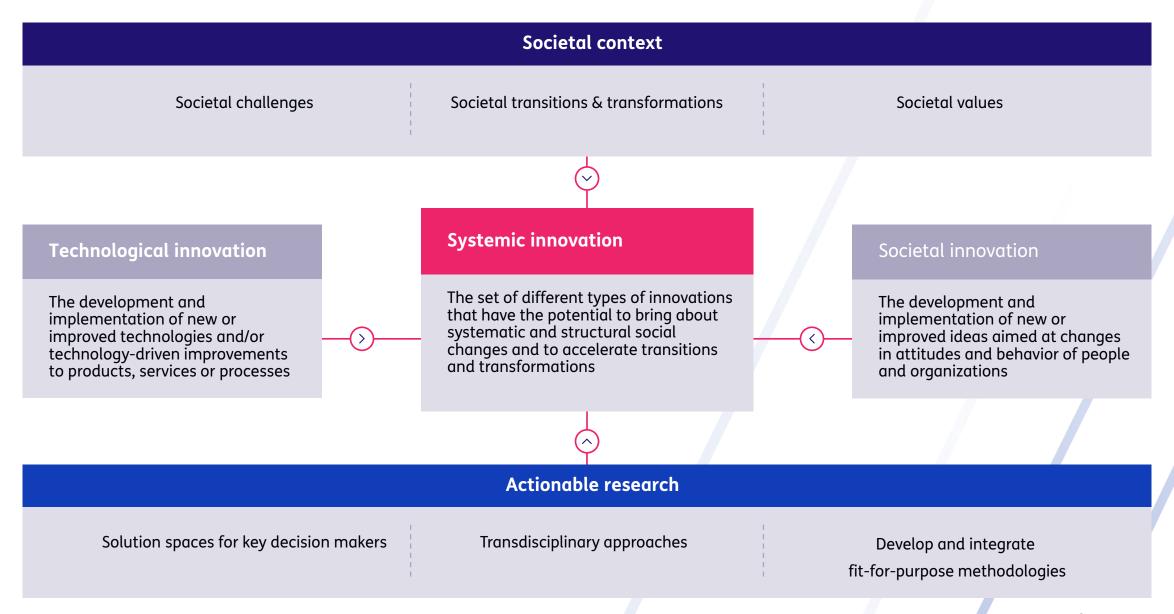
Road transport & logistics innovations

Pathways to 2035

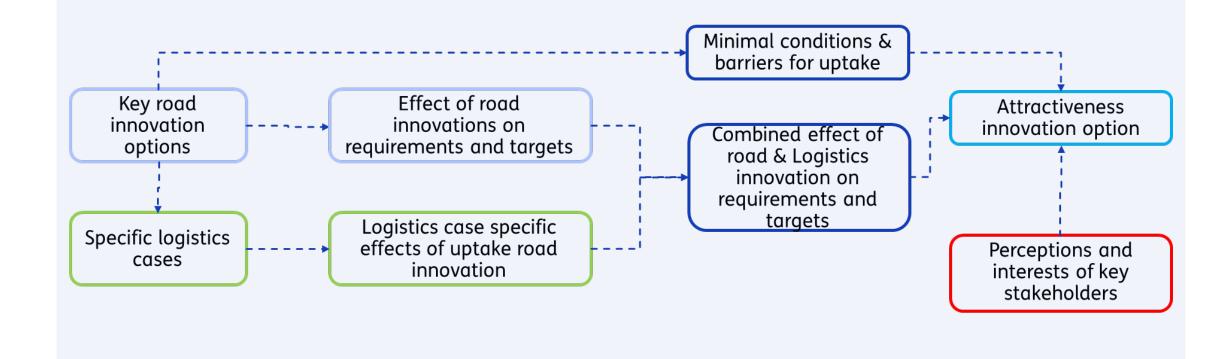
Ming Chen – TNO Vector, Economy & Innovation Policy

ETC 2024 Antwerp

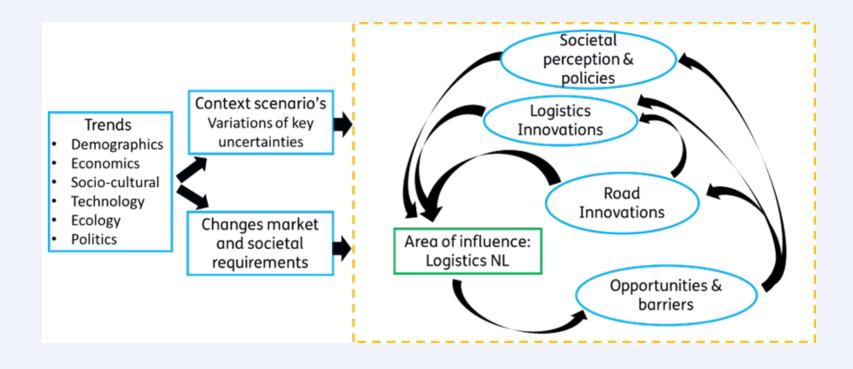


- Societal context of innovation
- Objective of the analysis
- Road innovations and integration in logistics
- Trends and Future requirements
- Effects of road innovations
- Effects for logistics use cases
- Societal/political Resilience and Barriers
- How to use this approach?

Societal context of innovation



Road transport & innovation assessed


Automation technologies							
Automation Level	Sub-technologies considered						
Partial Automation	Lane centringHands-free lane changingAdaptive cruise control						
Conditional Automation	 Highway (supervised) automation; Automated lane keeping system; Platooning Support Function (PSF; L3 for following trucks); Tele-operations. 						
High Automation	 Automated yard movers Automated hub-to-hub operations for trucks (on public roads) 						

Propulsion technologies				
Battery Electric Vehicles (BEVs)				
Hydrogen Internal Combustion Engine (H2-ICE)				
Hydrogen Fuel-Cell Electric Vehicles (FCEVs)				
Biofuels				
Synthetic Fuels				

Which innovation is most attractive?

Influence of changing societal context in 2035

Key societal trends

- 1. Growing population especially in cities
- 2. Ageing and increase of dependency rate
- 3. Growing consumption (uncertain inflation level influenced by solutions for scarcity resources & labour)
- 4. Instability of geopolitics (could be high or low)
- 5. Economic dominance of Asia
- 6. Increasing resource scarcity
- 7. Scarcity on the labour market
- 8. Power of Big-tech companies
- 9. Widening inequalities
- 10. Societal divide & Inclusion
- 11. More need and focus on security
- 12. Pressure on government budgets
- 13. Decentralisation of government tasks
- 14. Accelerating technological change and hyperconnectivity
- 15. Changing nature of work
- 16. Lifelong education and learning
- 17. Climate change
- 18. Priority on climate change and environmental investments (depending on political climate)

Trends and Future requirements

Requirements for logistics - 2035

- Based on current practices, combined with the observed trends
- Different types of requirements:
 - market requirements should be overall positive in order to be commercially of interest
 - The overall contribution of the innovation to policy targets is important in case policy support is needed for the implementation of the innovation
 - societal aspects that are not explicitly addressed by policy (yet) but still play an important role for the acceptability and/or societal support

Requirements						
Market requirements	Competitive price Reliability of services (timing pick-up and delivery) Flexibility of service availability (ad-hoc booking and/or cancelation) Short lead time of service Ensure security of cargo (avoid damage and theft) Online presence, on-demand Real time information					
Policy targets	Economic growth Ensure accessibility (reduce congestion) Reduction traffic injuries and fatalities Reduction of climate emissions Reduction emissions of pollutants and noise					
Other societal requirements	Energy efficient operation Limit/reduce damage to infrastructure Efficient use of existing infrastructure Resilience to disruptions (f.i. energy outage) Data privacy Ensure cyber security Solve labour shortage Inclusive operation (including level playing field) Provide attractive working conditions:					

Note: These are results of an internal Delphi exercise. To be repeated/validated with key stakeholders

J

Effects of technologies on requirements – ceteris paribus

Innovation Effect on requirements (Rating + or -) Market requirements					r-0																
	Mar	_			piovo	puo				icy targ	emissions st			al requ	iiremer					gujp	
Technological Options	Competitive price	Reliability of services (tim pick-up and delivery)	Flexibility of service availability (ad-hoc booking and/or cancelation)	Short lead time of service	Ensure security of corgo (avoid domoge and theft)	e s e	Real time information	Economic growth	Ensure accessibility (reduce congestion)	Reduction troffic injuries o fatalities	Reduction of climate emis	Reduction emissions of pollutants and noise	Energy efficient operation	Limit/reduce damage to Infrastructure	Efficient use of existing infrastructure	Reislience to disruptions (f.i. energy outage)	Data privacy	Ensure cyber security	Solve labour shortage	Inclusive operation (including level playing field)	Provide attractive working
Vehicle Automation > assuming logistics organ	isati	on unc	hanged																		
Driver assistance systems (L2)	0	0	0	0	2	0	0	0	0	2	0	1	0	1	0	0	0	0	0	0	0
Automated Lane Keeping System (ALKS, L3)	0	0	0	0	2	0	0	0	1	3	0	1	1	2	0	0	0	0	0	0	0
Tele-operation (L3)	3	0	0	0	-2	0	1	1,2	1	3	0	1	1	2	0	-5	-2	-3	2	-1	0
Platooning Autonomous Function (PAF)	3	0	-2	-2	-1	0	2	1,2	1	3	2	2	2	2	1	-5	-2	-2	2	-2	-1
Automated vehicle on confined environments (L4-5)	3	5	5	1	0	0	2	1,2	0	1	0	1	1	0	0	-5	-2	-1	2	0	0
Automated vehicle on public road (L4-5) - Short/Medium Haul	5	2	5	0	-2	0	2	2	2	3	0	1	3	2	2	-5	-2	-2	5	-3	0
Automated vehicle on public road (L4-5) - Long Haul	5	2	5	3	-2	0	2	2	2	3	0	1	3	2	2	-5	-2	-2	5	-3	0
Zero-Emission Vehicles > assuming organisatio	n un	change	d																		
BEVs (Short and Medium Haul)	1	0	-4	0	0	0	0	0,4	0	0	5	5	5	0	0	-3	0	0	0	0	1
BEVs (Long-Haul)	3	0	-2	-1	0	0	0	1,2	0	0	5	5	5	0	0	-3	0	0	0	0	1
FCEVs Long Haul	-2	0	0	0	0	0	0	-0,8	0	0	5	5	2	0	0	0	0	0	0	0	1
H2-ICE Long Haul	-3	0	0	0	0	0	0	-1,2	0	0	4	3	0	0	0	0	0	0	0	0	0
Synthetic Fuels/ Bio-fuels long-haul	-3	0	0	0	0	0	0	-1,2	0	0	4	0	-1	0	0	0	0	0	0	0	0

mo vector

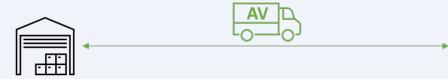
Innovation packages

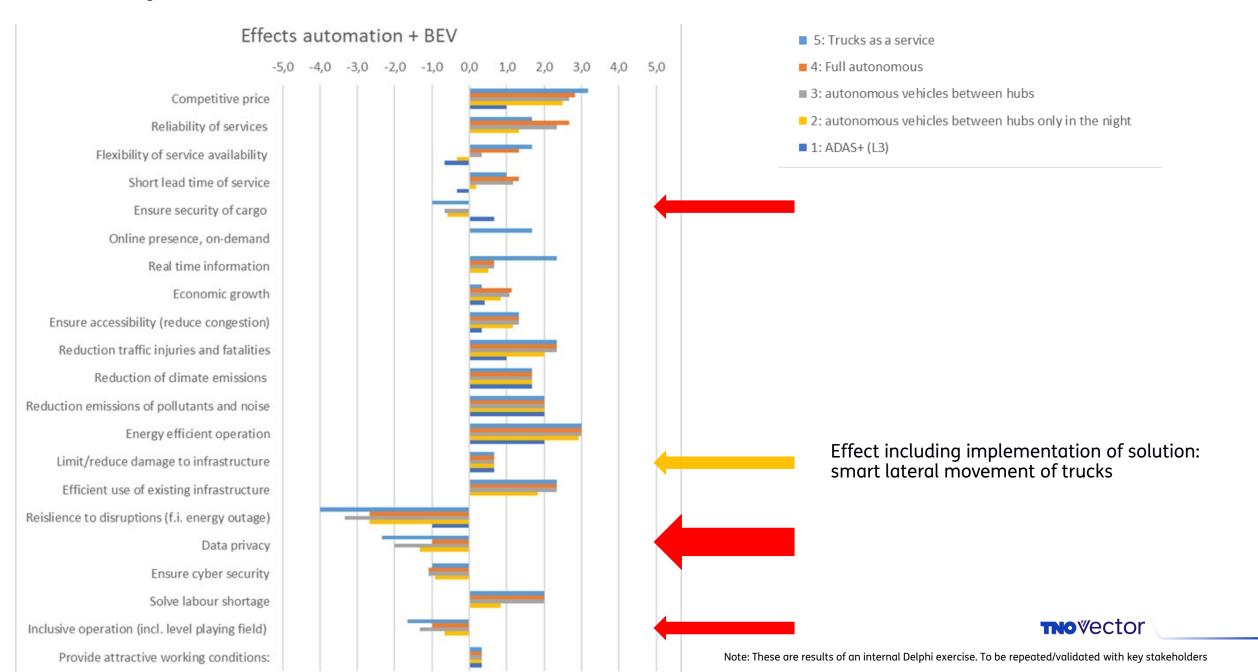
medium/long haul transport Electrification (BEV)

Automation: package 1: L3; other packages L4/5

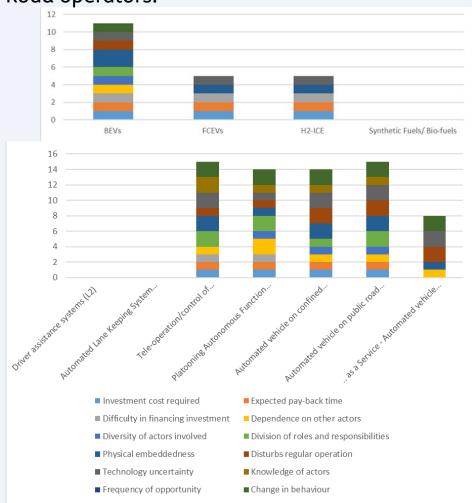
Innovation package 1: Limited automation

Innovation package 2: Automation on highways between hubs only allowed overnight


Innovation package 3: Automation on highways between hubs


Innovation package 4: End-to-end autonomous

Innovation package 5: Autonomous trucks as a service


Effects for logistics use cases

Barriers for uptake - Y-factor approach

Category Factor		Value 0 No barrier	Value 1 Possible barrier	Value 2 Significant barrier	Definition	Specifics
	Investment cost required	Absent	Medium	Large	The degree to which the investment costs are significant in size for the investor	
Costs and financing	Expected pay- back time	<5 years	5–12 years	>12 years	The degree to which the expected pay-back time is significant	
	Difficulty in financing investment	Low	Medium	Large	The degree to which financing or attracting appropriate financial means is difficult	
	Dependence on other actors	No	Little	Much	The degree to which the responsible actors depend on actions of other actors	cyber, legal
Multi-actor complexity	Diversity of actors involved	Low	Medium	Large	The degree to which the actors involved have opposing interests, values, roles, skills and expectations, or face issues regarding public acceptance	
	Division of roles and responsibilities	Clear	Somewha t unclear	Unclear	The degree to which the roles and responsibilities are unclear	Liability
	Physical embeddedness	No	Medium	High	The degree to which change is required in connected or related technical systems	
Physical interdependences	Disturbs regular operation	No	Slightly	Strongly	The degree to which regular operation, in duration and intensity, is disrupted	
	Technology uncertainty	Fully proven	Small	Large	The degree to which technological reliability and performance are uncertain	technologica progress
	Knowledge of actors	High	Low	Lacking	The degree to which responsible actors possess the knowledge required	
Behaviour	Frequency of opportunity	Often	Medium	Rarely	The frequency to which responsible actors have the opportunity to properly consider the abatement measure	
	Change in behaviour	No	Slight	Severe	The degree to which the actors involved need to change their behavioural patterns	

Road operators:


Societal/political Resilience and Barriers

Requirements for logistics – 2035 (2)

- Relative importance of requirements can differ by scenario
- Weights and scores are determined by a Delphi approach with a small group of experts (with the actual stakeholders is preferred)

		Relevance (score 1-5) by scenario								
	Requirements	First things first	The future is ours	We are the champions						
	Competitive price	5	3	5						
	Reliability of services (timing pick-up and delivery)	4	3	4						
Market	Flexibility of service availability (ad-hoc booking and/or cancelation)	4	2	4						
requirements	Short lead time of service	3	2	4						
	Ensure security of cargo (avoid damage and theft)	4	4	4						
	Online presence, on-demand	5	4	5						
	Real time information	4	4	4						
	Economic growth	5	2	5						
	Ensure accessibility (reduce congestion)	3	5	4						
Policy targets	Reduction traffic injuries and fatalities	3	5	2						
Foricy targets	Reduction of climate emissions	3	5	3						
	Reduction emissions of pollutants and noise	3	5	2						
	Energy efficient operation	3	5	5						
	Limit/reduce damage to infrastructure	3	5	4						
	Efficient use of existing infrastructure	4	5	4						
0.1	Resilience to disruptions (f.i. energy outage)	4	3	5						
Other societal	Data privacy	4	5	4						
requirements	Ensure cyber security	4	4	4						
	Solve labour shortage	5	2	5						
	Inclusive operation (including level playing field)	4	5	2						
	Provide attractive working conditions:	5	4	3						

Check on "political" resilience

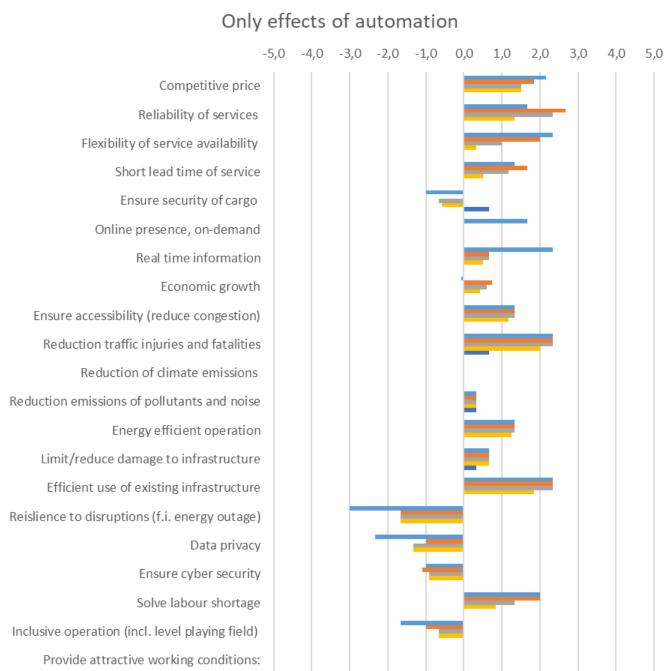
Conclusion: low risk due to political changes

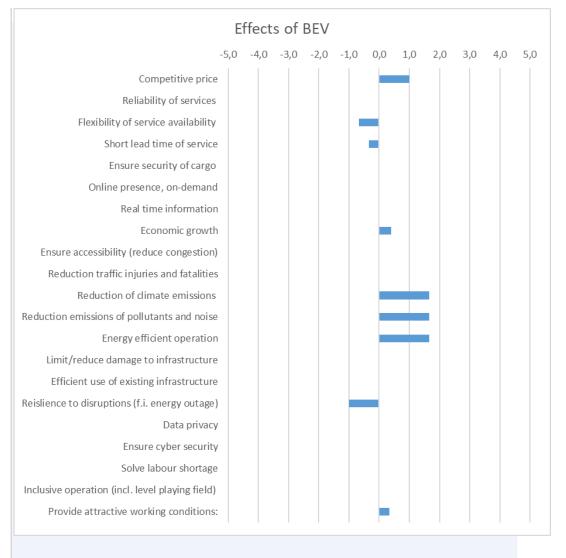
How to integrate this approach in a broader process?

- Which transitions is targeted?
- Who are the key stakeholders?
- Agree on a collaborative approach create shared insights & define targets
- The presented approach provides guidance to this process and can trim down the options
 - Relevant technologies
 - Possible use cases
 - Relevant future trends to consider
 - Requirements and relative importance by stakeholder
 - Effects of innovations and integration in logistics; make assumptions made and scoring rules explicit
 - Define barriers for uptake and assess risks
- A resulting short list of options can be assessed in more detail. For instance first a more precise assessment of effects by semi-quantitative approaches (e.g. system dynamics) and only very small set of preferred options with larger and quantitative models (accepting its limitations).

Thank you for your attention

tnovector.nl





Uptake of road technologies by logistics – many options

Operational change	Implementation options
Battery Charging	 Charging facilities at home base Roadside charging – no facilities on home base Roadside charging long distance – resting time driver Charging at logistical node (incl. hub) – (mostly) during handling Roadside/at logistical node charging – additional lead time
Using driverless operation on highway	 No driverless operation Yes, driver remains on board on the highway and performs alternative activities (mainly for short distance) Driverless operation by transhipment at hub(s) – own account Driverless operation by transhipment at hub(s) – other company
Transhipment for Hub-hub driverless highway services	 No transhipment at hub required (O + D directly at highway) Transhipment at hub(s) - traditional Transhipment at hub(s) - automated
Organisation of the last mile for Hub-hub driverless highway services	 Own account Truck capacity from partner companies Find partner company via an online B2B service platform Last mile organised by the automated driving service for highways, i.e., no last mile organisation.
Automated driving and logistics services at night (combined with automated driving and hubs)	 Yes Only automated driving at night No changes to current operation
Cargo monitoring and security system - on board	 Yes, by driver No, supervision on driverless truck Yes, supervision on driverless truck by sensors, cameras, remote warning, and automated intervention organisation
Ownership models for trucks for driverless operation	 Truck operator buys truck Automotive provides truck capacity as a Service or lease option Automotive provides highway service for truck operators (in combination with online B2B service platform)
Customer (shipper) interaction with truck operator via online service platform	 Single company online application Cooperating companies online application Neutral LSP application Automated driving service (on highways) online service

Effects for logistics use cases

3 scenarios of pathways to 2035

- Scenario 'First things first...' Instability and Crisis Management: Political climate remains instable and several multi-directional changes between political streams will occur. Consequently, strategies that are initiated are soon adapted to another strategy. Problems that were there in 2024 linger on and are not structurally solved, evoking more crisis situations.
- Scenario 'The future is ours....' Collectivism and Sustainability: The focus is put on a more equal distribution of welfare at first, as such in particular serving the lower income groups. Many extreme weather conditions will occur, which make it clear for the majority that we have to act urgently to reduce climate change. Instability in the world and the growing resource scarcity strengthen collectivism in society and also create the drive for making smarter use of what we have. Consequently, after next elections the key focus on the 'people' remains and is extended with 'planet'.
- Scenario 'We are the champions...' Liberalism and Economic Growth: The unstable and hardening global political climate combined with the heavy competition to get access to essential natural resources, causes a fear to end up on the losing side of global market economy. Liberalism is considered the one and only way forward, with as goal to ensure that the Netherlands remains relevant in the global economy and politically of interest for the leading countries. The red carpet is laid out for innovations and industry supporting this.

Overview challenges – based on prototype/draft

Key barriers for uptake BEV:

- Battery charging infrastructure:
 - o Home base operators
 - o Hubs/terminals
 - o Resting/parking places
- Electricity network capacity
- Resilience measures (energy outage)

Key barriers for uptake automation:

- Infrastructural needs Hubs at highways
- Liability
- Adaptation legislation
- Cyber security measures
- Resilience measures (truck operation, supply chain, ...)

Technological needs - automotive:

- Security of cargo to be mitigated by monitoring systems
- Reduce damage to infrastructure mitigated by smart lateral movements of trucks to use a larger surface of the lane.
- Cyber security measures

Overview challenges – based on prototype/draft

Technological needs - automotive:

- Security of cargo to be mitigated by monitoring systems
- Reduce damage to infrastructure mitigated by smart lateral movements of trucks to use a larger surface of the lane.
- Cyber security measures

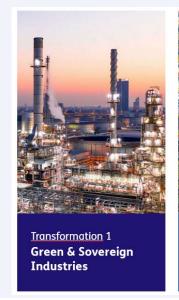
Societal Risks requiring (external) mitigation measures:

- Supply chain Resilience
- Data privacy
- Cyber security
- Inclusive operation

(Other) policy topics:

- Adaptation of relevant regulation (including allowing driverless operation)
- Liability issues
- Level playing field issues of corridor approach
- Supply chain resilience

Further research


- This approach should be regarded as a **prototype**.
- The framework developed has proven **effective for this assessment with limited availability of data** for the broad range of relevant variables.relatively easy to implement (in a collaborative approach) **cost effective**. ...conclusions ... are similar to conclusions of studies following a more elaborative approach. ... no conflicting ... identified.....
- In ERP Wiser Policy making a system dynamics approach is applied which is more costly to implement but more precise.
 It could be considered to use the approach developed in this KIP for an initial broad exploration of options, and then as a next step use a system dynamics approach for the most interesting options.
- The **assessment of barriers** of uptake is now done at high level. A **more in-depth** assessment is **recommended**
- The assessment of the effects of the truck technologies and logistical adaptations is done by **a Delphi method** and the scoring is there for **sensitive for interpretation and inconsistency**. **Specific guidelines** for how **to determine** the **scores** for requirements will be an improvement.
- In this project the information is gathered with a Delphi approach with the small set of team members. In the text it is indicated which **results should be reassessed with a larger group or experts/stakeholders**.

TNO Vector - mission

Translate social and technological developments into perspectives for action to increase future prosperity*

- Properly guiding transitions with proven methods (systems and scenarios)
- Accelerating socio-economic embeddedness of innovation
- From a view of metatrends and the international technological playing field

& Just Cities

Enabler 1
Transformative
Innovation Systems

(*note: prosperity beyond GDP)