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A two-scale method is proposed to simulate the essential behavior of bolted connections in structures including
elevated temperatures. It is presented, verified, and validated for the structural behavior of two plates, connected
by a bolt, under a variety of loads and elevated temperatures. The method consists of a global-scale model that
simulates the structure (here the two plates) by volume finite elements, and in which the bolt is modelled by
a spring. The spring properties are provided by a small-scale model, in which the bolt is modelled by volume
elements, and for which the boundary conditions are retrieved from the global-scale model. To ensure the small-
scale model to be as computationally efficient as possible, simplifications are discussed regarding the material
model and the modelling of the threads. For the latter, this leads to the experimentally validated application of
a non-threaded shank with its stress area. It is shown that a non-linear elastic spring is needed for the bolt in
the global-scale model, so the post-peak behavior of the structure can be described efficiently. All types of bolted
connection failure as given by design standards are simulated by the two-scale method, which is successfully
validated (except for net section failure) by experiments, and verified by a detailed system model, which models
the structure in full detail. The sensitivity to the size of the part of the plate used in the small-scale model
is also studied. Finally, multi-directional load cases, also for elevated temperatures, are studied with the two-
scale method and verified with the detailed system model. As a result, a computationally efficient finite element
modelling approach is provided for all possible combined load actions (except for nut thread failure and net
section failure) and temperatures. The two-scale method is shown to be insightful, for it contains a functional
separation of scales, revealing their relationships, and consequently, local small-scale non-convergence can be
handled. Not presented in this paper, but the two-scale method can be used in e.g. computationally expensive two-
way coupled fire-structure simulations, where it is beneficial for distributed computing and densely packed bolt
configurations with stiff plates, for which a single small-scale model may be representative for several connections.

1. Introduction. For building structures under fire, strength, stiffness,
and stability need to be quantified. This is often carried out by small-
scale standard fire tests combined with theoretical models. However, as
will be explained below, several issues exist for this approach, and full-
scale experiments may be used instead. For example, Lou et al. [1] inves-
tigated the progressive collapse of a full-scale steel portal frame exposed
to natural fires. To show the importance of carrying out full-scale exper-
iments, with realistic fires, it was also found that the temperature distri-
bution along the height was significantly different from the case loaded
by a standard ISO fire. Similarly, Rackauskaite et al. [2] compared the
behavior of full-scale multi-storey steel frames subject to either uniform
or travelling (i.e. the fire front spreads across the storey or even the
complete building) fires. Their results confirmed that to obtain accu-
rate strength, stiffness, and stability predictions, standard fire tests have
their limitations and full-scale building experiments are needed.
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Unfortunately, a full-scale experiment is expensive, more so for large
structures, and a variation of even small factors, like the type of the con-
nections, the presence of glue [3], or pyrolysis [4] may greatly affect the
outcomes, rendering the experiments too specific for generic use [5]. For
instance, Kodur et al. [6], Cbov et al. [7], and Fisher et al. [8] showed
that connections significantly influence the response of structures dur-
ing a fire. Furthermore, in a research of several cases in which build-
ings experienced a fire-induced collapse, Beitel et al. [9] concluded that
both structural interaction—the mutual effect of components on each
other—and the response of the connections played major roles in the
failure behavior. De Boer et al. [10] concluded that the failure of bolts
and screws can have a detrimental influence on the structural integrity,
even causing the fire scenario to change. As such, some researchers de-
veloped new approaches to increase the ductility and loading resistance
of conventional connections [11,12]. Last but not least, empirical studies
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Fig. 1. Several scales of a sandwich panel system, including a detail of the common finite element modelling of a bolted connection.

have shown that the mechanical and thermal properties of components
should be understood thoroughly to predict the structure’s load-bearing
capacity and safety level [13].

As an alternative to full-scale experiments, finite element method
(FEM) simulations can be very helpful in predicting the structure’s per-
formance, however, (a) interaction between the structure and the fire;
(b) interaction between structural elements at several scales; and (c) the
role of critical parts (e.g. connections) should then be incorporated, as
e.g. shown by [14,15]. For example, Fig. 1 on the left shows a sandwich
panel system with small-scale connections (bolts and screws). Clearly, a
related FEM model needs to simultaneously take into account the behav-
ior of different components at different scales, i.e. sandwich panels on
the global scale and connections on the small scale. However, the model
would be computationally expensive if all components were to be mod-
elled in full detail, e.g. by volume elements. Therefore, simplifications
are normally used: The 'L’ steel section and HE200A beam in Fig. 1 are
modelled by shell elements, and a bolt is made by a spring element. Such
an approach was successfully used by e.g. De Boer et al. [10] and Xu
et al. [14,15]. Concerning the FEM, also hybrid testing should be men-
tioned: experiments are then carried out for the most critical parts (i.e.
connections) and real-time combined by simulations for the other sur-
rounding parts [16,17]. Alternatively, the experiments can be simulated
by dedicated models, leading to virtual hybrid approaches [18]. Also,
material-related multi-scale approaches have been investigated [19,20].

Many researchers have used simplified models for connections in
single-scale models, via the use of spring elements, beam elements, or
tie-constraints [21], the particular approach based on the level of ac-
curacy required. Most widely used is the so-called component model,
which describes a connection via a set of individual basic spring-
like components, with translational and rotational degrees of freedom
(DOFs) [22]. The spring characteristics are based on analytical or empir-
ical models. For example, based on tests, Swanson et al. [23] proposed a
component model for full-scale T-stub connections. Bayo et al. [24] com-
bined all relevant deformation characteristics of components into a sin-
gle four-node 2D finite element. Godrich et al. [25] implemented the
behavior of T-stub connectors into the FEM as components for which
their behavior is described by theoretical models. Quan et al. [26] de-
veloped a component-based beam buckling element, used in structures
under fire, and its influence on the adjacent bolted connections, mod-
elled by component-based connection elements, was investigated. Kim
et al. [27] presented a "spider" component model, which ties the bolt
head and bolt nut together with a beam element representing the shaft.
Similarly, Verwaerde et al. [28] proposed a user-defined FEM element
to model the behavior of a single-bolted joint, but nevertheless, the be-
havior of the connected plates, as well as other connection failures could
not be determined due to a lack of detail in the model. Finally, De Boer

et al. [10] used CFD and FEM models to simulate fire-structure interac-
tion in full-scale problems. However, the behavior and failure criteria
of their connections, modelled by springs, were based on failure modes
at ambient temperature. This is quite a simplification, as many studies
show the relevance of temperature-dependent mechanical behavior of
components like connections [29,30].

In general, the above-described modelling of connections by springs
cannot capture the fact that each connection, at each location and mo-
ment in time, has a unique 3D state of temperatures, displacements, and
strain history. For example, the bolted connection in Fig. 1 in the mid-
dle, assumingly being in the state of a constant 400 °C and under tension,
with a history of plastic strain in tension, will behave differently for a
new state including shear (e.g. due to thermal expansion) than a similar
bolt that has less plastic strain from the past. Besides, studies provide
evidence that the thermal behavior and expansion of a structural system
should be taken into account, the expansion strongly loading the con-
nections. Based on experiments, in which a two-way slab and composite
beam structure were subjected to fire, expansion was shown to be a crit-
ical factor [31]. After conducting a full-scale fire test of an eight-storey
composite steel frame structure, Usmani et al. [32] demonstrated that
thermally induced internal forces and displacements have a larger im-
pact on the structural response than the applied loads. As the number of
variations from connection state to state is infinite, and expansion on the
structural level is important, it then seems that the complete structure
should be modelled, including not only temperature loads, but also me-
chanical loads and mechanical failure modes for all connections, with
all their relevant details (e.g. threads) modelled [33]. Such a detailed
model for the complete structure requires an extremely fine mesh for the
connections and their surroundings, which again significantly increases
computational costs and memory requirements. This is even more the
case if the detailed model would be part of a two-way coupled simula-
tion approach (not presented here), with CFD fire simulations and both
FEM thermodynamical and thermomechanical simulations [10].

Specifically for bolted connections, Table 3.4 in Eurocode 3, part
1-8 [34] lists five failure modes, namely tension, shear, bearing, punch-
ing, and combined shear and tension, see Fig. 2. However, some addi-
tional failure modes exist. Firstly, tear-out, which is similar to bearing,
however, due to a small end distance, the shear force will shear the
material between the bolt hole and the outer edge. Secondly, a small
edge distance may induce net section failure. For example, Zadanfar-
rokh et al. [35] studied the flexibility and strength of bolted connec-
tions in cold-formed steel sections, as a function of among others the
bolt diameter and type, the sheet thickness and strength, and the end
distance. Their tests showed bearing, but also net section failure. Fur-
thermore, they mentioned the trend to define bearing and sheet tearing
(defined as tear-out in Fig. 2) as a single failure mode. Rogers et al.
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Fig. 2. Failure modes of bolted connections (references for ambient, see text for elevated temperatures).

[36] presented a study of bolted connections in shear and mentioned
the failure modes end pull-out (defined as tear-out in Fig. 2), bearing,
and net section failure. Salih et al. studied net section failure [37] and
bearing [38]. Snijder et al. studied an extensive set of bolted connection
configurations (including staggered ones) for net section failure [39].
Net section failure is handled by Eurocode 3, part 1-1 [40], however,
for a single bolt, tear-out is not explicitly covered in Eurocode 3 part
1-8 [34], as end distances are controlled, however, for a row of bolts
so-called block tearing is checked. Concerning thread failure, Grimsmo
et al. [41] studied bolt-nut assemblies under tension. Thread failure was
only observed for non-standard nut positions, whereas bolt fracture oc-
curred in all other cases. Finally, if there is a repeated, cyclic load on
a bolted connection, fatigue may occur, as researched by e.g. [42,43].
All these failure modes for ambient temperatures may also occur for el-
evated temperatures, e.g. under fire conditions [44]. For instance, Yan
et al. [45] found a good agreement between finite element simulations
and experiments of single shear bolted connections of thin sheets, with
bearing and net section failure modes observed. He et al. studied thin-
walled bolted plates in shear at elevated temperatures, and developed
well-corresponding finite element models. Failure modes observed were
net section failure, end pull-out (defined as tear-out in Fig. 2) and bear-
ing [46]. Bull et al. studied bolt assemblies under tension in fire. They
noticed that at ambient temperatures bolt fracture and thread-stripping
occurred, whereas thread-stripping took place at elevated temperatures
[47].

In the third paragraph of this introductory section, three FEM re-
quirements were mentioned. The first, (a) considering the interaction
of the structure and fire, has been addressed in several publications
[10,14,15,48]. This paper focuses on the latter two requirements. With
respect to the second requirement, (b) taking into account interaction
between structural elements at several scales, a two-scale method will
be presented that can reduce computational costs and memory require-
ments, and provides an insightful functional separation of scales: what
matters on the small scale (details) is treated separately and brought
forward to the global-scale model, which captures the relevant issues
on that scale, i.e. the structure. Vice versa, the behavior of the structure
provides Boundary Conditions (BCs) on the small scale. For the third
requirement, (c) the influence of critical parts, e.g. connections, should
be incorporated, a small-scale model is introduced for which it is tried
to include combinations of all essential failure modes of bolted connec-
tions, and including elevated temperatures.

In conclusion, there is a need for the correct and computation-
ally efficient modelling of structures under fire, at different scales, in-
cluding connections. The contribution of this paper is as follows. It
presents a two-scale method, using a computationally as simple as pos-
sible small-scale model for a bolted connection, which still describes
all essential failure modes, their combinations, including elevated tem-
peratures. The resulting two-scale method bridges a gap between the

existing very detailed small-scale models for bolts, and the existing
global-scale structural models, which use springs for the bolts. The
method provides insights, since it separates the different scales func-
tionally, enlightening their relationships. Furthermore, it allows for ef-
ficient distributed computing, handles local non-convergence (e.g. a
failing bolt) naturally, and can as such be used in e.g. two-way cou-
pled fire-structure simulations (not presented here). A similar approach
has been published for screw connections [49], but note that screws
and bolts have fundamentally different connection mechanisms (thread-
based vs. bolt-nut-structure contacts) and related different failure
modes.

In the next section, the two-scale method will be described, including
an overview, small-scale model simplifications, equivalent spring prop-
erties, and an explanation of submodelling as a technique to take into
account the boundary conditions. Section 3 studies the modelling of the
bolt itself, in the small-scale model. The proposed material model is val-
idated by existing experiments, smooth shank modelling is verified, and
temperature-dependent behavior is validated by experiments from the
literature. Section 4 discusses the type of the spring element to be used
in the global-scale model. Then, having set the details of the small-scale
and global-scale models, in Section 5 the two-scale method is demon-
strated for tension, shear, bearing, and punching. Existing experiments
are used for validation and it is explained why net section failure can-
not be described, which also applies to tear-out. Multi-directional load
cases are introduced too, including elevated temperatures. Finally, Sec-
tion 6 presents the conclusions. Open-source scripts and code have been
published online, for all simulations as presented in this paper [50]. As
such, all simulations can be reproduced and used for further research.

2. Description of the two-scale method.

2.1. Overview of the two-scale model. Fig. 3 (b) shows an overview of
the two-scale method. It consists of a global-scale model and as many
small-scale models as the number of bolt connections. For this example,
the global-scale model includes two plates, each modelled by volume
elements, connected by a spring element that represents the bolt. The
small-scale model describes the dotted-line-indicated part in the centre
of the global-scale model, again by volume elements, and it includes a
bolt, also modelled by volume elements. Note that in general, the two-
scale method needs a dedicated small-scale model for each unique bolted
connection in the global-scale model. For instance, the method can be
used for variably curved plates on the global scale, however, a dedi-
cated small-scale model is then needed for each bolted connection at a
location having a specific curvature. Fig. 3(a) shows a detailed system
model. This model is used for computationally expensive verifications
only, and combines the global-scale model with a bolted connection that
is modelled with the same level of detail as present in the small-scale
model.

Non-linear simulations usually apply the load in increments, here
defined as load steps. This also applies to simulations that involve the
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Table 1

Procedures followed by the two-scale method.

Global-scale model

Small-scale model

Step 2: Transfer of BCs and temp. vs. time curves. The global and

1. Global-scale model load step T 2. Transfer of BCs and temp. vs. time curves
> Scripts defining global-scale model u > Relocation of model to location of connection in global-scale model
> Spring stiffness initiation ¢ > Apply BCs and temperature vs. time curves
> Output of temperature vs. time curves -
3. Small-scale model load step
> Thermal and structural analysis of the small-scale model
5. Spring stiffness update 4. Probe step
> Update stiffness of spring elements k > Apply pertubated boundary conditions
> Restart analysis > Stiffness calculations
> Failure checks
: : small-scale model. Detailed bolt stiffness properties as e.g. presented by
: . [52] could be included in the initialisation stage in case a higher level
Global-scale model ' . . .
; : of accuracy is desired. Subsequently, the global-scale model is analysed
: ; : with the initial spring stiffness values. Note that if temperature loads
' ' ' . - . .
Small-scale mode! i : are present, this analysis will also include the temperature vs. time data
i J ' )f T (see also Table 1) of the nodes of the spring element.
H ' v

Load step 1

Load step 2

Fig. 4. Time line for two-scale method simulations.

two-scale method, where the global-scale model provides boundary con-
ditions for the small-scale model after each load step, which in turn up-
dates the spring properties in the global-scale model. Table 1, Figs. 3 and
4, and the description below give an overview of this coupling between
the global-scale and small-scale models.

Step 1: Global-scale model load step. The global-scale and small-scale
models are defined by scripts (here: Python), by which the models are
also updated for all subsequent steps. First, a linear elastic spring element
is used for the connection in the global-scale model, with its equivalent
stiffness obtained in step 4 (explained later). The stiffness of the spring
element is defined for three directions (i.e., three DOFs), based on a
Cartesian coordinate system, and the three stiffness properties are un-
coupled. Since a simulation starts with the global-scale model, the initial
normal stiffness k;, of the spring element is estimated by
ky = % 1

b
where E,; is Young’s modulus for the bolt at a specific temperature,
Ay is the stress area of the threaded part and /, is the bolt elongation
length [51]. The Young’s modulus has been taken as 210,000 N/mm? at
room temperature and the length / is taken as the distance between the
plate surfaces plus 1 mm at each end to account for the elastic action
of the nut and head. The initial shear stiffness is assumed to be 1/3 of
the tension stiffness. Note that the above stiffness values are only used
for stiffness initialisation, and all further stiffness values follow from the

small-scale models are defined in the same global coordinate system.
However, the location of the small-scale model may not automatically be
such that it corresponds to the location of the connection in the global-
scale model, for instance, if several connections exist at different loca-
tions. Therefore, the small-scale model may need to be translated in the
coordinate system to the position of the global-scale model connection
such that the correct BCs (displacements u and rotations ¢) will be ap-
plied to the small-scale model. Additionally, the temperatures T of the
nodes of the spring are projected to all nodes of the small-scale model.
Accordingly, the response of the bolted connection, as presented in the
next step, will include temperature-dependent effects if temperature-
dependent material properties are used.

Step 3: Small-scale model load step. A structural analysis of the small-
scale model, including thermomechanical aspects, is carried out in this
step, to simulate the behavior of the connection and the parts of the
plates modelled in the small-scale model. This step uses the same time
increment as step 1, see Fig. 4.

Step 4: Probe step. Hereafter, a so-called probe step is carried out. To
obtain the tangent stiffness at the end of the load step, the translational
BCs are perturbed in the directions of interest, and resulting reaction
force increments can be used to determine the tangent stiffness and pos-
sible failure of the connection. An additional 5% of the displacement is
used here for perturbation. In the following sections, a sensitivity study
on the load step size will be presented, which indirectly also verifies the
sensitivity of the probe step size.

Step 5: Spring stiffness update. Now that in the small-scale model
updated stiffness values have been found for the connection, the spring
properties in the global-scale model can be adjusted accordingly. The
global-scale model then restarts at the time where it finished before the
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update, but using the updated (but still linear) stiffness values k for the
spring. Hereafter, a new load step is carried out and the procedure starts
again.

A timeline for the two-scale model is shown in Fig. 4, where the cir-
cled step numbers refer to the steps presented in this text and in Table 1.

2.2. Small-scale model simplifications. As mentioned earlier, in the
two-scale method the bolt will be modelled as a spring at the global
scale (like in Fig. 1), and on the small scale by using a computationally
as simple as possible model, which still describes all essential failure
modes, their combinations, and their temperature dependencies. There-
fore, a small-scale model is suggested as shown in Fig. 5 on the right.
No washers are modelled: for example Yu et al. [53] did not model the
washer, but instead used the diameter of the washer for the diameter
of the bolt head, and their simulations agreed well with experiments.
Threads need not be modelled too, as will be shown in Section 3.2.

2.3. Equivalent spring properties. The most critical aspect of the two-
scale method is the correct determination of the spring properties in the
global-scale model. This section describes the derivation of the related
equivalent spring properties. In general, the tangent stiffness of a spring
can be approximated by Hooke’s law
¢= AF,

Au

where k is the tangent spring stiffness, AF is a small variation of the
load on the spring, and A is a small variation of the spring elongation
or shortening. For two plates connected by a bolt, Fig. 6 shows the small-
scale model on the right, and the global-scale model with a zoomed-in
detail on the left. The boundary conditions for the small-scale model are
the displacements (along the time of the load step) from the global-scale
model at the locations coincident with the boundaries of the small-scale
model. Note that snug-tight connections are considered i.e. there is no
preload (tightening) of the bolt at the start of the analysis.

@
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The variation of the load from the plates on the bolt can be mea-
sured by the variation of the contact forces in the small-scale model on
the right, displayed twice: once for each type of stiffness calculation.
The spring in the global-scale model has three stiffness properties: one
is for the bolt axial stiffness k3, and two are for the representation of
the shear stiffness of the bolt and the bearing stiffness of the plates, for
the two independent directions k; and k,. No clearances between the
bolt and the plate are modelled in the small-scale model, so the bolt
head and shaft are assumed to be in full contact with the plate imme-
diately. The contact forces are given by three force vectors for each
contact pair of surfaces, i.e. F,3_., for contact pair (i), modelling the
contact between the bolt head and plate, and F, , 5_,, for contact pair
(ii), modelling the contact between the bolt shaft and upper plate. With
respect to the axial 3-direction, the deformation of the connection comes
from lateral contraction of the loaded plates, or separation of the plates,
and elongation of the bolt shaft. These together relate to the average
of four displacements read at the red locations at the top of the bolt
u3, and four displacements at the red locations at the bottom of the nut
u3, as depicted in Fig. 6. The deformation of the connection then reads
Upoie = Uz, — Uz,. As such, using a probe step as mentioned earlier, the
tangent spring stiffness k3 can be found by:

_ F3—cpl(pr0be) - F3—cpl(load)

ks = , 3

Upolt(probe) ~ Ubolt(load)

With respect to shear in the tangential 1-direction, the corresponding
displacement is found via the average of the shear deformations of the
two plates at the left (u;, — u;,), using the blue dot locations, and at
the right (u;; —uyq), yielding uj je = [y, — typ) + (41 — u39)1/2. Note
that as such bearing in the plates is taken into account, also if the two
plates differ in thickness or for their material properties. Again using a
probe step, and noting that shear forces can be present both by radial
compression in contact pair (ii) and in-plane friction in contact pair (i),
the resulting stiffness k, is determined by:

_ (Fl—cpl(probe) - Fl—cpl(load)) + (Fl—cpZ(pmbe) - Fl—cpZ(load))

@

! El,plalle(prr)be) - El,plate(load)
The shear stiffness in the tangential 2-direction k, can be calculated in
a similar fashion.

The global-scale model should predict the strains in the plates near
the spring connections with reasonable accuracy, because these strains
relate to the boundary conditions given to the small-scale model. There-
fore, the spring is not connected to a single finite node of each plate
in the global-scale model, which would cause too highly concentrated
force introductions, but to a set of nodes in a so-called ”distributed cou-
pling zone” instead, shown yellow in Fig. 6 on the left. All nodes in

a) Tension stiffness calculation

Friction - Con_tact pair (i): with friction of 0.3

el — R/Plate1
2a e

— | —Plate 2
1b L= —T -

Submodelling BCéia{ tﬂé end of the probe step (grey)
b) Shear stiffness calculation

Small-scale model

Fig. 6. Calculation of equivalent spring properties.
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the distributed coupling zone are rigidly connected to the node in the
centre (a reference point), and subsequently the reference points of the
two plates are connected by the spring element. Consequently, forces
from the spring are introduced in the plates via an area whose circum-
ference relates to the bolt shaft circumference and the bolt head and nut
diameter.

2.4. Submodelling. Data transfers from the global-scale model to the
small-scale model are carried out by submodeling. Originally, submod-
eling was conceived to provide more accurate results for a small zone
within a larger model, via a finer meshed submodel [54]. Here, a sub-
model is used to implement the small-scale model. Submodelling is
available in most finite element packages.

For submodeling, the translational and rotational DOFs from the
global-scale finite element model nodes (at the imagined location of the
small-scale model boundaries) need to be interpolated to the “driven”
nodes (where boundary conditions are applied to) at the boundary of the
small-scale model. In this research, the finite element program Abaqus
[55] is used (however, other programs may allow for similar function-
ality, e.g. COMSOL [56] or OpenSees [57]). In Abaqus, two different
methods are available for the above-mentioned interpolation: (a) solid
to solid, in case volume elements are used both in the global-scale and
the small-scale models; (b) shell to solid, when shell elements are used in
the global-scale model while volume elements are present in the small-
scale model. The accuracy of these two types of interpolation has been
verified [55].

Submodelling normally functions one-directionally, from the global-
scale structural model to the small-scale submodel. However, for the
two-scale method, two-directional functionality is implemented, as pre-
sented in Section 2.1. This added functionality will be verified by the
detailed system model.

This complete Section 2 has been dedicated to explain the setup of
the two-scale method, and so the coupling between the global-scale and
small-scale models. Full details can be found in the code and scripts [50],
and the following two Sections 3 and 4 may additionally help to under-
stand the backgrounds of the method: In Section 4, Fig. 15 illustrates
how the spring stiffness is updated for increasing displacements.

3. Verification and validation of small-scale model. In the following,
it will first be investigated whether using a material model consider-
ing plasticity but no fracture will be sufficient for bolts failing in ten-
sion. Secondly, it will be determined whether threads should be mod-
elled or can be neglected. Note that in this section, tension cases are
considered, because these are the most critical concerning the mod-
elling of the thread. For other load cases, shear, punching, and bear-
ing, the small-scale model is verified in Section 5, via its applica-
tion in the two-scale method, using theoretical models and Eurocode
predictions.

3.1. Validation of material model assumptions. Bolted connections un-
der tension commonly fail by ductile necking and a subsequent single
crack in that region. Furthermore, due to stress concentrations around
the threads, local plasticity may occur before failure, and may influence
the overall bolt strength and stiffness. This section studies whether it
is possible to simulate the failure of a bolt in tension using a material
model for plasticity, omitting the modelling of fracture. Therefore a 3D
finite element simulation of an M16 bolt at room temperature under
tension is presented, and results are compared with an equivalent ex-
periment from Grimsmo et al. [41] (the experiment shown in Fig. 16(b)
therein). The thread of the bolt is modelled (although not helical) to
include stress concentrations. The threads between the bolt and nut are
omitted by modelling the nut like a bolt head, since in practice strip-
ping of the thread in the nut is avoided by design. The material model
in the simulation uses a Von Mises yield surface with associated plastic
flow and isotropic hardening. For the finite element program, the engi-
neering stress-strain relations are converted to true stress-strain values

Otrue = o_eng(l + Eeng), 5)
Erue = 10 (1 + £¢pg)- ©

The yield stress and hardening are defined by a multi-linear consti-
tutive relationship, for which Fig. 7 tabulates the true strain-stress data.
Note that after a true strain of 0.052, for which necking started in the
material tests, the simulation keeps the true stress constant.

The curves in Fig. 7 show that the finite element model is able to
predict the elastic stage, ultimate load, and plastic stage of the bolt
with good accuracy. Also the necking in the experiment appears cor-
rectly in the simulation. For larger plastic deformations, however, the
finite element model shows smaller displacements for the same force
when compared to the experiment. This is likely due to plasticity in the
threads between the bolt shank and nut. The omission of these threads
in the simulation thus may underestimate the displacement at failure.
Although the studied experiments failed by necking and fracture, for
other (less practical) configurations in [41], threads between the bolt
and nut were stripped. However, as mentioned earlier, if the bolt and
nut are designed following the appropriate standards, this kind of failure
should not happen.

EN 1993-1-2 [58] suggests the failure strain of steel to be 0.2, ambi-
ent, but also for elevated temperatures. This value is based on material
tests in which this strain is measured over the necking region, but using
a measurement length quite larger than this region itself. Consequently,
actual strains in the necking region are significantly higher than mea-
sured, making the Eurocode value a quite conservative criterion for the
actual failure strain. The value is marked in the figure, for the first oc-
currence in the simulation, checking all principal true tensile strains in
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a contour plot based on 75% averaged nodal data. The latter means that
if the difference in strain values (coming from the related elements) at
a node divided by the range of strain values over the model, is smaller
than 0.75, the strain values at the node are averaged into a single value.
The experiment validates that failure is indeed conservatively captured
with the model using this criterion. Grismo et al. carried out material
tests for which speckle patterns were applied on the specimens, and im-
ages of these patterns were used to obtain the engineering strain locally,
in the necking region [41]. Their value for the failure strain (0.35) is also
presented, and shows a somewhat more realistic prediction of the bolt
tension failure. However, it is still quite conservative, suggesting the
speckle pattern measurements are able to measure strains locally but
not necessarily the maximum values.

Principally, as soon as the real tensile failure strain is reached at
any location in the finite element model, the finite element simulation
should not be continued, as it does not incorporate the modelling of
fracture. However, if it would be continued after the above conservative
failure strains, it does still predict the experiment reasonably well, see
the red curve after the red crosses, but further criteria are missing to
predict experimental failure, as indicated by the black cross.

3.2. Verification of smooth shank modelling. The modelling of threads
may be an important aspect of a bolted connection under tension, since
(a) their geometry leads to stress concentrations, and (b) instead of the
bolt itself, the threads in between the bolt shaft and nut may fail. This
section studies whether a bolt under tension can be modelled with-
out explicit modelling of the threads. Such a simplification is also ap-
plied in other studies [27,53,59]. If threads are omitted, the diameter
of the modelled circular cross-section should be related to the real non-
constant cross-section over the bolt’s length, including the effects of the
related non-uniform stress distribution. The so-called stress area A, is

used for this, which is a function of the gross area A, and thread size
and pitch, and fits simple bolt strength predictions to experimental re-
sults, e.g. [60].

In this section, the above two different cross-sectional areas for the
small-scale model, Fig. 8 on the left, are compared with a detailed model
that includes threads, Fig. 8 in the middle. An M10 bolt is modelled, with
a pitch size according to ISO 965 [61]. Two rigid circular plates load the
bolts. The lower plate is fixed, whereas the upper plate is loaded by a
prescribed upward displacement equal to 5 mm. The engineering yield
stress f, adopted is 640 N/mm?, and the engineering ultimate stress f,,
is 800 N/mmz. In combination with EN 1993-1-2 [58], this leads to the
ambient (20 degrees, purple) line in Fig. 11 on the left. Note that, fol-
lowing the previous section, true stress remains constant after the last
input of the strain (i.e. 0.2 in Fig. 11).

The gross area A, of an M10 bolt is 78.5 mm?, whereas the stress area
A, equals 58 mm?2. As was the case in Section 3.1, also for the detailed
model the bolt and nut areas are solid, as tension failure should occur
in the bolt shank by design [62]. Fig. 9 presents the simulation results
of the model with threads and the model without threads. It can be seen
that the small-scale model using the stress area predicts similar behavior
as the detailed thread model for the elastic stage, ultimate load, and
post-peak behavior. To compare results with theory, the upper bound
for a bolt tension failure equals the tensile strength multiplied by the
stress area, which is expressed as: F, = f,,, A, = 46.4 kN. This is shown
in Fig. 9 with the line “Theoretical calculation”. Slightly different, EN
1993-1-8 [34] predicts the ultimate load of a bolt in tension F, y4 by:

O]

where k, is a correction factor, here equal to 0.9. The ultimate loads in
the simulations are slightly higher than these predicted values, probably

Fipd = ky fupAs = 0.9 X 800 X 1 X 4.3% = 41.8 kN,
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because lateral stresses occur near the modelled bolt head and nut, due
to restricted lateral contraction. As the modelled shank is quite short,
these lateral stresses are also present in the failure region, and as such
allow for a higher stress in load direction than the uniaxial tensile stress.

Fig. 9 on the right shows the detailed thread model and the small-
scale model using the stress area, for plastic strains at the end of the
simulations. Elements are distorted, and in reality, failure likely occurs
before the displacements shown: In the graph on the left, the red crosses
show the first occurrence of a tensile strain larger than 0.2 (as sug-
gested by EN 1993-1-2 [58]), checking all principal true strains in a
contour plot based on 75% averaged nodal data. As was shown in the
previous Section 3.1, this is a conservative criterion for the actual fail-
ure strain. The small-scale model (with smooth shank) and the detailed
thread model meet this criterion at the same displacement, and rela-
tively quickly after the ultimate load, as was also seen for the experiment
in the previous section.

In conclusion, the small-scale model, without threads and using the
tensile stress area, behaves comparable to the detailed thread model un-
der tension, concerning the force-displacement curve, the deformation
pattern, the stress distribution, and the moment the conservative ulti-
mate tensile strain is reached. As thread modelling is most crucial for
tension, it is thus believed that in the small-scale model, the thread can
be omitted for all load cases.

3.3. Validation of temperature-dependent behavior. Finally, the setup of
the small-scale model is validated for temperature-dependent behavior
by a comparison with experiments from the literature. Fig. 10 on the left
shows specimens tested by Spyrou [63]. Two S275 T-stubs are connected
by four Grade 8.8 M20 bolts and loaded under tension at different tem-
peratures. Reportedly, failure always occurred by complete yielding of
the flange followed by bolt fracture. The geometry of the finite element
model is shown in Fig. 10 on the right, where the bolt consists of a solid
cylinder, without threads, and a larger cylindrical part to model the bolt
head, with its diameter equal to the washer under the head (36 mm).
The stress area A, for M20 bolts equals 245 mm?, which results in a di-
ameter equal to 17.6 mm. According to the symmetry of the experiment,
only an eighth part is considered in the finite element model, indicated
by the dotted lines in Fig. 10(a). Symmetry conditions are applied on
the plates and bolt shank, shown by red lines. However, a rigid plate
is modelled at the bottom of the horizontal part of the T-stub, without
friction. This is because if symmetry conditions had been applied here,
the T-stub would have been fixed at its bottom horizontal surface, and
consequently would not have been able to open up, whereas this will
occur in the experiment. Displacement control is applied on the edge of
the T-stub, also indicated with a red line, with a maximal value of 20
mm.

The bolt is modelled by 8-node 3D volume elements C3D8R with a
size of 3 x 3 x 3 mm. The same element type is used for the T-stub, with
elements 6 x 6 x3 mm. For the contact between the bolt and T-stub,

“surface to surface” contact with a so-called “finite sliding” option is
used: The contact properties include the “hard contact” condition in the
normal direction and a friction coefficient equal to 0.3 in the tangential
directions for (a) the bolt head and the surface below, and (b) the bolt
hole and the bolt shank. The material properties for the Grade 8.8 M20
bolt under ambient temperature are shown in Fig. 11 on the left. Note
that similar to Section 3.1, only stress-strain data up to the necking of the
coupons is used, and true stress is assumed to remain constant hereafter.
Degraded properties for other temperatures are based on EN 1993-1-
2 [58], as per instruction by prEN 1993-1-14 [64]. The temperature-
dependent material properties of the T-stubs are taken from Fig. 16 in
Yu et al. [53], and are shown in Fig. 11(b).

Fig. 12 shows that the load-deformation curves of the simulations
compare well to the experiments, for different temperatures. Again, a
tensile strain of 0.2 (as suggested by EN 1993-1-2) is used as a conserva-
tive prediction for failure, and the red crosses mark their first occurrence
(as the maximal (so tension) principal true strain in a contour plot based
on 75% averaged nodal data). Failure did not occur for 200 °C, both for
the experiment and simulation. For all other temperatures, the conser-
vative predictions seem to correlate well with the sudden load drops in
the experiments. Although striking, this cannot be explained with the
available information, since the experimental report does not address
the load drops, and only mentions for failure the “complete yielding of
the flange followed by bolt fracture”. Assuming the yielding of the flange
is smooth, and the bolt fracture is sudden, the latter phenomenon is the
most likely suspect for the load drops. However, in the simulations, the
conservative failure strain is always found in the flange, and never in
the bolts, which show significantly lesser strains.

4. Verification of global-scale model (spring). The two-scale method as
presented in Section 2 will be compared by a detailed system model.
Using this comparison, it will be determined which type of spring is
needed in the global-scale model.

4.1. Finite element models. Fig. 13 shows a finite element application
of the two-scale method, with the global-scale model on the left and the
for clarity enlarged small-scale model on the right. For the global-scale
model, two thin plates 200 x 200 X 3 mm are modelled by volume ele-
ments C3D8R, and connected by a spring element in the center. Note
that the thin plates could also have been modelled with shell elements,
if desired amended by a zone of solid elements around the region of
interest. However, to avoid the complexities of different element types
during verification by the detailed system model, which has volume el-
ements everywhere, volume elements have also been selected here. The
spring is modelled by a so-called connector element CONN3D2, which
is a two-dimensional, 2-node spring element with three (translational)
DOFs. Practically, this allows for modelling a stiffness for each connec-
tion in the axial and two tangential directions, which relate to one ten-
sion stiffness and two shear stiffness values, their derivation presented
in Section 2.3.



Q. Xu, H. Hofmeyer and J. Maljaars

1000
20 °C
800
£ 600
Z
123
g 400
®
[0}
o &
= 200}
800 °C
o 1 1 1
0.00 0.05 0.10 0.15 0.20
True strain

(a) Material properties of Grade 8.8 bolt

Theoretical and Applied Mechanics Letters 14 (2024) 100526

600
20 °C
— 500
=
E °
> 400 450 °C
I
® 300 500 °C
w
) 550 °C
= 200 600 °C
100f7 700-°€C
o 1 1 i 1 1
0.00 0.05 0.10 0.15 0.20 0.25 03
True strain

(b) Material properties of S275 T-stub

Fig. 11. Temperature dependent true stress-strain curves for the (a) Grade 8.8 M20 bolts as suggested by EN 1993-1-2 [58] and (b) T-stub S275 as used in [53].

200 i
--- Experimental results
+—  Simulation results
X Failure strain reached
150+
z
=,
[0}
Q
€ 100}
Qo
ST, f Yo
o W SIRE o\
50H! et o
b L
745°C !
[r IR VAR
E}/ .,-i-;_-;':1'—":1’-'-’1’-':':-'i4—-,‘—-_-__X‘ ——
) 5t L ° °
z L )] 570 °C 745°C
Y TR S T SR N TR SR SN SN T SN ST SN A AN I S P2 SR ST SR M 'Y
Oo 5 10 15 20 Contours at failure strain

Displacement [mm]

Deformation scale factor = 1.0

Fig. 12. Simulations of Spyrou’s experiments (Fig. 4.17 in [63]).

NI Plate 2: edges fixed

Plate 1: prescribed displacement on edges
Submodelling boundary

conditions transfer

-

Driven zone

Distributed
| - coupling zone

200

CONN3D2
\ Spring element

\
\ Spring
N\ stiffness
N
\update
~

2
(a) Global-scale model (b) Small-scale model
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For the small-scale model, 40 x 40 x 3 mm parts of the two plates
are modelled by volume elements and connected by a bolt with nut,
however, without modelling the threads and the washers (see Section 3).
Note that for other systems the level of detail of the small-scale model
can be altered. To focus on the verification of the spring, and so to avoid
distraction by the expected behavior of a realistic bolt, arbitrarily bolt
dimensions have been taken: the head and nut of the bolt are modelled

by two cylinders with a radius equal to 8 mm and a height of 5 mm.
They are connected by a cylindrical bolt shank with a radius equal to 5
mm and a length of 6 mm.

Two types of contact are used. First, surface-to-surface contact with
a friction coefficient of 0.3, applied between the plate and the bolt head
(i.e. contact pair (i) in Fig. 6), and the plate and nut. Secondly, friction-
less surface-to-surface contact, as applied between the two plates, and
between the bolt shaft and the plates (for the plate nearest to the bolt
head this resembles contact pair (ii) in Fig. 6).

All nodes on the four side surfaces (the edges) of Plate 2 (see Fig. 13)
in the global-scale model are fixed for all translational DOFs. The four
side surfaces of Plate 1 have a prescribed and uniform displacement,
controlled via the corner points. For the upcoming simulations, an im-
plicit static solver will be used.

4.2. Global-scale model with a linear elastic spring. The two-scale
method is verified with a global-scale model with a linear elastic spring.
A linearly increasing prescribed displacement is applied from 0 to 5 mm,
at the four corner points of Plate 1 in the bolt’s axial 3-direction, Fig. 13.
As mentioned earlier, the four side surfaces (the edges) of Plate 2 are
fully fixed. To provoke non-linear behavior, simultaneously a simple fire
scenario is incorporated by a linearly increasing temperature starting at
20 °C and ending at 800 °C.

Linear elastic materials are used for the plates and the bolt. To study
solely the bolt response, while eliminating the influence of plate ac-
tion (more realistic simulations will follow), Young’s modulus for the
plate is a constant 2.1 x 10® N/mm?. For the same reason, the bolt has
been given a reduced stiffness: its Young’s modulus varies linearly with
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the temperature, and equals 2.1 x 103> N/mm? at 20 °C and 50 N/mm? at
800 °C, whereas Poisson’s ratio remains a constant 0.3 throughout the
temperature range.

Thermal expansion is not included in the simulations in this paper, to
obtain “pure” failure modes. However, it can easily be switched on in the
models: In two-way coupled fire-structure simulations (not presented in
this paper), for which the two-scale method is intended, thermal expan-
sion has been considered in the global-scale model [10,14,15,48]. In the
latter paper, the thermal expansion in the global-scale model imposes
effects on the connection in the small-scale model, via mutual coupling
as described in Section 2.1.

Fig. 14 shows the resulting normal force in the bolt versus the pre-
scribed displacements of the plate corners for the two-scale method (or-
ange and green curves) and the detailed system model (black curve).

The orange curve shows the two-scale method using load steps of
0.5 mm of prescribed displacement. For this particular simulation, each
subsequent load step involves a reduction of the spring stiffness, and so
the system stiffness. A sudden reduction of the force can be seen after
each update of the spring stiffness. This is due to the fact that the new
lower spring stiffness will result in a lower force given the prescribed
displacement at that moment. To demonstrate this, an imaginary line
can be drawn between the origin and a segment of choice of the orange
curve, see the figure. The resulting irregular behavior can be smoothed
by using smaller load steps, as is shown by the green curve, for which
each load step involves 0.25 mm of prescribed displacement.

Furthermore, it can be seen that, although the system tangent stiffness
becomes negative around 3.6 mm, as shown by the black curve of the
detailed system model, the tangent stiffness of the two-scale method re-
mains positive. As a linear spring has been used in the two-scale method,
for each load step it determines the momentarily tangent stiffness, which
is always positive, regardless of how small. This results in large state
changes for the two-scale method at the start of each load step, even for
small steps as shown by the green curve, and this may be computation-
ally unfavourable. A more advanced spring definition can be used for
improved performance, as presented in the next section.

4.3. Global-scale model with a non-linear elastic spring. This section
introduces a non-linear spring for the two-scale method. Similar to the
linear spring, the spring stiffness is constant within each load step, and
it is updated at the start of each new load step. However, the non-linear
definition allows for the inclusion of a pre-tension force f,, also updated
at the start of the load step. For the global-scale model, the force, the
length change, and the stiffness of the spring in the n" load step are
given by f,, u,, and k,, respectively, and the pre-tension force at the
start of the (n + 1) load step can be formulated as

Sur1 = Fu+ k(g —uy). @®)

10
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At the end of each load step, the spring stiffness is determined by a probe
step of the small-scale model. This spring stiffness is used for the (linear)
force-displacement diagram of the non-linear spring in the global-scale
model. In other words, the nonlinear spring in each load step is still
using a linear stiffness, but with an offset with respect to the load.

To demonstrate this non-linear spring, the same setup is used as pre-
sented in the previous section. However, to demonstrate different types
of nonlinearity, now temperatures are kept ambient, and for the bolt
elastoplastic behavior will be defined: an arbitrarily selected yield stress
is set to 42 N/mm?, and the ultimate tensile strength equals 60 N/mm?,
the latter for an equivalent plastic strain equal to 0.15.

The continuous lines in Fig. 15 illustrate that the bolted connec-
tion shows first elastic and thereafter plastic behavior. The force-
displacement curves of the two-scale method are reasonably close to
that of the detailed system model. The spring stiffness of the initial load
step is slightly different for the two-scale method and the detailed sys-
tem model, due to the initial estimated stiffness values, but this differ-
ence is corrected automatically in the second load step. It can also be
seen that the behavior becomes strongly non-linear as soon as the bolt
starts to yield; the spring stiffness in the two-scale method is updated
step by step; and the two-scale method is able to respond with a nega-
tive tangent stiffness, different from the previous section. As expected,
the 0.25 mm load step size simulation (green curve) remains closer to
the reference than the simulation using a 0.5 mm load step size (orange
curve).

The dotted lines in Fig. 15, together with the right vertical axis, show
the stiffness of the models. The two-scale method overestimates the bolt
stiffness if the stifness gradient is non-zero. If wished, this can be re-
solved by using smaller load step sizes. Finally, note that in this Sec-
tion 4, the two-scale method has been verified using a load of continu-
ously increasing prescribed displacements or temperatures. A verifica-
tion for cyclic loading-unloading schemes has been published elsewhere
[14].

5. Application of the two-scale method. The two-scale method, as ver-
ified and validated in the previous sections, is applied first for single
bolt connection failure modes, namely tension; shear; punching; and
bearing, all at ambient temperatures. All follow the setup as presented
in the above Section 4.3, including plate and bolt dimensions, and indi-
cated if otherwise. Note that as such the diameter of the bolt, having a
smooth shank, equals an arbitrary 10 mm, following Section 4.1. These
applications are verified by the detailed system model and simple theo-
retical models, and validated by EN 1993-1-8 [34] predictions. Note that
the latter two implicitly validate the small-scale models too. Then some
experiments from the literature are simulated to validate the two-scale
method behavior, followed by a net section failure simulation. Finally,
applications that involve multi-directional loads and elevated tempera-
tures are presented.
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Bolts are taken as Grade 8.8 with temperature-dependent material
properties as shown in Fig. 11(a). Steel grade S355 is applied for the
plates, with a yield stress of 355N/mm’ and an engineering tensile
strength of 490 N/mm?, both at ambient temperatures. Temperature-
dependent behavior follows Eurocode 1993-1-2 [58], and resulting true
stress-strain curves are shown in Fig. 16. In some simulations, linear
elastic material with a Young’s modulus 1000 times larger than that of
steel is used for some components, e.g. the plates, to enforce “;pure”
failure in other components, e.g. the bolts. As for all simulations so far,
the solution is found by an implicit static method. Mentioned already
in Section 3.1, the simulations are stopped as soon as a very conser-
vative 0.2 failure strain is reached, as suggested by Eurocode 1993-1-2
[58], checking all positive principal true tensile strains in a contour plot,
based on 75% averaged nodal data.

5.1. Tension. The theoretical resistance for tension is based on the
equation in Section 3.2: F, = f;, A, = 62.8 kN. EN 1993-1-8 [34] predicts
Ft;Rd as

Fira = ko fup Ay = 0.9 X 800 X 1 x 5% = 56.5 kN. ©

For pure bolt failure, the plate material is taken as linear elastic and
1000 times as stiff, in this section and the next. A prescribed displace-
ment is applied in the bolt’s axial 3-direction, on the side surfaces (the
edges) of Plate 1 in the global-scale model. The load step size is 0.1
mm. Fig. 17 displays the resulting reaction force and displacement of the

Theoretical and Applied Mechanics Letters 14 (2024) 100526

Plate 1 edges, of the two-scale method and the detailed system model. It
can be seen that the two-scale method and detailed system model show
similar behavior for the elastic and plastic stages, and predict about the
same displacement at the conservative failure strain. The differences be-
tween the two-scale method and the detailed system model for the first
0.25 mm of displacement are due to the two-scale method that needs
some steps to adjust in case of large deformation rates. If wished, smaller
load step sizes will resolve this issue. The simulated ultimate strength
is slightly larger than the theoretical calculation due to lateral stresses
related to a short bolt shank, as explained in Section 3.2.

Fig. 17 on the right shows the maximal principal logarithmic (LE)
strains based on 75% averaged nodal data. These illustrate that the
strain distribution of the bolt in the two-scale method is almost equal to
the strain distribution in the detailed system model. The failure strain is
found in the centre of the bolt. This shows that the two-scale method is
not only capable of predicting the global-scale behavior, but it can also
predict the strain distribution at the component level in case of tension.

5.2. Shear. An upper bound of the bolt connection’s shear force can
be calculated as: F, = 7, A, where 7, is the ultimate shear stress, which
using the Von Mises criterion equals: 7., = f;,/ V3. Using EN 1993-1-8
[34], the predicted ultimate shear resistance for a bolt can be expressed
as

Fyupra = &y fupAs = 0.6 X 800 x 1 x 57 = 37.7 kN, (10)

where a, approximates 1/ \/3, and other variables have already been
defined before.

A prescribed displacement in the 1-direction, equal to 0.05 mm for
each load step, is applied to the edges of Plate 1, as shown in Fig. 13. The
results of the two-scale method and the detailed system model are shown
in Fig. 18, which presents the resulting reaction force versus the applied
displacement on the Plate 1 edges. As for tension, the two simulations
yield almost identical behavior. Load step sizes could be taken smaller
to improve the agreement near large changes of the spring stiffness. The
model predictions are close to the theory for the ultimate force. Some
elements in the bolt reach the conservative failure strain, see its defi-
nition in previous sections. Different from tension failure, these failure
strains were observed along the outside of the shaft, as shown in Fig. 18.

5.3. Punching. A prescribed displacement of 2 mm per load step is
applied, in the bolt’s axial 3-direction, at the edges of Plate 1 (see Fig. 13)
to simulate punching. The bolt material is taken as linear elastic (and
1000 times as stiff) in this section and the next, again to ensure “pure”
plate failure modes. A simple theoretical model involves the perimeter

75 | Tension
Failure strain reached
SRR I — -Theoretical calculation ---—-=-=-—-—.="=—.—. -
T B = EN 1993-1-8 =-=i=+=rmimimimimimdemimm
_.50F
Z Two-scale method
g Detailed system model
g
251
O 1 1 1 1
0 0.25 0.50 0.75 1.00

Displacement [mm]

Small-scale model
Deformation scale factor = 1.0

Fig. 17. Bolt tension, two-scale method vs. detailed system model.
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Fig. 19. Plate punching, two-scale method vs. detailed system model.

of the washer (or bolt head or nut) multiplied by the plate thickness,
and this area multiplied by the shear strength, i.e.

Fona =21, (1/V3) £ =28 xxx3x (1/V/3) x 490 =427 kN, (11)

where r is the radius of the washer (or bolt head or nut), 1 the
plate thickness, and f, is the engineering tensile strength of the plate.
EN 1993-1-8 [34] provides a very similar equation for punching as
follows:

Fypa = 0.6mdy,t, f, = 0.6 X1 X 16 X 3 X 490 = 44.3 kN, (12)
where d,, is the diameter of the bolt head or nut.

Fig. 19 shows the simulation results. The two-scale method agrees
well with the detailed system model at the onset of the simulation, how-
ever, the former gradually becomes stiffer. This is probably because the
load introduction of the bolt on the plate is via a rigid distributed cou-
pling zone in the global-scale model, whereas this goes via contact ele-
ments and flexible plates in the detailed system model. The detailed sys-
tem model failed by non-convergence due to unresolved contact prob-
lems between the bolt head and the plate, just a little later than the mo-
ment the conservative failure strain was reached. Differently, the two-
scale method was stopped manually after the conservative failure strain
was observed for the first time.

12

Fig. 19 on the right shows contour plots of LE strains based on 75%
averaged nodal data, for the final increment of the simulations. These
plots indicate that no punching occurs, but plate bending, and as positive
strains are plotted, yielding can be seen in the bending-related tension
zones. This occurrence of bending instead of punching may explain the
significant difference between the theoretical strength and the simula-
tion results, but also the conservative failure strain may be of influence.

To provoke punching, another detailed system model is simulated,
in which the plate edges are free, but a ring of nodes closely around
the bolt head is fixed for the bottom plate, and a similar ring at the top
plate is displaced upwards. The load-displacement curve for this simula-
tion is shown by the black dotted line. The accompanying contour plot
shows shear in the plates, and the load related to the first occurrence of
the conservative tensile strain (0.2) is close to the theoretical load. This
shows that the type of modelling as used in the small-scale model can
handle punching. However, for the structure here, the two-scale method
cannot be used. This is because the loads to be applied to the global-
scale model, are within the boundaries of the small-scale model. Even if
boundary conditions applied at the boundaries of the small-scale model
would reflect some actions of the applied load, these boundary condi-
tions can never apply a load within the boundaries of the small-scale
model. This leads to the conclusion that the two-scale method cannot
handle loads, which are always applied at the global scale, positioned
within the (imaginary) boundaries of the small-scale model.
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These kinds of plate failure simulations need a minimum for the di-
mensions of the plates as modelled in the small-scale model. Therefore,
without changing the dimensions of the bolt and the hole, also reduced
plates 30 x 30 mm, three times the bolt diameter, have been tried, with
the original load at the plate edges. It can be seen that in this case plates
sized 30 x 30 mm perform similarly as the 40 x 40 mm plates. However,
not shown here, plates 20 x 20 mm did not perform well, and so the
standard 40 x 40 mm selection is considered appropriate.

5.4. Bearing. A prescribed displacement of 0.2 mm per load step is
applied in the tangential 2-direction to Plate 1, see Fig. 13, to simulate
bearing. Fig. 20 shows the results.

EN 1993-1-8 [34] predicts plate bearing resistance by

Fypa = 2.5fydt, = 2.5x 490 x 10 X 3 = 36.8 kN, (13)

where d is the diameter of the bolt shank, f, is the engineering tensile
strength of the steel plate, and 1, is the plate thickness. It can be seen that
the Eurocode prediction agrees well with the models’ predicted bearing
capacity. The small differences may exist because of the large number of
influencing factors, such as the plate thickness, material properties, and
connection method [65,66]. The two-scale method and detailed system
model show comparable behavior. However, the conservative failure
strain is predicted somewhat earlier in the two-scale models than in the
detailed system model.

The sensitivity of the two-scale method for the size of the plates in
the small-scale model is also determined for bearing. A reduction of the
plates to 30 x 30 mm is of little influence, see Fig. 20. Not shown here,
but plates with the size of 20 X 20 mm, two times the bolt diameter,
showed significantly different behavior, namely tear-out due to the so-
called edge effect [67]. Related to this, it is interesting to compare the
stress fields of the global-scale and the small-scale models, Fig. 20 on
the complete right. Quantitatively stresses are in the same range for both
models, but, inevitably, qualitatively these are different. The small-scale
model incorporates for the plate the actual hole and a real bolt to load it,
whereas the global-scale model relates to a full continuous plate loaded
by a spring. Most importantly, along the edges of the small-scale model,
the stress field is quite similar for both models.

For an indication of computational costs, in Fig. 20 the detailed sys-
tem model takes 54 minutes, whereas the two-scale model costs 78 min-
utes, all without multi-threading. The about 1.4 times larger costs for the
two-scale method are due to the interaction between the small-scale and
global-scale models, and the additional number of finite elements used.
However, it should be realised that in practice multi-threading can be
used, and the two-scale method has additional benefits as explained in
the introduction and conclusions.

As a general conclusion for tension, shear, punching, and bearing,
the two-scale method compares well to the detailed system model.
Also, the two-scale method predicts plastic load-deformation curves
for which their levels correspond with Eurocode predictions. The fail-
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ure strain ends these plastic curves at the moment the finite element
models should not be used anymore, and this is in a quite conserva-
tive fashion, as shown by the validation via various experiments in this
paper.

5.5. Demonstration and experimental validation for a single load case.
The previous sections demonstrated all relevant failure modes, verified
by EN 1993-1-8 [34] and a detailed system model, and a validation is
presented in this section. Cai et al.[68] performed a series of tests on
cold-formed and stainless steel bolted lap connections, using stainless
bolts, and failing by bearing. In the experiments, lips were used to pre-
vent net section failure.

Figs. 21 and 22 on the left shows an experiment after the test: two
plates with lips are connected by a M12 bolt, and the end of each plate
is fixed in the test rig, so a tension force can be applied, loading the bolt
in shear and tension. The overall length of each plate L, is 380 mm. The
end distance e¢; = 33 mm and the edge distance e, = 25 mm. The height
of the lip 4 equals 10 mm and its length equals L, = 66 mm. Two of
these plates are connected by a bolt with a diameter d;, of 10.3 mm. The
simulation with the two-scale method is shown on the right, with ma-
terial properties for the plates taken from the experiments (see Table 4
in [68]) and listed in the figure. The material properties of the bolt are
taken from Fig. 11(a). Except for the experimental geometry and ma-
terial properties, the two-scale method conforms to the description in
Section 4.1. Results are shown in Fig. 22, which presents the two-scale
method, the experiment 'L-S-1-12’ [68], and additionally a detailed sys-
tem model. The force-displacement diagrams of the experiment and the
simulation agree well, both for the two-scale method and the detailed
system model. For the simulations, using the conservative failure strain
equal to 0.2, or the experimentally found 0.386 [68], both indicated by
“LE” in the figure, clearly underestimates the deformation capacity, as
explained earlier. If the finite element simulations are continued never-
theless, at a certain moment extreme element distortions lead to contact
errors. This happens before the experiment fails, which takes place after
even larger displacements.

5.6. Net section failure. Net section failure is covered by Eurocode
EN 1993-1-1 [40] and the ASCE specification for the design of cold-
formed stainless steel structural members [69]. Both indicate that net
section failure is mainly a function of the edge distances between bolt
and plate. In a study by Lu et al. [67], net section failure occurred for
edge distances smaller than two times the bolt diameter. Salih et al.
[37] conducted parametric studies with a finite element model to in-
vestigate the key variables affecting the failure of bolted connections,
which included the edge distance e, and the diameter of the bolt hole
d, (see for these variables e.g. Fig. 21). They found that net section fail-
ure occurred for an edge distance e, /d,, smaller than 1.5.

In order to investigate net section failure here, an additional simu-
lation is carried out, similar to the simulation in Section 5.5, but now
with all the lips removed and e, reduced to 15 mm. As such net section
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failure is likely to occur. Eurocode 1993-1-1 then predicts net section
failure N, g4 as

Nurd = 094, fu = 09X (2x 15— 10.3) X 1.5 x 813 = 21.6 kN, (14)

ommitting the safety factor, and with A, being the net area of the cross-
section. For a theoretical prediction, the factor 0.9 in the above equation
is left out, resulting in a failure load equal to 24.0 kN. Simulation results
are shown in Fig. 23.

Up to 5 mm displacement (where all strains are smaller than 0.2), the
small-scale method (red curve) and detailed system model (black curve)
show corresponding behavior. However, for larger displacements, net
section yielding, and finally failure, are predicted by the detailed system
model, which models the complete structure. However, the two-scale
method does not show net section failure. This should have been pre-
dicted by its global-scale model, but this model uses full cross-sections
(without holes), which also include rigid distributed coupling zones (see
Fig. 13). Note that it cannot be expected that the small-scale model pre-
dicts net section failure, since it does not include the edges of the plates.

From all single load cases in this Section 5, it can be concluded that
the two-scale method performs well, except for net section failure, due
to current limitations in the global-scale model.

5.7. Multi-directional load cases. The behavior of a bolted connec-
tion in a structure under fire relates to multi-directional loads and el-
evated temperatures, and an associated failure mode cannot be inter-
preted as one of the single failure modes presented so far. Therefore,
multi-directional load cases are studied in this section.

Probing the stiffness for each direction separately, as applied in
the small-scale model in previous sections, is not applicable for multi-
directional load cases, as the displacements of the bolt are coupled.

14

Therefore, a perturbation is performed in the direction of the displace-
ment vector of the last load step, again by 5%. Subsequently, the stiffness
in each direction can be determined by the procedure presented in Sec-
tion 2.3. Note that if displacements in a certain direction are (almost)
zero, the prediction of the stiffness is unstable due to the manipulation
of very small numbers. This is not problematic though, since as soon as
practically relevant displacements occur, also correct stiffnesses will be
predicted, and what follows is a set of similar updates as discussed for
Fig. 15.

For a demonstration of a multi-directional loading case, the two-
scale method is loaded by prescribed displacement steps of 0.1 mm in
the tangential 1-direction, 0.02 mm in the tangential 2-direction, and
0.6 mm in the bolt axial 3-direction, all applied to the side surfaces (the
edges) of Plate 1 as explained for the single load cases. Temperature-
dependent material properties for the bolt (Grade 8.8) are assigned fol-
lowing Fig. 11(a), but in this section the 20 °C curve is used. The two
plates are using steel S355 as defined in Fig. 16 at 20 °C. As for previous
sections, the simulations were stopped if at any location the conserva-
tive failure strain was recorded.

Fig. 24 shows the three independent reaction forces and their resul-
tant vs. time (instead of displacements since the latter are different for
each direction). Results are similar for the detailed system model and
the two-scale method, which indicates the two-scale method performs
well.

The onset of failure occurred by two-directional bearing in the plates,
as was seen in the simulations, and also suggested by the curves repre-
senting the tangential directions. During this bearing, the bolt was still
able to resist an about linearly increasing amount of normal force, as
can be seen by the curve representing the normal direction. The con-
servative failure strain was first seen in the plates around the bolt hole,
consistent with the bearing.

5.8. Elevated temperatures. Bolted connections behave differently for
elevated temperatures, and their failure modes may change accordingly
[66], so possibly this also applied to the previously presented com-
bined load cases. The two-scale method is demonstrated here for multi-
directional loads and elevated temperatures. The setup for the two-scale
method is identical to the method used for the multi-direction load case
in Section 5.7, except for the temperature field. With the temperature-
dependent material properties as shown in Fig. 11(a) and Fig. 16, the
simulation from the previous section is repeated for the following con-
stant temperatures over time: 200 °C, 400 °C, 600 °C, and 800 °C, with
results shown in Fig. 25. Detailed system model simulations are added
for verification purposes.

Bearing appears the decisive failure mode at temperatures of 200 °C,
400 °C, and 800 °C, whereas the bolt fails by combined shear and ten-
sion for a temperature equal to 600 °C. This is due to the differences in
material degradation for the bolt and plates as suggested in EN 1993-1-2
[58].
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6. Conclusions. There is a need for a computationally efficient bolted
connection model, for the simulation of (multiple) bolted connections
being part of larger structures. For this, the paper has proposed a method
that is (a) two-scale, for a structured model and distributed computing,
and (b) able to handle most essential bolted connection failure modes,
including elevated temperatures. A possible application for the two-
scale method is the use of two-way coupled fire-structure simulations.

It has been shown that the submodelling approach can be used for the
two-scale method. In such a method, the small-scale model consists of a
detailed model of the bolted connection with a part of its surroundings,
and it uses a fine mesh to simulate the essential behavior of the connec-
tion. The connection is modelled by a spring element in the global-scale
model, with the spring stiffness provided by the small-scale model.

A material model with plasticity and a smooth bolt shank (no
threads) with a so-called stress area is proven effective for the small-
scale model: it predicts the response of bolted connections with reason-
able accuracy. The material model has been validated by existing exper-
iments on bolt tension. However, the validation also indicated that nut
thread plasticity may additionally increase connection ductility, which
cannot be considered by the small-scale model. Bolts with and without
modelled threads yielded similar results, which agreed reasonably well
with theoretical calculations. Finally, the small-scale model is validated
for its action in a structure under different temperatures by existing ex-
periments on connected T-stubs. A material model using plasticity only
cannot capture the failure deformation of a component - in this case a
bolt. The state at a maximum tensile strain equal to 0.2 has been shown
to give a conservative estimate of failure.
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Fig. 25. Two-scale method for elevated temperatures.

A spring in the global-scale model should be nonlinear for an opti-
mal interaction between the small-scale and global-scale models. Practi-
cally this means that the spring uses a linear stiffness in each load step,
however with an offset with respect to the load and the displacement.
A real linear elastic spring (without offsets) is possible, however, will
yield an irregular global force-displacement relationship, especially for
a decreasing load after the ultimate load. This has been verified with a
so-called detailed system model, which models the global-scale model
with the level of detail found in the small-scale model, and using a pa-
rameter study on the load step size.

The two-scale method is able to describe the most essential single
load case failures: tension, shear, and bearing. Also punching can be de-
scribed by the small-scale model, however, for the parameter study in
this paper loads had to be applied within the boundaries of the small-
scale model. The aforementioned conclusions were verified by the de-
tailed system model and comparisons with theoretical models and de-
sign standards. For plate-related failure modes (bearing and punching),
a sensitivity study was carried out concerning the size of the plates in
the small-scale model, and it was shown that 30x30 mm was sufficient
for the considered failure modes. Existing experiments additionally val-
idated bearing: the two-scale method fails earlier than the experiment,
giving a conservative, i.e. safe prediction. The two-scale method can-
not predict net section failure: the global scale model uses full cross-
sections (without holes), whereas the small-scale model does not include
the edges of the plates.

It has been demonstrated that the two-scale method can be used for
multi-directional load cases at ambient and elevated temperatures, as
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verified by a detailed system model. In the particular case demonstrated,
the bolted connection fails due to bearing in two directions at ambient
temperature. At elevated temperatures, plate bearing failure occurs for
temperatures of 200 °C, 400 °C, and 800 °C, whereas the bolt fails in com-
bined shear and tension for a temperature equal to 600 °C.

The research here has studied a trade-off between the computation-
ally cheap modelling of a bolted connection (e.g. by a spring, so no
failure modes and path dependency) and accuracy (e.g. by volume mod-
elling of threads, fracture, etc.). The resulting two-scale method allows
the description of basic yet essential bolted connection behavior, except
nut thread and net section failure, including elevated temperatures. As
such, the two-scale method may be used in e.g. computationally expen-
sive two-way coupled fire-structure simulations, where it could be bene-
ficial for distributed computing and densely packed bolt configurations
with stiff plates, for which a single small-scale model may be represen-
tative for several connections. Related, the two-scale method has also
been researched for screws [49], and as such demonstrated in two-way
coupled fire-structure simulations [33] and validated by an existing ex-
periment [14].
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