o~
L]

a .
— “‘J future internet

Article

A Novel Framework for Cross-Cluster Scaling in Cloud-Native
5G NextGen Core

Oana-Mihaela Dumitru-Guzu 1@, Vlideanu Cilin 1**

check for
updates

Citation: Dumitru-Guzu, O.-M.;
Cilin, V.; Kooij, R. A Novel
Framework for Cross-Cluster Scaling
in Cloud-Native 5G NextGen Core.
Future Internet 2024, 16, 325.

https:/ /doi.org/10.3390/£i16090325

Academic Editor: Paolo Bellavista

Received: 7 August 2024
Revised: 25 August 2024
Accepted: 2 September 2024
Published: 6 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Robert Kooij 2

Department of Telecommunications, Faculty of Electronics and Telecommunications Systems,
Polytechnic University of Bucharest, 061071 Bucharest, Romania; oana.ungureanu30@gmail.com
Department of Network Architectures and Services, Faculty of Electrical Engineering,

Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, The Netherlands;
r.e.kooij@tudelft.nl

Correspondence: calin@comm.pub.ro

These authors contributed equally to this work.

Abstract: Cloud-native technologies are widely considered the ideal candidates for the future of
vertical application development due to their boost in flexibility, scalability, and especially cost
efficiency. Since multi-site support is paramount for 5G, we employ a multi-cluster model that scales
on demand, shifting the boundaries of both horizontal and vertical scaling for shared resources.
Our approach is based on the liquid computing paradigm, which has the benefit of adapting to the
changing environment. Despite being a decentralized deployment shared across data centers, the
5G mobile core can be managed as a single cluster entity running in a public cloud. We achieve
this by following the cloud-native patterns for declarative configuration based on Kubernetes APIs
and on-demand resource allocation. Moreover, in our setup, we analyze the offloading of both the
Open5GS user and control plane functions under two different peering scenarios. A significant
improvement in terms of latency and throughput is achieved for the in-band peering, considering the
traffic between clusters is ensured by the Liqo control plane through a VPN tunnel. We also validate
three end-to-end network slicing use cases, showcasing the full 5G core automation and leveraging
the capabilities of Kubernetes multi-cluster deployments and inter-service monitoring through the
applied service mesh solution.

Keywords: multi-cluster; liquid computing; multi-cloud; network slicing; vertical and horizontal
scaling

1. Introduction

Network slicing architecture has emerged in 5G as a key feature to efficiently support
dynamic resource allocation in a multi-tenant environment, as it offers solutions for isolating
the network for various industries and use cases. In this manner, the mobile network
operators (MNOs) can configure and manage the control plane and user plane network
functions along with the corresponding resources (e.g., access, transport, and core networks)
to support various slice/service types (SST). A network slice can be defined as a logical
end-to-end network that is dynamically created, and a user may access multiple slices
over the same gNB. Each slice may serve a particular service type with an agreed-upon
service-level agreement (SLA) [1].

In the technical specification, TS 23.501 v16.4.0 [2], the 3rd generation partnership
project (3GPP) provides a standardized classification to classify different services: enhanced
mobile broadband (eMBB) services, ultra-reliable low-latency communications (URLLC)
services, massive internet of things (IoT) services (MIoT), and vehicular-to-everything
communications (vehicles, infrastructure, pedestrians, etc.). Network slicing is mostly
tackled in the existing solutions through network virtualization, which is encompassed
by the NFV MANO (network functions virtualization management and orchestration)

Future Internet 2024, 16, 325. https:/ /doi.org/10.3390/£i16090325

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16090325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0008-7214-4579
https://orcid.org/0000-0002-4213-6411
https://orcid.org/0000-0001-8654-1550
https://doi.org/10.3390/fi16090325
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16090325?type=check_update&version=1

Future Internet 2024, 16, 325

2 0f 22

framework to manage and orchestrate VNFs (virtualized network functions). An important
pillar addressed by NFV MANO is service availability and systems capacity to deal with
failover, whereas the operation support system (OSS) and business support system (BSS)
do not fulfill the recovery and failover role for network slicing. Moreover, the existing
NFV MANO systems such as ONAP [3] and OSM [4] are dedicated to onboarding and
instantiating VNFs, but regarding application runtime orchestrations, it has been observed
that they lack the ability to scale operations properly [5]. Especially due to the increase in
traffic reflected on both the user and control plane, the scalability becomes a virtualization
deployment challenge [6,7]. Another challenge that network slicing imposes in terms
of intensive computational power is the efficient management and utilization of the re-
sources [8,9]. Most of the deployments are limited in terms of physical or virtual resources,
whereas network slicing for different verticals requires consistent amounts of network-
ing, computing, or storage resources to be allocated on demand. Security is a mandatory
requirement when it comes to the operational aspect of the telco network, therefore any
open-source implementation of the mobile stack needs to adhere to the security standards
in terms of multi-site deployments [10]. Service monitoring is also a recurrent concern in
the multi-layered architecture of 5G, which might require data aggregation from multiple
sources to be able to ensure SLA monitoring at each level of the mobile stack [11,12].

The GSMA [13] paper handles the end-to-end network slicing through network au-
tomation, which is an important requirement in supporting the deployment of slices
through APIs provided by a network slice provider. The network automation technology is
expected to roll out network slices and modify them in an agile and automated fashion.
In contrast to the limited capabilities of virtualization for scaling of network slicing, the
container orchestration, specifically Kubernetes standalone, which is the de facto standard,
leverages automation for cloud-native life cycle management such as automatic scaling,
scheduling, and self-healing independently of the lack of resources at the edge of the
network [14]. In contrast to the classical cloud applications, telco applications are geo-
graphically distributed across multiple data centers. The main challenge in cross-location
deployments is the service performance, especially for delay-sensitive services, which
might experience delay, jitter, or packet loss. Nevertheless, a drawback of the current
cloud-native solutions for 5G mobile core deployment is that they are centered around Ku-
bernetes standalone clusters and lack a broader approach for multi-clusters and multi-cloud
scenarios in terms of automation of network slicing.

Unlike other standalone Kubernetes deployments, this paper addresses the Kubernetes
full-stack capabilities in terms of multi-cluster scalability for a multi-site 5G deployment by
introducing a new framework to scale both horizontally and vertically the resources shared
across isolated Kubernetes clusters. Moreover, due to the Kubernetes APIs that work over
the internet, the connectivity can be extended to different cloud providers as well as to
on-premises sites. This emphasizes the idea of unlimited and on-demand utilization of
resources for a 5G mobile core instance running as cloud-native.

We consider our contributions fourfold below:

* Our main contribution depicted in Figure 1 covers all layers of the MANO framework
since it addresses the multiple concerns in terms of self-management, scheduling,
scalability, end-to-end service monitoring, and foremost the multi-site deployment
performance challenge. We also compare the two frameworks and map the correspon-
dence between the functional blocks. Another important aspect of this approach is
the network isolation provided by the cloud ecosystem, which uses the concept of
tenants running in separate data centers. In our proposed design, we benefit from
the Kubernetes capabilities in terms of operators, which are software extensions; in
our case, the Liqo operator [15] runs inside the cluster. Moreover, by peering multiple
Kubernetes clusters using Liqo, we ensure unlimited capacity and resources for the
scalability and deployment of mobile core, which unblocks the barriers for network
slicing and on-demand resource consumption.

Future Internet 2024, 16, 325 30f22

* A secondary contribution concerns the comparison between different mechanisms
for Ligo offloading. In our setup, we use Liqo to peer the clusters and employ the
Kuelet [16] component, which is part of the Kubernetes architecture to operate at the
level of eachb node. In this manner, we can offload the workload between clusters that
reside in different tenants as well as separate data centers and regions in the public
cloud. We test and analyze three scenarios for offloading the control and user planes
of the 5G mobile core. To demonstrate the flexibility of the cloud-native approach, we
run the Open5GS [17], which is an open-source simulator for virtualized 5G mobile
cores that we run in containers orchestrated by Kubernetes.

* The third contribution consists of the system’s performance validation, which is
achieved by configuring and deploying end-to-end network slicing corresponding to
three verticals, which is analyzed in terms of latency and throughput for the proposed
offloading scenarios. In order to configure the slices, we use UERANSIM [18], which
is an emulator for the RAN (radio access network).

¢ The fourth contribution looks at the telemetry solutions; hence, we endow our setup
with the monitoring capabilities for inter-service communication by employing Is-
tio [19] specific to service-mesh topologies.

Furthermore, this paper is structured as follows: Section 2 gives an overview of the
existing body of literature for existing ETSI MANO (network functions virtualization
management and orchestration) open-source projects as well as cloud-native testbeds that
validate end-to-end network slicing scenarios. Additionally, in Section 3, we provide
a thorough correlation between the MANO framework and Kubernetes orchestration,
assessing scalability for multi-cluster and multi-cloud deployments. In Section 4, we
present our setup and configuration for the three proposed offloading scenarios of the 5G
user and control planes. The following two Sections, Sections 5 and 6, reveal an in-depth
view of the functionality of the testing environment as well as highlight the differences
between out-of-band and in-band peering in terms of configuration and deployment model.
Moreover, Section 7 presents the evaluation of our results in terms of throughput and
latency for the three instantiated network slices. In our final Section 8, we present our
findings along with the proposed future work.

Containers (VNFM)

Virtualised Infrastructure NFV Infrastructure (NFVI)

l S :
: 5l B -
M 1M . -
@ EEEE (i) N chr(uaI |Virtua| Storage| |Virtua| Netwok|
é VM HDD Storage : ompute

Figure 1. Proposed framework for network slicing in cloud-native 5G core.

8
‘k ISt | 0 Service Mesh :_};
-~ o
Q) envo » :
(@ Y ¢ "f’ NFV Orchestrator (NFVO) - (o} (Service Orchestration)
5 :
Ligo Cluster g
z
I =
o
>
©
- .
g VNF NS NFV NFVI : EM1 EM 2 EM3
3 :
< :
0 Open5GS g : I I I
& Text :
= :
_5 : VNF/CNF 1 VNF/CNF 2 VNF/CNF 3
docker § VNF
w
=
S
2
o
z
=
o
>
©
-
e
3
°
=
]
©
&
3

2. Related Work

The existing body of literature around network slicing is divided between virtual-
ization achieved in the MANO framework with a dedicated orchestration function and
Kubernetes deployments that cover the full stack, including the flexibility of network
functions, service recovery, and monitoring. The MANO framework handles dynamically

Future Internet 2024, 16, 325

4 0f 22

the onboarding, instantiating, scaling, and terminating of network slices, while OSS/BSS
(Operations and Business Support Systems) is responsible for the static provisioning and
de-provisioning of network slices in a virtualized environment.

From a virtualization point of view, a classification encountered in the literature
consists of two categories of testbeds that address the deployment of network slices: the
first category is limited to a set of functionalities; the second one addresses the end-to-end
capabilities. Initiation of the network slicing is present in many of the existing open-source
systems, such as OSM [4] and ONAP [3], SONATA [20], OpenStack Tracker [21], and
Cloudify [22]. However, both OSM and ONAP systems offer mechanisms to track and
restore the services. The authors Yilma et al. are addressing in paper [23] the challenges
and gaps of the OSM and ONAP in terms of missing full stack functionality. The authors
propose several benchmarks for both functional and operational KPIs that are validated in
their test scenarios.

The first category we address does not tackle the E2E network slicing [14,24-26]. For
instance, Arampatzis et al. are deploying in paper [24] the network function instantiation
and management based on OPNFV [27], with OpenStack [28] as VIM (Virtualized Infras-
tructure Manager) and VMware [29] as a hypervisor. This approach shows the capability
of NFVO (NFV Orchestrator) to serve as a network service and resource orchestrator.

The second kind of virtualization testbeds encompasses the full stack capabilities
of MANO for management of E2E network slicking [30-39]. In this regard, the authors
Chang et al. introduce in paper [33] a slightly different architecture where the network
slices are coordinated at both MANO and OSS/BSS levels. A qualitative comparison of
three systems is conducted: Tracker, standalone OpenStack, and free5SGMANO [40] in
terms of configuration and fault management of the network slices.

In regards to Kubernetes deployments, there are also several tools available that
leverage the DevOps capabilities of Kubernetes. An open-source tool of this kind in which
network slicing initiation occurs at both MANO and OSS/BSS layers is Aether [37]. The
design consists of a set of centralized components named Aether Central, which manages
several edge sites. Other tools such as 5G-Berlin [38] and 5Genesis [39] present a 5G
network to deploy and run applications of verticals on top of NFV infrastructure. Network
slicing capabilities as well as mobile edge computing are addressed in a cloud-native NFV
MANO implementation.

The cloud-native deployments can also be categorized in two different directions:
the first one presents the standalone deployments enhanced with monitoring capabilities,
whereas the second category looks at multi-cluster deployments that can be monitored
and observed through service-mesh solutions. Currently, no Kubernetes-native standard
is defined, but some popular standards have emerged (such as Prometheus [41] and
OpenTelemetry [42]) for monitoring and collecting metrics purposes, where KPI solutions
can be configured.

A significant amount of papers envision the mobile 5G core as a cloud-native appli-
cation orchestrated in a standalone Kubernetes cluster [43-46]. In paper [47], the authors
Arouk et al. describe in depth the CI/CD provisioning workflow of the 5G mobile core
and introduce a customized Kubernetes operator called Kube5G-Operator. This operator
aims to provide both reconfiguration and reconciliation in case of service failure based
on the CR (custom resources). In this manner, the performance in terms of both UDP
and TCP traffic is improved significantly compared to the bare-metal setup. Paper from
Barrachina-Mufioz et al. [48] employs the Open5GS tool, where all the network functions
are running in containers. For the RAN, Amarisoft is used, whereas in terms of monitoring,
Prometheus and Grafana [49]. The same authors are concentrating in paper [50] on the
monitoring capabilities for a cloud-native 5G deployment with Open5GS. The connectivity
for RAN is facilitated by using the physical installation of Amarisoft Callbox [51].

Multi-cluster Kubernetes deployments are present in several papers that deal with
scalability challenges as well as service-mesh solutions. One of the proposed solutions for
scaling the control plane is presented in [52]. In this setup, RedHat makes use of the HPA

Future Internet 2024, 16, 325

50f22

(HorizontalPod Autoscaler) to scale the 5G CNFs and validates the results by employing
service monitoring using the Istio service mesh. Ungureanu et al. present in paper [53]
a novel design for a declarative abstraction for cloud-edge communication using CAPI
(Cluster API) [54] for infrastructure automation. In this manner, it is possible to deploy,
scale, and manage Kubernetes multi-clusters in on-premise and multi-cloud environments
using a Kubernetes lightweight distribution, K3s [55]. Also, Mfula et al. [56] emphasize the
need for scaling the MEC (multi-access edge computing) architecture across environments
in a declarative fashion through CAPIL An extensive survey among stakeholders with an
analysis of the results is also conducted. A multi-cloud federated Kubernetes solution is
presented by Osmani et al. in paper [57] that makes extensive use of a network Service
Mesh (NSM) tool taking into account real-time and geographically distributed workloads.
In terms of inter-service communications, Ungureanu et al. [58] employ Linkerd [59] as a
solution for the service mesh.

3. Comparison between ETSI MANO and Kubernetes

The traditional ETSI MANO framework relies on virtualization at its core. In Ku-
bernetes, the applications are containerized on top of virtualization and referred to as
containerized network functions (CNFs). Nevertheless, an accurate mapping between
ETSI requirements and Kubernetes can be established. The ETSI IFA029 [60] specifica-
tion translates VIM and VNFM architecture into a container framework by creating new
concepts such as Container Infrastructure Service (CIS), Container Infrastructure Service
Management (CISM), and Container Infrastructure Service Instance (CISI).

MANO framework has three main components: NFV Orchestrator (NFO), VNF Man-
ager (VNF), and Virtualized Infrastructure Manager (VIM). The main characteristics of
ETSI MANO lay in the use of lifecycle operating procedures between NFVO VNFM and
VIM, which might cause duplicates or bottlenecks in the operating model, whereas the
Kubernetes model promotes intent-driven operations on both southbound and northbound
interfaces using manifests and APIs. In our proposed architecture, the infrastructure layer
is ensured through the cloud infrastructure, i.e., VMs on top of which Open5GS is installed
inside Kubernetes clusters. For the Open5GS deployment, we employed the Kubernetes
built-in object called ConfigMap, which allows a declarative configuration of the NFVs
through APIs to specify the desired state of the operation.

Therefore, it is essential to analyze all layers of the MANO architecture in order not
to offload the details of the lower layers, i.e., virtual machines (VMs), to the upper layers
(see Figure 1). In this regard, the ETSI MANO differs from the Kubernetes model since the
VNFM (VNF Manager) holds a detailed view of deployed associated VNFs and exposes
it northbound to NFVO. In Kubernetes, this information is not exported to the upper
layers since Kubernetes offers a better way to control it by defining the intent through
object definitions (such as labels, tags, selectors, taints, etc.). In Kubernetes, the concept
of pods exists to define where the containerized applications reside. Kubernetes manages
the lifecycle of those pods by scaling up and down using changes in deployments and
defining requirements in the configurations for the minimum, maximum, and desired
number of replicas. In terms of operation, the NFVO can define the desired end state in a
declarative manner using artifacts, such as deployment and service YAML files, and then
the Kubernetes scheduler ensures the resource provisioning. Additionally, Kubernetes
can use the automatic cluster scaler to request extra resources from an underlying cloud
infrastructure to meet the additional needs of the Kubernetes workload [61].

In the context of 5G SBA (Service-Based Architecture), network slicing involves the
virtualization and replication of the entire service graph that implements the mobile core. A
slice can be considered a system abstraction that keeps a record of the set of interconnected
microservices running per slice and gives clear instructions to the underlying schedulers to
allocate the required network bandwidth according to the service demands as well as the
CPU scheduler to allocate enough cores to the running containers [62].

Future Internet 2024, 16, 325

6 of 22

3.1. Horizontal vs. Vertical Cloud Scaling

In cloud environments, vertical scaling makes use of the existing infrastructure in
terms of adding more computational power, such as RAM, CPU, etc., whereas horizontal
scaling, also called “scaling out,” relies on the deployment of new infrastructure by adding
more instances of the same kind.

Horizontal scaling serves the purpose of organizations that need high availability and
near-zero downtime or other disruptions, and it is faster and easier compared to vertical
scaling. At a basic level, scaling out can mean adding new computing nodes or machines
to enhance the data processing and storage capabilities. On the other hand, when we refer
to vertical scaling, we address the optimization of data processing and multi-threading
for one instance. Both horizontal and vertical cloud scaling aim to leverage processing
capabilities and storage, increase flexibility, and reduce costs [63].

In Kubernetes, horizontal scaling means to expand the number of pods as a response
to the increased workload. The HorizontalPod Autoscaler (HPA) feature automatically
updates a workload resource (such as Deployment or StatefulSet), with the aim of automat-
ically scaling the workload to match capacity demands [64].

In terms of vertical scaling, the Kubernetes scheduler assigns more resources (i.e.,
memory or CPU) to the pods that are already running as part of the workload. The key
role of the vertical pod autoscaler (VPA) [65] is to automatically set the requests for the
containers based on pod usage and utilize the optimal scheduling mechanism to allocate
on-demand the necessary computational resources for each pod.

3.2. Scaling in Kubernetes Multi-Cluster and Multi-Cloud Deployments

From security and compliance considerations in large environments such as a tele-
com network, one Kubernetes cluster is generally not sufficient; hence, a multi-cluster
infra management solution is needed. There are many existing open-source and vendor-
provided solutions to manage multiple Kubernetes clusters, i.e., Rancher, OpenShift [66],
Crossplane [67], ClusterAP], etc.

Ligo [15] is an open-source project enabling dynamic Kubernetes multi-cluster topolo-
gies. Liqo leverages the Liquid computing paradigm [68] for scalability purposes in both
hybrid-cloud (i.e., the combination of on-premise and public cloud) and multi-cloud ap-
proaches, which aim for high availability, geographical distribution, and cost-effectiveness,
enabling telcos to become vendor agnostic in terms of cloud provider. Liqo makes use of
the virtual node abstraction as an extension of the Virtual Kubelet project [16]. In Kubernetes,
the kubelet is the primary node agent, responsible for registering the node with the control
plane and handling the scheduling of the pods. The virtual ubelet replaces a traditional
kubelet for a physical node through the standard Kubernetes APIs with both the local and
the remote clusters [69].

Moreover, the virtual node summarizes and abstracts the amount of resources shared
by a given remote cluster. In terms of vertical scaling, one key role that the Virtual Kubelet
has is to offload the local pods scheduled on the virtual node to the remote cluster and
to allocate the amount of resources (e.g., CPU, memory) shared by the remote cluster. It
also automatically propagates the negotiated configuration (Services, ConfigMaps, Secrets,
Storage) into the capacity required for the proper execution of the offloaded workloads,
a mechanism that is called resource reflection. All the available resources that exist in a
particular namespace and are selected for offloading are automatically propagated into the
corresponding twin namespaces created in the selected remote clusters.

Liqo also has an incorporated failover mechanism for the custom resource, i.e., Shad-
owPod to ensure remote pod resiliency even in case of temporary connectivity loss between
the local and remote clusters. The local copy of each resource is considered the source
of trust leveraged to synchronize the content of the reflected remote shadow copy. The
Virtual Kubelet also ensures a remapping of certain information (e.g., endpoint IPs) that
guarantees the uniqueness of different configurations for different clusters.

Future Internet 2024, 16, 325 7 of 22

4. Open5Gs and UERANSIM Configuration
Proposed Test Scenario

In our setup, the 5G network services deployment follows the Open5GS implementa-
tion, whereas, for the emulation of the gNB and user configuration, we employ the RAN
simulator, UERANSIM [18]. In addition, we run the 5G network functions as CNFs in
the Open5GS deployment, which are hosted in separate VMs across two different data
centers (DCs) (each VM has allocated 4 cores and 8 GB RAM) in a public cloud environment
running in different data centers of a European hyperscaler public cloud provider. The first
DC is located in Berlin, and the capacity for transmitting data to and from the internet is
200 Gbps, while the second DC is in the UK and has a capacity of ten times lower than the
first DC [70].

In our example, we display in Figure 2 three established network slices corresponding
to three RAN schedulers for which the 5G mobile core functions are required: one in-
stance of AMF, SMF, UPF, etc. microservices running on behalf of the first slice and the
other two instances of each of the Open5GS network functions running on behalf of the
other two slices. These three deployments are able to scale independently based on their
respective workloads and QoS service guarantees.

VM IP 10.7.226.11 ’ AMF ‘ ’ NRF ‘ ’ SMF ‘ ’ NSSF ‘ VM IP 10.7.226.12
UERANSIM
‘ AUSF ‘ ’ UDR ‘ ’ UDM ‘ ‘MongoDB‘ Open5GS C-Plane
UE gNB SCTP 38412 : :
Network Slicing 1, SD=1, SST=1 PP
[imsi-208930000000001]| | uesimtun0 10.45.1.17 e el DN=10.45.0.0/16
ogstun0 10.45.0.1 UPF1
imsi-2089300000000010}{— - uesimtun9 10.45.1.26
DNN=slice2
= = = DN=10.46.0.0/16
[imsi-2089300000000011] | | uesimtun10 10.46.3.16 | Network Slicing 2, SD=1, SST=2 | x
... ogstunt 10.46.0.1 UPF2 -
E
8
imsi-20893000000020 | uesimtun19 10.46.3.25 s
o
Network Slicing 3, SD=1, SST=3
[imsi-20893000000021 |+ esimtun20 10.47.0.36
................... DNN=slice3
...................................... ogstun2 10.47.0.1 OPEs ety
[imsi-20893000000030 || uesimtun29 10.47.0.45

Figure 2. Deployment scenario for end-to-end network slicing.

The three network slices serve different application demands, for instance, based on
the configured SSD values. The 3GPP specifies a standard set of network slices, called
standardized slice type (SST) values. The value of 1 for SST corresponds to eMBB, which is
suitable for the handling of 5G enhanced mobile broadband applications such as streaming
of high-quality video, large file transfers, etc. The SST value of 2 is suitable for the handling
of URLLC communications for applications including industrial automation and remote
control systems, whereas the SST value of 3 is suitable for handling massive IoT devices
efficiently and cost-effectively [71]. These values dictate the use cases for verticals; for in-
stance, the values for latency (<100 ms) can cover a multitude of performance requirements
that require real-time applications (for instance, smart energy applications [1,72].

Firstly, we create a 5G mobile network (internet reachable) for simulation to set up an
environment in which packets can be sent end-to-end with different DNs (data networks)

Future Internet 2024, 16, 325

8 of 22

for each DNN (data network name), which is the equivalent of access point name (APN) in
LTE. For example, APN does not have any control over the radio access network, whereas
network slicing can control the configurations not only for the APN path but for the radio
access path as well. In our configuration, the control plane serves multiple user planes,
whereas the user plane is connected to multiple DNs.

Secondly, in our scenario, we distribute the traffic as follows: we connect 10 users to
DN slice 1, another 10 users are connected to the DN corresponding to slice 2, and the last
10 users are connected to the DN configured for slice 3. This information is also registered
in the Open5GS WebUIL.

Finally, the deployment of Open5GS is achieved in a declarative manner using Helm
charts [73], specifically using YAML templates. In Kubernetes, the configmap represents an
API object that stores the key-value pairs, which follows a similar pattern for environment
variables. For the configmap of UPF and SMEF, we specify the three DN subnet addresses
and the corresponding DNN values. We also set three ReplicaSet for the UPF deployment.
On each UFP, we need to configure the three ogstun interfaces along with the DN values.
In the configmap for AME, we specify the SST and SD values.

The output of the two cluster provisioning processes consists of two kubeconfig files
that contain credentials used to interact with the Kubernetes API server of the workload
cluster. Another tool that we employ in our deployment is kubectl, which is an SDK client
used to consume access to the Kubernetes API server.

In addition to this, for the current deployment, we employ a service mesh solution,
where we inject the Envoy [74] proxy, which is an add-on for Istio [19], at the lever of each
service. Both tools operate at the control plane of our deployed application and provide
monitoring capabilities for networking in service-to-service communication.

5. Out-of-Band Peering and Network Slicing

The standard peering approach is called out-of-band control plane (see Figure 3) because
two API servers are mutually communicating to each other over the Liqo control plane
traffic, and the user plane is completed via the VPN tunnel interconnecting the two clusters.

&

Open5GS Tenant1 (Remote)

Open5GS Tenant2 (Local)

\

~

L Ligo Route

Openbgs namespace
DC1

.

Y

Kubernetes API —_— »| |
= absmems APt |
Ligo 1
Control ~ ------ - Ligo
Plane L - Control
Alithenticatipn Plane
| Virtual Kubelet | T
(open5gs-
| tenant1) |
——» Ligo Gatewa i i iqo Gatewa
Ligo Network e EEe e Eae Ligo Network
Manager Manager
VPN
tunnel

I—» Ligo Route —T

[

amf smf pcf udm

(openﬁgs-\ {open5gs-\ W [open5gs-' | opens5gs- | open5gs-
upfl | upf2 ‘ webui . ausf [nrf || nssf
‘ opensgs- | | opensgs- | (" onen5gs. |
udr | | mongodb ‘ upf3 ‘

opensgs- ‘ opensgs- | | open5gs- | open5gs-

igo-Open5gs-tenant2 namespace

&L

DC2

Figure 3. Offloaded user plane in the out-of-band peering.

Future Internet 2024, 16, 325 9 of 22

In the first scenario, we initiate the peering between two K3S clusters that are isolated
from each other because they are hosted in different cloud tenants. The Open5GS control
plane is deployed on the local cluster, which is Tenant 2, whereas the user plane is offloaded
to the remote cluster on Tenant 1. The authentication is performed using a generated
authentication token and the K35 API server URL endpoint along with the cluster ID.

The Ligo Network Manager represents the control plane of the Liqo network fabric. It
is executed as a pod, and it is responsible for the negotiation of the connection parameters
with each remote cluster during the peering process. The overlay network is leveraged to
forward all traffic originating from local pods/nodes and redirected to a remote cluster via
a gateway that serves as a termination/entry point for the VPN tunnel.

In our Kubernetes clusters, the overlay networking is provided by default CNI (con-
tainer network interface) for K3S which is Flannel [75]. For each remote cluster, a different
instance of the Liqo Virtual Kubelet is started in the local cluster, ensuring the isolation and
segregation of the different authentication tokens.

Ligo extends Kubernetes namespaces across the cluster boundaries by creating twin
namespaces in the subset of selected remote clusters whenever a namespace is selected
for offloading. Remote namespaces host the actual pods offloaded to the corresponding
cluster, as well as the additional resources propagated by the resource reflection process.

5.1. Out-of-Band Peering—User Plane Offloaded to Foreign Cluster

In the first scenario, we offload the two UPF replicas to the remote peered cluster
running on node ligo-openbgs-tenant1 (see Figure 4a. The AMF pods are running on the
local cluster (Tenant2), and the SCTP port 38412 is exposed via NodePort on port 30412.

In UERANSIM, we start the connection between the gNB and the 30 users to success-
fully establish the PDU sessions. In Figure 5, we display the established PDU sessions
for slice 1 configuration along with the uesimtun interfaces created in the UERANSIM.
Figures 6 and 7 show that the other uesimtun interfaces created correspond to the second
slice and third slice configurations.

root@ubuntu:~# kubectl get pods -n open5gs -o wide

A READY STATUS RESTARTS NODE NOMINATED NODE
-nrf-deployment- 2/2 Running (29d ago) .42.0.1066 ubuntu <none>
“upt-deployment-956 1/2 Running 48, ({qo-openbgs- tenanti
-upf-deployment-95694486 1/2 Running .41.0. ligo-open5gs-tenant1
~SmT-deployment-161558db7-2T65¢C 22 RUnning (6dZ1h ago) ©42.9.136 ubuntu
-nssf-deployment-5797c4c94c-xt7nn 2/2 Running .42.0. ubuntu
-ausf-deployment-55d9579dc-vgwhl 2/2 Running .42.0. ubuntu
-pcf-deployment-78c58b5788-2297b 2/2 Running (23h ago) . . ubuntu
-mongodb-7c7d7b4949 - mtmsv 2/2 Running 5 .186 ubuntu
-udr-deployment-666F497849-4wtcf 2/2 Running (23h ago) " . ubuntu
-amf-deployment-5bc6c48565-q9b7v 2/2 Running .42.0. ubuntu
-webui-89faf7dc4-dqn2x 2/2 Running 10.42.0. ubuntu
-upf-deployment-956944865-9sfow 2/2 Running 1 10.42.0.196 ubuntu
-udm-deployment-6F96c598d5-mgbv2 2/2 Running (7ma6s ago) .42.0. ubuntu <none> <none>

root@ubuntu:~# kubectl get nodes -1 liqo.io/type=virtual-node

NAME STATUS ROLES AGE VERSION

1ino-onenSas-tenanti Ready agent___114d___vi 25 5ik3s?

root@ubuntu:~# kubectl get foreignclusters

NAME TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION AGE

open5gs-tenantl_ OQutofBand Established None Established Established 114d

root@ubuntu:~# kubectl get svc -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kubernetes ClusterIP 10.43.0.1 < e 443 /TCP
kube-dns clusterIp 10.43.0.10 e 53/UDP,53/TCP,9153/TCP
ClusterIP 10.43.75.80 e 443 /TCP
LoadBalancer 10.43.115.179 .194.103 80:30379/TCP,443:32472/TCP
ClusterIP 10.43.77.16 e 8118/TCP
ClusterIP 10.43.156.54 e 443 /TCP
ClusterIP 10.43.211.128 < e 9443 /TCP
o-network-manager ClusterIP 10.43.74.82 < e 6000/TCP
NodePort 10.43.228.140 < e 443:32076/TCP
NodePort 10.43.100.187 3 e 5871:30118 /UDP
-open5gs-tenant2-b5624b open5gs-webui ClusterIP .43.199.218 80/TCP
-open5gs-tenant2-b5624b mongodb-svc ClusterIP .43.54.250 < e 27017/TCP
-open5gs-tenant2-b5624b _ openSgs-amf ClusterIP .43.26.245 < e 80/TCP
-open5gs-tenant2-b5624b amf-open5gs-sctp NodePort .43.157.119 e 38412:32217/SCTP
~open5gs-tenant2-b5624b Openbgs-aust ClusteriP 10.43.251.220 e 80/TCP
-open5gs-tenant2-b5624b open5gs-pcf ClusterIP 10.43.197.167 e 80/TCP
-open5gs-tenant2-b5624b open5gs-smf ClusterIP 10.43.211.41 e 80/TCP
-open5gs-tenant2-b5624b open5gs-nssf ClusterIP 10.43.164.75 e 80/TCP
-open5gs-tenant2-b5624b open5gs-nrf ClusterIP 10.43.57. e 80/TCP
-open5gs-tenant2-b5624b upf-open5gs ClusterIP .43.37. < e 8805 /UDP
-open5gs-tenant2-b5624b open5gs-udr ClusterIP .43.175.16 < e 80/TCP
-open5gs-tenant2-b5624b _ open5gs-udm ClusterIP .43.226.

Figure 4. Cont.

Future Internet 2024, 16, 325 10 of 22

buntu:~/ocpopensgs/heln-chart# kubectl get pods -A -0 wide
eE ;

NODE
coredns-59b4f5bbd5-rgcd; .42.0.6 ubuntu
local-path-provisioner-76d776f6f9-7zh2s i .42.0. ubuntu
heln-install-traef anm .42.0. ubuntu
heln-install-traef Completed ubuntu
svclb-tras bdee6dos-xma2h Running ubuntu
traefik-56b8c5Tbsc-ndwdf Running ubuntu

e-systen metrics-server-7b67f64457-6dlbh Running .42.0. ubuntu
1iqo-network-manager -59d5cc649b-gtzkp Running .42.0. ubuntu
Lliqo- route-n88gs Running .215.161. ubuntu

-crd-replicator-7df8f8c658-929ts Running .42.0. ubuntu

- gateway-7558F447df - 6cmoq Running .215.161. ubuntu

-controller-manager-55d97¢cb65-4Fkgs RunNing .42.0. ubuntu

- proxy-6bc7c7ddss-cmpj Running .42.0. ubuntu

ent-84bfob556. j Running .42.0. ubuntu

Runnina .42.0. ubuntu

Running .42.0. ubuntu
Running .41.0.26 1liqo-opensgs- tenant1
Running 1iqo-opensgs- tenant1

ployment-b8fde6d7d-x96dg Running ubuntu
open5gs- pef -deployment -677488bb47 -gtb2d Running liqo-openSgs- tenant1
opensgs- snf -deployment-77697d4£78 -d9jbw Running 1iqo-opensgs- tenant1
opensgs-nssf-deploynent-6c5F554cfd-thble Running .41.0. 1liqo-opensgs- tenant1
open5gs-upf -deployment -b8fd66d7d- sbckd Running .41.0. 1liqo-opensgs- tenant1
opensgs-udn-deployment-6997845c54 - cbgpf Running .41.0. 1liqo-opensgs- tenant1
opensgs-anf -deployment-5csbbbdasb -wjqfs Running .41.0. 1liqo-opensgs- tenant1
open5gs-udr -deployment- 699686547 -mt5tc Running .41.0. 1iqo-open5gs- tenant1
opensgs-nrf-deployment-7dd6ds55f6 -nnovp Running .41.0. -opensgs- tenant1
opensgs- loyment-c9d447899 -gjabb Running .41.0. 1liqo-opensgs- tenant1
opensgs- upf -deployment -b8fd66d7d-g2hh7 Running .41.0. 1iqo-open5gs- tenant1

()

Figure 4. Proposed Liqo peering scenarios. (a) Open5GS user plane services offloaded to foreign
cluster in the out-of-band peering scenario. (b) Open5GS control plane services offloaded to foreign
cluster in the out-of-band peering scenario. (c) Open5GS control plane services offloaded to foreign
cluster in the in-band peering scenario.

[2023-85-18 15:35:27.238] [208930000000008|app]] Connection setup for PDU session[1] is successful, TUN interface[uesimtunil, 10.45.1.18]
[2023-05-18 15:35:27.239] [208930000000001|nas]] PDU Session Establishment Accept received

[2023-85-18 15:35:27.239] [208930000000001|nas] PDU ssion establishment is successful PSI[1]

[2023-05-18 15:35:27.254] [208930000000003|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunlz, 10.45.1.19]
[2023-85-18 15:35:27.269] [208930000000005 |app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni3,

[2023-05-18 15:35:27.283] [208930000000002|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni4,

[2023-05-18 15:35:27.294] [208930000000007|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl5, 10.45.1.25]
[2023-85-18 15:35:27.310] [208930000000010|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl6, 10.45.1.21]
[2023-85-18 15:35:27.322] [208930000000009|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl7, 10.45.1.24]
[2023-05-18 15:35:27.343] [208930000000004|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl8, 10.45.1.23]
[2023-05-18 15 [208930000000001 | app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl9, 10.45.1.26]

Figure 5. PDU Session establishment for the first slice.

2023-05-18 01:42.904] [208930000000018|app]] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni1l,
2023-05-18 2.912] [208930000000015|nas]] PDU Session Establishment Accept received

2023-05-18 2.912] [208930000000015|nas] ssion establishment is successful PSI[1]

2023-05-18 01:42.912] [208930000000011|nas] ession Establishment Accept received

2023-05-18 2.912] [208930000000011|nas] Session establishment is successful PSI[1]

2023-05-18 2.921] [208930000000012|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni2,
2023-05-18 01:42.935] [208930000000020|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni3,
2023-05-18 2.955] [208930000000014 |app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni5,
2023-05-18 01:42.970] [208930000000011|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunil6,
2023-05-18 2.979] [208930000000013|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni4,
2023-05-18 2.994] [208930000000015|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtunl7,
2023-05-18 16:01:43.008] [208930000000017 |app] Connection setup for PDU session[1] is successful, TUN interface[uesimtuni8,

Figure 6. PDU Session establishment for the second slice.

[268930000000027 | app]] Connection setup for PDU session[1] is successful, TUN interface[uesimtun2l, 10.47.0.37]

[2089300000000821|nas]] PDU Session Establishment Accept received

[268930000000021|nas] PDU Session establishment is successful PSI[1]

[268930000000024 |app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun22, 10.47.0.38]
:07:27.017] [208930000000022|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun23, 10.47.08.40]

7.037] [208930000000023|app] connection setup for PDU session[1] is successful, TUN interface[uesimtun24, 10.47.8.42]

7.053] [208930000000029|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun25, 10.47.0.39]

:07:27.071] [208930000000026|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun26, 10.47.08.41]

7.090] [208930000000021|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun27, 10.47.8.44]

[2623-85-18 [268930000000028|app] Connection setup for PDU session[1] is successful, TUN interface[uesimtun28, 10.47.0.43]

Figure 7. PDU Session establishment for the third slice.

5.2. Out-of-Band Peering—Control Plane Offloaded to Foreign Cluster

In the second scenario, we analyze the Open5GS control plane services offloaded to
the remote cluster running on node ligo-opendgs-tenant2-b5624b displayed in Figure 4b.

The remote cluster resides in different isolated tenants and regions (Berlin DC vs. UK
DC). The authentication service and the network gateway are exposed through a dedicated
NodePort service configured with private IP addresses as displayed in Figure 4b. In contrast
to the first scenario illustrated in Figure 4a, when the AMF service is exposed as NodePort
on port 30412, now the AMF service is exposed as running on a different port, 32217
(highlighted in yellow frame) corresponding to the SCTP service.

Future Internet 2024, 16, 325

11 of 22

6. In-Band Peering and Network Slicing

The particularity of the in-band peering for the two clusters is that the entire control
plane traffic (including authentication services) is going through the VPN tunnel. Figure 4c
shows the corresponding control plane functions running on the remote cluster ligo-open5gs-
tenant1. On the local clusters, the services are running in the namespace open5gs, whereas
on the remote cluster, the namespace was created automatically according to the Virtual
Kubelet node naming ligo-open5gs-tenant1-d52c49.

In Figure 8, we display the logic diagram for the in-band peering connectivity. The
prerequisite for establishing a successful connection is that both network gateways should
be reachable. Additionally, the Liqo VPN endpoint is reachable from the pods running in
the remote cluster. In this scenario, the Kubernetes API service is not to be exposed outside
the cluster. The in-band peering involves several steps for the authentication and the VPN
establishment using the WireGuard [76] client (see Figure 9). When we display the list
of virtual nodes configured, we can see an outgoing peering is established to the foreign

/ Open5GS Tenant1 (Remote)

cluster openbgs-tenant1.
\ / Open5GS Tenant2 (Local) \

Kubernetes API — - 3
S ‘ ‘ Kuhesr::t:;.-‘pAPl ‘
Ligo
Control ~ f-----eme-eemeemeeoeos . g > Ligo
Plane D - R— : Control
- P b Plane o
| Virtual Kubelet | P b | Virtual Kubelet |
(opensgs- - i i (opensgs-
tenant1) - P | tenant2)
st — Ligo Gateway P N N ! Liqgo Gateway 2l
Manager NN — Manager
L J VPN L, J
tunnel :
Liggo Route (Ligo Ligo Route
control
== N - S plane
open5gs- opensgs- ‘ open5gs- ‘ | open5gs- and pod '
amf smf pcf | | udm traffic)
———— | opensgs- | [open5gs- | | opensgs- | ()
‘ openSgs- webui ‘ paus? | nrf opendgs-upf3
upf2 . S S ~ _—
) ‘ open5gs- open5gs- open5gs-
open5gs- | | nssf udr “mongodb |
. upfl | _ Ligo-Open5gs-tenant2 namespace J

Openbgs namespace

2

DC 1 Dc 2

)\ /

Figure 8. In-band peering offloaded control plane.

Future Internet 2024, 16, 325

12 of 22

tenant namespace "liqo-tenant-open5gs-tenantl-d52c49" created for remote cluster "open5gs-tenantl"
tenant namespace "ligo-tenant-open5gs-tenant2-b5624b" created for remote cluster "open5gs-tenant2

network configuration created in local cluster "open5gs-tenant2"
network configuration created in remote cluster "open5gs-tenantl
network configuration status correctly reflected from cluster "open5gs-tenanti”
network configuration created in local cluster "open5gs-tenantl”
network configuration created in remote cluster "open5gs-tenant2”
network configuration status correctly reflected from cluster "open5gs-tenant2"”
IPAM service correctly port-forwarded "37243:6000"
IPAM service correctly port-forwarded "34643:6000"
proxy address "10.43.76.247" remapped to "10.44.0.2" for remote cluster "openSgs-tenantl”
proxy address "10.43.77.16" remapped to "10.44.0.2" for remote cluster "open5gs-tenant2”
auth address "10.43.142.25" remapped to "10.44.0.3" for remote cluster "open5gs-tenantl"
auth address "10.43.228.140" remapped to "10.44.0.3" for remote cluster "open5gs-tenant2"
foreign cluster for remote cluster "open5gs-tenantl” correctly configured
foreign cluster for remote cluster "open5gs-tenant2" correctly configured
Network established to the remote cluster "open5gs-tenantl"
Network established to the remote cluster "open5gs-tenant2"
Authenticated to cluster "open5gs-tenantl”
Authenticated to cluster "open5gs-tenant2”
Outgoing peering activated to the remote cluster "open5gs-tenantl”
Node created for remote cluster "open5gs-tenantil”
IPAM service port-forward correctly stopped "34643:6000"
IPAM service port-forward correctly stopped "37243:6000"

root@ubuntu:~# kubectl get foreignclusters

NAME

TYPE OUTGOING PEERING INCOMING PEERING NETWORKING AUTHENTICATION AGE

open5gs-tenantl InBand Established None Established Established 2m52s
root@ubuntu:~# kubectl get nodes -1 ligo.io/type=virtual-node

NAME

STATUS ROLES AGE VERSION

iqo-open5gs-tenantl Ready agent 2m56s v1.26.4+k3s1

40

30

20

10

Figure 9. VPN configuration for in-band peering.

7. Results Analysis

In Figure 10a, we measure the AMF service request throughput on the outbound
interface for the out-of-band peering scenario, which is the traffic captured at the source
for the offloaded Open5GS user plane during the PDU session establishment. We measure
a higher maximum throughput for the outgoing AMF request traffic in the offloaded
Open5GS user plane compared to the offloaded Open5GS control plane shown in Figure 10b.
The reason is mainly due to the PDU establishment traffic generated along with the creation

of user interfaces, which is done across tenants for the out-of-band peering.

Request Throughput

(a)

Figure 10. Cont.

[kbit/s]
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
[| [| [| Time [minutes]
open5gs-ausf- open5gs-nrf- open5gs-nssf- open5gs-pcf- open5gs-smf- open5gs-udm-
deployment deployment deployment deployment deployment deployment

Future Internet 2024, 16, 325

13 of 22

Request Throughput

[kbit/s] ‘
30 [
\“
|
25 |1
|
[|
20 | |
| |
|
15 | |
[
|
10 |
[
[
[
[
5 | |
A
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
- - Time [minutes]
open5gs-ausf- open5gs-nrf- openb5gs-nssf- open5gs-pcf- open5gs-smf- open5gs-udm-
deployment deployment deployment deployment deployment deployment
Response Throughput
[kbit/s]
15
10
5
— — 2N
6 8 12 14 16 18 20 22 24 26 28 30 32 34 36
[| [| [| Time [minutes]
open5gs-ausf- open5gs-nrf- open5gs-nssf- openbgs-pcf- open5gs-smf- open5gs-udm-
deployment deployment deployment deployment deployment deployment
(c)

Figure 10. Request throughput on AMF for the out-of-band peering scenario. (a) Request throughput
on AMF source for offloaded user plane. (b) Request throughput on AMF outbound source for
offloaded control plane. (c) Response throughput on AMF destination for offloaded control plane.

In Figure 10, we can also observe that the AMF maximum request throughput on the
outgoing interface for the offloaded control plane is twice the response throughput value
measured at the destination for the same scenario displayed in Figure 10c. For both source
and destination outbound traffic, the peak values for the request throughput are generated
by the SMF that requires the performance of an AMF selection.

The same set of measurements is obtained for the SMF response and request through-
put for both out-of-band peering scenarios. The maximum request throughput for the SMF
service on the outbound destination for the Open5GS offloaded control plane (Figure 11b)
is three times higher than in the case of the offloaded user plane; see Figure 11a. On the
other hand, for the response throughput at the source in the case of the offloaded user

Future Internet 2024, 16, 325 14 of 22

plane on the remote cluster displayed in Figure 11c, we register half the value of the request
throughput measured at the destination for the same scenario (see Figure 11a).

In Figure 12, we display the latency expressed in milliseconds for each of the user
plane functions in the out-of-band scenario where two UPFs are offloaded to the remote
cluster. To measure the latency, we used the ping tool that gives us the round trip time (RTT)
of transactions [77]. Ping uses ICMP packets; for instance, for an interval of 10 ms, ping
sends one ICMP packet per second to the specified IP address until it has sent 100 packets.

Request Throughput

[kbit/s]
5
4
3
2
1
6 11 16 21 26 31 36 41 56 61 66 71
[| Time [minutes]
open5gs-amf- openb5gs-nrf- openbgs-pcf- open5gs-udm-
deployment deployment deployment deployment
(a)
Request Throughput
[kbit/s]
15
10
5
P g | | B e T
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Time [minutes]
open5gs-amf- open5gs-nrf- openbgs-pcf- open5gs-udm-
deployment deployment deployment deployment

Figure 11. Cont.

Future Internet 2024, 16, 325 15 of 22

Response Throughput

[kbit/s]
2.5
2
1.5
1
500
|
| |
6 11 16 21 26 31 36 41 56 61 66 71 76
Time [minutes]
openbgs-amf- open5gs-nrf- openbgs-pcf- open5gs-udm-
deployment deployment deployment deployment

(0)

Figure 11. Request throughput on SMF for the out-of-band peering scenario. (a) Request throughput
on SMF destination for offloaded user plane. (b) Request throughput on SMF destination for offloaded
control plane. (c) Response throughput on SMF source for offloaded user plane.

In the out-of-band scenario, we observe that the latency for UPF1, which represents
the user plane running on the local cluster, is smaller (around 1 ms) in comparison to the
other two user functions hosted on the remote cluster, where the latency is above 2 ms as
displayed in Figure 12. In the case of the in-band peering, the values in terms of latency for
the three UPF functions are similar since the user plane traffic between the two clusters
is flowing through the VPN tunnel (see Figure 13).The end-to-end latency when we ping
google.com (accessed on 9 April 2024) is displayed in both Figures 14 and 15. In both
out-of-band and in-band peering scenarios, the registered end-to-end latency is around
11 ms for all three network slices when running simultaneously 10 user connections for
each network slice. Since the obtained values for end-to-end latency measured for all three
user plane functions are less than 100 ms when running all 30 user connections, a wide
range of vertical use cases can be covered, from streaming to smart energy applications.

Latency [ms]

25

2.0

A VJ&V/\A
N

VAN 24
15 /\/\\/\’//\/

0.1 1 10 100 1000
= UPFl (tenant2) =UPF2 (tenantl) UPF 3 (tenantl)

Interval miliseconds

Figure 12. User plane latency for out-of-band peering scenario.

google.com

Future Internet 2024, 16, 325

16 of 22

Latency [ms]

1.5
. \/ﬁ"&"v‘\
1.0 VQ§£:::::"““J\/KVW
e
::://y“’
poA
A\ f\/{
=W
0.0
0.1 1 10 100 1000
= UPFl (tenantl) - UPF2 (tenant2) UPF3 (tenant2)
Interval miliseconds
Figure 13. User plane latency for in-band peering scenario.
Latency [ms]
15
iy /Ar\/—‘__/\/k -\/’ ——
§/__/—\,_/\/ ~ —
10
5
0
1 10 100 1000

= slicel, SST=1 = slice2, SST=2 slice3, SST=3
Interval miliseconds

Figure 14. End-to-end user latency for different slices in the out-of-band peering scenario.

Future Internet 2024, 16, 325 17 of 22

Latency [ms]

12

mﬂb&ﬁr’w
_— oo

10

0.1 1 10 100 1000
= slicel, SST=1 =slice2, SST=2 slice3, SST=3
Interval [ms]

Figure 15. End-to-end user latency for different slices in the in-band peering scenario.

In Figure 16, we display the throughput in Mbit/s for the out-of-band peering scenario.
Throughput is measured for all 30 user sessions using the iperf3 [78] tool for an interval
of 60 s. Through these measurements, we showcase the connectivity between the radio
access network and the user plane functions. We can see that the throughput for the UPF1
hosted on the local cluster is consistently higher than the other two user plane functions
that reside on the remote cluster.

User plane throughput [Mbit/sec]

500

400

300
N

/\J —_—— N ~ \/ /\//\—’\‘\//\/\\/*/\\\,/\ A AN

200

100

10 20 30 40 50 60
-UPFl (tenant2) -UPF2 (tenantl) - UPF3 (tenantl)

Interval [secs]

Figure 16. User Plane throughput for the out-of-band peering scenario.

Future Internet 2024, 16, 325

18 of 22

8. Conclusions and Future Work

This paper presented a novel approach to the multi-site cloud native 5G capabilities in
terms of vertical and horizontal scalability for Kubernetes clusters and cross-connectivity
in different data centers by employing the Liqo operator to share resources. In this manner,
we highlighted the on-demand network capacity, which is limited only by the number of
utilized resources and clusters in the current testbed, as well as the programability of the
network and mobile core configuration by leveraging the benefits of APIs. To complement
the full stack of the MANO framework, a service mesh solution was integrated to ensure
observability and monitoring for each service. Moreover, this proposed design is enriched
with the CI/CD capabilities of a cloud-native solution that eases the deployment and
integration of components compared to the MANO framework. Due to the increase in
traffic and different vertical needs in terms of QoS, the proposed approach could bring not
only cost savings to MNOs but also improve network performance along with a higher
computational power that can be triggered upon request as well as high availability and
fault tolerance of the infrastructure ensured by the cloud provider.

In our setup, we analyze two peering scenarios (out-of-band and in-band) for offload-
ing of both user and control planes. The aim of this paper was also to provide insight
into inter-service monitoring; therefore, the above measurements were validated through
a service-mesh monitoring solution dedicated to cloud-native applications. In addition,
we analyze the response and request throughput of the AMF and SMF across data centers
to demonstrate the system’s performance. We observed that maximum registered values
for the AMF request throughput offloaded user plane and control plane measured at the
outbound source are two times higher than the AMF response throughput measured at
the destination for the offloaded control plane, whereas the values registered for the SMF
request throughput for both user and control planes are twice or three times higher for
the SMF request throughput registered on the outbound source interface. Since SMF is
responsible for the AMF selection, higher values for the SMF throughput are achieved for
the offloaded control plane in the remote clusters.

In addition, we determined the latency for the three UPF tunnels and the end-to-end
user latency for three instantiated network slices. We observed that for in-band peering
where a VPN tunnel is established, the user plane latency and the achieved throughput for
two offloaded user plane functions have similar values compared to the latency registered
for the UPF deployed in the local cluster, which is by 100 Mbit/s lower than the registered
latency for the other two user plane functions. In terms of the measured end-to-end latency
for the user connectivity to the Internet, the latency for all three configured network slices
is slightly lower (by 1-2 ms) in the case of the in-band peering.

As a proposed future work, our goal is to replicate the deployment across different
public cloud providers, addressing the proposed test scenarios in a different setup using a
physical RAN solution. Furthermore, we can also extend the end-to-end network slicing
to new use cases for 6G to serve vertical demands, such as streaming, IoT, and vehicu-
lar communication, to validate the level of service guarantee accommodating different
vertical demands.

Author Contributions: Conceptualization, O.-M.D.-G. and V.C.; methodology, O.-M.D.-G. and
V.C,; software, O.-M.D.-G.; validation, V.C. and R.K,; formal analysis, O.-M.D.-G.; investigation,
O.-M.D.-G.; resources, O.-M.D.-G.; data curation, O.-M.D.-G. and V.C.; writing—original draft prepa-
ration, O.-M.D.-G.; writing—review and editing, O.-M.D.-G; visualization, O.-M.D.-G.; supervision,
V.C. and R.K,; project administration, V.C.; funding acquisition, V.C. and R.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by Delft University of Technology (TUDelft), The Netherlands.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2024, 16, 325

19 of 22

Abbreviations

The following abbreviations are used in this manuscript:

AMF Access and Mobility Management Function
APN Access Point Name
BSS Business support system
CAPI Cluster API
CI/CD Continuous Integration and Continuous Delivery
CIS Container Infrastructure Service
CISM Container Infrastructure Service Management
CISsI Container Infrastructure Service Instance
CNF Containerized Network Functions
DC Data Center
DNN Data Network Name
ETSIMANO Network Functions Virtualization Management and Orchestration
eMBB enhanced Mobile Broadband
HPA Horizontal Pod Autoscaler
MEC Multi-access Edge Computing
NSM Network Service Mesh
MNO Mobile Network Operators
NFV Network Functions Virtualization
NFVMANO Network Functions Virtualization Management and Orchestration
NFO NFV Orchestrator
0OSSs Operation Support System
PDU Protocol Data Units
RAN Radio Access Network
SBA Service-Based Architecture
SCTP Stream Control Transmission Protocol
SLA Service-level Agreement
SSD Service Differentiator
SMF Session Management Function
SST Slice/Service Types
UPF User Plane Function
URLLC Ultra-Reliable Low-Latency Communications
VIM Virtualized Infrastructure Manager
VNF Virtual Network Functions
VNFM VNF Manager
VPA Vertical Pod Autoscaler
References
1. Tam, P; Ros, S.; Song, I; Kim, S. QoS-Driven Slicing Management for Vehicular Communications. Electronics 2024, 13, 314.
[CrossRef]
2. ETSI GS. 5G; System Architecture for the 5G System (5GS) (3GPP TS 23.501 Version 16.6.0 Release 16). Available online:
https:/ /www.etsi.org/deliver/etsi_ts/123500_123599 /123501 /16.06.00_60/ts_123501v160600p.pdf (accessed on 10 March 2024).
3. ONAP. Open Network Automation Platform. Available online: https://www.onap.org (accessed on 9 April 2024).
4. ETSIL Open Source MANO. Available online: https://osm.etsi.org (accessed on 15 March 2024).
5. Yilma, G.M.; Yousaf, F; Sciancalepore, V.; Costa-Pérez, X. Benchmarking Open-Source NFV MANO Systems: OSM and ONAP.
Comput. Commun. 2020, 161, 86-98. [CrossRef]
6. Alawe, I; Hadjadj-Aoul, Y,; Ksentini, A.; Bertin, P.; Viho, C.; Darche, D. Smart Scaling of the 5G Core Network: An RNN-Based Ap-
proach. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9-13 December 2018; pp. 1-6. [CrossRef]
7. Cunha, J.; Ferreira, P,; Castro, E.; Oliveira, P.; Nicolau, M.; Ntfiez, I.; Sousa, X.; Serodio, C. Enhancing Network Slicing Security:
Machine Learning, Software-Defined Networking, and Network Functions Virtualization-Driven Strategies. Future Internet 2024,
16, 226. [CrossRef]
8. Tipantufia, C.; Hesselbach, X. Adaptive Energy Management in 5G Network Slicing: Requirements, Architecture, and Strategies.
Energies 2020, 13, 3984. [CrossRef]
9. Moreno-Vozmediano, R.; Montero, R.S.; Huedo, E.; Llorente, L M. Intelligent Resource Orchestration for 5G Edge Infrastructures.

Future Internet 2024, 16, 103. [CrossRef]

http://doi.org/10.3390/electronics13020314
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.onap.org
https://osm.etsi.org
http://dx.doi.org/10.1016/j.comcom.2020.07.013
http://dx.doi.org/10.1109/GLOCOM.2018.8647590
http://dx.doi.org/10.3390/fi16070226
http://dx.doi.org/10.3390/en13153984
http://dx.doi.org/10.3390/fi16030103

Future Internet 2024, 16, 325 20 of 22

10.

11.

12.

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

26.

27.
28.
29.
30.
31.

32.

33.

34.

35.

36.

37.
38.
39.
40.
41.

Dolente, E; Garroppo, R.G.; Pagano, M. A Vulnerability Assessment of Open-Source Implementations of Fifth-Generation Core
Network Functions. Future Internet 2024, 16, 1. [CrossRef]

Kim, J.; Xie, M. A Study of Slice-Aware Service Assurance for Network Function Virtualization. In Proceedings of the 2019 IEEE
Conference on Network Softwarization (NetSoft), Paris, France, 24-28 June 2019; pp. 489-497. [CrossRef]

Rodriguez, V.Q.; Guillemin, E; Boubendir, A. 5G E2E Network Slicing Management with ONAP. In Proceedings of the 2020
23rd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 24-27 February 2020;
pp. 87-94. [CrossRef]

GSMA. E2E Network Slicing Architecture, Version 1.0. Available online: https://www.gsma.com/newsroom/wp-content/
uploads/NG.127-v1.0-2.pdf (accessed on 30 September 2023).

Kahvazadeh, S.; Khalili, H.; Nikbakht Silab, R.; Bakhshi, B.; Mangues-Bafalluy, J. Vertical-oriented 5G platform-as-a-service:
User-generated content case study. In Proceedings of the 2022 IEEE Future Networks World Forum (FNWF), Montreal, QC,
Canada, 10-14 October 2022.

Ligo. Enable Dynamic and Seamless Kubernetes Multi-Cluster Topologies. Available online: https:/ /liqo.io/ (accessed on
12 March 2024).

Virtual Kubelet. Available online: https:/ /virtual-kubelet.io/docs/ (accessed on 10 March 2024).

Open5GS. Open-Source Project of 5GC and EPC (Release 16). Available online: https://open5gs.org (accessed on 8 March 2024).
UERANSIM. Available online: https://github.com/aligungr/UERANSIM (accessed on 20 March 2024).

Istio. The Istio Service Mesh. Available online: https://istio.io (accessed on 18 March 2024).

SONATA. SONATA NFV Platform. Available online: https://www.sonata-nfv.eu (accessed on 18 March 2024).

OpenStack. OpenStack Tacker. Available online: https:/ /wiki.openstack.org/wiki/Tacker (accessed on 18 March 2024).
Cloudify. Available online: https://docs.cloudify.co/ (accessed on 18 March 2024).

Yilma, G.M.; Yousaf, F.Z.; Sciancalepore, V.; Costa-Pérez, X. On the Challenges and KPIs for Benchmarking Open-Source NFV
MANO Systems: OSM vs. ONAP. arXiv 2019, arXiv:1904.10697.

Arampatzis, D.; Apostolakis, K.; Margetis, G.; Stephanidis, C.; Atxutegi, E.; Amor, M.; Pietro, N.; Henriques, J.; Cordeiro, L.;
Carapinha, J.; et al. Unification architecture of cross-site 5G testbed resources for PPDR verticals. In Proceedings of the 2021 IEEE
International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 7-10 September
2021; pp. 13-19. [CrossRef]

Foukas, X.; Marina, M.; Kontovasilis, K. Orion: RAN Slicing for a Flexible and Cost-Effective Multi-Service Mobile Network
Architecture. In Proceedings of the MobiCom’17: The 23rd Annual International Conference on Mobile Computing and
Networking, Snowbird, UT, USA, 16-20 October 2017; pp. 127-140. [CrossRef]

Shorov, A. 5G Testbed Development for Network Slicing Evaluation. In Proceedings of the 2019 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, 28-31 January
2019; pp. 39-44. [CrossRef]

OPNEFV. Available online: https://www.opnfv.org/ (accessed on 11 March 2024).

OpenStack. Available online: https://www.openstack.org (accessed on 11 March 2024).

VMware. Available online: https://www.vmware.com/ (accessed on 27 July 2024).

Garcia-Aviles, G.; Gramaglia, M.; Serrano, P.; Banchs, A. POSENS: A Practical Open Source Solution for End-to-End Network
Slicing. IEEE Wirel. Commun. 2018, 25, 30-37. [CrossRef]

Garcia-Aviles, G.; Gramaglia, M.; Serrano, P.; Gringoli, F; Fuente-Pascual, S.; Labrador Pavon, I. Experimenting with open source
tools to deploy a multi-service and multi-slice mobile network. Comput. Commun. 2020, 150, 1-12. [CrossRef]

Huang, C.Y;; Ho, C.Y.; Nikaein, N.; Cheng, R.G. Design and Prototype of A Virtualized 5G Infrastructure Supporting Network
Slicing. In Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China,
19-21 November 2018; pp. 1-5. [CrossRef]

Chang, W.-C.; Lin, F. Coordinated Management of 5G Core Slices by MANO and OSS/BSS. J. Comput. Commun. 2021, 9, 52-72.
[CrossRef]

Wang, Q.; Alcaraz-Calero, J.; Ricart-Sanchez, R.; Weiss, M.; Gavras, A.; Nikaein, N.; Vasilakos, X.; Bernini, G.; Pietro, G.; Roddy,
M.; et al. Enable Advanced QoS-Aware Network Slicing in 5G Networks for Slice-Based Media Use Cases. IEEE Trans. Broadcast.
2019, 65, 444-453. [CrossRef]

Esmaeily, A.; Kralevska, K.; Gligoroski, D. A Cloud-based SDN/NFV Testbed for End-to-End Network Slicing in 4G/5G.
In Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 29 June-3 July 2020;
pp. 29-35. [CrossRef]

Sarrigiannis, I.; Kartsakli, E.; Ramantas, K.; Antonopoulos, A.; Verikoukis, C. Application and Network VNF migration in a
MEC-enabled 5G Architecture. In Proceedings of the 2018 IEEE 23rd International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), Barcelona, Spain, 17-19 September 2018; pp. 1-6. [CrossRef]

ONF. Aether. Available online: https://docs.aetherproject.org/aether-2.0 (accessed on 12 December 2023).

5G-Berlin. Available online: https:/ /5g-berlin.de/5g-testbed (accessed on 29 July 2024).

5G-GENESIS. Available online: https:/ /www.thegenebis5g.com/ (accessed on 29 July 2024).

Free5SGMANO. Available online: https:/ /github.com/free5gmano/free5gmano (accessed on 29 July 2024).

Prometheus. Monitoring System & Time Series Database. Available online: https://prometheus.io/ (accessed on 29 July 2024).

http://dx.doi.org/10.3390/fi16010001
http://dx.doi.org/10.1109/NETSOFT.2019.8806679
http://dx.doi.org/10.1109/ICIN48450.2020.9059507
https://www.gsma.com/newsroom/wp-content/uploads/NG.127-v1.0-2.pdf
https://www.gsma.com/newsroom/wp-content/uploads/NG.127-v1.0-2.pdf
https://liqo.io/
https://virtual-kubelet.io/docs/
https://open5gs.org
https://github.com/aligungr/UERANSIM
https://istio.io
https://www.sonata-nfv.eu
https://wiki.openstack.org/wiki/Tacker
https://docs.cloudify.co/
http://dx.doi.org/10.1109/MeditCom49071.2021.9647591
http://dx.doi.org/10.1145/3117811.3117831
http://dx.doi.org/10.1109/EIConRus.2019.8656861
https://www.opnfv.org/
https://www.openstack.org
https://www.vmware.com/
http://dx.doi.org/10.1109/MWC.2018.1800050
http://dx.doi.org/10.1016/j.comcom.2019.11.003
http://dx.doi.org/10.1109/ICDSP.2018.8631816
http://dx.doi.org/10.4236/jcc.2021.96004
http://dx.doi.org/10.1109/TBC.2019.2901402
http://dx.doi.org/10.1109/NetSoft48620.2020.9165419
http://dx.doi.org/10.1109/CAMAD.2018.8514943
https://docs.aetherproject.org/aether-2.0
https://5g-berlin.de/5g-testbed
https://www.thegene5is5g.com/
https://github.com/free5gmano/free5gmano
https://prometheus.io/

Future Internet 2024, 16, 325 21 of 22

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

OpenTelemetry. Available online: https:/ /opentelemetry.io/ (accessed on 29 July 2024).

Arouk, O.; Nikaein, N. 5G Cloud-Native: Network Management & Automation. In Proceedings of the NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20-24 April 2020; pp. 1-2.
Barrachina-Mufioz, S.; Baranda, J.; Payar6, M.; Mangues-Bafalluy, J. Intent-Based Orchestration for Application Relocation in
a 5G Cloud-native Platform. In Proceedings of the 2022 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Phoenix, AZ, USA, 14-16 November 2022; pp. 94-95. [CrossRef]

Kaur, K.; Guillemin, E; Rodriguez, V.Q.; Sailhan, F. Latency and network aware placement for cloud-native 5G/6G services. In
Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Phoenix, AZ, USA,
14-16 November 2022; pp. 114-119. [CrossRef]

Khichane, A.; Fajjari, I.; Aitsaadi, N.; Gueroui, M. Cloud Native 5G: An Efficient Orchestration of Cloud Native 5G System. In
Proceedings of the NOMS 2022-2022 IEEE /IFIP Network Operations and Management Symposium, Las Vegas, NV, USA, 8-11
January 2022; pp. 1-9. [CrossRef]

Arouk, O.; Nikaein, N. Kube5G: A Cloud-Native 5G Service Platform. In Proceedings of the GLOBECOM 2020-2020 IEEE Global
Communications Conference, Budapest, Hungary, 25-29 April 2020; pp. 1-6. [CrossRef]

Barrachina-Mufioz, S.; Nikbakht, R.; Baranda, J.; Payar6, M.; Mangues-Bafalluy, J.; Kokkinos, P.; Soumplis, P.; Kretsis, A.;
Varvarigos, E. Deploying cloud-native experimental platforms for zero-touch management 5G and beyond networks. IET Netw.
2023, 12, 305-315. [CrossRef]

Grafana. Grafana: The Observability Platform. Available online: https://grafana.com/ (accessed on 29 July 2024).
Barrachina-Mufioz, S.; Payard, M.; Mangues-Bafalluy,]. Cloud-native 5G experimental platform with over-the-air transmissions
and end-to-end monitoring. arXiv 2022, arXiv:2207.11936.

AMARI Callbox Ultimate. Available online: https://www.amarisoft.com/app/uploads/2022/01/ AMARI-Callbox-Ultimate.pdf
(accessed on 30 September 2023).

RedHad. How We Designed a 5G Core Platform That Scales Well. Available online: https://www.redhat.com /architect/
autoscale-5g-core (accessed on 12 March 2024).

Ungureanu, O.M.; Vlddeanu, C.; Kooij, R. Collaborative Cloud-Edge: A Declarative API orchestration model for the NextGen 5G
Core. In Proceedings of the 2021 IEEE International Conference on Service-Oriented System Engineering (SOSE), Oxford, UK,
23-26 August 2021; pp. 124-133. [CrossRef]

Kubernetes SIGs. ClusterAPI. Available online: https:/ /cluster-api.sigs.k8s.io (accessed on 12 March 2024).

Rancher. K3s. Available online: https:/ /k3s.io (accessed on 12 March 2024).

Mfula, H.; Yla-Jaaski, A.; Nurminen, J. Seamless Kubernetes Cluster Management in Multi-Cloud and Edge 5G Applica-
tions. In Proceedings of the International Conference on High Performance Computing & Simulation (HPCS 2020), Virtual,
22-27 March 2021.

Osmani, L.; Kauppinen, T.; Komu, M.; Tarkoma, S. Multi-Cloud Connectivity for Kubernetes in 5G Networks. IEEE Commun.
Mag. 2021, 59, 42-47. [CrossRef]

Ungureanu, O.M.; Vliddeanu, C. Leveraging the cloud-native approach for the design of 5G NextGen Core Functions. In
Proceedings of the 2022 14th International Conference on Communications (COMM), Bucharest, Romania, 16-18 June 2022;
pp. 1-7. [CrossRef]

Linkerd. A Different Kind of Service Mesh. Available online: https:/ /linkerd.io/ (accessed on 22 March 2024).

ETSI. Network Functions Virtualisation (NFV) Release 3; Architecture; Report on the Enhancements of the NFV Architecture
towards Cloud-Native and PaaS. Available online: https:/ /www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/
gr_NFV-IFA029v030301p.pdf (accessed on 12 March 2024).

AWS. Mapping ETSI MANO to Kubernetes. Available online: https://docs.aws.amazon.com/pdfs/whitepapers/latest/
ETSI-NFVO-compliant-orchestration-in-kubernetes / ETSI-NFVO-compliant-orchestration-in-kubernetes.pdf (accessed on
29 July 2024).

ONEF. SD-Core. Available online: https://opennetworking.org/sd-core/ (accessed on 29 July 2024).

Hossein Ashtari, Spiceworks. Horizontal vs. Vertical Cloud Scaling: Key Differences and Similarities. Available online:
https:/ /www.spiceworks.com/tech/cloud/articles/horizontal-vs-vertical-cloud-scaling/ (accessed on 12 March 2024).
Kubernetes. Horizontal Pod Autoscaling. Available online: https://docs.sd-core.opennetworking.org (accessed on
12 March 2024).

Kubernetes. Vertical Pod Autoscaler. Available online: https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-
autoscaler/README.md (accessed on 12 March 2024).

RedHat. RedHat OpenShift. Available online: https://docs.openshift.com/ (accessed on 12 March 2024).

Crossplane. Available online: https:/ /www.crossplane.io (accessed on 12 March 2024).

Iorio, M.; Risso, F.; Palesandro, A.; Camiciotti, L.; Manzalini, A. Computing Without Borders: The Way Towards Liquid
Computing. IEEE Trans. Cloud Comput. 2023, 11, 2820-2838. [CrossRef]

Kubernetes. Kubernetes Components. Available online: https://kubernetes.io/docs/concepts/overview /components/
(accessed on 15 March 2024).

Ionos. Ionos Cloud. Available online: https://docs.ionos.com/cloud/compute/networks/overview (accessed on 15 March 2024).

https://opentelemetry.io/
http://dx.doi.org/10.1109/NFV-SDN56302.2022.9974703
http://dx.doi.org/10.1109/CCNC49033.2022.9700582
http://dx.doi.org/10.1109/NOMS54207.2022.9789856
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9348073
http://dx.doi.org/10.1049/ntw2.12095
https://grafana.com/
https://www.amarisoft.com/app/uploads/2022/01/AMARI-Callbox-Ultimate.pdf
https://www.redhat.com/architect/autoscale-5g-core
https://www.redhat.com/architect/autoscale-5g-core
http://dx.doi.org/10.1109/SOSE52839.2021.00019
https://cluster-api.sigs.k8s.io
https://k3s.io
http://dx.doi.org/10.1109/MCOM.110.2100124
http://dx.doi.org/10.1109/COMM54429.2022.9817268
https://linkerd.io/
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/ETSI-NFVO-compliant-orchestration-in-kubernetes/ETSI-NFVO-compliant-orchestration-in-kubernetes.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/ETSI-NFVO-compliant-orchestration-in-kubernetes/ETSI-NFVO-compliant-orchestration-in-kubernetes.pdf
https://opennetworking.org/sd-core/
https://www.spiceworks.com/tech/cloud/articles/horizontal-vs-vertical-cloud-scaling/
https://docs.sd-core.opennetworking.org
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/vertical-pod-autoscaler/README.md
https://docs.openshift.com/
https://www.crossplane.io
http://dx.doi.org/10.1109/TCC.2022.3229163
https://kubernetes.io/docs/concepts/overview/components/
https://docs.ionos.com/cloud/compute/networks/overview

Future Internet 2024, 16, 325 22 of 22

71.

72.

73.
74.
75.
76.
77.

78.

Techplayon. 5G RAN and 5GC Network Slice Signaling. Available online: https://www.techplayon.com/5g-ran-and-5gc-
network-slice-signaling (accessed on 15 March 2024).

Wu, Y,; Dai, H.N.; Wang, H.; Xiong, Z.; Guo, S. A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated
Approaches for Smart Transportation, Smart Energy, and Smart Factory. IEEE Commun. Surv. Tutor. 2022, 24, 1175-1211.
[CrossRef]

Helm. Available online: https://helm.sh/ (accessed on 15 March 2024).

Envoy. Envoy Proxy. Available online: https://www.envoyproxy.io (accessed on 30 April 2024).

Flannel. Available online: https://github.com/flannel-io (accessed on 15 March 2024).

WireGuard. Available online: https://www.wireguard.com/ (accessed on 29 April 2024).

Derek Phanekham, R.J. What a Trip. Measuring Network Latency in the Cloud. Available online: https://cloud.google.com/
blog/products/networking /using-netperf-and-ping-to-measure-network-latency (accessed on 15 March 2024).

ESnet. Iperf3. Available online: https://github.com/esnet/iperf (accessed on 15 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.techplayon.com/5g-ran-and-5gc-network-slice-signaling
https://www.techplayon.com/5g-ran-and-5gc-network-slice-signaling
http://dx.doi.org/10.1109/COMST.2022.3158270
https://helm.sh/
https://www.envoyproxy.io
https://github.com/flannel-io
https://www.wireguard.com/
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://github.com/esnet/iperf

	Introduction
	Related Work
	Comparison between ETSI MANO and Kubernetes
	Horizontal vs. Vertical Cloud Scaling
	Scaling in Kubernetes Multi-Cluster and Multi-Cloud Deployments

	Open5Gs and UERANSIM Configuration
	Out-of-Band Peering and Network Slicing
	Out-of-Band Peering—User Plane Offloaded to Foreign Cluster
	Out-of-Band Peering—Control Plane Offloaded to Foreign Cluster

	In-Band Peering and Network Slicing
	Results Analysis
	Conclusions and Future Work
	References

