
Operations Research Letters 51 (2023) 601–604

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Minimizing the effective graph resistance by adding links is NP-hard

Robert E. Kooij a,b,∗, Massimo A. Achterberg a

a Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, the Netherlands
b Unit ICT, Strategy & Policy, TNO (Netherlands Organisation for Applied Scientific Research), P.O. Box 96800, 2509 JE, The Hague, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 February 2023
Received in revised form 27 September 
2023
Accepted 5 October 2023
Available online 12 October 2023

Keywords:
Effective graph resistance
Graph augmentation
NP-hard

The effective graph resistance, also known as the Kirchhoff index, is metric that is used to quantify 
the robustness of a network. We show that the optimisation problem of minimizing the effective graph 
resistance of a graph by adding a fixed number of links, is NP-hard.
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1. Introduction

Many network metrics have been utilised to quantify the ro-
bustness of a network, see for instance [1], [2], [11], [19], [20]. 
Freitas et al. [6] classify robustness metrics into three types: met-
rics based on structural properties, such as edge connectivity or 
diameter; metrics based on the spectrum of the adjacency matrix, 
such as the spectral radius or spectral gap; and metrics based on 
the spectrum of the Laplacian matrix, for instance the algebraic 
connectivity and the effective graph resistance. In this paper we 
consider the following optimisation problem: how to augment a 
given graph G by adding at most k links, such that the robustness 
metric of the augmented network is optimal. As robustness met-
ric we consider the effective graph resistance RG , also known as 
the Kirchhoff index, see Ellens et al. [4]. The effective graph resis-
tance not only covers the shortest path between any pair of nodes, 
but incorporates all paths between any two nodes. Because in ad-
dition RG decreases upon the addition of a link to the graph [9], 
this makes the effective graph resistance a good metric to evaluate 
the robustness of a network.
Predari et al. refer to the optimisation problem at hand as k-Graph 
Robustness Improvement Problem (k-GRIP) [18], in which one has 
to decide where k links are to be added to a given network G , 
such that the robustness metric is optimised. Several researchers 
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investigated k-GRIP for specific robustness metrics. For instance, 
Wang et al. [21] considered 1-GRIP, with as robustness metric 
the second-smallest eigenvalue of the Laplacian matrix, which was 
coined the algebraic connectivity by Fiedler [5]. They suggest sev-
eral strategies to decide which single link to add to the network, in 
order to increase the algebraic connectivity as much as possible. A 
nice overview of k-GRIP for the algebraic connectivity is presented 
in [12]. The NP-hardness of k-GRIP for the algebraic connectivity 
was proved in [14].

For the effective graph resistance, 1-GRIP was considered by Wang 
et al. [22]. They investigated different strategies, based upon topo-
logical and spectral properties of the graph, to determine the most 
optimal link to add, and derived a lower bound for RG after adding 
a single link. Pizzuti et al. [16], [17] proposed and evaluated sev-
eral genetic algorithms to find the most optimal link to add, in 
order to minimize RG . Clemente et al. [3] studied k-GRIP for the 
effective graph resistance and gave lower bounds for RG upon the 
addition of k links, under some mild conditions for k. For k = 1
the lower bound in [3] clearly outperforms the lower bound in 
[22]. Predari et al. [18] also consider k-GRIP for the effective graph 
resistance. They focus on heuristics for k-GRIP, based upon sam-
pling and a fast approximation method, to compute the effective 
graph resistance.
Although for some choices of the robustness metric, k-GRIP is 
known to be NP-hard, to the best of our knowledge this has not 
been proved yet for the effective graph resistance. The aim of this 
paper is to prove that augmenting a given graph G by adding k
links, in order to minimize the effective graph resistance, is NP-
hard. Note that [9] considered the optimisation problem of the 
effective graph resistance in the case of weighted links. They pro-
 under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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vide an efficient (polynomial-time) algorithm under the condition 
that the sum of the weights is constant. In this paper, however, the 
graph G is considered unweighted and simple.

2. Definitions and main result

In this paper we consider undirected, connected simple graphs 
G = (V , E) without self-loops. Here V denotes the set of N nodes, 
while E is the set of L links connecting node pairs of V . The no-
tation i ∼ j indicates that nodes i and j are adjacent in G . We 
let Gc = (V , Ec) denote the complementary graph of G , where 
Ec = {(u, v)|u, v ∈ V , u �= v, (u, v) /∈ E}. The adjacency matrix A of 
G is an N × N symmetric matrix with elements aij that are ei-
ther 1 or 0 depending on whether there is a link between nodes 
i and j or not. The Laplacian matrix Q of G is an N × N sym-
metric matrix Q = � − A, where � = diag(di) is the N × N di-
agonal degree matrix with the elements di = ∑N

j=1 aij . The eigen-
values of Q are all real and non-negative and can be ordered as 
0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Interpreting the graph G as an electrical network whose links 
are resistors of 1�, the effective resistance ωi j between node i
and j can be computed based on Kirchoff’s circuit laws. Then the 
effective graph resistance RG , also known as the Kirchhoff index, is 
defined as the sum of the resistances over all node pairs [10]

RG(G) =
∑

1≤i< j≤N

ωi j . (1)

Klein and Randić [10] showed that the effective graph resistance 
can also be computed using the Laplacian eigenvalues λk of the 
graph G as

RG(G) = N
N∑

k=2

1

λk
. (2)

Ellens et al. [4] argued that the effective graph resistance is an 
appropriate robustness metric. Note that the smaller the value of 
RG the larger the robustness of the network. The smallest value of 
the effective graph resistance for a graph on N nodes is obtained 
for the complete graph K N and satisfies RG (K N ) = N − 1. We will 
show in this paper that adding a specified number of links to a 
given graph, in order to minimize the effective graph resistance, is 
NP-hard. We will now give an explicit description of the consid-
ered optimisation problem.

Problem 1 (Minimum effective graph resistance augmentation prob-
lem). Given an undirected, connected, simple graph G = (V , E), a 
non-negative integer k and a non-negative threshold t , is there a 
subset B ⊆ Ec of size |B| ≤ k such that the graph H = (V , E ∪ B)

satisfies RG (H) ≤ t?

Problem 1 is clearly in NP, because given a graph G and the set 
of added links B , the correctness of the given solution can be ver-
ified by computing the eigenvalues of the Laplacian matrix, which 
is an O(N3) operation. Then simply computing (2) and comparing 
the outcome with the given threshold t verifies the solution. Thus 
the minimum effective graph resistance augmentation problem is 
in NP.

Problem 1 is the decision version of the following optimisation 
problem: Given an undirected, connected, simple graph G = (V , E)

and a non-negative threshold t , find a set of currently non-existent 
links of minimum size to add to G such that the effective graph 
resistance RG of the augmented graph is at most t . We prove in 
this work that Problem 1 is NP-hard, which immediately implies 
that the corresponding optimisation problem is also NP-hard. Thus, 
the problem of adding a specified number of links to a graph to 
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minimize the effective graph resistance is also NP-hard. We now 
state the main result of the paper.

Theorem 2. The minimum effective graph resistance augmentation 
problem is NP-hard.

3. Proof of Theorem 2

The proof of Theorem 2 heavily relies on the proof of the 
NP-hardness of the maximum algebraic connectivity augmentation 
problem, as given in [14]. The proof is by reduction of our aug-
mentation problem to a problem for which NP-hardness has been 
proved, namely the 3-colorability problem, see [7]. For our proof 
we will use a construction and a lemma from [14] and two addi-
tional lemmas.

Construction. [14] Given a graph G = (V , E) with n > 1 nodes and m
links, a graph G ′ = (V ′, E ′) is constructed which consists of three disjoint 
copies G0, G1 and G2 of G. This implies that each node v ∈ V is copied 
to a node vi ∈ Gi and each link (u, v) ∈ E is copied to (ui, vi) ∈ Gi , 
for i = 0, 1, 2. By construction the graph G ′ has 3n nodes and 3m links. 
We now consider the minimum effective graph resistance augmentation 
problem on G ′ with k = 3n2 − 3m, such that the augmented graph H
has at most 3n2 links and t = 9n−5

2 .

Now, let Kn,n,n denote the complete tripartite graph. In order to 
prove that the minimum effective graph resistance augmentation 
problem can be reduced to the 3-colorability problem, we will use 
the following three lemmas.

Lemma 3. [14] There exists a subset B ⊆ (E ′)c of size |B| ≤ k such that 
H = (V ′, E ′ ∪ B) is (isomorphic to) Kn,n,n if and only if G is 3-colorable.

Lemma 4. [13] Let G be a simple connected graph with N ≥ 2 nodes and 
L links. Then

RG(G) ≥ N2(N − 1)

2L
− 1,

with equality if and only if G ∼= K N , or G ∼= K N/2,N/2 , or G ∈ �d.

Here, �d denotes a special class of d-regular graphs defined in 
[15]. Let M(i) be the set of all neighbours of the node i, that is, 
M(i) = {k|k ∈ V , k ∼ i}, where V denotes the set of nodes of the 
graph. Then for every 1 ≤ d ≤ n −1 the set �d denotes the set of all 
d-regular graphs with diameter 2 and satisfying |M(i) ∩ M( j)| = d
for every pair of nodes i, j that are not adjacent, i.e. i � j.

Lemma 5. The complete tripartite graph Kn,n,n on 3n nodes has effective 
graph resistance RG(Kn,n,n) = 9n−5

2 .

Proof. We compute the effective graph resistance RG of the com-
plete tripartite graph Kn,n,n using Eq. (1). Gervacio [8] derived the 
effective resistance between nodes in complete multipartite graphs 
as:

ωi j = 2

N − mi
, if i, j are in the same partition

ωi j = (N − 1)(2N − mi − m j)

N(N − mi)(N − m j)
, otherwise

where mi and m j represent the size of the partition of node i and 
j respectively. In our case, N = 3n and mi = m j = n. The number 
of node pairs in the same partition equals 3n(n − 1)/2 and the 
number of pairs outside of the same partition equals 3n2. Then the 
effective graph resistance of the complete tripartite graph exactly 
equals RG (Kn,n,n) = 9n−5 . �
2
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Fig. 1. (a) Node 1 and its 2n neighbours. (b) Node 1, its 2n neighbours and the n − 1 remaining nodes. (c) Nodes {1, · · · ,n} and their connections to the other 2n nodes.
Lemma 6. A graph H = (V , E) with N = 3n nodes and L ≤ 3n2 links for 
n > 1 satisfies RG(H) ≤ 9n−5

2 if and only if H is (isomorphic to) Kn,n,n.

Proof. The backward direction is satisfied by Lemma 5.
To prove the forward direction, using N = 3n, L ≤ 3n2 and 

Lemma 4, it follows RG(H) ≥ 9n2(3n−1)

6n2 − 1 = 9n−5
2 . By the con-

dition RG(H) ≤ 9n−5
2 , we deduce that RG(H) = 9n−5

2 . Also it fol-
lows that L = 3n2 because N = 3n and L < 3n2 would imply 
RG(H) > 9n−5

2 according to Lemma 4. Therefore the average degree 
of H equals 2n. Since RG (H) is equal to the lower bound given in 
Lemma 4, H is either the complete graph K3n , the complete bi-
partite graph K3n/2,3n/2 or it is a 2n-regular graph belonging to 
the class �2n . First, assume H ∼= K3n . The number of links of K3n

equals 3n(3n−1)
2 which, for n > 1, is larger than 3n2, the number of 

links of H . Therefore H � K3n . Next assume H ∼= K3n/2,3n/2, which 
can only hold for n even. Then the number of links of K3n/2,3n/2

equals 9n2

4 which is always smaller than 3n2, the number of links 
of H . Therefore H � K3n/2,3n/2. Hence we conclude that the graph 
H is 2n-regular and belongs to the class �2n .

We will now show that H is isomorphic to Kn,n,n . We start with an 
arbitrary node of H and label it as node 1. Because H is 2n-regular, 
node 1 has exactly 2n neighbours, see Fig. 1a.

The remaining n − 1 nodes, other than node 1 and its 2n neigh-
bours, cannot be adjacent to node 1 because it already has degree 
2n, by construction. We now label these nodes as nodes 2 until n, 
see Fig. 1b. Now, because H belongs to the class �2n and nodes 2 
until n are not adjacent to node 1, each of the nodes 2 until n has 
exactly the same neighbours as node 1, see Fig. 1c.

Next, take an arbitrary node outside the set {1, 2, · · · , n} and 
label it as n + 1. To obtain degree 2n, node n + 1 needs to be 
adjacent to n nodes outside the nodes {1, 2, · · · , n}. We label this 
set of n adjacent nodes as {2n + 1, · · · , 3n}, see Fig. 2a.

Finally, every node not in {1, 2, · · · , n + 1} ∪ {2n + 1, · · · , 3n}
needs to share with node n +1 its neighbours {2n +1, · · · , 3n}, see 
Fig. 2b.

Denote by Si the nodes labelled as {n(i − 1) + 1, n(i − 1) +
2, · · · , n(i − 1) + n}, for i = 1, 2, 3. Then |Si | = n, every node pair 
within Si is not adjacent and for every i �= j all nodes in Si are ad-
jacent to all nodes in S j . This proves that H is a complete tripartite 
graph Kn,n,n . �

Finally, Theorem 2 follows from combining Lemma 3 and 6.
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Fig. 2. (a) Nodes {1, · · · , n}, their connections to the other 2n nodes and the addi-
tional n connections of node n + 1. (b) All connections in graph H .
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