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ABSTRACT The development of quantum computers represents an important advancement in computing,
using quantum mechanics to address problems that were previously difficult to solve. This technological
advancement poses a challenge for cryptographic systems. While some methods are known to be vulnerable,
the impact of quantum computing on symmetric cryptography has received less research attention, largely
because the common advice is to simply double the key size. This paper explores how quantum computing
affects symmetric cryptography, focusing on block cipher-based cryptography. It surveys existing literature
on the quantum resilience of symmetric cryptographic primitives based on block ciphers and their security in
various scenarios. Not all symmetric cryptographic functionalities are quantum-secure, and their security
depends on the specific adversary model being considered. We provide an overview of the research conducted
and pinpoint areas where further investigation is needed.

INDEX TERMS Symmetric cryptography, block ciphers, modes of operation, quantum security, quantum

computing, survey of knowledge.

I. INTRODUCTION

Among the cryptographic methods we rely on today, it is
the asymmetric algorithms that are the most vulnerable
to the attacks enabled by a cryprographically relevant
quantum computer. Cryptographic research has therefore
mostly been on the replacement of asymmetric primitives and
their embedding in existing protocols. However, symmetric
cryptography, including block ciphers, stream ciphers and
hashing, does not emerge unscathed either. Some, like the
Even-Mansour cipher [1], can be broken in a quantum setting,
although the impact of quantum computing on symmetric
cryptography is generally less severe. This paper provides
a detailed survey of the impact of quantum computing on
symmetric cryptography, with a specific focus on block cipher-
based cryptography.

Our contribution:

« We summarize the most common formal security notions
found in the literature for proving the quantum security
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of modes of operation: IND-1CPA, PO1, IND-qCPA, and
EUF-qCMA (also referred to as qPO).

We explain the two main adversary models used
in quantum attacks on symmetric cryptography: Q1
(quantum computer access) and Q2 (quantum computer
access with superposition query capabilities), and discuss
their relevance.

We survey relevant quantum algorithms for attacking
block ciphers and their modes of operation: Simon’s,
Kuperberg’s, Grover’s, Deutsch-Jozsa’s, Bernstein-
Vazirani’s and Shor’s algorithm.

We provide an overview of block ciphers and various
construction methods that are not quantum-secure,
including Even-Mansour, the FX-construction, PRINCE,
AEZvS5, COPA, and CLOC.

We review the formal quantum security of encryption
modes (ECB, CBC, CFB, XTS, OFB, CTR), authen-
tication modes (CBC-MAC, CMAC), authenticated
encryption modes (OCB, CCM, GCM, CWC, EAX,
SIV, (AES-)OTR) and KDF modes (assuming the
underlying block cipher is a (quantum) pseudorandom
function).
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« We examine the quantum security of AES and the formal
security of its associated modes of operation.

« Lastly we make some observations, address unanswered
questions and suggest areas for further research.

A. STRUCTURE AND SCOPE

The structure of this paper is as follows. Section II
introduces quantum computation, formal security notions,
adversary models, attack complexity, and explores quantum
algorithms and their implications for symmetric cryptography.
In Section III, we discuss the relevance of two specific
adversary models, Q1 and Q2. Section IV reviews the
security of block cipher primitives, identifies broken block
ciphers, and discusses various attacks. In Section V different
modes of operation are covered, including encryption modes,
authentication modes, authenticated encryption modes and
key derivation modes. Section VI offers a detailed review of
AES, comparing its classical and quantum security, evaluating
its security margins, and examining the security of its modes
of operation. We conclude by discussing some observations,
addressing unanswered questions, and suggesting areas for
further research.

Summary of Findings: The security of an encryption
scheme depends on both the security of its block cipher
primitive and its mode of operation. This survey reveals that
while few block ciphers are currently broken in a quantum
context, many modes of operation either lack formal quantum
security guarantees or are known to be insecure. If the
underlying block cipher is a quantum pseudorandom function,
only the encryption modes CBC, CFB, XTS, OFB, and CTR
are IND-qCPA secure. Among these, only OFB and CTR
are IND-qCPA secure when the block cipher is a classical
pseudorandom function. None of the authentication modes
of operation considered are formally secure in the Q2 model,
regardless of the block cipher’s quantum security.

While some classical security notions like IND-CPA
(see Section II-B) have been successfully adapted to
the quantum realm for encryption (IND-qCPA), defining
quantum counterparts for authentication is still an ongoing
process, leading to varied outcomes for authentication and
authenticated encryption modes. Many known efficient attacks
on block cipher constructions and modes of operation appear
in the Q2 model. However, some attacks have been adapted to
the Q1 model, albeit with reduced efficiency (e.g. the offline
Simon attack). The AES block cipher appears resilient against
these attacks, which is promising; however, the underlying
reasons for this resilience remain unclear.

Research in this area has mostly occurred over the past five
years, gaining increasing recognition, highlighting its ongoing
importance. The focus has been primarily on widely adopted
primitives involved in competitions such as Lightweight
and CAESAR, as well as well-known modes of operation.
However, there has been limited exploration of older or
lesser-known primitives and their applications. Moreover,
many modes and primitives are assumed to be secure in
the Q1 model due to the absence of attacks, without formal
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proof of their security. This poses challenges, particularly for
components expected to play critical roles in future quantum-
safe protocols, such as block cipher modes of operation and
key derivation functions (KDFs) used in hybrid protocols.

Il. PRELIMINARIES

A. QUANTUM COMPUTATION

We provide a brief overview of quantum computation,
originating from [2]. A quantum system is a complex Hilbert
space # together with an inner product (-|-). The state of a
quantum system is given by a vector |{), where (¥ |) = 1.
For quantum systems #(; and #(o, their joint quantum system
is given by the tensor product #1 ® #2. Given |y]) € #
and |yn) € o, the product state is represented by |1 )|yn) €
H1 R Ho.

Consider a quantum state |1) and an orthonormal basis
B ={lby), ..., |bs—1)} for #, a measurement of |/) in basis
@ yields the value i with probability |(b;|¢) |2, after which the
quantum state collapses to the basis vector |b;). If |y) is part
of a joint system # ® #¢’, then it can be expressed as

d—1
W) =D eilb)¥)
i=0

for some complex coefficients «; and states [//) over #'.
In this case, a measurement on # yields the outcome i with
probability |e;|?, and the resulting quantum state becomes
A

A unitary transformation over a d-dimensional Hilbert
space # is a d x d matrix U such that uut = I;, where
U’ denotes the conjugate transpose. A quantum algorithm
operates on a product space #in ® Hout ® Fwork and consists of
n unitary transformations Uy, . .., U, within this space. Here,
#in denotes the input space, #,y; the output space, and Hyork
the workspace. A classical input x to the quantum algorithm
is transformed into the quantum state |x, 0, 0). The unitary
transformations are applied sequentially, producing the final
state

[¥y) =U,...Uplx, 0,0).

Upon measurement, the state |{,) collapses to the tuple
(a, b, c) with probability |{(a, b, c|{y) |2, and the algorithm’s
output is b.

Definition 1 (Quantum-Accessible Oracle): An oracle O :
X — Y is implemented by a unitary transformation O where

Olx,y,z) == |x,y 4+ O(x), 2)

and + : X x X — X is a group operation defined on X.

B. FORMAL SECURITY NOTIONS

In cryptography, the security of schemes is proven formally.
Understanding these formalities is necessary in order to give a
comprehensive overview of the literature. We start with some
definitions.
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Definition 2 (Symmetric Encryption Scheme): A symmet-
ric encryption scheme is defined as a triple

IT = (Key, Enc, Dec),

where:

o Key is the key generation algorithm, which takes as input
1" (the security parameter in unary) and outputs a key k.

o Enc is the encryption algorithm, which takes as input a
key k and a plaintext m € {0, 1}*, and outputs ciphertext
c.

o Dec is the decryption algorithm, which takes as input a
key k and ciphertext ¢, and outputs a message m or an
error.

Definition 3 (Symmetric Authentication Scheme): A sym-

metric authentication scheme (or MAC scheme) is defined
as a triple

¥ = (Key, Sign, Verify),

where:

o Key is the key generation algorithm, which takes as input
1* (the security parameter in unary) and outputs a key k.

o Sign is the signing algorithm, which takes as input the
key k and a message m € {0, 1}*, and outputs a tag o.

o Verify is the verification algorithm, which takes as input
the key k, a message m, and a tag o, and outputs either
accept (if the tag is valid) or reject (if the tag is
invalid).

Security games are used to prove or disprove the security of
these schemes. One of these games is the IND-CPA security
game [3]. In this game we give the adversary A access to an
encryption oracle, that encrypts messages of A ’s choice using
a key k unknown to A. The adversary is allowed to interact
with the oracle adaptively, as many times as it likes.

Consider now the following experiment called SymK%‘i ‘1*-[ (n):

Definition 4 (The IND-CPA experiment SymKSQZP "1‘_[ (n)): Let
I1 be an encryption scheme, A the adversary and n the
security parameter. The experiment SymK%P /}[(n) is defined
by the following process: ’

1) A key k is generated by running Key(1").

2) The adversary A is given input 1" and oracle access to
Enci(-), and outputs a pair of messages mo, my of the
same length.

3) Abitb € {0, 1} is chosen uniformly at random, and then
a ciphertext ¢ <— Ency(myp) is computed and given to
A.

4) The adversary A continues to have oracle access to
Ency (+), and outputs a bit '

5) The output of the experiment is defined to be 1 if b’ =
b, and 0 otherwise. In the former case, we say that A
succeeds.

This leads to the next definition.

Definition 5 (IND-CPA security): A symmetric-key encryp-
tion scheme T1 = (Key, Enc, Dec) is IND-CPA secure, if for
all probabilistic polynomial-time adversaries A, there is a
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negligible function negl such that
1
P [Syngf’g(n) - 1] < 5 -+ negl(n).

where the probability is taken over the randomness used by
A, as well as the randomness used in the experiment.
Intuitively, IND-CPA security implies that the adversary
cannot guess which message was encrypted with a probability
higher than 1/2.

IND-CPA is among several classical security definitions,
including IND-CCA and EUF-CMA (for authentication
schemes). Translating these definitions to the quantum setting
is nontrivial, and ongoing research aims to ensure their correct
adaptation (cf. Remark 1). Our focus is on the most common
quantum notions: IND-1CPA and IND-qCPA for encryption,
and PO1 and EUF-qCMA for authentication. We provide brief
descriptions for each. For a comprehensive overview, refer
to [4], [5], [6], and [7].

o IND-1CPA: IND-CPA where the adversary A has access
to a quantum computer.

o IND-qCPA: An extension of IND-1CPA where the
adversary can send queries to the encryption oracle in
superposition and receive a superposition of ciphertexts
in return. See Definition 7 for a formal definition.

o PO1: Here the adversary has oracle access to the signing
algorithm of the authentication part of the scheme
and a quantum computer, but queries are classical.
An authentication scheme is PO1 secure if after g queries
to the oracle the adversary cannot produce g + 1 valid
message-tag pairs (see [5]).

+ EUF-qCMA (also referred to as qPO): These terms are
used interchangeably in the literature, but we use EUF-
qCMA exclusively. This notion extends PO1 by allowing
the adversary to make superposition queries to the oracle,
representing the quantum analogue of classical existential
forgery (cf. Definition 8).

Remark 1: We focus only on IND-CPA security in the
quantum setting due to the unresolved inconsistencies in
defining correct IND-CCA security in this context. Translating
classical IND-CCA security to the quantum setting is
challenging because handling decryption queries after
quantum challenge queries is problematic. Storing quantum
ciphertexts is non-trivial due to quantum properties like
no-cloning and destructive measurements, leaving this issue
unresolved [4].

For completeness we state here the formal definition of
IND-qCPA ( [2, Def. 4.5]) and EUF-qCMA ( [8, Section 2.2])
security.

Definition 6 (Quantum Encryption Oracle): Let T1 be an
encryption scheme. We define the quantum encryption oracle
(cf. Definition 1) Ugnc, associated with I1 and initialized with
key k as a family of unitary operators defined by:

Ukney : Zax,y,zlx,y, z) = Zax,y,zlx,y@EHCk(x; r),2),

X,y,2 X,y,2
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where the same randomness' r is used in superposition in

all the executions of Ency(x) within one query. For each new
query, a fresh independent r is used.

Definition 7 (IND-qCPA Security): A symmetric key encryp-
tion scheme 11 is indistinguishable under a quantum chosen
message attack (IND-qCPA secure) if no efficient adversary
A can win in the following game, except with probability at
most % + negl(n):

1) A key k is generated by running Key(1") and a bit b €

{0, 1} is chosen uniformly at random.

2) The adversary A is allowed to make two types of oracle

queries:

a) Challenge Queries: A sends two messages
mg, mi, to which the oracle responds with ¢ =
Ency (mp).

b) Encryption Queries: For each such query, the
oracle chooses randomness r and encrypts
each message in the superposition using r as
randomness:

Z Ym,c.zlm, ¢, 7) —>
m,c,z
Z Ym,c.zlm, ¢ ® Ency(m; r), 2).
m,c,z
3) The adversary A produces a bit b/, and wins if b =1’
Definition 8 Existentially Unforgeable Under Quantum
Chosen Message Attack (EUF-qCMA): Quantum chosen
message queries allow the adversary to maintain its own
quantum state and issue quantum queries to the signing oracle.
Let Zm,x’y Ym,x,ylm, x, y) be the adversary’s state just prior to
issuing a signing query. The MAC signing oracle transforms
this state as follows:

1) It chooses a random string r to be used by the MAC
signing algorithm.

2) It signs each “slot” in the given superposition
by running Sign,(m; r), where Sign is the signing
algorithm with randomness r. More precisely, the
signing oracle performs the following transformation:

Z wm,x,y|m, x,y)

mx,y

— z ‘(/fm’x)ylm, X @ Slgnk(m; r), y).
m,x,y

After issuing ¢ quantum chosen message queries, the adversary
wins the game if it can generate g + 1 valid classical message-
tag pairs.

C. ADVERSARY MODELS

There have been many quantum attacks published on
cryptographic algorithms, including symmetric algorithms.
Before outlining the attacks, it is important to distinguish the
different adversary models. Most literature uses the Q1 and
Q2 terminology, which we extend to include QO (the classical
model) and the related-key attack model.

ITo ensure non-deterministic encryption.
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o QO: The classical attack model. The adversary uses
classical devices and can make classical encryption or
decryption queries to its oracles. The adversary does not
have access to a quantum computer. Security notions
like IND-CPA, IND-CCA and EUF-CMA belong2 in this
category.

e QI: The adversary possesses a quantum computer in
addition to classical resources (Q0). The adversary has
access to a quantum computer, but is limited to making
classical encryption or decryption queries to an oracle [9].
This corresponds to a classical chosen-plaintext or
chosen-ciphertext attack, with the addition of quantum
computing power. Security notions that belong here are
for example PO1 and IND-1CPA.

e Q2: The adversary possesses Q1 resources and has
the capability to perform superposition encryption or
decryption queries to its oracles, of which the adversary
obtains a superposition of outputs. This is a strong, yet
simple model and its relevance will be discussed in
Section III. Security notions that fall inside this category
include IND-qCPA and EUF-qCMA (cf. Definition 7 and
Definition 8).

o (Quantum) related-key attack model: A particularly
strong additional model is the related-key attack model,
which has both a classical and a quantum version. In the
classical variant we allow the adversary to perform so-
called related-key attacks. Related-key attacks become
feasible when there exists a connection between different
keys, meaning that they are not independently or
randomly chosen, and this relationship is either known to
the adversary, or can be manipulated by it [10]. In such
attacks, the adversary observes encryptions performed
with various keys and exploits these relationships to
recover (a part of) a key. It is important to note that
if a related-key attack is possible, it represents a threat
in both classical and quantum contexts. However, they
rely on the assumption that keys exhibit some form of
interrelation, which is typically not the case in many
practical applications, although such cases do exist.>
The quantum related-key attack model is an extension of
the Q2 model. It has Q2 capabilities, and the adversary
is allowed to query both the quantum encryption and
decryption oracles with superpositions of keys. Quantum
related-key attacks are incredibly strong, but unlikely to
be feasible for a typical implementation. Rétteler and
Steinwandt demonstrated that, under certain assumptions,
the key of any block cipher can be efficiently recovered
in polynomial time if a quantum related-key attack is
possible [12].

2Security notions are modelled in an adversary model.

3A notable exception illustrating this attack occurred with WEP (Wi-Fi
encryption), which used the RC4 cipher. The key consisted of a variable
24-bit Initialization Vector (IV) combined with a frequently unchanging WEP
key [11].
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The relevance of the adversary models above will be
discussed in Section III. For reference we state the definition
of a (quantum) pseudorandom function (see [13] and [14]).

Definition 9 (Pseudorandom function): A family of func-
tions Fy = {0, 1} — {0, 1}¢, indexed by a key s € {0, 1}",
is said to be pseudorandom if it satisfies the following two
properties:

o Efficient to evaluate: The value F(x) is efficiently
computable given s and x.

o Pseudorandomness: The function Fy cannot be effi-
ciently distinguished from a uniformly random function
R : {0, 1}" — {0, 1}, given access to pairs
(xi, Fs(x;)), where the x;’s can be adaptively chosen by
the Q0 adversary.

More informally, a function f is called a pseudorandom
function (PRF) if it can generate output from a random seed*
and a data variable, such that the output is computationally
indistinguishable from truly random output.

Definition 10 (Quantum pseudorandom function): A fam-
ily of functions Fy : {0, l}k — {0, 1}%, indexed by a key
s € {0, 1}, is called a quantum pseudorandom function
(gPRF) if it satisfies the following properties:

o Efficient to evaluate: The value Fy(x) is efficiently

computable given s and x.

o Quantum pseudorandomness: The function Fs cannot
be efficiently distinguished from a uniformly random
function R : {0, 1} — {0, 1}, even by an adversary
in the Q2 model.

More informally, a function f is called a quantum
pseudorandom function (qPRF) if it can generate output from
a random seed and a data variable, such that the output is
computationally indistinguishable from truly random output,
even by an adversary with quantum superposition capabilities.

D. ATTACK COMPLEXITY

Classical attack complexity is consistently presented by
specifying computational workload, memory demands, and
the number of oracle queries or plaintext-ciphertext pairs
required. This allows for meaningful comparisons between
different attack methods. Quantum complexity, outlined below,
differs slightly [15].

o Quantum time complexity: Represents the number
of elementary quantum gates applied to a qubit or
qubit register. This is important because the gates
used in a quantum computer are typically not physical
components; instead, they are processes of manipulation,
often implemented using lasers.

o Quantum query complexity: many quantum algorithm
complexity bounds and algorithms in literature rely
heavily on query complexity, assessing the number of
times an oracle is invoked. Calls in superposition to an
oracle imply a Q2 adversary model.

“4For a block cipher, the random seed is the key.
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o Quantum memory complexity: denotes the quantity
of qubits within the circuit, allowing for more parallel
operations and reducing time complexity.

Insight I (Quantum Random Access Memory (QRAM)):
ORAM is a specialized form of quantum memory, which
stands out for its ability to access data (quantum or
classical) based on memory addresses which are in a
quantum state themselves [16]. This unique feature offers
potential advantages, facilitating the acceleration of specific
algorithms [17] (and potentially, attacks [18]). Some of the
research discussed here assumes the existence of QRAM.
However, practical implementation of QRAM has numerous
challenges, including significant gate overhead in hardware
realization [16]. The debate over the future viability of ORAM
remains ongoing. While acknowledging its importance in
certain attacks and algorithms, we opted to focus primarily
on evaluating the time complexity of these attacks.

E. QUANTUM ALGORITHMS AND SYMMETRIC
CRYPTOGRAPHY

In this section we discuss quantum algorithms that are relevant
in symmetric cryptography. We outline the algorithms, their
complexity and their usage in attacks.

1) GROVER'S ALGORITHM AND ITS GENERALIZATIONS
Grover’s algorithm [19] presents a quadratic speed-up for the
unstructured search problem compared to classical methods.
While classical approaches require on average N /2 queries
to find a marked item in an unsorted database of N items,
Grover’s algorithm achieves this with a time complexity of
©O(N'/2). The algorithm is asymptotically optimal, meaning
that for large inputs, it performs slightly worse (by a constant
factor) than the best possible algorithm for the problem.

Example 1 (Ideal Cipher): When E is an ideal cipher, the
best attack is brute force search for the key. If n is the bit length
of the key, classical complexity for brute force is ©O(2"), while
Grover’s algorithm reduces quantum complexity to Q(2"/?).

One should remark that there are several generalizations
of Grover’s algorithm. For example there is a version that
searches for elements in databases with repeated elements [19]
and a version called quantum partial search [20], where one
is only interested in the first few bits of an address.

2) COLLISION FINDING ALGORITHMS

Collision finding algorithms can be used to attack hash
functions and block ciphers. Let H be a hash function and
denote the size of the digest by n. The classical time complexity
for finding collisions with a brute force attack is ©(2"/?) due
to the birthday attack [21, section 11]. In the Q1 model, it can
be accomplished with a slight increase in speed. In [15] a new
quantum collision finding algorithm is presented with a time
complexity of ©Q/3) (equal to the query complexity) and
quantum memory of ©O(n). This is a significant improvement
regarding the quantum memory of the algorithm presented
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in [22]. The algorithm presented there has time complexity
©(2"/3), but requires ©(2"/?) quantum memory.

The algorithms discussed above primarily address
single-target preimage search for hash functions. However,
there is also interest in finding at least one preimage for a set
of hash values, known as multi-target preimage search: given
access to a random permutation H : {0, 1}* — {0, 1} and a
setT = {y1, ..., yx}, find the preimage of one of the y; by H,
ie,findie{l,...,2"} and x € {0, 1}" such that H(x) = y;.

The best classical algorithm finds one out of 2’ targets
with an exhaustive search in (2" 7). When ¢ < 3n/7 its
quantum time complexity is O@"2-1/0), with quantum
memory requirements of ©O(n). This approach in the Q1 setting
can be utilized to detect collisions and multi-target preimages
in hash functions. However, when using the algorithm to
attack encryption modes, it needs to operate in the Q2 setting,
as discussed in [15].

3) SIMON’S ALGORITHM

Simon’s algorithm [23] is a quantum algorithm designed to
solve the following problem: Given a function f : {0, 1} —
{0, 1} such that there exists ¢ € {0, 1}" satisfying the property
that for all x, y € {0, 1}, f(x) =f(y)ifand only ify =x ® ¢
or x =y, where @ denotes bitwise XOR. The objective is to
find c.

We can extend this algorithm to determine whether two
functions f and g satisfy g(x) = f(x & s) for all x and some
5. Classically this requires £2(2"/?) queries to the function f,
as per the birthday problem. In the quantum setting, using
Simon’s algorithm, this requires only ©O(n) queries, implying
an exponential speed-up. However, this algorithm requires
highly structured components, which makes it only suitable
in very specific cases.

This algorithm has been used in many attacks on modes of
operation and cryptographic constructions (see for example [1]
and [24]). Moreover, Simon’s algorithm was applied to
break established MAC and authenticated encryption modes,
along with conducting quantum slide attacks. These attacks
are generally very efficient [25] and the precise impact on
commonly used symmetric cryptography algorithms will be
explored in Section I'V.

The offline Simon attack: The aforementioned attacks using
Simon’s algorithm are in the Q2 model, where one requires
superposition queries to a quantum oracle. However, this is
not always of much practical use (see Section III). In [26]
a variant of Simon’s algorithm is proposed that can be used
in the Q1 model. They use it to attack the Even-Mansour
construction in quantum time @(2"/ 3) with ©(2"/3) classical
queries and O(n?) qubits (where 7 is the security parameter).
To the best of our knowledge Simon’s algorithm does not offer
any significant advantages in attacking AES.

4) KUPERBERG'S ALGORITHM
Kuperberg’s algorithm solves a relatively similar problem
as Simon’s algorithm. It solves the hidden shift problem

194716

(HSP). Let f, g be two injective functions, (G, -) a group.
Given the promise that there exists s € G such that, for all x,

f(x) = g(x-5), retrieve 5. The first sub-exponential (in quantum

query, and both quantum- and classical time) algorithms are
presented in [27]. They have a time and space complexity
of 200" for a group size of 2". Combination algorithms
such as Kuperberg4-Simon have been developed, followed by
improvements to the initial algorithms (for both see [28]).

Attack in the Q2 Model

The paper [28] introduces a quantum attack on the Poly1305
message authentication code (MAC), which is used in
protocols such as TLS 1.3. The MAC is designed to provide
a security level of 128 bits. The quantum attack has a time
and query complexity of 238, which raises concerns about its
quantum security, even though the attack is in the Q2 adversary
model.

5) DEUTSCH-JOZSA ALGORITHM

The Deutsch-Jozsa algorithm [29], together with Bernstein-
Vazirani and Shor’s algorithm are algorithms used in the
quantum variant of the classical linearization attacks, the latter
first introduced in [30]. These attacks target nonlinear terms
in a block cipher and replace them with linear terms in order
to obtain the secret key.

The Deutsch-Jozsa algorithm is a deterministic quantum
algorithm that offers an exponential speed-up over any
deterministic classical algorithm when solving the Deutsch-
Jozsa problem. This problem is as follows: suppose we have
access to a black-box quantum oracle that implements a
function f: {0, 1} — {0, 1}. We are given the assurance that
this function is either constant (where it consistently produces
the same output) or balanced (meaning half the inputs map to
0 and the other half to 1). The task is to determine, by using
the oracle, whether f is a constant or balanced function. In the
classical world we would, in the worst case, have to check
2"=1 4 | function values. The Deutsch-Jozsa algorithm does
it within 1 query.

The Deutsch algorithm [31] is a special case of the
Deutsch-Jozsa algorithm for n = 1. It solves the problem
with 1 query instead of the 2 needed queries in the classical
case. This might seem like a negligible speed-up, but it is
crucial when the same function cannot be queried more than
once.

In [32, Section 3.1] two attacks utilizing Deutsch-Jozsa on
symmetric cryptography are given.

Attacks in the Q2 Model

Attack on ®CB: OCB is an advanced mode of operation that
offers a higher-level abstraction compared to OCB3, which is
itself extension of OCB. In ®CB, the block cipher is replaced
by a tweakable block cipher (see [33] for the meaning of
tweakable). Notably, [32] successfully executed a forgery
attack, creating legitimate messages without prior knowledge
of the encryption key. This attack can be avoided by choosing
the initial value (IV) in a clever way [34].
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XOR MACs: A XOR MAC (message authentication code)
[35] is a method for verifying the authenticity and integrity
of transmitted messages. They are considered classically
secure, if their underlying finite pseudorandom function (cf.
Definition 9) family is secure. Using Deutsch’s algorithm
forgery attacks can be made.

Bernstein-Vazirani [36]: The Bernstein-Vazirani (BV)
algorithm solves the Bernstein- Vazirani problem: given access
to an oracle for a function f: {0, 1} — {0, 1}, that satisfies
f(x) = s - x for unknown s € {0, 1}" and - being the dot
product in F,, find s. Classically, this can be solved with n
queries to the oracle. In the quantum setting this can be done
within 1 query.

Attacks in the Q2 Model

Partial key recovery Even-Mansour: An attack on the
Even-Mansour construction, which relies on two keys denoted
as k1 and kp, is discussed in [37]. In this work, an algorithm
based on BV’s algorithm is introduced, allowing for the
recovery of one of the keys with an overwhelming probability.
This is achieved using n? queries (with 7 the bit size of both
k1 and k3), an exponential improvement over the classically
required 2"/? queries.

Quantum distinguisher on 3-round Feistel scheme: A
Feistel scheme is a classical construction for creating block
ciphers. Specifically, a 3-round Feistel scheme is constructed
using three random functions denoted as Pp, P, and P3. It has
been established that a 3-round Feistel scheme remains a
secure pseudorandom permutation (a bijective PRF), provided
that the internal functions are pseudorandom [38]. However,
in a study by Xie et al. [37], a quantum-based distinguisher is
developed using the BV algorithm, enabling the differentiation
between the 3-round Feistel scheme and a truly random
permutation.

Forgery attack: The attack on ®CB with Deutsch’s
algorithm can be generalised to also work with BV’s
algorithm [32].

Grover meets BV: In [39] both Grover’s algorithm and
BV’s algorithm are employed to perform attacks on several
round Feistel contructions. We have not seen any successful
attacks that break current block cipher implementations based
on Feistel structures (e.g., Camellia [40]).

Shor’s algorithm [41]: Surprisingly, Shor’s algorithm finds
its place in this list. Initially, Shor introduced his algorithm
for period finding, from which factoring and solving the
discrete logarithm problem are specific applications. Today,
we commonly refer to the factoring algorithm as Shor’s
algorithm. The factoring algorithm has a significant impact
on public-key cryptography but not as much on symmetric
cryptography. However, the period finding algorithm can
be used to attack symmetric cryptographic primitives. This
algorithm solves the following problem. Let (G, +) be a finite
abelian group of size 2", X an arbitrary set. Given access
to a function f : G — X that is either injective, or periodic,
determine the case and/or find the period.
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Classically, this requires subsequent queries to the function
until the output repeats, i.e., this takes ©O(2") queries to
the function. Using Shor’s algorithm this can be reduced to
O(poly(log(2)).

Attack in the Q2 Model
Poly1305: We have already talked about Poly1305 (a MAC to
provide 128 bits of security) when investigating Kuperberg’s
algorithm, but Shor’s algorithm can also be used. Kuperberg’s
algorithm required explicitly 238 quantum gates and the same
number of queries to an oracle. In contrast, the attack in [32]
using Shor’s algorithm only needs 32 superposition queries,
while still requiring the same number of quantum gates. This
represents a significant reduction in superposition queries.

We have discussed several algorithms that are used to
investigate the quantum security of symmetric cryptography,
but this list is by no means exhaustive. Various combinations of
the aforementioned attacks have led to intriguing discoveries
(see for example [42] for Grover+Simon, and [28] for
Simon+Kuperberg). Additionally, some attacks originally
designed using the Q2 model have been adapted to the Q1
adversary model (e.g. the offline Simon attack), albeit at a
reduced efficiency.

Quantum adaptations of classical attacks: The
boomerang attack [43] is a differential attack that exploits the
structure in block cipher designs to recover the key. A quantum
variant (the quantum boomerang attack) was explored in [44].
Although faster than its classical counterpart, the attack was
shown not to exceed the quadratic speed-up of Grover’s
attack.

Similar conclusions were drawn in [45], where quantum
adaptations of linear and differential cryptanalysis were
explored. These adaptations achieved quadratic speed-ups but
did not exceed Grover’s results for keys that are the same size
as the block size. Interestingly, however, they found that the
speed-up of these attacks increases when the key size exceeds
the block size.

IIl. RELEVANCE OF THE ADVERSARY MODELS Q1 AND Q2
Most of the improvements regarding time complexity and
memory demands are happening in the Q2 adversary model.
In this section we investigate the relevance of this model
and compare it with the Q1 model. Recall the different
attacking models: Q0, Q1 and Q2 in the realm of symmetric
cryptography (see Section II-C).

A. Q1 MODEL AND ITS RELEVANCE

In the Q1 model, we consider classical infrastructure with
adversaries possessing quantum computers. This makes the
model extremely relevant due to store now, decrypt later
attacks. Moreover, there are many relevant attacks appearing
within the Q1 model, highlighting its significance, particularly
in the realm of asymmetric cryptography. For instance, RSA’s
security relies on the difficulty of factoring large integers,
a problem efficiently solvable by Shor’s algorithm on a
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quantum computer, without the need for superposition queries.
In symmetric cryptography, we have encountered a few Q1
attacks, such as the offline Simon attack, collision finding
algorithms, and brute force attacks. The last one uses Grover’s
algorithm and gives at most a quadratic speed-up. Additionally,
the threat of store now, decrypt later is only relevant in this
model and not in the Q2 model.’

B. Q2 MODEL AND ITS RELEVANCE

In the Q1 model, we have focused on cryptography running
on classical infrastructures with an adversary possessing a
quantum computer. This is extremely relevant due to store
now, decrypt later attacks. However, in the distant future,
one might envision a world where everyone has quantum
computers, a scenario that can be thought of as the Q2
model. This naturally grants the adversary more power.
Take, for instance, the Even-Mansour block cipher (discussed
in Section II-E). This cipher is considered classically
computationally secure.® However, when examined in the
Q2 model, it is completely broken. In [1], an algorithm is
presented that can break the Even-Mansour cipher with a
complexity of O(n) (with n the security parameter), a huge
improvement compared to the classical approach with a
complexity of ©(2/%). This is a big result, implying that
some algorithms that are considered classically secure will
not remain secure once we can make superposition queries to
an oracle.

As mentioned earlier, the Q2 model becomes relevant when
cryptographic algorithms operate on a quantum computer,
enabling superposition queries. In practice, one approach to
prevent adversaries from making such queries is to measure
the final state of an encryption process, ensuring all outcomes
are classical. This approach relies on a physical hardware
assumption, specifically the accurate implementation of this
final classicalization step, which can effectively protect
against quantum superposition attacks. Therefore, with
accurate physical implementation, it is feasible to achieve
Q2-secure schemes.

However, despite the potential effectiveness of such
a mitigation strategy, it is important to recognize the
practical scenarios where the Q2 model becomes relevant.
For instance, consider a future scenario described in [46],
where an adversary targets a classical encryption chip, and
by manipulating the chip’s physical environment, induces
quantum behavior, enabling him to query the device on a
superposition of plaintexts. It is not unreasonable to assume
that ongoing innovations like extreme miniaturization and
optical electronics will make it possible to induce quantum
behavior in future electronics.

While these situations seem unlikely, history regarding
cryptography shows it is wise to consider the worst-case
scenario, in this case where the adversary can query the target

5The Q2 model requires an oracle, which it can send superposition queries.
It cannot use harvested data, since this data was not a result of superposition
queries.

6Under existential forgery attacks and standard decryption attacks.
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device in superposition. Here are several more reasons why
this model should be considered:

1) Natural next step: The model assumes the adversary
has access to a quantum computer for computations. It is
reasonable to assume that when quantum computers are
strong enough to run algorithms to break cryptography,
we might also see situations where cryptography is run
on a quantum computer. Also, as illustrated above, the
cryptography targeted can run on a classical device
and might be manipulated to behave in a quantum
manner.

2) General security: Security in the Q2 model implies
security in any other scenario, except for related-key
attacks.

3) Non-triviality: This model does not immediately break
all cryptography. There are several proposed primitives
that remain secure in this model [2].

4) Potential Q1 attacks: Attacks in the Q2 model could
lead to the discovery of attacks in the Q1 model (e.g.,
the offline Simon attack as seen in Section II-E).

5) Practical scenarios: Situations may arise where
messages are encrypted in superposition, either by
accident or intention. For instance, an encryption
scheme integral to a quantum protocol using quantum
communication differs from a standard protocol resilient
to quantum adversaries [47].

6) Inherently immune systems: Creating systems inher-
ently immune to superposition attacks eliminates
the need for hardware designers to worry about
the quantum security aspects of its cryptographic
implementations [2].

C. OVERHEAD

A key question to consider is the overhead introduced
when aiming for security in the Q2 model. This overhead
can be addressed through either hardware implementations
or cryptographic adjustments, such as consistently using
Q2-secure schemes. Hardware-based approaches remain
speculative, as quantum computers have not yet advanced
to that level. On the cryptographic side, it varies. It is feasible
to choose a block cipher and mode of operation that are both
Q2-secure, since not all have been broken in the Q2 model
(see Section IV and Section V). In theory, one could use a
Q2-secure mode of operation like OFB or CTR (cf. Table 3)
and add Q2-secure authentication on top. However, this
approach is often error-prone, and authenticated encryption
(AE) is generally preferred in situations that require both
authentication and confidentiality. Most widely used AE
schemes are not Q2-secure (cf. Section V-C), but there are
promising proposals like QCB. Nonetheless, its practical
performance remains unknown.

IV. SECURITY OF BLOCK CIPHER PRIMITIVES
In previous sections, we have discussed adversary models,
both classical and quantum, as well as important quantum

VOLUME 12, 2024



S. E. Bootsma, M. De Vries: Survey on the Quantum Security of Block Cipher-Based Cryptography

IEEE Access

algorithms relevant to the security of block cipher-based
cryptography. We now outline some security concepts, discuss
which block ciphers have been broken, and look into specific
quantum attacks on block ciphers.

A. SECURITY NOTIONS

Classical and quantum generic attacks: By generic attack,
we mean brute-forcing the key. If an attack demonstrates
greater efficiency’ than a brute force attack, it suggests the
block cipher is broken. In the realm of quantum computing,
Grover’s algorithm can be used for brute force attacks, and is
considered the generic attack. It provides a quadratic speed-up
compared to classical brute force. For future reference,
we define the security of a block cipher.

Definition 11 ((Quantum) Security of Block Ciphers): A
block cipher E is considered broken if an attack is known that
is markedly more efficient than the generic attack: classically,
a brute force search for the key, and in the quantum setting,
a Grover’s search for the key.

Remark 2: The notions of a block cipher being broken and
being secure are distinct. To deem a block cipher secure,
it must not be broken, and the brute force attack must be
computationally infeasible. This typically means that the brute
force attack requires an average of 2!?% operations to perform
(cf. level 1 [48, p.16]).

Security margin: Many block cipher primitives utilize
internal rounds, which involve a repetition of the same steps.
Each round contributes to the security® of the cipher. The
security margin is defined as the highest number of rounds for
which an attack has been found to be more efficient than the
best generic attack [9].

Impact of Grover’s algorithm: In classical cryptography,
brute force attacks have a complexity of ©O(2"), where n
denotes the security parameter (often equal to the key length).
In the quantum realm, Grover’s algorithm stands as the best
generic attack, characterized by a complexity of ©(2"/?).

B. BROKEN BLOCK CIPHERS

We investigate which block ciphers are susceptible to attacks
more efficient than Grover’s search akin to Definition 11.
Given the immense number of ciphers out there, we only
focus on well-known algorithms or those that have excelled in
recent cryptographic competitions. Noteworthy competitions
include the NIST Lightweight Cryptography Competition
(Lightweight) and the CAESAR competition (CAESAR).
Thus far, no attacks have been found against the AES block
cipher that are asymptotically more efficient than a Grover
search for the key (see Section VI for details on the security
of AES).

7Determining efficiency can be ambiguous. If the (asymptotic) complexity
of the attack is the same, a cipher may not be considered broken, as shown
with the Biclique attacks on AES in Section VI.

8This only holds up to a certain bound due to slide attacks [49].
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1) EVEN-MANSOUR
Introduced in 1997 [50], the Even-Mansour cipher is defined
as

EMY £, () = F(x @ K)) @ Ko,

where F is a publicly known permutation over n-bit strings,
and K and K are n-bit keys. The cipher aims to have a formal
proof of security while maintaining simplicity [51].

Its classical security proof shows that the best attack has a
time complexity of ©(2") for akey of length 2x. In [1] an attack
is presented, using Simon’s algorithm (see Section II-E) which
breaks the Even-Mansour cipher in the Q2 adversary model.
The main insight behind this attack is that the n-bit secret key
K acts as the period of the function EM‘IZI Ve (x) ® F(x). This
allows the use of Simon’s algorithm, as quantum queries to
EM% _k, (%) are permitted. The exponential speedup compared
to classical attacks comes from leveraging the algebraic
structure of EM‘E1 .k, (x) and its hidden period using Simon’s
algorithm. The follow-up paper [26], translated the Q2 attacks
into Q1 attacks. This was the first time it was shown that Q2
attacks can, under certain circumstances, be translated to Q1
attacks.

We remark that there is a variant of Even-Mansour, called
Tweakable Even-Mansour, which can be proven secure in the
Q1 model [52].

2) THE FX-CONSTRUCTION

Although the FX-construction [53] is not a block cipher itself,
it provides a straightforward approach to increase the key
length of a block cipher by combining a generic cipher with
the Even-Mansour cipher. As a result, it’s not surprising that
Simon’s algorithm is relevant in this context. This construction
is, for instance, applied in the PRINCE block cipher, which is
used to encrypt memory in certain types of micro-controllers
(see [54] and [55]).

Simon’s algorithm-based attacks, described in [42], effec-
tively break the FX-construction in the Q2 adversary model.
Similarly as in Section IV-B1, the follow-up paper [26]
translated these Q2 attacks into Q1 attacks. Although these Q1
attacks (on Even-Mansour and the FX-construction) are less
effective, they still outperform generic attacks, indicating that
the FX-construction is also compromised in the Q1 model.

3) SUMMARY OF EVEN-MANSOUR AND THE
FX-CONSTRUCTION
To summarize the complexities of quantum attacks (Q1 &

Q2) on the Even-Mansour and FX constructions, we present
Table 1:

4) PRINCE AND PRINCEV2

In [54], the attack from [26] on the FX-construction was
implemented to target the PRINCE cipher [57], which is a
64-bit block cipher with a 128-bit key. The classical security
of PRINCE is characterized by a data-time trade-off of D-T >
2126 where D represents the amount of plaintext-ciphertext
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TABLE 1. Summary of the complexity of quantum attacks (Q1 & Q2) on
Even-Mansour and the FX-construction for an n-bit block cipher with an
m-bit key [26].

Target Queries Time Q- C- Ref.
(model) memory’ memory*

EM(Q2) O(n) O(n?) O(m)  O(n?) ]
EM@QD) 0O(2V/3)  0(2v/3) O2'/%) o2/%) 1]
EM@QD) ©@23/7)  o@23/7) O(n)  ©@2Y7)  [56]
EM@QD) 023  0@32/%)  On?) ( ) [26]
FX(Q2) ©O®n2m/2)  ©®un®2m/?)  O(n?) [42]
FX(Q2)  O(n) O(n32/2) O(n?) (C) (n) [26]
EX (Ql)  ©(23mtn)/7)y(23(m+n)/7) ©(n)  ©(2m+t1/7)[56]
EX (Ql)  ©(2m+m/3) 9(n320m+tm/3) 9(n?)  ©O(n) [26]

 Quantum memory.
1 Classical memory.

TABLE 2. Precise quantum resources required to perform a key recovery
attack using the offline Simon attack on the PRINCE cipher [54].

Target Offline Operations Circuit Qubits Remarks
Queries Depth

PRINCE 248  265.0 254.9 214.0 with
query
limit

PRINCE 250 2644 2549 914.0 Without
query
limit

PRINCE 3 280-1 2757 28:0 Grover’s
key
search

pairs gathered by the adversary. In Table 2 we outline the
precise resources needed.

In the Q1 setting, the offline Simon attack proves more
efficient compared to the general attack (Grover’s key search),
thus technically rendering PRINCE broken.

In 2020, an updated version of the PRINCE cipher, known
as PRINCEv2, was introduced [58]. It features a different
key schedule and no longer employs the FX construction,
making it immune to the attack previously mentioned. To date,
no quantum attacks exploiting weaknesses in PRINCEv2 have
been discovered.

5) AEZV5, COPA, AND CLOC

AEZvS5 features a key size of 384 bits and was a third-round
candidate in the CAESAR competition, which aimed
to identify new authenticated encryption schemes. The
cipher incorporates several internal functions that, when
combined, enable Simon’s algorithm to discover periods.
It is vulnerable to a key recovery attack in the Q2 model,
as outlined in [59]. The attack, employing Simon’s algorithm,
demonstrated a time complexity of only 2!, In [25],
successful Q2 forgery attacks using Simon’s algorithm are
detailed against several CAESAR candidates, including
the third-round candidates COPA and CLOC. CLOC is
compromised due to its use of the CBC-MAC mode, which is
vulnerable to period-finding attacks. A similar vulnerability
affects COPA.
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C. ASCON

So far, we have discussed several ciphers featured in the
CAESAR lightweight cryptography competition. As an
honorable mention, we want to highlight Ascon, a lightweight
cryptographic cipher designed for resource-constrained
environments such as IoT devices and embedded systems.
It provides authenticated encryption with associated data
(AEAD) and is optimized for efficiency. Ascon was selected
as a winner in of the CAESAR competition and is recognized
for its strong security against both classical and quantum
attacks. To date, the only known quantum attack uses Grover’s
algorithm [60], requiring 1.26 - 215> operations to retrieve the
key for ASCON-128 (128-bit key).

D. COLLISION RESISTANCE

Collision finding algorithms (Section II-E) aim to identify
pairs of inputs to a function that yield identical outputs. The
security of hash functions relies heavily on their ability to
resist collision finding attacks. However, collision finding
algorithms can also pose threats to the security of block ciphers.
For instance, in 2016, the SWEET32 attack targeted 64-bit
block ciphers such as TDES, in combination with common
modes of operation [61]. This attack heavily relied on collision
finding algorithms. The complexity of a collision attack in
this context depends on the block size, not the key size.

In classical settings, the complexity of naive collision search
is ©(2"/?), due to the birthday attack. In the quantum setting,
the time complexity of naive collision search is @(22”/ 3) (see
Section II-E), requiring only O(n) quantum memory [15]°.
This implies that naive quantum collision search is somewhat
more efficient (@(20'4”) instead of ©(2°-")) for single-target
collision search) compared to the naive classical case, but there
is no quadratic speed-up like Grover’s attack. No literature has
been found that explicitly demonstrates weaknesses in block
ciphers through the use of quantum collision algorithms.

V. MODES OF OPERATION

Block cipher primitives are limited to encrypting or decrypting
a fixed-size block, and require additional techniques to handle
arbitrary message lengths. A mode of operation (or mode of
use) is used to chain multiple blocks together to support larger
messages and a padding scheme is used to pad the messages
in order to fit the block size. Modes of operation can also be
used to construct KDFs (key derivation functions) from block
cipher primitives, or to provide message authentication and
integrity guarantees.

We will examine common modes of operation (see
Section I-A), dividing them into encryption, authentication,
authenticated encryption and KDF modes. In Section VI-E,
we discuss these modes of operation when the AES algorithm
is used as the underlying block cipher.

9Qucmturn attacks with a time complexity of @(2”/ 3) also exist [22], but
these attacks involve a memory complexity of o@R"3), resulting in a higher
product (of time- and memory complexity) of ©22"/3) than the classical
attack, which has product of time- and memory complexity @2,
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TABLE 3. Security of encryption modes of operation in quantum settings,
according to [47], with added information on XTS from [62].

Mode IND-1CPA (Q1) IND-qCPA (Q2)
(with PRF) (with qPRF)

ECB No No No
CBC Yes No Yes
CFB Yes No Yes
XTS Unknown No (in spirit)t Yest
OFB Yes Yes Yes
CTR Yes Yes Yes

T A quantum adversary can recover part of the key and
plaintext. However, the security notion IND-qCPA is not
formally broken.

¥ Given some extra assumptions (next to the block cipher being
a qPRF) like the sector addresses being uniformly random
[62].

A. ENCRYPTION MODES

Table 3 provides an overview of the security of various
encryption modes of operation, assuming the underlying block
ciphers are at least classical pseudorandom functions (see
Definition 9). Given the numerous security notions, we focus
on the most common: IND-1CPA (in Q1) and IND-qCPA (in
Q?2), as detailed in Section II-B. Note that we do not include
any quantum CCA (chosen ciphertext attack) notions, as these
have not yet been properly adapted to the quantum setting.

Remark 3: The last two columns require further explana-
tion. The with PRF column assumes the underlying block
cipher functions as a classical PRF (cf. Definition 9), while
the with qPRF column assumes it behaves as a quantum PRF
(cf. Definition 10).

The ECB (Electronic Codebook) mode is insecure in all
scenarios and is not recommended for current applications
due to the amount of information it leaks [63]. Both CBC
and CFB modes are vulnerable in the Q2 model when the
underlying block cipher functions solely as a PRF and not
as a qPRF. In the case of XTS mode, commonly used for
disk encryption, a Q2 quantum adversary can recover parts
of both the key and the plaintext if the block cipher is not a
gPRF. The CBC, CFB, and XTS modes are all susceptible
to attacks using period finding through Simon’s algorithm.
Conversely, the OFB and CTR modes can achieve IND-qCPA
even when the block cipher is only a classical PRF. For
more details on the CBC, CFB, OFB, and CTR modes,
refer to [64].

B. AUTHENTICATION MODES
Instead of encryption, a block cipher can also be used for
authentication. We explore two block cipher modes: CBC-
MAC and CMAC, and include the hash-based HMAC for
comparison. Table 4 outlines the quantum security for each of
these authentication modes (see [5], [25] and [65]).

Unlike encryption, where IND-1CPA is the most commonly
used notion in QI, and IND-qCPA is the most commonly
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TABLE 4. Security of authentication modes of operation in quantum
settings.

Mode Q1 model

CBC-MAC  No literature

Q2 model
EUF-qCMA insecure’ [25]
EUF-qCMA securet [65]
EUF-qCMA insecure [25]

Source

HMAC
CMAC

No literature

No literature

T It is EUF-qCMA secure if both a nonce prefix variant and a gPRF
are used [5].

¥ Under the standard assumption that the underlying compression
function is a qPRF.

used notion in Q2, there is still ongoing debate about which
quantum security notions to use for authentication. Providing a
complete overview of all the notions would be overly complex,
so we only discuss the most frequently occurring: EUF-gCMA
and /PO (see Section II-B).

As in Section V-A, we assume that the underlying block
cipher or hash function is at least a PRF. It should be noted that
CBC-MAC and CMAC are EUF-qCMA insecure, regardless
of the type of underlying block cipher [25].

Once again, these insecurities come from the clever use of
period finding with Simon’s algorithm.

Remark 4: In the quantum realm, after approximately
O2/5)MAC’ed messages (see Section IV-D), using an n-bit
MACG, there is a significant likelihood of encountering two
distinct messages M1 and M, such that

MAC (M) = MAC(M>).

Consequently, finding collisions for both CMAC and
CBC-MAC using a block cipher with a 128-bit block size
requires, on average, 2°! operations. This scenario assumes
that the adversary can obtain enough signed messages.
Moreover, this poses a problem only if knowledge of two
messages with the same MAC enables the creation of the
MAC for a new message. The latter is a known vulnerability
for CBC-MAC with variable length messages, we do not know
whether this affects CMAC.

C. AUTHENTICATED ENCRYPTION MODES

The modes of operation mentioned above offer either
encryption or authentication, but not both. However, there
are modes that provide both functionalities, known as
authenticated encryption (AE) modes. The security of these
modes is typically modeled by separately considering their
encryption and authentication components. Therefore, we use
the same quantum security notions as discussed in Section V-A
and Section V-B. Table 5 gives an overview of the results
found.

We observe that for OCB, GCM, EAX, SIV, and (AES)-
OTR, their security remains unaffected regardless of whether
the underlying block cipher is a PRF or a gPRF.

Remark 5: Regarding SIV, it has numerous variants, but
our examination focused on the most generic variant [67].
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TABLE 5. Security of authenticated encryption modes in quantum settings.

Mode of Operation Q1 model Q2 model

. IND-qCPA insecure [62],

i q

ocB No literature EUF-qCMA insecure [25]
CCM No literature No literature®

. IND-qCPA insecure* [5],
GCM No literature EUF-qCMA insecure [25]
CwWC No literature No literature

. IND-qCPA insecure,
EAX No literature EUF-qCMA insecure [3]

. IND-qCPA insecure,
SIV No literature EUF-qCMA insecure [5]
(AES-)OTR No literature  LNVD-dCPA insecure [66],

EUF-qCMA insecure [25]

T OCB has 3 variants. OCB2 is not classically secure. We only look
at OCB1 and OCB3 here.

1 [25] mentions that the attacks he found (based on Simon’s algorithm
in Q2) do not apply to CCM, because of its nonce use, which might
give a positive indication towards its quantum security.

* GCM can be IND-qCPA secure if a specific nonce length is used
[5], but this does not counter the EUF-qCMA insecurity found by
Kaplan [25].

Observing the table above, it is clear that many modes
of operation are insecure in the Q2 model, and none have
been proven secure in Q2. Some attacks compromise both the
authentication and encryption aspects, as seen in the cases of
OCB and GCM. Despite this, much remains unknown about
these AE modes, particularly regarding their security in the Q1
model. Ongoing research investigates Q2-safe authenticated
encryption, with promising proposals like QCB (see [34], [68]
and [69]).

Remark 6: All of these attacks can be executed using
Simon’s algorithm in some capacity, either through period
finding or linearization [32]. With the exception of the attacks
on OCB3 authentication, which can be carried out using
Deutsch’s algorithm (cf. Section II-E).

D. KEY DERIVATION FUNCTIONS

Key derivation involves generating one or more cryptographic
keys from a secret using a PRF. This process is typically carried
out by key derivation functions (KDFs). These functions are
commonly employed to enhance the entropy of low-entropy
inputs, such as human-generated passwords, or inputs that do
not possess the required characteristics. For example, TLS
1.3 and the Signal double ratchet protocol use HKDF [70],
a KDF based on HMAC, for this purpose [71]. While most
KDFs are based on hash functions, some utilize block ciphers,
as shown in NIST SP 800-108 Rev. 1 [13].

KDFs will play a crucial role in hybrid post-quantum pro-
tocols, which involve utilizing two key exchange algorithms—
one quantum-safe and one that is not, such as x255194+ML-
KEM [72]. The outputs of both algorithms must be combined
into a single secret key. Proposals for these key combiners
suggest the use of KDFs [73]. Specifically for this purpose,
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the chosen KDF should act as a dual-PRF, functioning as a
PRF with two input keys and remaining secure even if one of
the inputs is compromised or malicious.

o Security: The security of a key derivation function is
evaluated based on the extent to which we can distinguish
its output from a genuinely uniformly distributed bit
string of the same length [70].

o Quantum: No quantum attacks targeting KDFs (either
block cipher or hash based) have been found in the
literature.

The quantum security of key combiners and quantum
dual-PRFs has only recently gained attention, as highlighted
in [71] and [74]. The theoretical understanding in this area is
still developing, and much research is needed before definitive
security claims can be made. For instance, there is no proof
that the KDF used in the quantum-safe standard [73], which
incorporates KMAC-128, KMAC-256, SHA3-256, and SHA3-
512, functions as a quantum dual-PRF. Additionally, [75]
proposes a hybrid scheme that simply concatenates both
outputs and uses HKDF, the standard KDF in TLS 1.3.
However, HKDF is only proven to be a quantum PRF, not
a dual-PRF [71]. Although these methods are based on hash
functions and fall outside the scope of this paper, we emphasize
the lack of proofs as a significant issue.

E. QUANTUM SIDE-CHANNEL ATTACKS

The focus in this paper has been on the cryptographic security
of block ciphers. We have not looked at potential benefits
of quantum computing to side-channel attacks. Very little is
known in the case that a potential quantum adversary has more
information due to potential side-channel leakage. In [76] a
side channel attack is shown which gives another quadratic
speed-up on top of Grover’s algorithm. However, we could
not find more literature regarding this topic.

VI. SECURITY OF AES AND ITS MODES OF OPERATION

In this section, we delve into the most prevalent symmetric
cryptographic cornerstone of today’ the Advanced Encryption
Standard (AES). We review its classical security, compare
it with known quantum attacks and aim to give a thorough
overview on the quantum security of AES.

A. THE CLASSICAL SECURITY OF AES

AES comes in three versions: AES-128, AES-192, and AES-
256, each defined by a unique key size. These different
key sizes make brute force attacks infeasible, requiring
approximately 2128, 2192 or 2256 gperations, respectively.
Up until the time of writing no classical attacks have been
found that drastically decrease the number of operations
needed to break AES. The only attack on full'® AES is the
Biclique attack [77] reducing the complexity by a factor of 4.
Table 6 gives the precise numbers.

10Fy11 AES means the version of AES as intended, so not the reduced
round version.
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TABLE 6. Classical key recovery attacks on AES.

AES Biclique complex-  Brute force com-  Data complexity

version ity plexity

AES-128 21261 operations 2128 operations 288 plaintext-
ciphertext pairs

AES-192 2189.7 operations 2192 operations 280 plaintext-
ciphertext pairs

AES-256 22544 gperations 2256 operations 240 plaintext-

ciphertext pairs

TABLE 7. Quantum resource estimates for Grover's algorithm to attack
AES-k, where k € {128, 192, 256) [80]. Two types of gates, T and Clifford,
were used to construct the circuits.

‘ #gates ‘ deptht ‘ #qubits
k| T Clifford | T overall |
128 | 1.19.286 1.55 - 286 1.06 - 280 1.16 - 281 2953
192 | 1.81-2118 1.17.2119 | 1.21.2112 133.2113 4449
256 | 1.41-2151  1.83.2151 | 144 .2144 157.2145 6681

T The longest path in the circuit.

The speed-up from the Biclique attack is so little and the
amount of data needed is so huge that most literature omits
the attack and still says that AES is secure.

B. THE QUANTUM SECURITY OF AES

It is often recommended to double the key size as a precaution
against Grover’s attack, a principle that applies to AES
as well. However, doubling the AES key size to counter
Grover’s algorithm is considered conservative due to several
factors. Quantum computing hardware will likely be more
costly to build and operate than classical hardware. Moreover,
Zalka demonstrated [78] that achieving the full quadratic
speed-up of Grover’s algorithm requires all steps to be
performed sequentially. While brute-force attacks are typically
parallelized in practice to reduce the time required to break
a key, parallelizing Grover’s algorithm is inefficient and
significantly reduces its advantage.

Several authors have delved into the precise evaluation of
the quantum resources involved in Grover’s attack on AES,
with a comprehensive overview provided in [79]. There are
three main practical resources needed for a key recovery
attack on AES using Grover’s algorithm. The number of
qubits, the number of quantum gates and the number of
plaintext-ciphertext pairs needed. In Table 7 we outline some
of the resources needed to attack AES with a brute force search
as found in [80].

Due to the overhead associated with implementing AES as
a quantum circuit in Grover’s algorithm, the costs are signifi-
cantly higher than 2%, Additionally, these implementations
require a substantial number of Clifford gates, which are
notoriously expensive to execute. In the 2017 NIST call for
post-quantum cryptography (PQC), 2% gates were defined
as the approximate number that atomic-scale qubits could
perform in a millennium, constrained by the speed of light [48,
p. 17]. This comparison illustrates that the 286 Clifford gates
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needed to attack AES-128 is substantial. Given that Grover’s
algorithm does not parallelize well, the practical implications
suggest that doubling your key size when using AES-128 may
not be necessary.
Quantum attacks on AES

Our discussion has focused on Grover-based brute force
attacks against AES, as there are currently no other known
quantum Q1 or Q2 attacks that offer greater efficiency.
Nevertheless, there are quantum attacks identified on reduced-
round AES, which will be explored in more detail in
Section VI-D.

C. CLASSICAL SECURITY MARGIN OF AES

The algorithm AES consists of a number of transformation
rounds: 10, 12 and 14 rounds for AES-128, AES-192, AES-
256 respectively. The security margin of AES is the number
of rounds for which an attack exists with a time complexity
lower than 2128 (or 2196 op 2256). If this margin is lower than
the total chosen number of rounds in the complete cipher, it is
considered secure.

For instance, in AES-128, one of the most potent classical
attacks is the impossible differential attack [81], which can
target up to 7 rounds with a time complexity of approximately
2195 and memory complexity of 272. Given that AES-128
consists of a total of 10 rounds, it remains secure in the
classical context. On the other hand, for AES-256, the leading
attack!! is the Demirci-Selguk Meet-in-the-middle attack (DS
MITM) [82], which can address up to 8 rounds with a time
complexity of approximately 220, As the primitive employs
14 rounds, it remains secure in the classical domain.

Remark 7: There are more powerful attacks than the
above attacks. For example there are related-key attacks
on AES-256 that target 10 rounds with a time complexity
of 2% [83]. However, in these attacks the adversary needs
information about the interrelation between different keys
(see Section II-C), hence there relevance could be subject to
debate.

D. QUANTUM SECURITY MARGIN OF AES

For reduced-round AES-128 and AES-192, the most effective
known quantum attacks that outperform a straightforward
Grover search are quantum square attacks, which target
6 rounds for AES-128 and 7 rounds for AES-192, respectively.
These attacks, as detailed in [9, Appendix A], still rely on
Grover’s algorithm but are more efficient than generic attacks
on AES with the specified number of rounds.

The most effective quantum attack at the moment of
writing for AES-256 is the quantum Demirci-Selguk meet-
in-the-middle attack (qDS-MITM) [9]. While using Grover’s
algorithm quantum DS-MITM outperforms Grover’s generic
key search for up to 8 rounds (if applied to 9 rounds, Grover
key search becomes more efficient). Given that the primitive
uses 14 rounds, it remains secure in the context of a quantum
adversary model. In Table 8 we summarize these results.

llExcluding related-key attacks.
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TABLE 8. Quantum security margin of AES (with classical margin to
compare).

Version Rounds Rounds Rounds Best Source
reached?  reached? wused in  quantum
(classi- (quan- AES attack
cally) tum)
AES-128 7 6 10 Quantum  [9]
square
attacks
QD
AES-192 8 7 12 Quantum [9]
square
attacks
QD
AES-256 9 8 14 qDS- [9]
MITM
QD

T Important: Note that for the classical case, the comparison is made
against classical brute force search, while for the quantum case, the
comparison is made against Grover’s search.

The above attacks on reduced round AES takes place in
the Q1 model. No attacks in the Q2 model have been found
yet. For now it seems that the only classical attacks that have
been accelerated more than quadratically are so-called slide
attacks (first described in [49]) using Simon’s algorithm (see
Section II-E). However, AES seems to be immune to these
attacks. While there exists a potential acceleration of the
classical impossible differential attack within the Q2 model,
the speed-up is less than quadratic. Notably, it appears that
AES demonstrates a resistance to the exponential accelerations
commonly encountered in the Q2 model, as discussed in [9].

E. SECURITY OF MODES OF OPERATION WITH AES

As discussed in Section V, it is evident that not all modes of
operation are secure in a quantum setting, particularly in the
Q2 model. For some modes, security within the Q2 model
depends on whether the employed block cipher functions like
a gPRF (see Section V-A).

AES is designed to function as a pseudorandom function in
classical settings, generating output that is indistinguishable
from a truly random function. This property is crucial
when assessing the IND-qCPA security of cryptographic
constructions such as CBC, CFB, OFB, and CTR. Currently,
no Q1 nor Q2 attacks on AES are more efficient than
Grover’s attack. Due to this lack of attacks, AES-256!2
is widely recognized as a qPRF, ensuring security in its
encryption/authentication modes (see Table 3 and Table 4).
However, for authenticated encryption, both GCM and OCB
are insecure in the Q2 model, regardless of the properties of
AES.

12Only AES-256 is considered a qPRF (see Definition 10). Due to Grover’s
attack, the probability of distinguishing the output of AES-128 and AES-192
from a truly random function becomes non-negligible, violating the definition
of a qPRF.
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VIl. SOME OBSERVATIONS AND UNANSWERED
QUESTIONS

o Almost all current quantum attacks are based on Simon’s
algorithm in the Q2 model, which is important to keep
in mind when designing new block ciphers and block
cipher-based constructions.

o AES-256 is currently considered to be a quantum
pseudorandom function, which means that, when used
with an appropriate mode of operation, it is quantum-
secure.

o There are very few provably secure authenticated
encryption modes in the quantum setting. Research is
needed to develop such modes, with a promising start
made with QCB (see [34]).

o Some attacks ( [17] and [18]) rely on QRAM (cf.
Insight 1). However, the feasibility of QRAM in the near
future is debated [16]. The relevance of these attacks
depends on the development of QRAM, making it an
important research area to monitor.

o The debate on quantum versions of security definitions
in both the Q1 and Q2 model for authentication and
authenticated encryption has not been fully concluded
yet, making it difficult to draw conclusions.

o The quantum security of KDFs and key combiners is
often assumed when the underlying block cipher is secure,
but explicit proof is missing.

o The QI security model is the most relevant in the short
term, yet most research has focused on the Q2 model.
More investigation is needed into the Q1 security of
authentication and authenticated encryption modes of
operation. Ideally, proofs within the Q1 model should be
provided, if possible.

o In practice, the high cost of implementing Grover’s
algorithm on AES reduces the urgency or necessity to
double the key size.
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