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Summary

The systems being developed by the high-tech industry do not operate in isolation. They are
combined with other systems to provide value to their owners. This report is concerned with
an important type of systems of systems of which high-tech systems are a part, namely
manufacturing systems (of systems). The report addresses the analysis of the performance
of such manufacturing systems. The performance of a manufacturing system typically
involves a system-specific combination multiple objectives, which we will refer as the
system’s effectiveness or the system’s effective performance. As the effectiveness of a
manufacturing system (of systems) cannot be expressed by a single value, this report
considers the multi-objective analysis of manufacturing systems.

Landscape

The report introduces the following landscape to capture the relevant aspects of a
manufacturing system (of systems) and to reason about these aspects using multi-objective

analysis.
Multi-Objective Analysis of Manufacturing Systems
Manufacturing system Workload
Operators Material Handling
Machines Material (”MZn ower”) System Customer orders
2 (“Method”)
Analysis question Analysis
Allocation . Analysis
constraints ,IfPIS/_M_em_CS constraints Analysis model Analysis
Ot (“Optimization . N !
(“Optimisation P (“Analysis type techniques
,, criteria”) ”
space”) budgets”)

State of the Art

The first part of this report involves an analysis of the state of the art on multi-objective
analysis of manufacturing systems. This analysis of the state of the art shows that each of
the landscape’s aspects individually involves many academic publications. As it is impossible
to be complete, this report includes a limited literature study for a selection of the
landscape’s analysis-related aspects. The state of the art on analysis methods is
summarised using the classification along the axes deterministic vs. stochastic and
declarative vs. operational. This classification is shown in the picture below.
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TNO-ESI knowledge

The second part of this report considers the expertise related to multi-objective analysis of
manufacturing systems that TNO-ESI has gained in its 20+ years of projects. The picture
below summarises this knowledge using the analysis method classification introduced

earlier.
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The figure above shows that TNO-EST’s projects over the past 20 years primarily focused on
deterministic analysis approaches. Deterministic approaches work well for low-mix high-
volume (LMHV) manufacturing systems, involving production of large batches of few
different products.

High-mix low-volume (HMLV) systems, involving production of small batches of many
different products, have a greater variety of behaviour. For such systems, stochastic analysis
techniques may be valuable. To address this, we recommend performing a study project to
assess the added value of stochastic analysis techniques for analysing HMLV manufacturing
systems, e.g. the ones of TNO-ESI’s industrial partners’ customers. Special attention should
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be given to the variability of resources and the workload: the study project should (1) assess
the influence of stochastic behaviour in the different manufacturing systems and (2)
evaluate the added value of existing stochastic analysis techniques compared to
deterministic analysis techniques.
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1 Introduction

The systems being developed by the high-tech industry are not standalone systems: they
need to be combined into a larger whole, a system of systems, to provide value to their
owners. In this report, we will investigate the performance of one important type of these
larger wholes: i.e. manufacturing systems (of systems) or cyber-physical production systems
(CPPSs). Manufacturing systems are production facilities that consist of multiple (high-tech)
machines that cooperatively manufacture products according to a production process.

The focus of the report will be on the effective usage of the resources of a production
system, i.e. a usage that optimises the production system’s performance objectives. To
optimise the effective resource usage of a (manufacturing) system of systems, it is not
sufficient to optimise the contained (high-tech) systems individually: one needs an integral
look at the entire manufacturing system of system [1]. In this report, we will consider the
aspects that play a role in the effective usage of a manufacturing system’s resources to fulfil
its customers’ orders and ways to evaluate these aspects.

1.1 Scope

Manufacturing is a process using resources to perform operations on materials to produce
products [2]. Manufacturing systems involve humans, machinery, and equipment connected
via flows of material and information [3]. For the optimal functioning of a manufacturing
system, many decisions must be made. The 4 Ms of manufacturing [4] can be used to
classify decision aspects (see Table 1.1):

1. Manpower: The labour of people

2. Method: Production processes

3. Machine: Tools and equipment

4. Material: Raw material, components and consumables

Table 1.1: 4 Ms of manufacturing [5]

M characteristic | Description Performance aspects

1. Manpower Labour of people involved in Efficiency of the operators
delivering products and services for
production

2. Machine Equipment, facilities, tools employed | Usage and maintenance scheduling,
for production avoiding unnecessary downtime

3. Method Process, shipping, schedule, Products flow efficiently through the
procedure production line, finished products quickly

exit the line

4. Material Raw materials, consumables, Parts and materials close to workstation,
components used to satisfy while not overcrowding the operator
production

Later, two additional Ms were introduced [6]:
5. Milieu: Environmental events
6. Measurement: Inspection and other measurements
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According to Maier [7], manufacturing systems are directed systems of systems, i.e. they are
centrally managed to fulfil a certain purpose. This central management must make many
decisions with respect to the optimal usage of a manufacturing system’s resources. The
types of decisions to be made about the 6 Ms have different timelines and different scopes.
For the timelines, Rouwenhorst et al. [8] distinguish strategic, tactical and operational
decisions:

) Strategic decisions have a long-term impact and concern high investments. The two
main groups are the decisions concerning the design of the process flow and the
decisions concerning the selection of the machine types.

) Tactical decisions include the dimensions of resources (storage system sizes but also
number of employees) and the determination of a layout.

) Atthe gperationallevel, processes must be carried out within the constraints set by the
strategic and tactical decisions made at the higher levels. The main decisions at this level
concern assignment and control problems of people and equipment.

This report sketches a landscape with respect to the analysis of a manufacturing system’s
effectiveness. The report’s focus is on the effective usage of a manufacturing system’s
resources, i.e. the original 4 Ms of manufacturing: manpower, method, machine and
material. Musselman [1] identifies two main steps in manufacturing system resource
scheduling: allocation and sequencing.
) Allocation® is the selection which resources to use to fulfil a piece of manufacturing work.
) Sequencing determines the order in which work is being fulfilled by the corresponding
resources.

Musselman [1] states that allocation is dominant in make-to-order/make-to-engineer
manufacturing processes, in which customised products are manufactured upon receiving a
customer order. Sequencing is dominant in make-to-stock manufacturing processes with a
high product mix. In this report, we will generally use the term allocation for the
combination of allocation and sequencing.

Effectiveness is a measurement which is different per manufacturing system. It typically
involves a combination of multiple aspects. Examples of such aspects include costs, timing,
machine and personnel utilisation, product quality, sustainability and robustness against
uncertainty/exceptions.

As the report’s focus is on the effective usage of a manufacturing system’s resources, the
report hence mainly considers operational decision making, but it also touches strategic and
tactical decision making.

1.2 Outline

This report sketches a landscape for multi-objective analysis of manufacturing systems and
identifies which parts of the landscape have (not) been addressed by TNO-EST’s projects. The
multi-objective manufacturing system analysis landscape is presented in Chapter 2.
Chapters 3 and 4 investigate the state of the art of two of the landscape’s main elements,
KPIs and analysis methods. Chapter 5 looks at the coverage of TNO-ESI’s (past and current)
projects of the landscape to identify opportunities to explore new fields of knowledge, which
help the high-tech ecosystem optimise their systems in a system-of-systems context.

7 Musselman [1] uses the term synchronisation instead of allocation.
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2

Manufacturing system
analysis landscape

In this chapter, we will sketch a landscape for the multi-objective analysis of manufacturing

systems. In the literature, one can find several classifications of manufacturing systems. We

use the classifications of Dietrich [2] and Ghasemi et al. [9] to identify relevant elements for

our landscape. Ghasemi et al. [9] consider four categories with respect to simulation

optimisation applied to production systems (SOAPS):

) Problem and modelling: Production environment (e.g. flow shop, job shop), optimisation
objective(s), sources of uncertainty, modelling strategies.

) Solving methodology: Optimiser scope (i.e. local or global), optimiser type, simulator type,
integration method.

) Real applications: Case studies.

) Experimenting: Validation strategy.

Dietrich [2] proposes a detailed taxonomy for discrete manufacturing systems. The three

main categories of her taxonomy are the following.

) Production process involves the operations needed to produce a product. This includes
operations, material flow, information flow, and contention for resources.

) System management involves the way a manufacturing system is managed. Dietrich
identifies requirements generation, WIP control policy, and distribution of information
and control as the main aspects of this category.

) System behaviour involves the behaviour exhibited by an operational manufacturing
system. Important elements are operational data and material handling data.

Both Ghasemi et al. [9] and Dietrich [2] observe that the operations of a manufacturing
system can be both deterministic and stochastic and that they depend on each other, e.q.
sequence-dependent setup times. What they both do not explicitly distinguish is controllable
and uncontrollable behaviour. Some behaviour cannot be controlled. Examples are the
arrival of customer orders, the products being ordered, machine breakdowns and variation
of operation durations.

In Chapter 1, we discussed the 4 Ms of manufacturing: Manpower, Method, Machine, and
Material. The 4 Ms capture the resources of a manufacturing systems and some restrictions
on how they may be used. They correspond to the problem and modelling category of
Ghasemi et al. [9] and the production process and system management categories of
Dietrich [2]. The 4 Ms are, however, not sufficient for the analysis of a manufacturing system,
especially not if the analysis involves the influence of different allocations of work to a
manufacturing system. One must also consider the workload of a manufacturing system. In
addition, the landscape should include aspects concerning the analysis itself. These
corresponds to the solving methodology of Ghasemi et al.’s classification [9].
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Multi-Objective Analysis of Manufacturing Systems

Manufacturing system Workload
Operators Material Handling
Machines Material w P ” System Customer orders
(“Manpower”) (“Method”)
Analysis question Analysis
AIIocatl.on KPls/Metrics Analys.ls ; )
constraints (“Optimization constraints Analysis model Analysis
(“Optimisation cpriteria") (“Analysis type techniques
space”) budgets”)

Figure 2.1 Landscape for multi-objective analysis of manufacturing systems

Figure 2.1 shows a landscape for multi-objective analysis of manufacturing systems. The
landscape consists of four interdependent elements:
1. The Manufacturing system element corresponds to the 4 Ms of manufacturing. We

y TNO Public

distinguish four aspects.

a. The Machines aspect represents the equipment that transforms materials to create
products.

b. The Material aspect represents all materials being handled in the systems. These
include raw materials, partial products and final products as well as consumables.

c. The Operators aspect represent the people in a manufacturing system and the
services they provide. These services include operating a machine, servicing a machine
and transporting materials.

d. The Material Handling System aspect represents the transportation in a
manufacturing system. Transportation may be fully automated transportation using
e.g. conveyor belts and AGVs, or it involves operators moving materials between
different machines.

. The Workload element represents that work that needs to be performed by a

manufacturing system. The work involves the fulfilment of customers ordering products.
These customer orders need to be translated into manufacturing recipes that can be
executed by the manufacturing system’s equipment. Depending on the scope of the
analysis, the workload may involve the orders of a short or long period of time.

. The Analysis question element represents the question that a decision maker wants to

answer for a given manufacturing system and a corresponding workload. There are

many different questions. Examples include which manufacturing recipe to use, which

resources to use to execute a recipe, and the order in which a recipe’s operations are
executed execution. We have identified three aspects:

a. The Variation points aspect represents the alternatives that the decision maker needs
to select from. These variation points may involve variations of the 4 Ms, e.g.
variations of the layout of the production system or different workloads. The variation
points may also involve the way the 4 Ms are used in the production process, e.g. the
allowed allocations of work to the resources. The number of alternatives is typically
very large, too large to be analysed individually. E.g. the number of different operation
sequences grows exponentially with the number of operations.
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2.1

2.1.1

b. The KPIs/Metrics aspect represents the criteria that a decision maker uses to select
one of the available alternatives. In case a decision maker has multiple decision
criteria, we have a multi-objective analysis problem at hand.

c. The Constraints aspect involves the constraints a decision maker defines to limit the
number of allowed alternatives. These limits may also involve the resources used for
finding an alternative, e.g. the time available for finding a feasible solution.

4. The Analysis element represents the techniques and tools used to answer an analysis
question for a manufacturing system and a corresponding workload. We distinguish two
aspects.

a. The Analysis model type aspect represents the model that is used to address an
analysis question. This includes the formalism in which the analysis question is
translated.

b. The Analysis techniques aspect represents the techniques that are applied to an
analysis model to answer an analysis question.

In Sections 2.1, 2.2, 2.3, and 2.4, the four main elements are discussed in more detail.
Section 2.1 describes the manufacturing system element, Section 2.2 the workload element,
Section 2.3 the analysis question element, and Section 2.4 the analysis element.

Manufacturing system element

The landscape’s manufacturing system element of Figure 2.1 covers the resources of a
manufacturing system. A manufacturing system can be seen as a collection of production
devices, transport devices, human operators and materials. These (interdependent) aspects
correspond to the original 4 Ms of manufacturing: Manpower, Method, Machine, and
Material. The aspects are described in Sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4.

Machines aspect

The production devices, corresponding to the Machine M, are represented by the Machines
aspect. These devices perform operations on materials. Dietrich [2] distinguishes seven types
of operations according to the type of material being handled: bulk, kitting, fabrication,
assembly, by-product, distribution and consumption. One production device may be able to
perform multiple operations; Van De Ginste et al. [10] refer to this variability as process
flexibility.

The focus of this report is multi-objective analysis of manufacturing systems. To facilitate
this, it is not sufficient to know what operations machines can perform. One also needs to
know the “costs” of these operations with respect to the optimisation criteria (of the
KPIs/Metrics aspect of the Analysis question element). These costs can be of various types,
as will be explained in Section 2.3.2.

There are various types of manufacturing systems depending on the amount/volume and
the variation/mix of the work they need to fulfil. Cost-effective variants with totally different
characteristics are Low-Mix High-Volume (LMHV) and High-Mix Low-Volume (HMLV)
manufacturing systems (also see Section 2.2). LMHV systems have a highly repetitive
workload: long batches of the same product. HMLV systems, on the other hand, have a
highly varying workload, which involves changing between different operations or different
materials being processed. Especially for such manufacturing system, the Machines aspect
should also include the costs of setting up the machines for the next operation to be
performed. For timing-related optimisation criteria, these costs are referred to as sequence-
dependent setup times [11].
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2.1.2

2.1.3

Manufacturing systems come with a lot of variability and uncertainty. Part of this variability
and uncertainty originates from the machines and should be part of the description of a
manufacturing system’s machines. There is typically machine variability with respect to the
costs of a performed operation. The most studied stochastic manufacturing system
behaviour is variation of machine processing times [9]. Moreover, there may be variability in
the quality of the performed operations and the availability of a machine (for a certain
operation) [12].

Material aspect

The material aspect represents all the materials handled in a manufacturing system.
Manufacturing systems are facilities that transform raw materials into final products. These
are, together the partial products that are created during the manufacturing process, the
most important materials.

However, there are other materials that play a role in a manufacturing system.
Consumables are materials that are not normally included in bills of material or are not
individually accounted for in specific production requests [13]. One can think of the glue in a
gluing process and the ink in the printing process, but also the lubricants of a machine’s
motor.

A third type of material involves waste materials. Operations like cutting and drilling come
with a loss of material, which may play an important role in the manufacturing process.
Waste materials certainly play a role with respect to cost and sustainability of operations.

Not all materials in a manufacturing system can be transported easily; some materials have
dimensions, shapes or weights to make them difficult to transport [14]. These so-called non-
conveyable materials can be made conveyable by storing them in or on top of a special
carrier. One can think of bins in which small objects can be placed or pallet on top of which
large objects can be placed. These reusable carriers are another type of materials, and these
may involve a complex logistic flow.

Operators aspect

A third type of resource in a manufacturing system involves its labour force. To obtain a
smoothly operating manufacturing system, human operators play multiple roles. This is not
expected to change with the upcoming development in AI [15] [16]. In normal operation,
operators may be involved in performing operation at/by a machine and they may transport
materials from one location to another. Operators may also play an important role in
service, e.g. the replenishment of consumables, and maintenance, e.g. the cleaning and
repair of machines.

Like machines, different operators may have different capabilities. Advanced operations
may require more experienced operators whereas simple operations can be performed by all
operators. This is especially relevant when a manufacturing system has a flexible workforce.
There are manufacturing systems whose workload varies periodically. E.g. manufacturing
systems producing for the end customer often have a peak workload around the Christmas
holidays. To scale up production, temporary staff is employed, and these labourers are
typically less skilled than the permanent staff.
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The behaviour of human operators varies more than machine behaviour, which can be
highly predictable [17]. This means that there may be a higher need for stochastic analysis
for manufacturing systems with a lower degree of automation.

2.1.4 Material Handling System aspect

Manufacturing a product involves multiple operations that need to be executed in a certain
sequence (see Section 2.2). As most machines can perform only one type of operation,
transport of materials (see Section 2.1.2) between production machines (see Section 2.1.1) is
required. This is handled by the material handling system. In their glossary of terms [18],
SRSI define material handling as “the movement, storage, control, and protection of
materials and products throughout the process of their manufacturing, distributing,
consumption and disposal.” The transport between machines can be performed by mobile
devices like AGVs and by stationary devices like conveyor belts. Human operators (see
Section 2.1.3) may also perform transportation tasks, typically using reach trucks, pallet
trucks or forklifts.

The material handling system defines the (allowed and/or possible) transport paths between
the machines. Note that the allowed paths are partially determined by the stationary
transport devices. The rest is determined by the type of process that is to be supported, i.e.
the Method M of the 4 Ms of manufacturing [5]. Flexible processes allow more paths than
fixed processes; Van De Ginste et al. [10] refer to allowing multiple routes as routing
flexibility.

Flow shops and job shops are common types of manufacturing systems. Both involve jobs
that involve strict sequences of operations. In flow shops, these sequences are identical for
all jobs and the jobs visit the same machines in the same order [19]. Job shops have more
flexibility than flow shops: the sequences of operations may differ per job as well as the
allocation of these operations to machines [20]. Note that job shops require a lot of routing
flexibility, whereas flow shops require little routing flexibility.

Like for the machines (see Section 2.1.1), there is uncertainty and variability in the material
handling system, and this may have a significant influence on the effectiveness of a
manufacturing system. There is variability with respect to the costs of transport, e.g. the
duration. In addition, transport equipment may be unavailable because of failures and
operators may be unavailable because of (unplanned) breaks.

2.2 Workload element

The landscape’s workload element refers to the customer orders that a manufacturing
system must fulfil. These orders can be characterised along two dimensions: mix and
volume. Mix refers to the number of different products that need to be produced, volume to
the number of identical products. There are two extremes with restrict to this
characterisation. Low-Mix High-Volume (LMHV) refers to large quantities of identical
products and High-Mix Low-Volume (HMLV) refers to small quantities of a high variety of
products [21]. The former is referred to as mass production, whereas the latter as mass
customisation.

There is a clear relation between the process supported by a manufacturing system and its

workload. The Hayes-Wheelwright matrix (see ) indicates that a higher mix of
products require a more flexible manufacturing process and that a very high volume
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requires little flexibility. Hayes and Wheelwright [22] argue that combinations far away from
the matrix’ diagonal are rare.

Table 2.1: Hayes-Wheelwright matrix [22]

Product structure | Low Volume Low Volume High Volume Very High Volume

Unique Multiple Standardised Commodity

Process structure products products products products

Jumbled Flow Job shop .

) ) More process flexibility than

Disconnected Line B required, so higher cost

Flow

Connected Line Flow Less process flexibility than Assembly line

Continuous Flow required, so higher cost Continuous

Besides mix and volume, customer orders may have due dates, i.e. the time at which they
need to be fulfilled. Customer orders with early due dates, i.e. rush orders, can be very
disruptive to a manufacturing process. Allowing rush orders requires a flexible
manufacturing system and may requires continuous (re-)allocation of work.

There is a lot of uncertainty with respect to customer orders. It is unknown when they arrive,
and this is especially important for rush orders. When making more tactical decisions, the
exact customer order profile is typically unknown, and one needs to predict the workload.
Such predictions can be based on historical customer order data.

To allocate customer orders to manufacturing system resources (see Section 2.1), one needs
to translate the customer orders into (sequences of) operations that can be performed by
manufacturing machines. As handling many small customer orders may involve a large
overhead, customer orders can be combined. Similar customer orders can be combined into
a larger order using batching. Another approach is nesting or ganging, which involves the
fulfilment of multiple orders using the same piece of (raw) material, i.e. two A4 images being
printed on one A3 paper sheet paper [23] or multiple parts being cut from the same sheet of
metal.

Analysis question element

The manufacturing system and workload elements (see Sections 2.1 and 2.2) describe a
manufacturing system and its workload. These are the most important inputs for an
analysis. However, there can be very many ways in which a workload can be allocated to the
resources of a manufacturing system. The analysis question element addresses this variety.
We consider three aspects: allocation constraints, KPIs/metrics, and analysis constraints.
These are described in Sections 2.3.1, 2.3.2, and 2.3.3, respectively.

Allocation constraints aspect

The resources of a manufacturing system have certain capabilities, which restricts the way
in which they can be used. For instance, an operation should only be allocated to machine
that can perform this operation. As a manufacturing system analyst, you may want to
restrict the allowed allocations beyond the capabilities of the manufacturing system’s
resources. Such constraints are specified in the allocation constraints aspect.
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The number of constraints depends on the type of analysis. In case one wants to analyse
one concrete scenario, the allocation must be given completely including the order of the
allocated work of every resource. By leaving allocation freedom, the analysis involves an
optimisation/exploration. In that case, the allocation constraints aspect describes an
optimisation/configuration space. The available allocation freedom may involve allowing
multiple resources to be used for an operation, either manufacturing or transport, or the
resources are specified, but the order in which the operations are to be allocated is open.

2.3.2 KPIs/Metrics aspect

An analysis is meant to assess the quality of a concrete allocation or to finds an allocation
with a certain quality. The quality of an allocation can be defined in terms of KPIs and
metrics. These quantify performance aspects of an allocation. Common manufacturing
performance criteria include latency, throughput, flow times, costs, and OEE. However, an
analyst may also define proprietary KPIs that need to be optimised.

Per KPI, one can either specify that it should be optimised, i.e. minimised or maximised, or
one can specify a budget, i.e. a minimum and/or a maximum value.

Chapter 3 addresses key performance indicators in more detail.

2.3.3 Analysis constraints aspect

The analysis constraints aspect involves constraints that do not involve the allocation. It
involves the constraints of the analysis itself. Here one should think of the resource usage of
the analysis itself, i.e. the budgets available for performing the analysis. These resources
include computational resource and time. In an online setting, there is a limited time to find
an (optimal) allocation. For instance, a production printer’s scheduler must decide when to
release the next sheet of paper within hundreds of milliseconds. Finding a high-quality
allocation in so little time involves a large challenge.

Analysis constraints also include the accuracy and reliability of the analysis results. In case
of stochastic manufacturing system behaviour, the actual values of KPIs may deviate from
their predicted values. By considering the behaviour’s stochastics, one can calculate the
expected deviation from the actual KPIs.

A final analysis constraint involves the number of solutions to be found. In case of multi-
objective analysis or stochastic system behaviour, there is value in providing multiple
analysis results. In case of multiple KPIs, multiple solutions allow decision makers with the
possibility to trade off different objective functions; in case of stochastic behaviour, expected
system performance can be traded off against performance stability/uncertainty.

2.4 Analysis element

The analysis element represents addressing an analysis question (see Section 2.3) for a
given manufacturing system (see Section 2.1) and a given workload (see Section 2.2). Within
the analysis element, we distinguish model types (see Section 2.4.1) and analysis techniques
(see Section 2.4.2).

y TNO Public 18/53



) TNO Public ) TNO 2024 P11832

2.4.1

2.4.2

2.5

Analysis model type aspect

The analysis model type aspect involves how an analysis question regarding the allocation
of a workload to a manufacturing system is captured in a model. Essential in such an
allocation are the progress of the production plan and the availability of resources over time;
these aspects need to be captured by the analysis model. There are many modelling
formalisms that can capture this aspect.

We distinguish two main classes of model: declarative models and operational models.

) Declarative models describe a system in terms of mathematical formulas/constraints.
These describe the boundaries of the behaviour of a manufacturing system. Some types
of declarative models can be used to explore a configuration space to find a high-quality
system configuration.

) Operational models describe a system in terms of its executable behaviour. For
manufacturing systems, operational models are often specified as a kind of state
transition model, e.g. state machines, Petri nets, activity diagrams. Operational models
can only be used to evaluate individual scenarios, e.g. the execution of a specific
allocation of work to a manufacturing system configuration.

Another distinction of models is between deterministic and stochastic models. In
deterministic models, all system behaviour is known upfront. A deterministic model does not
have any uncertainties: the model’s behaviour is determined purely by its inputs. In
stochastic models, some behaviour is uncertain. This uncertain behaviour is subject to a
probability distribution, which may be known or unknown.

More details about analysis models can be found in Chapter 4, which addresses analysis
methods for manufacturing system analysis.

Analysis method aspect

The analysis method aspect represents analysis techniques and how they are applied to an

analysis model (see Section 2.4.1) to answer an analysis question. In this report, we

distinguish two main categories of analysis methods.

) Prediction methods predict the performance of a manufacturing system for one specific
scenario.

) Optimisation methods consider multiple scenarios: they explore a configuration space to
search for a configuration with an optimum performance.

Although prediction methods evaluate only one scenario, they can be used for optimisation
by combining them with an optimisation method, which explores the configuration space.
The combination of simulation and optimisation is quite commony; it is called simulation
optimisation [9]. In this setting, an optimisation method selects promising candidate
solutions, which are evaluated using simulation. The results of the simulation are used by
the optimisation method to continue the exploration.

Chapter 4 addresses analysis methods in more detail.

Summary

In this chapter, we have introduced a landscape that captures the most important aspects
of multi-objective analysis of manufacturing systems. Some of the landscape’s elements are
discussed in more detail in subsequent chapters. Chapter 3 addresses KPIs commonly used
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in production systems. Chapter 4 discusses techniques for multi-objective analysis and
optimisation of manufacturing systems including the types of models used. In Chapter 5, we
discuss which parts of the landscape has been covered by TNO-ESI’s (past and current)

projects.
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3

3.1

3.2

Key Performance
Indicators

The focus of this report is on the effective usage of a manufacturing system’s resources. This
effectiveness typically involves a combination of multiple aspects, which may be different
for each manufacturing system. In this chapter, we give an overview of KPIs (Key
Performance Indicators) for manufacturing systems. We will distinguish two types of KPIs:
simple KPIs and composite KPIs. Simple KPIs involve performance measures of a single
aspect, where composite KPIs are performance measurements for combinations of multiple
aspects. Simple KPIs are discussed in Section 3.1, composite KPIs in Section 3.2. Section 3.3
discusses standards which define KPIs in the manufacturing domain; these involve both
simple and composite KPIs. Section 3.4 summarises the findings regarding KPIs.

Simple KPIs

Simple KPIs are measurements of individual performance aspects. There are many such
aspects. In their well-known book Factory Physics, Hopp and Spearman [24] consider several
KPIs to evaluate the performance of manufacturing systems. For activity-based costing
(ABC), they distinguish several costs: labour costs, material costs, overhead costs.

For factory dynamics, Hopp and Spearman [24] consider several KPIs. Throughput (rate) is
the average output (of sufficient quality) of a production process. Capacity is the upper
bound of a system’s throughput. Work in process (WIP) is the inventory of a system between
the start and end of a production process. The cycle time of a product is the time it spends
between the start and end of a production process, i.e. the time is part of the WIP. Lead time
equals the amount of time reserved for production. Fill rate is defined as the fraction of
orders that is fulfilled from stock. The utilisation of a piece of equipment is the fraction of the
time that it is not idle.

Musselman [1] discusses a production system which wants to optimise the number of late
orders, average order lateness, machine utilisation, total setup time, and work in process
(WIP). Pitombeira Neto and Vila Gongalves Filho [25] present a cellular manufacturing
system design to optimise three KPIs: work-in-progress (WIP), the number of intercell moves
and the capital investment (CAPEX).

Composite KPIs

Section 3.1 gave an overview of common simple KPIs. To assess the performance of a
manufacturing system, a single KPIs is typically not sufficient. To address multiple aspects,
one can consider multiple simple KPIs simultaneously. Alternatively, one can consider KPIs
that combine multiple aspects in one formula. The KPIs discussed in this section combine
multiple performance aspects to provide an aggregated performance evaluation.

Hopp and Spearman [24] consider multiple composite KPIs. For factory dynamics, they
define cycle time as the ratio between a system’s throughput and its average inventory.
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They define service level as the probability that the cycle time does not exceed the lead
time. Herps et al. [26] define the revenue of a manufacturing system as the difference of the
revenue of finished products and the cost of buffered products.

Sections 3.2.1 and 3.2.2 discuss variants of common composite KPIs: Overall Equipment
Effectiveness (OEE) and Overall Factory Effectiveness (OFE).

Overall Equipment Effectiveness

A well-known composite KPI is Overall Equipment Effectiveness (OEE) [12]. OEE is defined as

a relative measure of the performance of a manufacturing system. It relates the actual

performance of a system to its (theoretical) maximum performance. OEE distinguishes three

types of performance loss:

) Speed loss. Performance loss due to idling and minor stops and running at a reduced
speed.

) Availability loss. Performance loss due to (unplanned) downtime and setup/adjustment
time.

) Quality loss. Performance loss due to production of production of defective products and
rework of products.

The OEE of a system is computed as the product of the availability rate AR, the performance
efficiency PE, and the quality rate QR: OEE = OR X PE x QR [12]. These ratios can be

computed as follows:

) AR = %, where OT represents the system’s planned operation time, DT the
system’s delay time, and ST the system’s setup time.

) PE= PAOXTCT, where OT represents the system’s planned operation time, PA the produced
number of produced products, and CT the ideal cycle time per product.

) QR= PAP;DA, where PA represents the produced number of products and DA the number
of defectives products produced.

Muchiri and Pintelon [26] discuss two adaptations of OEE: 7otal Equipment Effectiveness
Production (TEEP) includes planned downtime in the planned time horizon and Production
Equipment Effectiveness (PEE) weights for the three loss categories. They also discuss
Overall Asset Effectiveness (OAE) and Overall Plant Effectiveness (OPE), which include
business-related losses.

As OEE and most of its derivatives (including those discussed in Section 3.2.2) are a relative
measure, one needs to define a reference to which the performance of a system can be
compared. This is an additional challenge is measuring a system’s performance. Roser [27]
warns that OEE values can be fudged: by changing the reference performance, one can
obtain a high OEE. He mentions that an OEE of 40-60 percent is normal and lower values are
not uncommon either. Williamson also warns about the abuse of OEE [28]; he argues that
OEE should not be used as a benchmark for equipment performance, but only to compare a
piece of equipment’s performance over time.

Overall Factory Effectiveness

OEE is originally intended for the performance of a single machine running long batches of
the same product [29]. Several authors observe the limitations of OEE to measure the
effectiveness of a production system and discuss Overall Factory Effectiveness (OFE) [30]
[31]. Many factory-effectiveness KPIs have been defined; Muchiri and Pintelon [26] give an
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overview of effectiveness metrics for production facilities. In this section, we will discuss
some of these KPIs. This section is by no means exhaustive; many OEE-like KPIs have been
defined by researchers from academia. It is highly likely that most of these KPIs are not used
in industrial practice.

Scott and Pisa [32] introduce Overall Factory Effectiveness (OFE) to address a holistic
approach to semiconductor fab optimisation. Oechsner et al. [33] introduce the term Overall
Fab Effectiveness (OFE). Both Overall Factory Effectiveness and Overall Fab Effectiveness are
broader than OEE in two ways. On the one hand, both OFEs consider a full fab instead of an
individual machine. On the other hand, the OFEs include additional performance aspects,
e.g. a semiconductor fab’s total cost of ownership and readiness for technological
developments. Neither Scott and Pisa [32] nor Oechsner et al. [33] provide formulas for
computation of Overall Factory/Fab Effectiveness.

Huang et al. [30] discuss Overall Throughput Effectiveness (OTE) to address activities
performed by multiple machines. Like OEE, OTE equals the ratio of a factory’s actual
performance and its attainable performance. Huang et al. [30] and Ales et al. [34] explain
how a plant’s OTE can be computed from its machines’ OEE; they consider series and
parallel composition. In a series subsystem, OTE is dominated by the least effective
machine; in a parallel subsystem, the effectiveness of the parallel machine is summed.
Huang et al. [30] use simulation to run experiments to optimise an assembly line’s
performance. Muthiah et al. [31] extend the result of Huang et al. with two additional
patterns: assembly and expansion (i.e. disassembly). The results of Muthiah et al. do not
suffice to compute any factory’s OTE: not all (possible) topologies can be expressed with
these four considered patterns.

Nachiappan and Anantharaman [35] introduce Overall Line Effectiveness (OLE) and Braglia
et al. [36] introduce Overall Equjpment Effectiveness of a Manufacturing Line (OEEML). Both
consider the effectiveness of manufacturing systems that are organised as production lines.
Both recognise that not all machines in a production line are equally important: a bottleneck
machine determines a line’s effectiveness. TOEE and OEEML assesses the performance of a
production line by relating the ideal performance of a bottleneck machine and the number
of good products produced by the last machine in the line. Braglia et al. [36] indicate that
OEEML can be misleading if the machines in a production line are decoupled by large buffers
making the machine independent of each other.

Lanza et al. [37] introduce Global Production Effectiveness (GPE) of globally network
manufacturing systems. GPE is a combination of manufacturing effectiveness, sourcing
effectiveness, transportation effectiveness, stock effectiveness and personnel effectiveness.
The manufacturing effectiveness is computed from the OEE of its constituting machine
using series, parallel, joining and expansion patterns. Depending on the context, the
manufacturing effectiveness uses OEE, TEEP or TOEE as a basis. The sourcing effectiveness
measures the quality and timeliness of supplier deliveries. The stock effectiveness measures
the damages, service level of logistics and availability of storage locations. Personnel
effectiveness measures personnel’s availability and a productivity index. Lanza et al. [37]
propose formulas to compete each of the constituting aspects of GPE.

Jauregui Becker et al. [38] consider high-mix low-volume manufacturing environments. The
introduce the Machining Equipment Effectiveness (MEE). Like OEE, MEE is the product of an
availability rate, a performance rate and a quality rate. To deal with multiple products being
produced, MEE’s performance rate divides a machine’s work into periods in which only one
product in produced. The performance loss is computed per period and aggregated into an
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overall performance rate. MEE’s quality rate relates the cost involved in repairing defective
products to the economic value. As MEE’s quality rate can be negative, Jauregui Becker et al.
propose to use it as a signalling function, not as an absolute measurement.

Li et al. [39] also address multi-product production systems. They propose Multjproduct
Production System Effectiveness (MPSE). MPSE is computed by looking at the different
products individually. MPSE is a combination of the effectiveness of the production of
individual products. Both MEE and MPSE do not address situations in which systems are
working on different products simultaneously.

Foit et al. [40] consider two related KPIs. Overall Factory Effectiveness (OFE) assesses the
performance of a factory. It is defined as the ratio between the number of products
produced and the (theoretically) maximum number of products produced. Overall Transport
Effectiveness (OTE) KPI assesses the effectiveness of the (AGV-based) transport within a
manufacturing system. OTE is calculated relative to the production capacity of a
manufacturing system: it is the ratio between the number of transports performed and the
number of transports needed to achieve the (theoretically) maximum number of products
produced.

Van De Ginste et al. [41] propose OEEr,, flexibility-induced equipment effectiveness, which
addresses equipment flexibility. This is especially relevant for HMLV manufacturing systems,
which have a quick switch between different products. OEEre is a weighted combination of
three aspects: mobility, uniformity and range. Mobility and uniformity provide a measure for
machine effectiveness and range for the capability of a system to adapt.

Standards
NEN-ISO 22400-2:2014

NEN-ISO 22400-2:2014 [42] defines KPIs for manufacturing operations management (MOM).
MOM addresses workflow/recipe control to produce desired products as well as measuring
and optimising the process. MOM distinguishes four types of operations:

) Production operations,

) Maintenance operations,

) Quality Operations, and

) Inventory operation.

NEN-ISO 22400-2:2014 defines 34 KPIs for MOM, which are built up hierarchically [43]. An
overview of all NEN-ISO 22400-2:2014’s KPIs can be found in Table 3.1. The overview
contains both simple KPIs and composite KPIs. Many of the KPIs in Table 3.1 are relative
KPIs: they relate an actual value to a planned or ideal value, or they relate effort spent
effectively to total effort spent. Many of these KPIs in Table 3.1 refer to work units. These can
be individual machines, production cells, production lines, areas or sites.

Table 3.1 NEN-ISO 22400-2:2014 KPIs [42]

Description

Ratio of the actual work time and the actual attendance time of an

Worker efficiency employee

Ratio of the complete actual busy time of all work units for an order and the

Alloion il actual order execution time of this order.
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KPI

Throughput rate

Allocation efficiency

Utilisation efficiency

Overall equipment
effectiveness index

Net equipment
effectiveness index

Availability

Effectiveness

Quality ratio

Setup ratio
Technical efficiency
Production process

ratio

Actual to planned
scrap ratio

First pass yield
Scrap ratio

Rework ratio

Fall off ratio

Machine capability
index

Critical machine
capability index

Process capability
index

Critical process
capability index

Comprehensive
energy consumption
Inventory turns
Finished good ratio

Integrated goods ratio

‘ Description

Ratio of the produced quantity of an order and the actual execution time of
this order.

Ratio of the actual busy time of a work unit and the unit’s planned busy
time.

Ratio of a unit’s actual production time and its busy time.

Combination of a work unit’s availability, effectiveness, and quality ratio.
Combination of a work unit’s ratio between processing time and planned
busy time, effectiveness, and quality ratio.

Ratio of a work unit’s actual production time and its planned busy time.

Ratio of the ideal production time of a work unit and the actual production
time.

Ratio of the number of good-quality products produced by a work unit and
the total number of products produced by it.

Ratio of the actual setup time of a machine and its processing time.

Ratio of the actual production time of a work unit and the sum of the work
unit’s actual production time and the actual delay time.

Ratio between actual production time of all work units and the throughput
time of a production order.

Ratio of the actual scrap quantity and the planned scrap quantity.

Percentage of produced products that do not require any rework.
Ratio of the scrap quantity and the total production quantity.
Ratio of the rework quantity and the total production quantity.

Percentage of products that start but do not finish a sequence of production
steps.

Ratio of the dispersion of the specification limits of a machine characteristic
and 6 times the standard deviation of a series of measurements of this
characteristic.

Ratio of the dispersion of the specification limits of a machine characteristic
with respect to its average and 3 times the standard deviation of a series of
measurements of this characteristic.

Ratio between the dispersion of the specification limits of a process
characteristic and 6 times the standard deviation of a series of
measurements of this characteristic.

Ratio of the dispersion of the specification limits of a process characteristic
with respect to its average of averages and 3 times the standard deviation
of a series of measurements of this characteristic.

Ratio of all energy consumed in a production cycle and the production
quantity.

Ratio between throughput and the average inventory level.

Ratio of good quality produced and consumed material quantity.

Ratio of integrated good quantity and consumed material quantity.
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KPI
Production loss ratio

Storage and
transportation loss
ratio

Other loss ratio

Equipment load ratio

Mean operating time
between failure

Mean time to failure
Mean time to repair

Corrective
maintenance ratio

‘ Description
Ratio of material quantity lost during production and material quantity
consumed.

Ratio of material quantity lost during transport and storage and material
quantity consumed.

Ratio of material quantity lost not during production, transport and storage
and material quantity consumed.

Ratio of produced quantity and equipment production capacity.
Average of time between failure measurements of a work unit.

Average of time until failure measurements of a work unit.
Average of time between failure repair measurements of a work unit.

Ratio between the corrective maintenance time and the total maintenance
time.

The overview in Table 3.1 includes two overall manufacturing performance criteria: the
Overall Equipment Effectiveness (OEE) index and the Net Equipment Effectiveness (NEE)
index. Both overall performance criteria are defined as the product of three ratios: an
availability ratio, an effectiveness ratio and a quality ratio.

) The effectiveness ratio equals PIZ::Q, where PRI equals the planned run per item, PQ the

number of items produced, and APT equals the actual production time.

) The quality ratio equals %, where GQ equals the number of good-quality items produced

and PQ the total number of items produced.

) The difference between OEE and NEE concerns the availability ratio. The availability ratios

equal ;‘% for OEE and % for NEE, where PBT is the planned busy time, APT the actual

processing time and AUPT the actual unit processing time. The difference between APT
and AUPT as follows: AUPT includes setup times whereas APT does not.

Summary

In this chapter, we have given an overview of KPIs that are commonly used to evaluate the
performance of a production system. Section 3.1 gave an overview of common simple KPIs.
To assess the performance of a manufacturing system, a single KPIs is typically not
sufficient. To address multiple aspects, one can either use multiple simple KPIs or a single
composite KPL. Such KPIs are addressed in Sections 3.2. From a performance analysis point
of view, using a single composite KPI is simpler than using multiple basic KPIs. Unfortunately,
the common, OEE-based, composite KPIs are not usable under all circumstances. On the
one hand, the OEE-based KPIs are using average information, which works well for LMHV
systems, but poorly for HMLV systems. On the other hand, some of the OEE-based KPIs are
not meant for performance analysis, but only for identifying performance issues.
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4

Analysis methods

In this chapter, we present methods to analyse the performance of manufacturing systems.
These correspond to the analysis element of the landscape introduced in Chapter 2 and both
its aspects. In Chapter 2, we distinguished two categories of analysis methods: declarative
models and operation models. In Chapter 2, we also distinguished deterministic and
stochastic models. This classification is shown in Figure 4.1, which shows a grid with four
quadrants for all combinations of the model types. The figure also places the formalisms
discussed in this chapter in the grid. Note that analysis techniques may be in multiple
quadrants. The classification in Figure 4.1 shows which techniques have been applied to
which types of techniques. It is not meant to select an analysis technique, but it may help in
making such a decision.

Declarative Operational
Model Constraint
o checking Constraint \ Programming
S
V)
2 graphs
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@ . .
- Evolutionary Mathematical
L q g Discrete
o Algorithms Anytime Programming Event
algorithms Simulation
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Figure 4.1 Classification of analysis techniques

This chapter is organised along one of the axes in Figure 4.1. Section 4.1 describes
declarative analysis methods that can be/have been applied in the manufacturing domain.
Section 4.2 gives an overview of operational analysis methods, which as one can see in
Figure 4.1 only involves simulation. Section 4.3 is concerned with multi-objective analysis; it
describes methods of trading off multiple performance criteria. Section 4.4 summarises the
chapters and reflects on the findings.
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4.1 Declarative analysis methods

This section considers declarative analysis methods that have been or could be applied in
the manufacturing domain. As explained in Chapter 2, declarative methods use systems
that are specified in terms of mathematical formulas/constraints.

4.1.1 Mathematical programming

Mathematical programming, or mathematical optimisation, involves a collection of
techniques in which an optimisation space is described in terms of mathematical formulas.
The goal of mathematical programming is finding the optimum, i.e. the point in this
optimisation spaces which minimises or maximises a specific optimisation criterion, the
objective function [44].

In its generic form, the constraints and objective functions of mathematical programming
instance involve arbitrary mathematical functions. However, there are many variants that
are more restricted. Common is the restriction to linear functions; this variant of
mathematical programming is called Integer Linear Programming (ILP) if all variables are
integer and Mixed Integer Linear Programming (MILP) if some variables are integer. MILP is
the most used mathematical programming technique for scheduling problems [45].

The formulas used in mathematical program need not be deterministic; mathematical
programming with stochastic formulas is called Stochastic Programming [46]. Stochastic
programming aims at optimizing the expected value of a stochastic objective function.
Sahinidis [47] compares several stochastic programming variants: stochastic linear
programming, stochastic integer programming, stochastic non-linear programming and
robust stochastic programming. The latter addresses a decision maker’s risk tolerance.

Nearly all mathematical programming variants are NP-hard. For instance, ILP with binary
variables is already NP-hard [48]. Hence heuristics are used to find an optimum. These
heuristics typically involve evolutionary algorithms (see Section 4.3).

There are several tools that solve ILP problems. Well-known commercial ILP solvers are IBM
ILOG CPLEX Optimization Studio [49] and Gurobi Optimizer [50] and AIMMS [51]. Free ILP
solvers include lpsolve [52] and GLPK (GNU Linear Programming Kit) [53]. AMPL (A
Mathematical Programming Language) [54] provides a unified interface to several
commercial and open-source mathematical programming tools.

Fattahi et al. [55] present multiple MILP models for flexible job shop scheduling. They can
solve small instances. To allow solving instances of a realistic size, they combine MILP with
metaheuristics (see Section 4.1.10). Their results show that hierarchical approaches which
consider allocation, i.e. the assignment of jobs to machines, and sequencing, i.e. the ordering
of allocated jobs, separately provides better solutions that integrated approaches that
combine allocation and sequencing.

Birgin et al. [56] propose an MILP solution for a generalisation of the flexible job shop, which
involves arbitrary precedence constraints. They perform computational experiments using
IBM ILOG CPLEX Optimization Studio for jobs involving assembly only, disassembly only and
disassembly followed by assembly. These patterns were inspired by common job in the
printing industry.
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4.1.4

Constraint programming

Constraint Programming (CP) is another technique commonly used for solving scheduling
and other combinatorial optimisation problems. Like mathematical programming, CP
involves specifying the optimisation space in terms of constraints. However, the constraints
used by CP are more general than those for mathematical programming and they are not
limited to numerical constraints. This makes specification of constraint programs simpler
than specifying MILP programs.

A well-known commercial constraint optimiser is IBM ILOG CP Optimizer [57]. Hexaly [58] is
a commercial constraint optimiser specialised in scheduling, routing and packing. A well-
known free constraint optimiser is OR-Tools CP-SAT Solver [59]. MiniZinc [60] provides a
unified interface to multiple constraint optimisers, including several free ones. Laborie et al.
[61] give an overview of scheduling problems that have been addressed using IBM ILOG CP
Optimizer. This including several shop scheduling applications. They also compare multiple
constraint solvers, and this comparison shows that (their) IBM ILOG CP Optimizer
outperforms other solvers.

Lunardi et al. [62] and Naderi et al. [45] compare ILP (see Section 4.1.1) and CP for
scheduling of production systems. Both have used IBM ILOG CPLEX [49] for ILP and IBM ILOG
CP Optimizer [57] for CP. Both conclude that constraint programming is more scalable than
ILP: using CP, larger problem instances can be optimised. Hexaly has been compared to
other constraint solvers; it performs very well on selected job shop scheduling problems [63]
[64].

Constraint graphs

Constraint graphs are a special kind of constraint program (see Section 4.1.2), which can be
analysed very efficiently. Constraint graphs are directed graphs of which the nodes represent
events, and the arcs represent minimum delays between the events [65]. These events can
be the start and end of an operation [66]. The delays between events can be both positive
and negative. Positive delays represent release dates, i.e. an event must occur some time
after another event, where negative delays represent due date, i.e. an event must occur at
most some time before another event.

A constraint graph with positive cycles corresponds to infeasible timing constraints. If a
constraint graph does not have positive cycles is feasible, an earliest schedule can be
computed using Bellman-Ford’s shortest path algorithm [67].

Model checking

Prediction methods (see Section 4.1) provide an estimate for the performance of a system.
Such predictions are not fully accurate: the actual performance is probably close to the
actual performance, but not identical to it. Model checking is a method to guarantee that
certain properties are satisfied. Model checking involves exhaustively exploring a system’s
state space for state that violate a desired property or satisfy an undesired property. As
model checking involves an exhaustive search, it suffers from the same scalability problems
as mathematical programming (see Section 4.1.1) and constraint programming (see Section
4.1.2).

Castillo and Smith [68] give an overview of formal modelling methodologies for
manufacturing systems using cells. They observe that many formalisms used for model
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checking are based on some notion of states and state transitions. For manufacturing
systems, they distinguish four types of desirable properties:

) Progress involves processes eventually performing an action if it can.

) Liveness involves the ability of a process to make a transition.

) Deadlock occurs when a system is not able to proceed.

) Partial deadlock involves situations in which some processes never progress.

The overview of Castillo and Smith [68] distinguish two types of formalisms: machine-based
formalisms and, language-based based formalisms. The machine-based formalisms are
based on notions of states and events. Castillo and Smith [68] consider automata theory
[69], statecharts [70], Petri nets [71], and Discrete Event Control Networks (DECN) [72]. The
language-based formalisms involve on synchronous languages, e.qg. Lustre [73] and Esterel
[74], process algebras, e.g. Communicating Sequential Processes (CSP) [75], and temporal
logic. Castillo and Smith [68] compare the different formalisms with respect to level of
abstraction, expressiveness, verification power and their applicability in a system’s lifecycle.

In the manufacturing domain, model checking has often been done using Petri nets. Moore
and Gupta [76] provide an overview of applications of Petri nets in the manufacturing
domain. They consider both qualitative and quantitative analysis. Qualitative analysis
involves non-numeric properties like reachability, liveness and freedom of deadlocks. An
example is the work of Viswanadham et al. [77], who use Petri net to design a deadlock
avoiding controller. Using quantitative analysis, Petri nets can also be used to optimise
numeric properties like latency and throughput. An example is the work of Lei et al. [78] who
use Petri nets to combine a deadlock-free controller and a makespan-minimising heuristic
for flexible manufacturing systems.

There are many model checking tools; most are academic tools, but some have commercial
support. Uppaal [79] [80] is a model checker with both academic and commercial licensing
based on timed automata [81]. mCRL2 [82] is based on the process algebra ACP, NuSMV [83]
on binary decision diagrams (BDDs) and Spin on Promela [84]. Statemate [85] is a model
checker based on statecharts [70], which has become part of IBM Engineering Systems
Design Rhapsody [86].

Probabilistic model checking calculates the likelihood of events during system execution
[87]. PRISM is a stochastic model checker [88], which can analyse several types of
probabilistic models including Markov decision diagrams (see Section 4.1.5) and probabilistic
timed automata. Uppaal’s statistical model checking extension uses techniques from the
statistical domain for model checking of timed automata of stochastic systems [89].

Markov Decision Processes

Markov Decision Processes (MDPs) are models for decision making when outcomes are
uncertain [90]. An MDP involves states, actions, probabilistic transitions and rewards:
selecting an action in a state give a reward and determines the next state based on a
probabilistic transition function. The goal of using MDPs is finding an optimal policy, i.e. a
policy that selects the (expected) best possible action for a state. In case of finite MDPs, an
optimum policy can be found in polynomial time, e.g. via dynamic programming or linear
programming [91]. This is possible because MDPs are memoryless, which means that the
transition probabilities of a state are independent of how that state was reached. This is also
called the Markov property.
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In the context of manufacturing, MDPs can be used for maintenance and repair planning,
production control and control of queues. Kallenberg [90] illustrates how MDPs can be used
to decide when to replace components, how many products to produce and how to
optimally control queues. He also provides pointers on how MDPs can be used for pre-
emptive scheduling of (independent) jobs with stochastic processing times.

Dataflow Process Networks

Dataflow Process Networks (DPNs) involve a general model of computation for distributed
(computing) systems [92]. DPNs consist of parallel processes that communicate via FIFO
queues. A process can fire if there are sufficient tokens in its input queues; after firing, it
produces token in its output queues. There are several variants of dataflow. In synchronous
dataflow (SDF) all firings of a process consume and produce the same number of tokens.
This property allows the static computation of a finite schedule that is executed repeatedly
for a network that processes an infinite stream of tokens [93]. More expressive variants like
cyclo-static dataflow (CSDF) [94] and scenario-aware dataflow (SADF) also allow design-
time analysis [95].

Design-time analysis of dataflow networks has been applied to schedule digital signal
processing workloads on a processing platform. It is unknown whether it has been/can be
applied to allocation and scheduling of manufacturing operations onto a manufacturing
system’s resources.

Petri nets

Petri nets are a formalism to describe distributed systems [71]. Petri nets are directed
bipartite graphs with two types of nodes: places and transitions. Places contain tokens;
transitions consume tokens from their input places and produce tokens in their output
places. There are many types of Petri nets. Workflow nets are used to model the workflow of
processes; these have a unique source place, i.e. a place without incoming transitions, and a
unique sink place, i.e. a place without outgoing transitions [96].

Timed Petri nets have been used for scheduling [97]. In timed Petri nets, tokens have
timestamps at which they become available, and transitions have fixed time durations,
which are called firing delays. A transition’s firing is instantaneous, but the tokens they
produce only become available after the transition’s firing delay. It is assumed that
transitions are eager, i.e. they will fire as soon as possible. When several transitions are
enabled at a moment in time, one of them will fire (possibly disabling the other transitions).
SNAKES is a Python-based simulator for timed Petri nets [98].

Van der Aalst [97] explains how scheduling problems can be described by Petri nets. In
particular, he describes how to capture the notions of resource allocation and precedence
constraints. Reachability graphs can be used compute lower and upper bounds for the
optimum makespan, i.e. the schedule length. As reachability graphs contain all possible
transition sequence, they can become very large. Van der Aalst [97] proposes ways to
reduce their size.

Heuristics

Heuristics are pragmatic algorithms to find, typically suboptimal, solutions to optimisation
problems. Heuristics are commonly used for scheduling, i.e. the assignment of resources to
tasks. This section discusses two well-known scheduling heuristics, list scheduling and the
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shifting bottleneck heuristic. Both can also be used for the allocation of work to the
machines of a manufacturing systems. These and other scheduling heuristics are described
by Ruiz [99], who give an overview of scheduling heuristics.

A well-known greedy heuristic is list scheduling [100]. List scheduling involving creating a list
of the operations to be scheduled. The first element for all its predecessors has been
allocated is allocated at the earliest time possible considering the constraints regarding
precedence relations, release and due dates, resource availability, etc. This step is repeated
until all elements in the list have been allocated. Default list scheduling allocates operations
at their earliest possible start time. Alternatively, one can also allocate an operation such
that its finishes as early as possible [101]. The main challenge lies in the creation of the
priority list, which greatly determines the quality of a schedule. Panwalkar and Iskander
[102] discuss and classify more than 100 dispatching rules which can be used to prioritise
operations.

The shifting bottleneck heuristic is a heuristic used for the minimisation of the makespan of
(shop) scheduling problems in which operations must compete for resources, typically
machines [103]. The heuristic involves a disjunctive graph [104], which has directed arcs
representing precedence relationships and disjunctive edges for operations that require the
same resources. The shifting bottleneck heuristic performs multiple steps to determine the
order of the operations connected by disjunctive edges. It first determines which resource is
the bottleneck and fixes the sequence of the operations of that machine. The latter is done
using a one-machine scheduling algorithm which minimise the operations’ maximum
lateness, i.e. the maximum exceedance of operations’ due date. The operations’ due date is
computed from the starting times of their successor operations; these should be delayed as
little as possible.

Anytime algorithms

Some of the analysis methods described in this chapter require a lot of time and/or
computational resources to find a feasible system configuration. These resources are not
always available. Sometimes, a limited amount of time is available to find a solution:
Musselman [1] presents a manufacturing system in which shift schedules need to be
produced within minutes. In addition, when a rush order comes in, one quickly needs to
reschedule the work.

Anytime algorithms are algorithms that take into the available time; they can be interrupted
at any point to return a result whose quality is a function of computation time [105]. Baruwa
et al. [106] present an anytime algorithm for scheduling of flexible manufacturing systems.
Their algorithm quickly finds a feasible schedule and improves this schedule over time.
Efstathiou [107] presents anytime algorithm to repair manufacturing schedules after the
occurrence of a dynamic event. This algorithm aims at repairing the earliest faults first and
minimising the repair disruption on the existing schedule.

4.1.10Metaheuristics

The optimisation methods considered in Sections 4.1.1 and 4.1.2 use specification of a
configuration space and aim the find the optimum configuration in this space. This is called
global optimisation [9]. Global optimisation has a drawback that it does not scale well. Local
optimisation tries to find configurations in a neighbourhood of a candidate configuration.
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There are several local optimisation approaches. Genetic algorithms are a well-known local
optimisation approach, which is inspired by natural selection. From an existing population of
so-called chromosomes, representing a configuration in a configuration space, a new
population is generated based using genetics-inspired operations crossover, mutation, and
inversion. Crossover exchanges subparts of two chromosomes; mutation randomly changes
the values of some locations in the chromosome; and inversion reverses the order of a
contiguous section of the chromosome [108]. A selection mechanism selects promising
chromosomes for further reproduction. This is continued until a specified number of steps
have been made, a certain minimum criterion is met, or no improvements are made. NSGA-
IT (Non-dominating Sorting Genetic Algorithm) [109] is an efficient genetic algorithm
implementation.

Simulated annealing [110] also uses mutation to search for an optimal configuration;
instead of a population of configurations, it considers one configuration, which gets
mutated. If mutation leads to an improved configuration, then simulated annealing will
accept the new configuration. However, to avoid getting stuck in local optima, simulated
annealing may also allow deteriorations of configurations. If a mutation leads to worse
configuration, it is accepted with a certain probability. This probability decreases with the
number of steps: worse configurations are more likely to be accepted early in the process.

Tabu search [111] is like simulated annealing. A difference is its mechanism to avoid running
in cycles: tabu search maintains a so-called tabu list, a list of configurations, which it has
recently found. The algorithm does not allow configurations on the tabu list to be considered
shortly after they have been found.

Operational analysis methods

This section gives an overview of operational analysis methods that have been used in the
manufacturing domain.

Simulation

Simulation is a very flexible analysis method, which can analyse a single system scenario.
There are different types of simulation: discrete-event simulation (DES), agent-based
simulation (ABS) and system dynamics simulation (SDS). For the planning and scheduling
perspective, DES and ABS are the most interesting types of simulation; SDS is more
interesting for simulation of physical processes. DES can be used to capture a CPPS’s
production flow, whereas ABS can be used to capture distributed intelligence [112].

The models underlying a discrete event simulation are typically based on a directed graphs
in which the nodes represent work elements that needs to be performed and the arcs
represent the precedence constraints between the work elements. There are many
formalisms that has such a structure: statecharts [70], activity diagrams, Petri nets (see also
Section 4.1.7) and event graphs.

As observed in Chapter 2, a manufacturing system include both controllable and
uncontrollable behaviour. In case of modelling stochastic behaviour, such as a machine’s
unplanned downtime, one needs to perform multiple experiments to get a good indication
for the values of the KPIs of interest. The classical central limit theorem provides an indicator
for the accuracy of the series of independent (simulation) samples: for a series (y, ..., y,,) of
i-)?
n-1

n samples, the series’ standard deviation can be approximated by %, where s2 =y,
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is the series’ sample variation. The central limit theorem also provides an indication for the
number of samples needed. Given a desired error € and a confidence level of 1 — a, the

2
number of simulations needed equals (@) , where z,, is the value of the standard

normal variable with a cumulative probability level (1 — %) and ¢ is the standard deviation
[113].

Negahban et al. [114] present a literature overview of manufacturing system simulation.
Their overview addresses two main types of simulations: manufacturing system design and
manufacturing system operation. Manufacturing system design addresses the placement of
machinery and a material handling system inside a facility. They observe that material
handling system design is especially difficult for system with a high degree of flexibility. High
flexibility is seen in cellular manufacturing systems used for semiconductor manufacturing.
Cellular manufacturing system involve a material handling system with many re-entrant
loops. Pitombeira Neto and Vila Gongalves Filho [25] present a simulation to evaluate a
cellular manufacturing system design. This simulation considers three KPIs: level of WIP, the
number of intercell moves and the capital investment. An evolutionary algorithm is used to
explore the configuration space and the corresponding trade-offs of these KPIs.

System design involves a long-term decision which involves uncertainty. When a system is
being designed, its actual workload is not known yet. Jithavech and Kumar Krishnan [115]
address this uncertainty by simulating a manufacturing system for many workloads and
taking the average performance. Koo and Jang [116] use simulation to evaluate AGV
dispatching rules for AGV-based material handling systems with stochastic travel times.

Glatt et al. [117] present a simulation concept that combines material flow simulation and
physical phenomena. This combination allows them to predict disturbances in the material
flow. This could be very valuable in describing a manufacturing system’s behaviour in more
detail. Unfortunately, their concept has not been implemented and assessed.

Roda and Macchi [29] observe that the aggregate performance number provided by OEE,
and its variants can only be measured from an actual plant. They introduce a stochastic
simulation approach to predict Overall Factory Effectiveness (OFE). Their simulation includes
the availability behaviour of a factory’s machines as well as their suboptimal modes.

Baines et al. [17] observe that the accuracy of simulations of manufacturing systems with a
large degree of manual labour is quite poor. They argue that this is because human
operators are modelled as machine resources, which are typically very predictable. In reality,
human behaviour fluctuates more than machine behaviour. Baines et al. [17] propose
simple mechanisms to account for an operation’s age and his/her circadian rhythm.
Especially operator age has a large influence on operational performance: in their model and
that of Zulch and Becker [118], the performance of a 65-year-old operator is 35 percent
lower than a 20-year-old operator. The circadian rhythm accounts for a performance
difference of at most a few percent. Katiraee et al. [119] consider the influence of four
human factors on the timing and cost of manufacturing systems: skill level, age, gender and
anthropometric measures. They argue that more research effort should be spent on making
accurate human aspect models. Baines et al. [17] note that validating a simulation model
becomes harder when the human factor is dominant, on top of that comes the ethical
aspect of modelling humans.

Paape et al. [112] compare the functionality of multiple simulation tools for CPPSs with
distributed intelligence. For such manufacturing systems, Anylogic [120] is the most
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promising simulation tool and they present a case study inspired by a poultry fillet
processing line. Herps et al. [26] use Anylogic for the simulation of a high-mix low-volume
manufacturing system. Mourtzis et al. [121] present a survey of the usage of simulation
using during the design and operation of manufacturing systems. The former includes
manufacturing system layout design and material flow design. The operation includes
material flow simulation. They evaluate five well-known commercial simulators with respect
their capabilities and usability: Anylogic [120], Arena [122], FlexSim [123], Siemens
Tecnomatix Plant Simulation [124] and Witness [125]. In this evaluation, Anylogic, FlexSim
and Siemens Tecnomatix Plant Simulation score well. Other commercial simulation
packages include Simio [126] and Simul8 [127]. Jaamsim [128] is an open-source simulation
package. SimPy [129] and salabim [130] are Python-based discrete event simulators.
NetLogo [131] is an agent-based modelling environment which can be used to create
simulations.

Some simulators include simulation optimisation functionality [9]. For instance, FlexSim
[123] has integrated OptTek Systems’ OptQuest simulation optimisation software [132] and
Anylogic [120] provides simulation optimisation via its experiments.

Trade-off methods

The optimisation methods reviewed in Section 4.1 aim at optimising a single objective
function. However, Chapter 3 shows that there are many relevant criteria when optimising a
manufacturing system. This section describes methods to trade off different optimisation
criteria.

A straightforward way of trading off is by combining all criteria in a single criterion, e.g. using
weights, which is called scalarisation [133]. This is, for instance, done in OEE and many of its
variants discussed in Chapter 3. This combination changes a multi-objective optimisation
problem into a single-objective optimisation problem. A drawback of this approach is that it
is not simple to define a combination that captures an optimiser’s preferences, which may
be different per optimiser or even per configuration space.

Another straightforward of trading off multiple objective functions is to set bounds on all
(but one) objective. These bounds can then be used as constraints of a mathematical
program, a constraint program or an evolutionary algorithm. These could then solve a
constrained single-objective optimisation problem.

If one wants to get more insight into the trade-off between multiple objectives in a
configuration space, another method is needed. Pareto analysis allows identification of a
Pareto front, which contains all configurations which are not dominated by other
configuration. A configurator dominates another if the former is better than the latter with
respect to one objective and not worse than the latter with respect to the other objectives
[134]. Geilen et al. [135] extend the dominance relation to sets of configurations and
present an algebra to compose such sets.

Visualisation of a configuration space with more than three objectives is challenging. For
such configuration spaces, one can use radar/spider chart [136] or parallel coordinate plots
[137]. These visualisations can be used to visualise and compare different configurations.

Efatmaneshnik et al. [138] observe that when the number of optimisation criteria grows it
becomes difficult to keep an overview of the dominant configurations (e.g. in the Pareto
front). They propose a metric to limit the number of non-dominated solutions to alleviate
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the task of (early) decision making, when decision makers do not have a view on the most
important objectives.

Summary

In this chapter, we have given an incomplete overview of methods that can be used for
multi-objective analysis of manufacturing systems. This overview shows that this field is very
extensive. There are many (possibly) relevant techniques and the literature regarding each
of the techniques individually is very large. An upcoming technique, which was left out of the
overview is Artificial Intelligence (Al): Machine Learning (ML) techniques are expected to
become very interesting for allocating and sequencing the work of a manufacturing system.

When looking at the overview, there seems to be only one operational analysis method, i.e.
simulation. On the other hand, simulation itself is not one method: there are several distinct
types of simulation, several of which could play a role in addressing allocation and
sequencing questions in the manufacturing domain.

What is striking is the apparent limited number of techniques that can deal with multiple
optimisation criteria. Pareto fronts are a means to really trade off multiple optimisation
criteria, but this is challenging when the number of criteria is too high. Hence multi-objective
analysis questions are transformed into a single-objective analysis question by combining
criteria in one high-level criterion or introducing budget constraints.

Which method(s) to select for a certain analysis question is typically be addressed by the
corresponding analyst’s experience and preferences. It is unknown whether there is
literature supporting this method selection question.

It should be noted that a single method is unlikely to be sufficient to answer a (complex)
multi-objective analysis problem. Often multiple methods are combined into a
methodology. A concrete example is simulation optimisation, which combines simulation to
analyse individual scenarios, and search heuristics, like evolutionary algorithms, to find an
optimum scenario.
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S TNO-ESI landscape
coverage

This chapter presents an overview of TNO-ESI’s experience regarding multi-objective
analysis of manufacturing systems and related topics. A high-level summary of this
experience is presented in Figure 5.1, which shows the methods used in TNO-EST’s past
projects onto the classification introduced in Figure 4.1. Figure 5.2 shows the timeline of
these projects. A more detailed description of the work done in TNO-EST’s projects can be
found in the following sections. Section 5.14 reflects on TNO-ESI’s experience.

Declarative Operational
. . Falcon:
AIMS: Constraint AIMS: Constraint Simulation Falcon: Octopus/Octo+:
programming for graph-based line L Warehouse Data path
I R I optimisation for . . - X
) line optimisation scheduling simulation simulation
2 warehouses
£
g Prisma: ArchBench:
[} Bright: ArchViews: Ny y
@ Machine cycle Hardware GUE R (b
(=] % . . distributed allocation
analysis dimensioning . .
TechFlex: control systems simulation
Software-to-
platform LoYe
Concerto/ mapping CARM-2G: n Machinaide:
Software-to- Papillon: X
Lo latform ( Workflow analysis iy i
LSAT P . ¥ simulation
allocation
(8]
2
"
©
=
[%]
[]
o
“n
Figure 5.1 TNO-ESI projects related to multi-objective analysis of manufacturing systems
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Figure 5.2 Timeline of TNO-ESI projects related to multi-objective analysis of manufacturing systems
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5.1 AIMS

The AIMS project is a running collaboration of TNO-ESI and Canon Production Printing. It is
concerned with the timing performance of manufacturing systems. To perform such
analysis, it applies a Y-chart-based approach [139]: it separately describes a manufacturing
system’s orders and its equipment. From an allocation of orders to the equipment, a
constraint graph is generated, which is used to compute the fastest schedule of tightly
coupled production systems [140].

Constraint graphs are more expressive than LSAT [141], which had also been considered as
an analysis tool. In LSAT, one can specify release dates, i.e. a minimum time between two
events, but one cannot express due dates, i.e. a maximum time between two events. The
latter is needed for tightly coupled manufacturing systems, i.e. systems that do not have
internal buffers.

From the latest version of the specification of a manufacturing system’s orders and
equipment, a MiniZinc constraint program [60] is generated which can be used to find an
optimum allocation and sequencing. This transformation is still to be documented.

5.2 ArchBench

The ArchBench project was a collaboration of TNO-EST and DAF Trucks, which ran from 2017
until 2019. In this project, a tool was developed to analyse the allocation of functionality in a
CAN bus network. The tool included a deterministic discrete event simulation, which
captured the CAN bus network communication. Using the tool, a system architect could
reason about different allocations in terms of network load, costs, and weight. Details about
the tool can be found in the paper of Bijlsma et al. [142].

5.3 ArchViews

The ArchViews project was a collaboration of TNO-ESI and Thales, which ran from 2020 until
2023. The general goal of the project was to study how to guarantee that a system delivers
on its specification, with system performance requirements as a carrying example. The most
relevant result in the context of this project was a study on how to make a microservice
architecture observable using standardised telemetry tools, such as OpenTelemetry [143],
and how to use the collected logs and metrics to verify that the system conforms to its
specification. This involved a model-based approach to specify system flows, chains of
executing services and their interactions along with timing requirements, as sequence
diagrams using PlantUML [144]. Automation was provided to parse these specifications and
extract relevant traces and metrics to validate that the interactions between services
followed the specification and that the timing requirements were satisfied. Details can be
found in Andrade’s master thesis [145].

ArchViews also addressed a hardware dimensioning problem where the performance of
system flows was predicted using analytical model considering computation and
communication costs for alternative mappings between software processes and compute
nodes. Infrastructure was developed to automatically profile the communication and
computation costs of services and their interactions on the real system, using the
observability infrastructure developed in the project. Details can be found in Vollaard’s
master thesis [146].
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5.5

5.6

5.7

Bright
The Bright project was a collaboration of TNO-ESI and ITEC, which ran from 2019 until 2022.
In the Bright project, LSAT [147] [141] was used to model the machine cycle of ITEC's die

bonders [148]. Bright did not use LSAT’s stochastic critical analysis. The Bright project also
include further development of LSAT, e.g. to deal with pools of identical pieces of equipment.

CARM-2G

The CARM-2G project was a collaboration of TNO-ESI and ASML, which ran from 2012 until
2016. The project developed a methodology based on the Y-chart [139] to allocate control
applications to an execution platform. ASML’s applications involve thousands of precedence-
constrained tasks with strict latency requirements that needed to be mapped onto a
general-purpose processing platform. To deal with background tasks, the tasks do not fully
use the platform’s processors. This makes the allocation tolerant to worst-case task
execution times [149].

Concerto/Maestro

The projects Concerto and Maestro were collaborations of TNO-ESI and ASML. Concerto ran
from 2016 until 2022 and Maestro from 2019 until 2023. In these projects, the tool LSAT
[147] [141] was developed. LSAT is a tool to analyse the timing performance of logistic
systems. Such systems are specified in terms of a machine’s equipment and its actions,
timing settings of machine actions, activities consisting of machine actions, and the
dispatching sequence of activities.

LSAT is mainly used for deterministic timing analysis. However, LSAT’s timing settings allow
the specification of probability distributions. These are used for stochastic critical path
analysis [150]: using Monte Carlo simulation, it is assessed how frequently a machine action
lies on a logistic system’s critical path.

Within Concerto and Maestro, LSAT has been used to analyse the wafer handler of ASML’s
lithography systems.

Falcon

The Falcon project was a collaboration of ESI,? Vanderlande Industries, Demcon, Delft
University of Technology, Eindhoven University of Technology, Utrecht University, and
Twente University. Falcon ran from 2006 until 2011.

The Falcon project addressed the topic of flexible logistic systems with warehousing as a
reference case. In the Falcon project, several warehouse simulations have been developed.
Two types of agent-based simulation were studied in the project. One is a hierarchical
simulation focussing on the allocation of order to workstations, the second focussed on
agent organisations. In addition, Falcon included a discrete-event simulation focussing on
allocation of order to workstations, their execution and the corresponding transportation.
Simulation optimisation using an evolutionary algorithm was used to find the optimum
warehouse configuration [151]. Constraints were introduced to deal with multiple
optimisation criteria.

2The independent research institute Embedded Systems Institute (ESI) became the TNO department Embedded
Systems Innovation (TNO-ESI) in 2013.
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In addition, an effective process time (EPT) approach was applied to capture probability
distributions of warehouse operations. The EPT approach was used to calibrate stochastic
simulation models.

Details and further references can be found in the book by Hamberg and Verriet [152].

5.8 Machinaide

The Machinaide project was an ITEA project with TNO, Additive Industries, Cordis Suite,
Eindhoven University of Technology, KE-chain and Lely Industries as the Dutch partners in
the consortium. The project ran from 2019 until 2023.

In the Machinaide project, a stochastic discrete event simulation based on queueing theory
was developed. This simulation, which captured the interaction of cows, robots, and people
in a dairy farm, has strong similarities to a manufacturing system. Details can be found in
Buermann’s master thesis [153].

5.9 Octopus/Octo+

The Octopus project was a collaboration of ESI,? Océ Technologies, Delft University of
Technology, Eindhoven University of Technology, and Twente University. The Octo+ project
was a continuation involving only EST and Océ Technologies. Octopus ran from 2007 until
2012 and Octo+ from 2012 until 2019.

In the Octopus project, a design space exploration methodology was developed based on
the Y-chart [139], which separate the application to be executed and the platform involving
the execution resources. In the Octopus project, this pattern has been applied to the data
path of a printer, but it can also be applied to a manufacturing system’s jobs and its
equipment. To analyse allocations of image processing functionality to a computation
platform, several analysis tools were used: CPN Tools [154], Uppaal [80] and SDF3 [155].
Details and further references regarding the Octopus project can be found in the book by
Basten et al. [156].

In the Octo+ project, a deterministic discrete event simulation for data path analysis was
developed [157]. This can be seen as the continuation of the design space exploration
methodology of the Octopus project.

5.10 PaloAlto

The PaloAlto project was a collaboration of TNO-ESI and Thermo Fisher Scientific, which
started in 2018 and ended in 2021. In the PaloAlto project, workflow models were created in
the context of reference architecting. Architectural trade-off analysis was used to reason
about the influence of improving the speed of a piece of one component on the overall
throughput of a workflow. The creation of the workflow models and the architectural trade-
off analysis were both done using the Daarius methodology [158].

5.11 Papillon

The Papillon project was a collaboration of TNO-ESI and Thermo Fisher Scientific. The project,
which started in 2022 and ended in 2023, can be seen as a follow-up of the PaloAlto project.
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In the Papillon project, a methodology was developed to specify and analyse customer
workflows. The workflows are specified in an extension of Capella [158] using its functional
chains as a starting point. From a workflow specification, a Petri net simulation is generated
based on the SNAKES simulator [98]. The workflow analysis considers three optimisation
criteria, makespan and two different costs, which are visualised using a parallel coordinates
plot [137]. To deal with stochastic timing, the analyst can specify the number of simulations
of the same workflow; the average makespan is computed from these runs. More details
can be found in the conference paper of Hooman et al. [159].

5.12 Prisma

The Prisma project was a collaboration of TNO-ESI and Philips Lighting, which ran from 2013
until 2017. In Prisma, a methodology was developed to specify large-scale distributed
control systems. From such a specification, models were generated to analyse the control
system’s behaviour. Two types of analysis were used. Deterministic model checking, using
Uppaal [80], was used to detect scenarios leading to unwanted system behaviour.
Deterministic discrete event simulation, using Java, was used to analyse system usage
scenarios. More details can be found in the project’s conference papers [160] [161].

5.13 TechFlex

The TechFlex project, a collaboration of TNO-ESI and Thales started in 2024, is the
continuation of the ArchViews project (see Section 5.3). TechFlex addresses the challenge of
reducing the time and cost associated with system diversity and evolution at the level of the
software platform. A model-based approach to specification and automation with two steps
is proposed: 1) technology-agnostic specification of software configurations to create
custom software deployments with minimum manual intervention, and 2) deployment
optimisation that improves the mapping to software processes to compute nodes to ensure
technical performance requirements are satisfied. The optimisation problem is formulated
as an MDP (see Section 4.1.5) and is solved using model-based reinforcement learning [162]
combined with Monte Carlo Tree Search [163].

5.14 Summary

This chapter gives an overview of knowledge and methodologies related to multi-objective
analysis of manufacturing systems in TNO-ESI’s (past and running) projects. Not all projects
discussed in this chapter considered manufacturing systems. Many of these projects
involved the allocation of computational work to a computer platform. This context is
different than the manufacturing domain, as computational tasks allow more flexibility, e.g.
pre-emption, than physical tasks in a manufacturing system. Yet, the analysis techniques
used for the allocation of computational tasks may be relevant for the allocation of
manufacturing tasks.

This chapter’s overview, especially the visualisation in Figure 5.1, shows that TNO-ESI’s
projects have focussed on deterministic methods to handle the allocation of operations to a
manufacturing system or a computational platform. Deterministic approaches work well for
low-mix high-volume (LMHV) systems, involving large batches of the same operations. High-
mix low-volume (HMLV) systems, involving production of small batches of many different
products, have a greater variety of behaviour. The influence of an event, e.g. an unexpected
breakdown of a machine, may be high when one product is being manufactured and low
after the manufacturing system has switched to another product. For such scenarios,
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stochastic analysis techniques may be valuable. An assessment of the added value of
stochastic analysis in the context of HMLV manufacturing systems is recommended.
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6

6.1

6.2

Conclusion

TNO-ESI’s partners are increasingly looking into the performance of their products in the
context in which they are used, typically a manufacturing system. The performance of such
systems is not captured by a single criterion but involves several criteria. This report
introduced a landscape for the multi-objective analysis of manufacturing systems. The
landscape considers questions that can be addressed by allocation of workload to a
manufacturing system’s resources. It was used to conduct a survey of the existing literature
and an inventory of TNO-ESI’s knowledge regarding this topic. A summary of the report and
the main findings can be found in Section 6.1. A recommendation on how to follow up on
these findings are listed in Section 6.2.

Summary

In Chapter 2 of this report, we introduced a landscape with the main aspects of multi-
objective analysis of manufacturing systems. For two of the landscape’s aspects, a literature
study was performed. The literature study on KPIs in Chapter 3 showed that there are many
relevant (simple) KPIs in a manufacturing system. Which ones to select for an analysis
question depends on the analysis question at hand. To define a manufacturing system’s
performance, several composite KPIs, i.e. combinations of KPIs, have been defined. The well-
known composite KPIs, i.e. OEE and its variants, look at the average (multi-objective)
performance of a manufacturing systems. Because they consider average behaviour, they
are suited for low-mix high-volume (LMHV) systems, but they may not be suited for high-mix
low-volume (HMLV) systems. Note that the manufacturing systems that include equipment
developed by TNO-EST’s industrial partners are mainly HMLV systems.

Chapter 4 contains the results of the literature study into analysis techniques. To structure
the study, analysis methods were classified along two axes: deterministic vs. stochastic and
declarative vs. operational. On the declarative side, there are many, typical specialised,
analysis methods and each of the methods comes with a large body of (academic)
knowledge. On the operational side of the overview, simulation is the dominant analysis
technigue; simulation is a very flexible analysis technique, which can be applied in both a
deterministic and a stochastic context.

Chapter 5 studied the expertise that TNO-ESI has built up during its 20+ years existence. The
corresponding overview shows that TNO-ESI’s knowledge is dominated by deterministic
analysis methods. High-mix low-volume (HMLV) systems, involving production of small
batches of many different products, have a greater variety of behaviour. For such systems,
stochastic analysis techniques may be valuable.

Recommendation

To assess whether stochastic analysis techniques have an added value for the analysis of
industrial HMLV manufacturing systems, we recommend starting a project to address this
question. Special attention should be given to the variability of resources and the workload:
the project should (1) assess the influence of stochastic behaviour in the different
manufacturing systems and (2) evaluate the added value of existing stochastic analysis
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techniques compared to deterministic analysis techniques in TNO-ESI’s knowledge.
Manufacturing systems of ESI’s industrial partners’ customers can be used as use cases for
such a project.
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