacturing 
system’s resources. 

4.1.7 Petri nets 
Petri nets are a formalism to describe distributed systems [71]. Petri nets are directed 
bipartite graphs with two types of nodes: places and transitions. Places contain tokens; 
transitions consume tokens from their input places and produce tokens in their output 
places. There are many types of Petri nets. Workflow nets are used to model the workflow of 
processes; these have a unique source place, i.e. a place without incoming transitions, and a 
unique sink place, i.e. a place without outgoing transitions [96]. 
 
Timed Petri nets have been used for scheduling [97]. In timed Petri nets, tokens have 
timestamps at which they become available, and transitions have fixed time durations, 
which are called firing delays. A transition’s firing is instantaneous, but the tokens they 
produce only become available after the transition’s firing delay. It is assumed that 
transitions are eager, i.e. they will fire as soon as possible. When several transitions are 
enabled at a moment in time, one of them will fire (possibly disabling the other transitions). 
SNAKES is a Python-based simulator for timed Petri nets [98]. 
 
Van der Aalst [97] explains how scheduling problems can be described by Petri nets. In 
particular, he describes how to capture the notions of resource allocation and precedence 
constraints. Reachability graphs can be used compute lower and upper bounds for the 
optimum makespan, i.e. the schedule length. As reachability graphs contain all possible 
transition sequence, they can become very large. Van der Aalst [97] proposes ways to 
reduce their size. 

4.1.8 Heuristics 
Heuristics are pragmatic algorithms to find, typically suboptimal, solutions to optimisation 
problems. Heuristics are commonly used for scheduling, i.e. the assignment of resources to 
tasks. This section discusses two well-known scheduling heuristics, list scheduling and the 
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shifting bottleneck heuristic. Both can also be used for the allocation of work to the 
machines of a manufacturing systems. These and other scheduling heuristics are described 
by Ruiz [99], who give an overview of scheduling heuristics.  
 
A well-known greedy heuristic is list scheduling [100]. List scheduling involving creating a list 
of the operations to be scheduled. The first element for all its predecessors has been 
allocated is allocated at the earliest time possible considering the constraints regarding 
precedence relations, release and due dates, resource availability, etc. This step is repeated 
until all elements in the list have been allocated. Default list scheduling allocates operations 
at their earliest possible start time. Alternatively, one can also allocate an operation such 
that its finishes as early as possible [101]. The main challenge lies in the creation of the 
priority list, which greatly determines the quality of a schedule. Panwalkar and Iskander 
[102] discuss and classify more than 100 dispatching rules which can be used to prioritise 
operations. 
 
The shifting bottleneck heuristic is a heuristic used for the minimisation of the makespan of 
(shop) scheduling problems in which operations must compete for resources, typically 
machines [103]. The heuristic involves a disjunctive graph [104], which has directed arcs 
representing precedence relationships and disjunctive edges for operations that require the 
same resources. The shifting bottleneck heuristic performs multiple steps to determine the 
order of the operations connected by disjunctive edges. It first determines which resource is 
the bottleneck and fixes the sequence of the operations of that machine. The latter is done 
using a one-machine scheduling algorithm which minimise the operations’ maximum 
lateness, i.e. the maximum exceedance of operations’ due date. The operations’ due date is 
computed from the starting times of their successor operations; these should be delayed as 
little as possible. 

4.1.9 Anytime algorithms 
Some of the analysis methods described in this chapter require a lot of time and/or 
computational resources to find a feasible system configuration. These resources are not 
always available. Sometimes, a limited amount of time is available to find a solution: 
Musselman [1] presents a manufacturing system in which shift schedules need to be 
produced within minutes. In addition, when a rush order comes in, one quickly needs to 
reschedule the work. 
 
Anytime algorithms are algorithms that take into the available time; they can be interrupted 
at any point to return a result whose quality is a function of computation time [105]. Baruwa 
et al. [106] present an anytime algorithm for scheduling of flexible manufacturing systems. 
Their algorithm quickly finds a feasible schedule and improves this schedule over time. 
Efstathiou [107] presents anytime algorithm to repair manufacturing schedules after the 
occurrence of a dynamic event. This algorithm aims at repairing the earliest faults first and 
minimising the repair disruption on the existing schedule. 

4.1.10 Metaheuristics 
The optimisation methods considered in Sections 4.1.1 and 4.1.2 use specification of a 
configuration space and aim the find the optimum configuration in this space. This is called 
global optimisation [9]. Global optimisation has a drawback that it does not scale well. Local 
optimisation tries to find configurations in a neighbourhood of a candidate configuration.  
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There are several local optimisation approaches. Genetic algorithms are a well-known local 
optimisation approach, which is inspired by natural selection. From an existing population of 
so-called chromosomes, representing a configuration in a configuration space, a new 
population is generated based using genetics-inspired operations crossover, mutation, and 
inversion. Crossover exchanges subparts of two chromosomes; mutation randomly changes 
the values of some locations in the chromosome; and inversion reverses the order of a 
contiguous section of the chromosome [108]. A selection mechanism selects promising 
chromosomes for further reproduction. This is continued until a specified number of steps 
have been made, a certain minimum criterion is met, or no improvements are made. NSGA-
II (Non-dominating Sorting Genetic Algorithm) [109] is an efficient genetic algorithm 
implementation. 
 
Simulated annealing [110] also uses mutation to search for an optimal configuration; 
instead of a population of configurations, it considers one configuration, which gets 
mutated. If mutation leads to an improved configuration, then simulated annealing will 
accept the new configuration. However, to avoid getting stuck in local optima, simulated 
annealing may also allow deteriorations of configurations. If a mutation leads to worse 
configuration, it is accepted with a certain probability. This probability decreases with the 
number of steps: worse configurations are more likely to be accepted early in the process. 
 
Tabu search [111] is like simulated annealing. A difference is its mechanism to avoid running 
in cycles: tabu search maintains a so-called tabu list, a list of configurations, which it has 
recently found. The algorithm does not allow configurations on the tabu list to be considered 
shortly after they have been found. 

4.2 Operational analysis methods 
This section gives an overview of operational analysis methods that have been used in the 
manufacturing domain. 

4.2.1 Simulation 
Simulation is a very flexible analysis method, which can analyse a single system scenario. 
There are different types of simulation: discrete-event simulation (DES), agent-based 
simulation (ABS) and system dynamics simulation (SDS). For the planning and scheduling 
perspective, DES and ABS are the most interesting types of simulation; SDS is more 
interesting for simulation of physical processes. DES can be used to capture a CPPS’s 
production flow, whereas ABS can be used to capture distributed intelligence [112]. 
 
The models underlying a discrete event simulation are typically based on a directed graphs 
in which the nodes represent work elements that needs to be performed and the arcs 
represent the precedence constraints between the work elements. There are many 
formalisms that has such a structure: statecharts [70], activity diagrams, Petri nets (see also 
Section 4.1.7) and event graphs.  
 
As observed in Chapter 2, a manufacturing system include both controllable and 
uncontrollable behaviour. In case of modelling stochastic behaviour, such as a machine’s 
unplanned downtime, one needs to perform multiple experiments to get a good indication 
for the values of the KPIs of interest. The classical central limit theorem provides an indicator 
for the accuracy of the series of independent (simulation) samples: for a series (𝑦𝑦1, … , 𝑦𝑦𝑛𝑛) of 
𝑛𝑛 samples, the series’ standard deviation can be approximated by 𝑠𝑠

√𝑛𝑛
, where 𝑠𝑠2 = ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2

𝑛𝑛−1
𝑛𝑛
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is the series’ sample variation. The central limit theorem also provides an indication for the 
number of samples needed. Given a desired error 𝜖𝜖 and a confidence level of 1 − 𝛼𝛼, the 

number of simulations needed equals �𝑧𝑧𝛼𝛼 2⁄ ×𝜎𝜎

𝜖𝜖
�
2
, where 𝑧𝑧𝛼𝛼 2⁄  is the value of the standard 

normal variable with a cumulative probability level (1 −  𝛼𝛼
2

) and 𝜎𝜎 is the standard deviation 
[113]. 
 
Negahban et al. [114] present a literature overview of manufacturing system simulation. 
Their overview addresses two main types of simulations: manufacturing system design and 
manufacturing system operation. Manufacturing system design addresses the placement of 
machinery and a material handling system inside a facility. They observe that material 
handling system design is especially difficult for system with a high degree of flexibility. High 
flexibility is seen in cellular manufacturing systems used for semiconductor manufacturing. 
Cellular manufacturing system involve a material handling system with many re-entrant 
loops. Pitombeira Neto and Vila Gonçalves Filho [25] present a simulation to evaluate a 
cellular manufacturing system design. This simulation considers three KPIs: level of WIP, the 
number of intercell moves and the capital investment. An evolutionary algorithm is used to 
explore the configuration space and the corresponding trade-offs of these KPIs. 
 
System design involves a long-term decision which involves uncertainty. When a system is 
being designed, its actual workload is not known yet. Jithavech and Kumar Krishnan [115] 
address this uncertainty by simulating a manufacturing system for many workloads and 
taking the average performance. Koo and Jang [116] use simulation to evaluate AGV 
dispatching rules for AGV-based material handling systems with stochastic travel times. 
 
Glatt et al. [117] present a simulation concept that combines material flow simulation and 
physical phenomena. This combination allows them to predict disturbances in the material 
flow. This could be very valuable in describing a manufacturing system’s behaviour in more 
detail. Unfortunately, their concept has not been implemented and assessed.  
 
Roda and Macchi [29] observe that the aggregate performance number provided by OEE, 
and its variants can only be measured from an actual plant. They introduce a stochastic 
simulation approach to predict Overall Factory Effectiveness (OFE). Their simulation includes 
the availability behaviour of a factory’s machines as well as their suboptimal modes. 
 
Baines et al. [17] observe that the accuracy of simulations of manufacturing systems with a 
large degree of manual labour is quite poor. They argue that this is because human 
operators are modelled as machine resources, which are typically very predictable. In reality, 
human behaviour fluctuates more than machine behaviour. Baines et al. [17] propose 
simple mechanisms to account for an operation’s age and his/her circadian rhythm. 
Especially operator age has a large influence on operational performance: in their model and 
that of Zülch and Becker [118], the performance of a 65-year-old operator is 35 percent 
lower than a 20-year-old operator. The circadian rhythm accounts for a performance 
difference of at most a few percent. Katiraee et al. [119] consider the influence of four 
human factors on the timing and cost of manufacturing systems: skill level, age, gender and 
anthropometric measures. They argue that more research effort should be spent on making 
accurate human aspect models. Baines et al. [17] note that validating a simulation model 
becomes harder when the human factor is dominant, on top of that comes the ethical 
aspect of modelling humans.  
 
Paape et al. [112] compare the functionality of multiple simulation tools for CPPSs with 
distributed intelligence. For such manufacturing systems, Anylogic [120] is the most 
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promising simulation tool and they present a case study inspired by a poultry fillet 
processing line. Herps et al. [26] use Anylogic for the simulation of a high-mix low-volume 
manufacturing system. Mourtzis et al. [121] present a survey of the usage of simulation 
using during the design and operation of manufacturing systems. The former includes 
manufacturing system layout design and material flow design. The operation includes 
material flow simulation. They evaluate five well-known commercial simulators with respect 
their capabilities and usability: Anylogic [120], Arena [122], FlexSim [123], Siemens 
Tecnomatix Plant Simulation [124] and Witness [125]. In this evaluation, Anylogic, FlexSim 
and Siemens Tecnomatix Plant Simulation score well. Other commercial simulation 
packages include Simio [126] and Simul8 [127]. Jaamsim [128] is an open-source simulation 
package. SimPy [129] and salabim [130] are Python-based discrete event simulators. 
NetLogo [131] is an agent-based modelling environment which can be used to create 
simulations. 
 
Some simulators include simulation optimisation functionality [9]. For instance, FlexSim 
[123] has integrated OptTek Systems’ OptQuest simulation optimisation software [132] and 
Anylogic [120] provides simulation optimisation via its experiments. 

4.3 Trade-off methods 
The optimisation methods reviewed in Section 4.1 aim at optimising a single objective 
function. However, Chapter 3 shows that there are many relevant criteria when optimising a 
manufacturing system. This section describes methods to trade off different optimisation 
criteria. 
 
A straightforward way of trading off is by combining all criteria in a single criterion, e.g. using 
weights, which is called scalarisation [133]. This is, for instance, done in OEE and many of its 
variants discussed in Chapter 3. This combination changes a multi-objective optimisation 
problem into a single-objective optimisation problem. A drawback of this approach is that it 
is not simple to define a combination that captures an optimiser’s preferences, which may 
be different per optimiser or even per configuration space. 
 
Another straightforward of trading off multiple objective functions is to set bounds on all 
(but one) objective. These bounds can then be used as constraints of a mathematical 
program, a constraint program or an evolutionary algorithm. These could then solve a 
constrained single-objective optimisation problem. 
 
If one wants to get more insight into the trade-off between multiple objectives in a 
configuration space, another method is needed. Pareto analysis allows identification of a 
Pareto front, which contains all configurations which are not dominated by other 
configuration. A configurator dominates another if the former is better than the latter with 
respect to one objective and not worse than the latter with respect to the other objectives 
[134]. Geilen et al. [135] extend the dominance relation to sets of configurations and 
present an algebra to compose such sets. 
 
Visualisation of a configuration space with more than three objectives is challenging. For 
such configuration spaces, one can use radar/spider chart [136] or parallel coordinate plots 
[137]. These visualisations can be used to visualise and compare different configurations. 
 
Efatmaneshnik et al. [138] observe that when the number of optimisation criteria grows it 
becomes difficult to keep an overview of the dominant configurations (e.g. in the Pareto 
front). They propose a metric to limit the number of non-dominated solutions to alleviate 
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the task of (early) decision making, when decision makers do not have a view on the most 
important objectives. 

4.4 Summary 
In this chapter, we have given an incomplete overview of methods that can be used for 
multi-objective analysis of manufacturing systems. This overview shows that this field is very 
extensive. There are many (possibly) relevant techniques and the literature regarding each 
of the techniques individually is very large. An upcoming technique, which was left out of the 
overview is Artificial Intelligence (AI): Machine Learning (ML) techniques are expected to 
become very interesting for allocating and sequencing the work of a manufacturing system. 
 
When looking at the overview, there seems to be only one operational analysis method, i.e. 
simulation. On the other hand, simulation itself is not one method: there are several distinct 
types of simulation, several of which could play a role in addressing allocation and 
sequencing questions in the manufacturing domain. 
 
What is striking is the apparent limited number of techniques that can deal with multiple 
optimisation criteria. Pareto fronts are a means to really trade off multiple optimisation 
criteria, but this is challenging when the number of criteria is too high. Hence multi-objective 
analysis questions are transformed into a single-objective analysis question by combining 
criteria in one high-level criterion or introducing budget constraints.  
 
Which method(s) to select for a certain analysis question is typically be addressed by the 
corresponding analyst’s experience and preferences. It is unknown whether there is 
literature supporting this method selection question. 
 
It should be noted that a single method is unlikely to be sufficient to answer a (complex) 
multi-objective analysis problem. Often multiple methods are combined into a 
methodology. A concrete example is simulation optimisation, which combines simulation to 
analyse individual scenarios, and search heuristics, like evolutionary algorithms, to find an 
optimum scenario. 
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5 TNO-ESI landscape 
coverage 

This chapter presents an overview of TNO-ESI’s experience regarding multi-objective 
analysis of manufacturing systems and related topics. A high-level summary of this 
experience is presented in Figure 5.1, which shows the methods used in TNO-ESI’s past 
projects onto the classification introduced in Figure 4.1. Figure 5.2 shows the timeline of 
these projects. A more detailed description of the work done in TNO-ESI’s projects can be 
found in the following sections. Section 5.14 reflects on TNO-ESI’s experience. 
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Figure 5.1 TNO-ESI projects related to multi-objective analysis of manufacturing systems 

 
Figure 5.2 Timeline of TNO-ESI projects related to multi-objective analysis of manufacturing systems 
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5.1 AIMS 
The AIMS project is a running collaboration of TNO-ESI and Canon Production Printing. It is 
concerned with the timing performance of manufacturing systems. To perform such 
analysis, it applies a Y-chart-based approach [139]: it separately describes a manufacturing 
system’s orders and its equipment. From an allocation of orders to the equipment, a 
constraint graph is generated, which is used to compute the fastest schedule of tightly 
coupled production systems [140].  
 
Constraint graphs are more expressive than LSAT [141], which had also been considered as 
an analysis tool. In LSAT, one can specify release dates, i.e. a minimum time between two 
events, but one cannot express due dates, i.e. a maximum time between two events. The 
latter is needed for tightly coupled manufacturing systems, i.e. systems that do not have 
internal buffers. 
 
From the latest version of the specification of a manufacturing system’s orders and 
equipment, a MiniZinc constraint program [60] is generated which can be used to find an 
optimum allocation and sequencing. This transformation is still to be documented. 

5.2 ArchBench 
The ArchBench project was a collaboration of TNO-ESI and DAF Trucks, which ran from 2017 
until 2019. In this project, a tool was developed to analyse the allocation of functionality in a 
CAN bus network. The tool included a deterministic discrete event simulation, which 
captured the CAN bus network communication. Using the tool, a system architect could 
reason about different allocations in terms of network load, costs, and weight. Details about 
the tool can be found in the paper of Bijlsma et al. [142]. 

5.3 ArchViews 
The ArchViews project was a collaboration of TNO-ESI and Thales, which ran from 2020 until 
2023. The general goal of the project was to study how to guarantee that a system delivers 
on its specification, with system performance requirements as a carrying example. The most 
relevant result in the context of this project was a study on how to make a microservice 
architecture observable using standardised telemetry tools, such as OpenTelemetry [143], 
and how to use the collected logs and metrics to verify that the system conforms to its 
specification. This involved a model-based approach to specify system flows, chains of 
executing services and their interactions along with timing requirements, as sequence 
diagrams using PlantUML [144]. Automation was provided to parse these specifications and 
extract relevant traces and metrics to validate that the interactions between services 
followed the specification and that the timing requirements were satisfied. Details can be 
found in Andrade’s master thesis [145]. 
 
ArchViews also addressed a hardware dimensioning problem where the performance of 
system flows was predicted using analytical model considering computation and 
communication costs for alternative mappings between software processes and compute 
nodes. Infrastructure was developed to automatically profile the communication and 
computation costs of services and their interactions on the real system, using the 
observability infrastructure developed in the project. Details can be found in Vollaard’s 
master thesis [146]. 



 

 

 TNO Public  TNO 2024 P11832 

 TNO Public 39/53 

5.4 Bright 
The Bright project was a collaboration of TNO-ESI and ITEC, which ran from 2019 until 2022. 
In the Bright project, LSAT [147] [141] was used to model the machine cycle of ITEC’s die 
bonders [148]. Bright did not use LSAT’s stochastic critical analysis. The Bright project also 
include further development of LSAT, e.g. to deal with pools of identical pieces of equipment. 

5.5 CARM-2G 
The CARM-2G project was a collaboration of TNO-ESI and ASML, which ran from 2012 until 
2016. The project developed a methodology based on the Y-chart [139] to allocate control 
applications to an execution platform. ASML’s applications involve thousands of precedence-
constrained tasks with strict latency requirements that needed to be mapped onto a 
general-purpose processing platform. To deal with background tasks, the tasks do not fully 
use the platform’s processors. This makes the allocation tolerant to worst-case task 
execution times [149]. 

5.6 Concerto/Maestro 
The projects Concerto and Maestro were collaborations of TNO-ESI and ASML. Concerto ran 
from 2016 until 2022 and Maestro from 2019 until 2023. In these projects, the tool LSAT 
[147] [141] was developed. LSAT is a tool to analyse the timing performance of logistic 
systems. Such systems are specified in terms of a machine’s equipment and its actions, 
timing settings of machine actions, activities consisting of machine actions, and the 
dispatching sequence of activities. 
 
LSAT is mainly used for deterministic timing analysis. However, LSAT’s timing settings allow 
the specification of probability distributions. These are used for stochastic critical path 
analysis [150]: using Monte Carlo simulation, it is assessed how frequently a machine action 
lies on a logistic system’s critical path. 
 
Within Concerto and Maestro, LSAT has been used to analyse the wafer handler of ASML’s 
lithography systems. 

5.7 Falcon 
The Falcon project was a collaboration of ESI,2 Vanderlande Industries, Demcon, Delft 
University of Technology, Eindhoven University of Technology, Utrecht University, and 
Twente University. Falcon ran from 2006 until 2011. 
 
The Falcon project addressed the topic of flexible logistic systems with warehousing as a 
reference case. In the Falcon project, several warehouse simulations have been developed. 
Two types of agent-based simulation were studied in the project. One is a hierarchical 
simulation focussing on the allocation of order to workstations, the second focussed on 
agent organisations. In addition, Falcon included a discrete-event simulation focussing on 
allocation of order to workstations, their execution and the corresponding transportation. 
Simulation optimisation using an evolutionary algorithm was used to find the optimum 
warehouse configuration [151]. Constraints were introduced to deal with multiple 
optimisation criteria. 
_______ 
2 The independent research institute Embedded Systems Institute (ESI) became the TNO department Embedded 

Systems Innovation (TNO-ESI) in 2013. 
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In addition, an effective process time (EPT) approach was applied to capture probability 
distributions of warehouse operations. The EPT approach was used to calibrate stochastic 
simulation models.  
 
Details and further references can be found in the book by Hamberg and Verriet [152]. 

5.8 Machinaide 
The Machinaide project was an ITEA project with TNO, Additive Industries, Cordis Suite, 
Eindhoven University of Technology, KE-chain and Lely Industries as the Dutch partners in 
the consortium. The project ran from 2019 until 2023. 
 
In the Machinaide project, a stochastic discrete event simulation based on queueing theory 
was developed. This simulation, which captured the interaction of cows, robots, and people 
in a dairy farm, has strong similarities to a manufacturing system. Details can be found in 
Buermann’s master thesis [153]. 

5.9 Octopus/Octo+ 
The Octopus project was a collaboration of ESI,2 Océ Technologies, Delft University of 
Technology, Eindhoven University of Technology, and Twente University. The Octo+ project 
was a continuation involving only ESI and Océ Technologies. Octopus ran from 2007 until 
2012 and Octo+ from 2012 until 2019. 
 
In the Octopus project, a design space exploration methodology was developed based on 
the Y-chart [139], which separate the application to be executed and the platform involving 
the execution resources. In the Octopus project, this pattern has been applied to the data 
path of a printer, but it can also be applied to a manufacturing system’s jobs and its 
equipment. To analyse allocations of image processing functionality to a computation 
platform, several analysis tools were used: CPN Tools [154], Uppaal [80] and SDF3 [155]. 
Details and further references regarding the Octopus project can be found in the book by 
Basten et al. [156]. 
 
In the Octo+ project, a deterministic discrete event simulation for data path analysis was 
developed [157]. This can be seen as the continuation of the design space exploration 
methodology of the Octopus project. 

5.10 PaloAlto 
The PaloAlto project was a collaboration of TNO-ESI and Thermo Fisher Scientific, which 
started in 2018 and ended in 2021. In the PaloAlto project, workflow models were created in 
the context of reference architecting. Architectural trade-off analysis was used to reason 
about the influence of improving the speed of a piece of one component on the overall 
throughput of a workflow. The creation of the workflow models and the architectural trade-
off analysis were both done using the Daarius methodology [158]. 

5.11 Papillon 
The Papillon project was a collaboration of TNO-ESI and Thermo Fisher Scientific. The project, 
which started in 2022 and ended in 2023, can be seen as a follow-up of the PaloAlto project. 
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In the Papillon project, a methodology was developed to specify and analyse customer 
workflows. The workflows are specified in an extension of Capella [158] using its functional 
chains as a starting point. From a workflow specification, a Petri net simulation is generated 
based on the SNAKES simulator [98]. The workflow analysis considers three optimisation 
criteria, makespan and two different costs, which are visualised using a parallel coordinates 
plot [137]. To deal with stochastic timing, the analyst can specify the number of simulations 
of the same workflow; the average makespan is computed from these runs. More details 
can be found in the conference paper of Hooman et al. [159]. 

5.12 Prisma 
The Prisma project was a collaboration of TNO-ESI and Philips Lighting, which ran from 2013 
until 2017. In Prisma, a methodology was developed to specify large-scale distributed 
control systems. From such a specification, models were generated to analyse the control 
system’s behaviour. Two types of analysis were used. Deterministic model checking, using 
Uppaal [80], was used to detect scenarios leading to unwanted system behaviour. 
Deterministic discrete event simulation, using Java, was used to analyse system usage 
scenarios. More details can be found in the project’s conference papers [160] [161]. 

5.13 TechFlex 
The TechFlex project, a collaboration of TNO-ESI and Thales started in 2024, is the 
continuation of the ArchViews project (see Section 5.3). TechFlex addresses the challenge of 
reducing the time and cost associated with system diversity and evolution at the level of the 
software platform. A model-based approach to specification and automation with two steps 
is proposed: 1) technology-agnostic specification of software configurations to create 
custom software deployments with minimum manual intervention, and 2) deployment 
optimisation that improves the mapping to software processes to compute nodes to ensure 
technical performance requirements are satisfied. The optimisation problem is formulated 
as an MDP (see Section 4.1.5) and is solved using model-based reinforcement learning [162] 
combined with Monte Carlo Tree Search [163]. 

5.14 Summary 
This chapter gives an overview of knowledge and methodologies related to multi-objective 
analysis of manufacturing systems in TNO-ESI’s (past and running) projects. Not all projects 
discussed in this chapter considered manufacturing systems. Many of these projects 
involved the allocation of computational work to a computer platform. This context is 
different than the manufacturing domain, as computational tasks allow more flexibility, e.g. 
pre-emption, than physical tasks in a manufacturing system. Yet, the analysis techniques 
used for the allocation of computational tasks may be relevant for the allocation of 
manufacturing tasks. 
 
This chapter’s overview, especially the visualisation in Figure 5.1, shows that TNO-ESI’s 
projects have focussed on deterministic methods to handle the allocation of operations to a 
manufacturing system or a computational platform. Deterministic approaches work well for 
low-mix high-volume (LMHV) systems, involving large batches of the same operations. High-
mix low-volume (HMLV) systems, involving production of small batches of many different 
products, have a greater variety of behaviour. The influence of an event, e.g. an unexpected 
breakdown of a machine, may be high when one product is being manufactured and low 
after the manufacturing system has switched to another product. For such scenarios, 
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stochastic analysis techniques may be valuable. An assessment of the added value of 
stochastic analysis in the context of HMLV manufacturing systems is recommended.  
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6 Conclusion 

TNO-ESI’s partners are increasingly looking into the performance of their products in the 
context in which they are used, typically a manufacturing system. The performance of such 
systems is not captured by a single criterion but involves several criteria. This report 
introduced a landscape for the multi-objective analysis of manufacturing systems. The 
landscape considers questions that can be addressed by allocation of workload to a 
manufacturing system’s resources. It was used to conduct a survey of the existing literature 
and an inventory of TNO-ESI’s knowledge regarding this topic. A summary of the report and 
the main findings can be found in Section 6.1. A recommendation on how to follow up on 
these findings are listed in Section 6.2. 

6.1 Summary 
In Chapter 2 of this report, we introduced a landscape with the main aspects of multi-
objective analysis of manufacturing systems. For two of the landscape’s aspects, a literature 
study was performed. The literature study on KPIs in Chapter 3 showed that there are many 
relevant (simple) KPIs in a manufacturing system. Which ones to select for an analysis 
question depends on the analysis question at hand. To define a manufacturing system’s 
performance, several composite KPIs, i.e. combinations of KPIs, have been defined. The well-
known composite KPIs, i.e. OEE and its variants, look at the average (multi-objective) 
performance of a manufacturing systems. Because they consider average behaviour, they 
are suited for low-mix high-volume (LMHV) systems, but they may not be suited for high-mix 
low-volume (HMLV) systems. Note that the manufacturing systems that include equipment 
developed by TNO-ESI’s industrial partners are mainly HMLV systems. 
 
Chapter 4 contains the results of the literature study into analysis techniques. To structure 
the study, analysis methods were classified along two axes: deterministic vs. stochastic and 
declarative vs. operational. On the declarative side, there are many, typical specialised, 
analysis methods and each of the methods comes with a large body of (academic) 
knowledge. On the operational side of the overview, simulation is the dominant analysis 
technique; simulation is a very flexible analysis technique, which can be applied in both a 
deterministic and a stochastic context.  
 
Chapter 5 studied the expertise that TNO-ESI has built up during its 20+ years existence. The 
corresponding overview shows that TNO-ESI’s knowledge is dominated by deterministic 
analysis methods. High-mix low-volume (HMLV) systems, involving production of small 
batches of many different products, have a greater variety of behaviour. For such systems, 
stochastic analysis techniques may be valuable. 

6.2 Recommendation 
To assess whether stochastic analysis techniques have an added value for the analysis of 
industrial HMLV manufacturing systems, we recommend starting a project to address this 
question. Special attention should be given to the variability of resources and the workload: 
the project should (1) assess the influence of stochastic behaviour in the different 
manufacturing systems and (2) evaluate the added value of existing stochastic analysis 
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techniques compared to deterministic analysis techniques in TNO-ESI’s knowledge. 
Manufacturing systems of ESI’s industrial partners’ customers can be used as use cases for 
such a project. 
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