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A B S T R A C T

The present paper reports on the ability of neural networks (NN) and linear stochastic estimation (LSE) tools
to predict the evolution of skin friction in a minimal turbulent channel (𝑅𝑒𝜏 = 165) after applying an actuation
near the wall that is localized in space and time. Two different NN architectures are compared, namely
multilayer perceptrons (MLP) and convolutional neural networks (CNN). The paper describes the effect that the
predictive horizon and the type/size/number of wall-based sensors have on the performance of each estimator.
The performance of MLPs and LSEs is very similar, and becomes independent of the sensor’s size when they
are smaller than 60 wall units. For sufficiently small sensors, the CNN outperforms MLPs and LSEs, suggesting
that CNNs are able incorporate some of the non-linearities of the near-wall cycle in their prediction of the
skin friction evolution after the actuation. Indeed, the CNN is the only architecture able to achieve reasonable
predictive capabilities using pressure sensors only. The predictive horizon has a strong effect on the predictive
capacity of both NN and LSE, with a Pearson correlation coefficient that varies from 0.95 for short times (i.e.,
of the order of the actuation time) to less than 0.4 for times of the order of an eddy turn-over time. The
analysis of the weights and filters in the LSE and NNs show that all estimators are targeting wall-signatures
consistent with streaks, which is interpreted as the streak being the most causal feature in the near-wall cycle
for the present forcing.
1. Introduction

In most engineering applications, turbulent motions play a crucial
role in the transport of momentum, heat and mass. As a consequence,
turbulence control is one of the most important technological chal-
lenges of today’s industry. Particularly important within the topic of
turbulence control is the control of turbulent skin friction drag. In
the aerospace industry alone, skin friction drag accounts for roughly
50% of the fuel consumption of commercial airplanes, thus having an
important impact on CO2 emissions as well [1]. Turbulent skin friction
is also important in other engineering areas, representing about 60% of
the total drag of large ships [2], and roughly 100% of the drag in the
transport of gas/oil through pipelines.

There are many academic works on the topic of turbulence control
for skin friction reduction on wall-bounded flows, as summarized in the
review articles by Brunton and Noack [3] and Zhang et al. [4]. Different
control strategies have been proposed, which can be classified into
passive control (like riblets, see [5,6], among others) and active control
strategies. The latter are usually divided into open-loop and closed-loop
control, depending on whether the actuation is defined a priori or the
control uses the state of the turbulent flow as input. Examples of active
open-loop (i.e, predefined) control include periodic spanwise forcing
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like wall oscillations or travelling-waves (see review by Ricco et al.
[7]), and uniform blowing/suction through the wall [8,9]. They are
conceptually less complex than closed-loop control strategies, but are
only efficient near the design point of operation. On the other hand,
closed-loop control strategies offer better control performance with
smaller power consumption than open-loop control. They are also more
robust and versatile, at the expense of requiring a complex network of
sensors to measure the state of the flow [10].

One of the most common actuation systems used in closed-loop
control strategies for reducing skin-friction drag are fluidic actua-
tors [11], that work injecting a wall-normal mass flux through the
wall (i.e., blowing/suction). This actuators can result in skin friction
reduction either by lifting the boundary layer and creating a low-shear
region downstream of the actuator [8,9], or by disrupting the near-
wall cycle of the quasi-streamwise vortices and streaks [12]. The largest
local skin friction reductions seem to be associated with the former,
having a more persistent effect downstream of the actuator [13]. For
instance, in a recent paper [14] reports skin friction reductions of
up to 70% with open-loop active control, where the injection of low-
momentum fluid and the disruption of the near-wall cycle account for
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77% and 23% of the reduction, respectively. While the injection of low-
momentum fluid can be an effective control strategy in many situations,
it requires a supply of fluid that might not be available in some cases.
In the rest of the paper, we will focus on control strategies targeting
the disruption of the near-wall cycle, which require zero-net-mass-flux
actuation [11].

Ranked among the best performances in terms of skin friction
reduction associated to the disruption of the near-wall cycle is the 20%
drag reduction achieved by Lee et al. [15], using a closed-loop active
control on a turbulent channel. They applied control at the wall by
changing the wall-normal boundary condition (blowing/suction), and
the flow was sensed using the instantaneous viscous shear stresses at
the wall. The original controller was a non-linear neural network (NN),
although [16] showed later that similar performance could be achieved
using a linear controller. The control schemes produced by these data-
driven works were consistent with the model-driven opposition control
proposed by Choi et al. [17]: to inhibit vertical velocity fluctuations
in the buffer layer by applying at the wall a vertical velocity that is
opposite to the estimated vertical velocity at some (small) distance from
the wall.

One of the main limitations to the use of these opposition control
schemes in practical applications is the fact that sensing and actuation
are based on continuous variables distributed over the whole wall [10].
In any practical application, sensors and actuators have finite sizes and
are localized in space (i.e., the whole wall is not covered with sensors
and actuators), limiting what the sensor sees and what the actuator can
do. This results in lower performances for systems based on localized
sensors and actuators. For instance, Abbassi et al. [18] reports an im-
plementation of the opposition control of Choi et al. [17] with localized
actuators and sensors, yielding a limited 3% drag reduction (compare
to the 20% of Lee et al. [15]). Moreover, similarly to Cheng et al. [14],
approximately 66% of the measured drag reduction was associated to
the injection of low-momentum fluid, and only the remaining 33%
was associated to the damping of the near-wall cycle vertical velocity
structures. This rises the question of whether there might be more
advantageous control strategies to disrupt the near-wall cycle using
localized sensing/forcing than a local implementation of the opposition
control of Choi et al. [17].

Pursuing this idea, Pastor et al. [19] developed a Monte Carlo
experiment to evaluate the effect of a localized control (in space
and time) in the near-wall cycle of a low-Reynolds number turbulent
channel flow. The authors run simultaneously simulations of channel
flows with and without a localized vertical force that actuated for a
short time. Roughly two thousand episodes were recorded, ensuring
that the actuation sampled a significant portion of the possible states of
the flow. For the cases with a positive (negative) vertical force, the wall
shear and pressure fields conditioned to drag decrease showed high
(low) velocity streaks aligned with the actuator, consistent with the
idea of opposition control. However, a preliminary attempt to define
localized, finite-size wall-sensors to drive the forcing was unsuccessful.
The main objective of the present work is to remedy that.

The problem of sensing the flow from the wall has received in-
creasing attention over the last decade. Various tools have been used
to that purpose, from different types of neural networks [20–23], to
linear and non-linear transfer functions [24], linear statistical models
(like the Linear Stochastic Estimation used in [25]), and models based
on linearized dynamics of the Navier–Stokes equations [26,27], among
others. A common finding on these studies is that, irrespective of the
method used, flow features can only be reconstructed at a given wall-
distance if they leave a footprint at the measurement plane. For wall
measurements, that implies that only Townsend’s attached eddies can
be reconstructed, and only large scale flow features are recovered in the
logarithmic and outer regions. Another interesting observation is that
the reconstructions of large 𝑅𝑒𝜏 flows (i.e., when the logarithmic region
exists) using non-linear methods (i.e., NN) are usually just marginally

better than those obtained using linear methods (i.e., LSE). Encinar
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and Jiménez [25] argue that this is probably a consequence of the
relatively linear dynamics of the larger attached eddies [28], which are
the ones leaving a more distinct footprint at the wall. Note that, when
the Reynolds number is small (i.e., 𝑅𝑒𝜏 ≈ 180), no-linear methods are
more likely to outperform linear methods [23].

The present work focuses on the estimation (using an array of
finite-size sensors distributed over the wall) of the change of skin
friction drag after a localized actuation. The configuration selected
for this study is a turbulent channel flow with low-Reynolds number,
so that the turbulent scales in the channel consist only on the near-
wall region [29,30]. Given that the proposed problem shares some
similitude with the flow reconstruction problem described above, we
will use similar tools. In particular, we will evaluate the performance of
two architectures of neural networks (namely, multilayer perceptrons
MLP, and convolutional neural networks CNN) and linear stochastic
estimators (LSE) to predict the evolution of the flow after the actuation,
with the aim of discerning the ability of the former to exploit the
nonlinear near-wall dynamics to provide more accurate predictions. For
all cases, the input for the estimator will be provided by a grid of finite-
size pressure and skin friction sensors at the wall. Special attention will
be paid to the effect that the density of sensors and the time horizon of
the prediction have on the ability of each method to properly estimate
the difference in the skin friction with respect to the base flow.

The paper is organized as follows. The numerical database used for
the study is presented first (Section 2.1), followed by a description of
the NNs (Section 2.2) and the LSE (Section 2.3). Section 3 presents the
results of the study, including the variation of the estimator metrics
with the predictive horizon and the number of sensors (Section 3.1),
and the evaluation of the wall signatures targeted by the NNs and the
LSE to perform their predictions (Section 3.2), followed by a compar-
ison in between the two NNs considered: MLP and CNN (Section 3.3).
Conclusions are presented in Section 4.

2. Methodology

This section describes the database of turbulent channel flows used
in this work, as well as the main characteristics of the considered
predictive tools: neural networks (NN) and linear stochastic estimation
(LSE).

2.1. Numerical database

We use the database of turbulent channel flows developed by Pastor
et al. [19]. The flow configuration consists on an incompressible tur-
bulent flow driven by a pressure gradient between two infinite walls,
separated a distance 2ℎ. The friction Reynolds number (𝑅𝑒𝜏 = 𝑢𝜏ℎ∕𝜈 =
165, where 𝑢𝜏 is the friction velocity and 𝜈 is the kinematic viscosity)
and the size of the periodic computational domain (𝐿𝑥 = 𝜋ℎ and
𝐿𝑧 = 0.5𝜋ℎ in the streamwise and spanwise directions, respectively)
are slightly larger than those of the minimal flow units of Jiménez and
Moin [29], providing a reliable representation of the near-wall dynam-
ics and kinematics [30] at a minimal computational cost (CPU/GPU
time and storage). Note that, even if the Reynolds number is small, the
problem is still relevant for higher Reynolds number flows. First, the
dynamics of the logarithmic region is relatively similar to the dynamics
of the near-wall region [30], with the generation of elongated streaks
and periodic bursting. Second, most active control strategies (i.e, like
the opposition control of Choi et al. [17]) and passive control strategies
(i.e., riblets) focus on modifying the near-wall eddies, since they are
responsible for a large fraction of the total skin friction.

The simulations are performed with a GPU-enabled pseudo-spectral
Direct Numerical Simulation solver [31]. Time integration is performed
with a semi-implicit three-step Runge–Kutta. Spatial discretization uses
Fourier expansions in the wall-parallel directions, and compact finite
differences in the wall-normal (𝑦) direction. The spatial resolution is

+ +
𝛥𝑥 = 8, 𝛥𝑧 = 4 in the streamwise and spanwise directions before
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Fig. 1. (a) Instantaneous visualization of the channel flow. The isosurfaces correspond to streamwise velocity fluctuations equal to ±2𝑢𝜏 (high velocity streak in red, and low-velocity
streak in blue). (b) Instantaneous evolution of ⟨𝜏𝑘𝑏 ⟩(𝑡) (in black) and of ⟨𝜏𝑘𝑓 ⟩(𝑡) for three consecutive episodes, coloured in blue, red and green, respectively.
dealiasing (where the + superscript indicates variables normalized in
wall units, using 𝑢𝜏 and 𝜈). In the wall-normal direction, the non-
uniform grid provides 𝛥𝑦+ = 0.4 at the walls and 𝛥𝑦+ = 5.4 at the centre
of the channel. For convenience, the wall at 𝑦 = 0 will be referred to as
bottom wall. Fig. 1(a) shows an instantaneous snapshot of the bottom
half of the channel simulation.

The numerical database consists of 𝑁𝑒𝑝𝑖 = 35000 episodes. In each
episode two simulations are run using the same initial condition: a
plain turbulent channel (referred to as the base flow), and a turbulent
channel with a localized volumetric forcing near the bottom wall
(referred to as the forced flow). Both simulations are run for 1.5ℎ∕𝑢𝜏 ,
and the final state of the base flow is used as initial condition for
the next episode (see Fig. 1b). Hence, each episode allows a direct
comparison of the flow evolution with and without the forcing.

The volumetric force used in the forced cases only acts on the
vertical direction, given by

𝑓𝑦(𝑥, 𝑦, 𝑧, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑓0
𝑦
ℎ
exp

(

−4(𝑥2 + 𝑦2 + 𝑧2)
𝐿2
𝑓

)

if 𝑡0 ≤ 𝑡 ≤ 𝑇𝑓 ,

0 else,

(2.1)

with 𝑓0 = 8𝑢2𝜏∕ℎ, 𝐿+
𝑓 = 100 and 𝑇𝑓 = 0.3ℎ∕𝑢𝜏 (𝑇 +

𝑓 = 50). Note that
the force in Eq. (2.1) is localized, both in time and space. Indeed, the
values of the parameters controlling the volumetric force are chosen so
that they produce a maximum effect on the flow while maintaining a
localized character (i.e, without the forcing directly affecting the whole
length of the channel). The interested reader can find more details
about the effect of the different parameters appearing in Eq. (2.1)
in [19].

2.2. Neural networks

Two different types of neural networks were used in this study,
namely MultiLayer Perceptron (MLP) and Convolutional Neural Net-
work (CNN). While MLPs are universal estimators for multivariate
functions, CNNs are deep learning models used for analysing visual
data. They extract features from images using specialized layers and
filters, enabling them to learn hierarchical representations and spatial
derivatives. CNNs excel in tasks like image classification and object
detection by aggregating and classifying the learned features. They
have been successfully used in flow reconstruction problems to extract
kinematic information (i.e., flow velocities) from concomitant wall
measurements [22], which justifies the interest in checking if they are
able to extract more information about the dynamics of the system
(i.e., the evolution of the skin friction after actuation) than MLPs.

First, common aspects in the pipeline of MLPs and CNNs are de-
scribed, focusing afterwards in the differences among them. For both
of them, the output layer has a single neuron, with a linear activation
function, as it is customary on regression NNs.

The input for the NNs is computed from the values of wall-pressure
and viscous stresses, 𝑝𝑘(𝑥, 𝑧) and 𝜏𝑘(𝑥, 𝑧), at the initial condition of the
3 
𝑘th episode. Since the NNs require a discrete number of inputs, we
divide the bottom wall surface (𝐿𝑥 × 𝐿𝑧) in a Cartesian grid of 𝑛 × 𝑛
sensors. The values of the wall-pressure and viscous stress on the 𝑖th
sensor, 𝑝𝑘𝑠 (𝑥𝑖, 𝑧𝑖) and 𝜏𝑘𝑠 (𝑥𝑖, 𝑧𝑖), correspond to the averaged values of
𝑝𝑘(𝑥, 𝑧) and 𝜏𝑘(𝑥, 𝑧) within the 𝑖th cell of the grid, centred on (𝑥𝑖, 𝑧𝑖).

The values of the pressure and viscous stresses on the sensors are
normalized and truncated between 0 and 1 before being fed into the
NNs. The normalized variables are thus defined as

𝑝𝑘𝑛(𝑥𝑖, 𝑧𝑖) =
1
2
+

𝑝𝑘𝑠 (𝑥𝑖, 𝑧𝑖) − 𝑝0
𝛽𝑝𝜎𝑝

, (2.2)

𝜏𝑘𝑛 (𝑥𝑖, 𝑧𝑖)𝑛 =
1
2
+

𝜏𝑘𝑠 (𝑥𝑖, 𝑧𝑖) − 𝜏0
𝛽𝜏𝜎𝜏

, (2.3)

where the mean (𝑝0, 𝜏0) and the standard deviations (𝜎𝑝, 𝜎𝜏 ) are com-
puted averaging the point-wise wall-pressure and viscous stresses over
the whole database of base flows (i.e., space, time, and ensemble
average over 𝑁𝑒𝑝𝑖 = 35000 episodes). The values of 𝛽𝑝 = 2 and 𝛽𝜏 = 4.85
are selected to ensure that the probability of having 𝑝𝑛 or 𝜏𝑛 outside
the range 0− 1 is smaller than 10% for the grid of sensors 𝑛× 𝑛 = 1024.
Fig. 2 shows the probability density function (PDF) of the normalized
pressure and viscous shear at the sensors for the finer (𝑛2 = 1024) and
the coarser (𝑛2 = 9) grids of sensors considered in this study. Different
kinds of normalization were also tried out, such as min–max scaling or
z-score normalization, but the one presented in here provided the best
results.

The objective of the NNs is to predict the time-averaged skin friction
change produced by a given action (forcing). Hence, we define the
instantaneous skin friction difference between the base and forced case
of the 𝑘th episode,

𝛥𝜏𝑘(𝑡) = ⟨𝜏𝑘𝑏 ⟩(𝑡) − ⟨𝜏𝑘𝑓 ⟩(𝑡), (2.4)

where the brackets ⟨⟩ indicate spatial average in the wall-parallel
directions. We also define the corresponding time-averaged skin friction
difference

𝛥𝜏
𝑘
(𝑇𝐻 ) = 1

𝑇𝐻 ∫

𝑇𝐻

0
𝛥𝜏𝑘(𝑡)𝑑𝑡, (2.5)

where the time averaging period is the predictive horizon, 𝑇𝐻 . With
these definitions, drag reduction in episode 𝑘 over a time 𝑇𝐻 corre-
sponds to 𝛥𝜏

𝑘
(𝑇𝐻 ) > 0.

We train the NNs to produce a scalar output 𝛥𝜏
𝑘
(𝑇𝐻 )∕𝜏0 ⋅ 104,

where the factor of 104 is introduced to facilitate the convergence
of the optimization algorithm. The training of the NNs is performed
during 100 epochs with batch sizes of 512, using the Adam optimizer
to minimize the mean square error between the predicted skin friction
change and the DNS output:

(𝑢𝑁𝑁 ; 𝑢𝐷𝑁𝑆 ) =
1

𝑛
∑

(𝑢𝐷𝑁𝑆,𝑘 − 𝑢𝑁𝑁,𝑘)2, (2.6)

𝑁 𝑘
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Fig. 2. Probability density functions of (a) 𝑝𝑛 and (b) 𝜏𝑛. Blue for 𝑛2 = 1024, red for 𝑛2 = 9.
Table 1
Architecture of the MLPs. Number of neurons per hidden layers (𝑁𝑛) for different
number of sensors (𝑁𝑠), and the corresponding number of parameters (𝑁𝑝).

𝑁𝑠 2048 1024 512 128 32 18 9
𝑁𝑛 32, 16, 16 32, 16, 16 32, 16, 8 32, 8, 4 16, 8, 4 16, 4 5, 4
𝑁𝑝 66 385 33 617 17 089 4433 705 377 79

Table 2
Architecture of the CNNs. Number of parameters (𝑁𝑝) for different number of sensors
(𝑁𝑠).
𝑁𝑠 2048 1024 512 128 32 18 9
𝑁𝑝 38 661 33 765 8503 1524 82 48 44

where 𝑁 is the number of episodes of the training set batch, 𝑢𝑁𝑁 is the
output of the NN regression scheme and 𝑢𝐷𝑁𝑆 is the ground truth. The
database of 𝑁𝑒𝑝𝑖 = 35000 episodes is split into training (𝑁𝑇 = 20000),
validation (𝑁𝑣 = 5000) and testing sets (𝑁𝑡𝑒𝑠𝑡 = 10000).

Once a general overview of the common parameters to both NNs is
analysed, we focus on the differences among them, which lies in the
internal architecture of the network.

In the MLPs, all hidden layers are fully connected, with a Rectified
Linear Unit (ReLU) activation function [32]. The number of hidden lay-
ers, and number of neurons in each layer, depends of the total number
of sensors, 𝑁𝑠, as shown in Table 1, and result from a hyperparameter
tuning optimization to minimize the loss function. For MLPs with
pressure and viscous stress sensors, 𝑁𝑠 = 2𝑛2 = 18, 32, 128, 512, 2048. For
MLPs with pressure sensors only, or with viscous stress sensors only, the
total number of sensors is 𝑁𝑠 = 𝑛2 = 9 or 1024. The maximum density of
sensors (𝑛2 = 1024) correspond to having a single sensor for each grid
point of the DNS, analogous to sensing performed in the simulations
of Lee et al. [15].

With regards to the architecture of CNNs, residual blocks are used,
as it is the state of the art in image recognition [33] and turbu-
lence [34]. The number of trainable parameters for each sensor input
can be found in Table 2. Note that the number of parameters is reduced
for all the sensors with respect to the MLP, as expected due to the usage
of filters. The architecture of the CNN used is the same for all 𝑁𝑠,
whilst the size and number of filters and neurons is correspondingly
adapted as the grid gets coarser, to minimize the loss function for each
configuration. The architecture for the CNN of 𝑁𝑠 = 2048 is shown
in Fig. 3, where convolutional layers are shown in yellow, with the
right side of the block coloured in dark yellow if the activation function
(PReLU) is applied, MaxPooling layers are coloured in blue and dense
layers in red, with dark red indicating the (ReLU) activation function.
The numbers indicate the output of the convolutional and dense layers.
Note that the dense part has only one hidden layer of 10 neurons, with
an input layer of 1024 neurons and an output layer of 1 neuron that
provides 𝛥𝜏

𝑘
(𝑇𝐻 )∕𝜏0 ⋅ 104.

In order to understand the decision making of the neural networks,
we will analyse their weights and features using different tools. The
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wall-signatures being targeted by the NNs will be characterized in terms
of the weights of the input layer of the MLP, and the output of the
convolutional filters for the CNN (see Section 3.2 below). Besides that,
we will use the SHAP method (SHapley Additive exPlanations, see [35])
to evaluate the contribution of the inputs sensors to the prediction of
the network. SHAP is a post-hoc method that belongs to the class of
eXplainable Artificial Intelligence (XAI) algorithms. It is an Additive
Feature Attribution method inspired in cooperative game theory. It
creates a simplified surrogate model 𝑔(𝑥) to explain the operations of
the original model 𝑓 (𝑥) as:

𝑓 (𝑥) ≈ 𝑔(𝑥′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑥

′
𝑖 , (2.7)

where 𝑥′ ∈ {0, 1}𝑀 is the simplified input that follows the mapping
𝑥 = ℎ𝑥(𝑥′), 𝜙0 is referred to as the base value and accounts for the mean
output value, and the variables 𝜙𝑖 ∈ R are the SHAP values, computed
as:

𝜙𝑖(𝑓, 𝑥) =
∑

𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!
𝑀!

[

𝑓 (𝑧′) − 𝑓 (𝑧′ ⧵ 𝑖)
]

, (2.8)

where |𝑧′| is the number of non-zero elements in 𝑧′, and 𝑧′ ⧵ 𝑖 denotes
setting 𝑧𝑖 = 0. This formula calculates the SHAP value (𝜙𝑖) for each
feature (𝑥𝑖) by considering its contribution across all possible subsets
of features (𝑧′), ensuring that the contributions are fairly distributed
among the features. In our case, the SHAP value 𝜙𝑖 indicates how much
the 𝑖th sensor reading (i.e., 𝑝𝑘𝑛(𝑥𝑖, 𝑧𝑖) and/or 𝜏𝑘𝑛 (𝑥𝑖, 𝑧𝑖)) contributes to the
𝛥𝜏(𝑇𝐻 ) predicted by the network for the 𝑘th episode. Of the available
implementations of SHAP we use here DeepSHAP [36], which combines
two XAI algorithms: DeepLIFT and SHAP, and sets 𝑥𝑖 = 1, optimizing
the method to explain deep models.

2.3. Linear stochastic estimation

The second method used here to predict the evolution of the flow
after actuation is the Linear Stochastic Estimation (LSE). The main mo-
tivation to choose LSE over other linear estimators (such as regressors
trained with stochastic gradient descent) is because there is abundant
literature on applications of LSE to reconstruct a vector of unknown
flow features, 𝐮, from an observable, 𝐄, leveraging the statistical cor-
relation between them [25,37,38]. For the present analysis, we define
the observable as the normalized pressure and viscous stresses on the
sensors at the wall (i.e, 𝐄 = [𝑝𝑛(𝑥1, 𝑧1),… , 𝑝𝑛(𝑥𝑁𝑠

, 𝑧𝑁𝑠
), 𝜏𝑛(𝑥1, 𝑧1),… ,

𝜏𝑛(𝑥𝑁𝑠
, 𝑧𝑁𝑠

)]). Our unknown is a single element, namely the skin fric-
tion difference between base and forced case, averaged up to the
predictive horizon (i.e, 𝑢 = 𝛥𝜏(𝑇𝐻 )). The estimation 𝑢′ is defined as
a linear function of the observable,

𝑢′ = [𝐿]𝐄, (2.9)

were the estimator [𝐿] is a 1 ×𝑁𝑠 matrix. This means that for LSE, the
number of trainable parameters is 𝑁 = 𝑁 .
𝑝 𝑠
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Fig. 3. Architecture of the residual CNN for 𝑁𝑠 = 2048 sensors.
The estimator [𝐿] is computed by minimizing the 𝑙2 norm of (𝑢− 𝑢′)
over the training set. This requires computing the autocorrelation ma-
trix of the observables and the cross-correlation matrix of observables
and unknowns,

[𝐿]
(

[

𝐄1,… ,𝐄𝑁𝑇

] [

𝐄1,… ,𝐄𝑁𝑇

]𝑇
)

=
{

𝑢1,… , 𝑢𝑁𝑇

}[

𝐄1,… ,𝐄𝑁𝑇

]𝑇
.

(2.10)

These matrices are computed using the 𝑁𝑇 = 20000 episodes of the
training set, for the sensor configurations reported in Table 1 and for
different values of the predictive horizon 𝑇𝐻 . Note that the LSE has no
need for a validation set, which could be used to increase 𝑁𝑇 . However,
in this work we choose to train the LSE with the same episodes used to
train the NNs. Consequently, both methods are trained with the same
amount of data (i.e., same 𝑁𝑇 ), ensuring a fair comparison between
them in section Section 3.

Finally, note that with sufficient data, the LSE estimator should be
equivalent to the MLP or the CNN with linear activator functions. In
other words, the differences between LSE and MLP/CNNs arise from
the non-linearities introduced by the activator functions (which are
reflected in the larger ratio of 𝑁𝑝∕𝑁𝑠 for MLP/CNN than for LSE, see
Tables 1 and 2) and from the differences in the optimization method
(Least Squares for LSE, Adams optimizer for MLP/CNN).

3. Results

In this section, we analyse the performance of LSE, MLP and CNN
in predicting the evolution of the skin friction on the forced flow (Sec-
tion 3.1), evaluating the effect that the time horizon of the prediction
and the number of sensors at the wall have on the accuracy of the
predictions. We also study the structure of the estimator [𝐿] and the
distribution of weights and filters on the trained NNs (Section 3.2) to
identify which flow patterns are being targeted by the LSE and the NNs,
respectively. Finally, we delve into the reasons behind the differences
in the performance of MLP and CNN (Section 3.3).

3.1. Prediction of the forced flow

We first evaluate the effect that 𝑇𝐻 , 𝑁𝑠 and the type of sensors
(pressure and shear, only pressure, or only shear) have on the ability of
the NNs and LSE to predict the value of 𝛥𝜏(𝑇𝐻 ). In other words, we test
their performance answering the question how much will the actuation
increase or reduce the skin friction averaged over a time 𝑇𝐻? To measure
this performance we use the Pearson correlation coefficient (𝜌). Perfect
regressors have 𝜌 = 1, while uninformative regressors have 𝜌 = 0, since
we only consider positive correlation in this study.

Fig. 4a shows the variation of 𝜌 with 𝑇𝐻 , for MLPs and LSE with
𝑁𝑠 = 2048, 128 and 18, using pressure and viscous shear stresses sensors.
As expected, the correlation coefficient drops gradually as 𝑇𝐻 increases
for all estimators. For very short times (𝑇𝐻 = 0.2ℎ∕𝑢𝜏 ) 𝜌 is ≈ 0.9
(i.e., quasi-perfect regressor), but for 𝑇 ≳ ℎ∕𝑢 𝜌 drops to values below
𝐻 𝜏
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0.4. For 𝑇𝐻 ≳ 1.5ℎ∕𝑢𝜏 both estimators are basically random regressors
(𝜌 → 0). This behaviour is consistent with Pastor et al. [19], who
reported that the effect of the forcing on 𝛥𝜏 becomes uncorrelated with
the forcing for times of the order of the eddy turn-over time (ℎ∕𝑢𝜏 ).

Interestingly, Fig. 4a shows no differences in the performance of
MLPs and LSE when 𝑁𝑠 = 18 and 128, for all values of 𝑇𝐻 . The
differences between MLPs and LSE are only apparent for 𝑁𝑠 = 2048,
with the LSE with 𝑁𝑠 = 2048 having the worst performance of all
estimators, significantly below the LSE with 𝑁𝑠 = 18 and 128. As
discussed in Section 3.2.1, this behaviour can be linked to a lack of
convergence of the estimator [𝐿] for 𝑁𝑠 = 2048 with the value of
𝑁𝑇 = 20000 considered here.

Fig. 4b shows the effect of varying the number of sensors on the
performance of the MLP. When both pressure and viscous shear stress
sensors are used, reducing 𝑁𝑠 from 2048 to 128 has little effect on 𝜌.
This suggests that the low-pass-filtering of 𝑝(𝑥, 𝑧) and 𝜏(𝑥, 𝑧) associated
with a reduction of 𝑁𝑠 does not affect the ability of the MLP to identify
dynamically-relevant flow features. Note that for 𝑁𝑠 = 2048 the sensor
size equals the spatial resolution of the DNS, while for 𝑁𝑠 = 128 the
sensor size is 𝑙+𝑥,𝑠 × 𝑙+𝑧,𝑠 = 65 × 32. The performance of the MLP starts to
degrade for 𝑁𝑠 ≲ 32 (i.e., 𝑙+𝑥,𝑠 × 𝑙+𝑧,𝑠 ≳ 130 × 65), although the loss in 𝜌 is
small (i.e, 𝜌 is 0.03 less for 𝑁𝑠 = 18 than for 𝑁𝑠 = 2048).

Fig. 4b also shows that the performance of the MLP with 𝑁𝑠 = 32 =
2 ⋅ 42 depends on the alignment of the sensors with the actuator. Stag-
gering the sensors with respect to the actuator results in a decreased
performance, lower than that of aligned sensors with 𝑁𝑠 = 32 and
𝑁𝑠 = 18. For 𝑁𝑠 ≥ 128, the alignment of the sensors and the actuator
does not affect significantly to 𝜌, probably because the size of the
sensors (𝑙+𝑧,𝑠 ≲ 32) is small enough to accurately position flow features
(near wall streaks and vortices, with spanwise sizes and separation of
the order of 100 wall-units) with respect to the actuator (𝐿+

𝑓 = 100).
When only pressure sensors are considered, Fig. 4b shows that the

performance of the MLP is drastically reduced (green and magenta
symbols, 0.1 to 0.4 lower 𝜌 than MLP with pressure and shear sensors
in red). On the other hand, the performance of the MLP trained only
with shear sensors is very similar to the performance of the MLP
trained with pressure and shear sensors (black and blue symbols, 0.01
to 0.04 lower 𝜌 than red symbols). This result agrees with Encinar and
Jiménez [25], who showed that a LSE reconstruction of the streamwise
velocity component using only 𝜏(𝑥, 𝑧) can recover approximately 75%
of the kinetic energy associated to the streamwise velocity in the
buffer region, with marginal contributions from wall-pressure and the
spanwise shear (not considered here).

Overall, the results of Fig. 4 suggest that the proposed MLPs are
failing to capture the non-linear dynamics of the evolution of the per-
turbation introduced by the forcing. In the near-wall cycle, the growth
and amplification of the near-wall streaks is a linear process [39],
which pertains relatively large structures. The non-linear dynamics
are important in the bursting and regeneration of the streaks [40],
which involve smaller scale structures (i.e., the vortices). Hence, it is
expected that taking advantage of the non-linear process involved in the
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Fig. 4. (a) Pearson correlation coefficient (𝜌) versus the time horizon, 𝑇𝐻 . Red for 𝑁𝑠 = 2048, black for 𝑁𝑠 = 128, blue for 𝑁𝑠 = 18. Continuous line for MLP, circles for LSE. (b)
Effect of the type and number of sensors, 𝑁𝑠, on the performance the MLP. Symbols indicate time horizons: circles for a 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 , squares for 𝑇𝐻 = 0.5ℎ∕𝑢𝜏 and diamonds
or 𝑇𝐻 = 1.0ℎ∕𝑢𝜏 . Colours indicate type of sensors: red for MLPs using both shear and pressure sensors, blue for 𝑁𝑠 = 9 shear sensors, green for 𝑁𝑠 = 9 pressure sensors, black for
𝑠 = 1024 shear sensors and magenta for 𝑁𝑠 = 1024 pressure sensors. Solid/open symbols for sensors aligned/staggered with actuator.
Fig. 5. (a) Pearson correlation coefficient (𝜌) versus the time horizon, 𝑇𝐻 . Red for 𝑁𝑠 = 2048, black for 𝑁𝑠 = 1024 pressure sensors, blue for 𝑁𝑠 = 18. Continuous line for
NN, circles for MLP. (b) Effect of the type and number of sensors, 𝑁𝑠, on the performance of the CNN. Symbols indicate time horizons: circles for a 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 , squares for
𝐻 = 0.5ℎ∕𝑢𝜏 and diamonds for 𝑇𝐻 = 1.0ℎ∕𝑢𝜏 . Colours indicate type of sensors: red for CNNs using both shear and pressure sensors, blue for 𝑁𝑠 = 9 shear sensors, green for 𝑁𝑠 = 9
ressure sensors, black for 𝑁𝑠 = 1024 shear sensors and magenta for 𝑁𝑠 = 1024 pressure sensors. Solid/open symbols for sensors aligned/staggered with actuator.
t
s
c
c
i

nteraction between the forcing and the near-wall cycle requires non-
inear estimators and sufficiently small sensors. However, the virtually
dentical performance of LSE and MLPs in Fig. 4a and the lack of
mprovement on 𝜌 of the MLPs for 𝑁𝑠 > 128 in Fig. 4b show that either
he benefits of including non-linearities in the control are small, in
greement with the results reported by Kim [16], or the MPL is failing
t including the non-linear effects of the forcing on 𝛥𝜏. In any case,
he comparable performance of LSE and MLP suggests that the forcing
nteracts with the near-wall cycle mostly through the transient growth
f the near-wall streaks (i.e., the linear part of the near-wall cycle),
ith maybe a weak effect on the bursting and regeneration process.

Fig. 5a shows the variation of 𝜌 with 𝑇𝐻 , for MLPs and CNNs with
𝑁𝑠 = 2048, 18 using pressure and viscous shear stresses sensors, and
with 𝑁𝑠 = 1024 using only pressure sensors. For the configurations
sing pressure and shear stresses, the CNN outperforms the MLP,
pecially for the highest sensor density, 𝑁𝑠 = 2048. Moreover, the CNN

using 𝑁𝑠 = 1024 pressure sensors achieve remarkable performances
around 85% of the value obtained by CNNs using shear and pres-
ure), especially when compared with the MLPs using pressure sensors
nly (which only achieve around 50% of performances of MLPs using
hear and pressure sensors). This suggests that CNNs with sufficiently
igh sensor densities are able to capture some of the non-linearities
iscussed in the previous paragraph, explaining their superior perfor-
ance with respect to LSE and MLP. This result is in agreement with the

low reconstructions of the near-wall region by Nakamura et al. [23],
nd their comparison of linear and non-linear CNNs. In all cases, the
ncrease in performance is gradually lost for longer 𝑇𝐻 , in line with the
oss of causality between the action and the skin friction reduction as
he temporal horizon becomes longer [19].

Fig. 5b presents the effect of varying the number of sensors on the

erformance of the CNN. It shows that the increase in performance
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for the case of using only pressure sensors only applies to the case
of 1024 sensors, i.e. when we have full resolution. For the case using
only 9 pressure sensors, as well as for the cases using 𝑁𝑠 = 18 and
𝑁𝑠 = 9 shear sensors, the performance of CNNs and MLPs is virtually
the same (Figs. 4b and 5b). Given these results, it seems that the
overperformance of the CNN architecture over the MLPs is related
to the effectiveness of the convolutional filters in capturing the small
scale non-linearities in the pressure and shear fields at the wall. When
the sensor density decreases this spatial information is lost, and the
advantage of CNNs over MLPs and LSE disappears.

To further characterize the regression provided by the NNs and the
LSE, Fig. 6 depicts the joint PDF of the ground truth (i.e., the actual
value of 𝛥𝜏(𝑇𝐻 )) and the outputs of the regression scheme (𝑢𝑀𝐿𝑃 for
the MLP, 𝑢𝐶𝑁𝑁 for the CNN and 𝑢𝐿𝑆𝐸 for the LSE). The figures show
the joint PDFs for different 𝑇𝐻 , and for two sensors configurations.

First, lets consider the joint PDFs and 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 , shown in
Fig. 6a,d and g. The three joint PDF show a behaviour consistent with a
quasi-perfect regressor, with most of the joint PDF’s mass along the line
𝑢 = 𝛥𝜏(𝑇𝐻 )∕𝜏0 (black dashed line). As 𝑇𝐻 increases (Fig. 6b,e and h),
he joint PDFs become broader, and the correlation coefficients become
maller. At the longest 𝑇𝐻 considered (Fig. 6c, f and i) the loss of
orrelation becomes more acute, and the joint PDF begins to resemble a
ircle. Note that the joint PDF of MLPs (top row of Fig. 6) with complete
nformation from the wall (𝑁𝑠 = 2048 pressure and viscous shear stress

sensors) are very similar to those with minimal information from the
wall (𝑁𝑠 = 9 viscous shear stress sensors), in agreement with the values
of 𝜌 shown in Fig. 4. The same is not true for the joint PDFs of the CNNs
(middle row in Fig. 6), which show consistently better performance for

the finer grid of sensors.
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Fig. 6. Joint PDF of the estimation provided by the MLPs (upper row), 𝑢𝑀𝐿𝑃 , CNNs (middle row) 𝑢𝐶𝑁𝑁 , LSE (bottom row) 𝑢𝐿𝑆𝐸 and the ground truth, 𝛥𝜏(𝑇𝐻 ). The contours plotted
ontain 50, 80 and 95% of the PDF’s mass. Two sensor configurations are considered: 𝑁𝑠 = 2048 (MLPs and CNNs) and 𝑁𝑠 = 128 (LSE) with pressure and viscous shear stress in
ed, 𝑁𝑠 = 9 with viscous shear stress sensors only in blue. (a,d,g) 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 , (b,e,h) 𝑇𝐻 = 0.5ℎ∕𝑢𝜏 , (c,f,i) 𝑇𝐻 = 1.0ℎ∕𝑢𝜏 . The black dashed line corresponds to 𝑢 = 𝛥𝜏(𝑇𝐻 )∕𝜏0.
3.2. Wall signatures

In this section, we characterize the wall signatures identified by the
LSE, MLP and CNN as the most responsive to the actuation in terms of
changes in the skin friction.

3.2.1. Linear stochastic estimation
Since the LSE is a linear operator, the wall signatures (i.e, the

patterns) that are being targeted by the estimator can be inspected by
plotting the values of the elements of the estimator [𝐿] in Eq. (2.9). The
observable 𝐄 can be split into 𝐄𝑝 and 𝐄𝜏 for the data from pressure and
shear stress sensors, respectively. Consequently, the estimator can be
split into [𝐿𝑝] and [𝐿𝜏 ],

𝑢′ = [𝐿]𝐄 = [𝐿𝑝]𝐄𝑝 + [𝐿𝜏 ]𝐄𝜏 . (3.1)

Fig. 7 shows the effect of the number of sensors (𝑁𝑠) and the
predictive horizon (𝑇𝐻 ) on [𝐿𝑝] and [𝐿𝜏 ]. The figure shows the grid
of sensors on the bottom wall of the channel, colouring the area
associated to each sensor with the normalized values of the estimators
([𝐿𝜏 ]𝑛 = [𝐿𝜏 ]∕𝜎(𝐿𝜏 ) and [𝐿𝑝]𝑛 = [𝐿𝑝]∕𝜎(𝐿𝑝), where 𝜎(𝐿𝜏 ) and 𝜎(𝐿𝑝)
are the standard deviations of the elements of each estimator). As a
consequence, the plot does not show the relative importance of pressure
sensors over shear stress sensors.

For 𝑁𝑠 = 18 (Fig. 7, top row) and 128 (Fig. 7, middle row), the wall
signatures observed in [𝐿𝜏 ]𝑛 are consistent with a high-velocity streak
(𝜏 > 0) at the same spanwise position as the actuator. Similar wall
signatures are observed for the LSE using only shear stress sensors (not
shown). This wall-signature is consistent with an opposition control
scenario, in which a positive 𝑓𝑦 would act lifting up the streak, reducing
the skin friction (i.e., positive 𝛥𝜏). For 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 , the sensors
downstream of the actuator have zero weights, indicating that for the
forcing to be successful it only needs a short high speed streak just
7 
upstream of the actuator (remember that the channel is periodic in the
streamwise direction). For 𝑇𝐻 = 0.5ℎ∕𝑢𝜏 and 𝑇𝐻 = ℎ∕𝑢𝜏 , the LSE seems
to target longer streaks, covering the whole length of the channel.

On the other hand, the wall signatures obtained from [𝐿𝑝]𝑛 for
𝑁𝑠 = 18 and 128 indicate that the LSE is targeting a streak with a
positive pressure gradient along the streamwise direction, which could
be interpreted as a decelerating streak. It should be noted that, as
previously discussed, the importance of the pressure sensors on the
estimation provided in the LSE is small. For 𝑁𝑠 = 18 and 𝑁𝑠 = 128, the
Pearson correlation coefficient of the LSE using only shear stress sensors
is ≲1% lower than when using pressure and shear stress sensors, for
the range of 𝑇𝐻 considered here. This suggests that the wall signatures
observed in the pressure sensors (i.e., the positive pressure gradient
along the streak) might not be very relevant, and that the response of
streaks with positive and negative pressure gradients to the forcing are
very similar.

While the wall signatures obtained for 𝑁𝑠 = 18 are very clear for all
predictive horizons, those obtained for 𝑁𝑠 = 128 become more noisy as
𝑇𝐻 increase. For 𝑁𝑠 = 2048 (Fig. 7, bottom row), the noise impedes the
identification of coherent wall signatures in [𝐿𝑝]𝑛 and [𝐿𝜏 ]𝑛. The reason
for this behaviour is statistical convergence: 𝑁𝑇 = 20000 is insufficient
training data to converge [𝐿] when 𝑁𝑠 and 𝑇𝐻 increases. This can
be quantified computing the variability of [𝐿] for different subsets of
𝑁𝑇 = 20000 training episodes. For 𝑁𝑠 = 18 and 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 the
variability in [𝐿] is ≲4% of 𝜎(𝐿) (≲15% for 𝑇𝐻 = ℎ∕𝑢𝜏 ). For 𝑁𝑠 = 2048
this variability becomes ≳100%, irrespective of 𝑇𝐻 .

3.2.2. Multilayer perceptron
Compared to the analysis for the LSE, identifying the wall signatures

targeted by the MLPs is more complicated. Lets consider the simplest
MLP trained in this work (𝑁𝑠 = 9, using only shear stress sensors) at

𝑇𝐻 = 0.5ℎ∕𝑢𝜏 . The architecture of this MLP consists of an input layer
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Fig. 7. Spatial distribution of the elements of the estimator [𝐿]. Contributions from pressure ([𝐿𝑝]𝑛 = [𝐿𝑝]∕𝜎(𝐿𝑝)) and shear sensors ([𝐿𝜏 ]𝑛 = [𝐿𝑛]∕𝜎(𝐿𝑝)) are plotted side by side,
normalized with their corresponding standard deviations. 𝑇𝐻 increases from left to right. 𝑁𝑠 increases from top to bottom. The black circles show the position of the actuator.
Fig. 8. Effect of 𝑁𝑠 and 𝑇𝐻 on the spatial distribution of the normalized weights of the input layer associated to stress sensors, [𝑊𝜏 ]𝑛. For each NN, the four input layer neurons
shown have the largest weights on the first hidden layer. Weights are normalized with their standard deviation. The black circles show the position of the actuator.
with 9 neurons, two hidden layers with 5 and 4 neurons, and an output
layer with 1 output. Mathematically, the NN can be expressed as

𝜂 = 𝑓3([𝑊 3
4×1]{𝑎2} − 𝐵1×1) (3.2)

{𝑎2} = 𝑓2([𝑊 2
4×5]{𝑎1} − {𝐵4×1}) (3.3)

{𝑎1} = 𝑓1([𝑊 1
5×9]{𝜏𝑠} − {𝐵5×1}) (3.4)

where [𝑊 ] are the weight matrices, {𝐵} are the bias vectors, and 𝑓𝑖 are
the corresponding activation functions. Each row of [𝑊 1

5×9] represents
the weights that are applied to the input of the MLP (i.e., {𝜏𝑠}), anal-
ogous to the elements of [𝐿] in the LSE. But in the MLP the output of
the first layer (i.e., {𝑎1} is then weighted by the next layer, and so on).
Hence, in order to evaluate the wall signatures that are being targeted
by the MLP, we will look at the spatial distributions of the weights of
the first layer (i.e., the rows of [𝑊 1]) associated to the 4 more important
neurons of the second layer (i.e., the indices corresponding to the four
columns of [𝑊 2] with the largest norm).

Fig. 8 shows the four strongest wall-signatures of the MLPs for
different values of 𝑁𝑠 and 𝑇𝐻 . The MLPs selected for the plot have pres-
sure and shear sensors, but the plot only shows the weights associated
to shear sensors because they are more relevant for the prediction than
pressure sensors (see discussion in Section 3.1). Overall, the effects of
𝑁𝑠 and 𝑇𝐻 of the wall signatures targeted by the MLPs are similar to
those shown for the LSE in Fig. 7. For 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 the MLP targets a
streak just upstream of the actuator, with low (or incoherent) weights
8 
associated to the sensors downstream of the actuator. For longer 𝑇𝐻
the weights shown streaky patterns, becoming less clear as 𝑇𝐻 and 𝑁𝑠
increase. Of note, the wall signatures of the MLP with 𝑁𝑠 = 128 are
also show streaks, albeit more noisy than those appearing on 𝑁𝑠 = 18
and 𝑁𝑠 = 2048.

Overall, the results in Fig. 8 show that the wall signatures targeted
by the MLPs are the same high-speed streaks targeted by the LSE (see
Fig. 7). None of the input layer neurons of the MLPs targets small
scale structures, supporting the conclusion of Section 3.1 that both
LSE and MLPs are focusing on the linear response of the flow to the
actuation. The results presented here are also consistent with the wall
signatures obtained in the conditional analysis of Pastor et al. [19],
and with the opposition control strategy of Choi et al. [17]. They are
also consistent with the weight distributions computed by Fukagata and
Kasagi [41] using sub-optimal control theory, for a linear control based
on blowing/suction at the wall.

3.2.3. Convolutional neural network
The output of the convolutional layer of a CNN is

𝐹𝑖,𝑗 =
∑

𝑝

∑

𝑞
𝐼𝑖−𝑝,𝑗−𝑞𝐾𝑝,𝑞 , (3.5)

where 𝐼 ∈ R𝑖1 ,𝑖2 is the input to the convolutional layer, 𝐾 ∈ R𝑘1 ,𝑘2 is the
kernel (or filter) and contains the trainable parameters of the network,
and 𝐹 is the feature map. As it can be checked in Eq. (3.5), there is
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Fig. 9. Analysis of the CNN with 𝑁𝑠 = 1024 shear stress sensors at 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 . (a,d) Shear stress field at the input layer. (b,e) Feature maps 𝐹 at the exit of the convolutional
layer of the CNN. (c) Corresponding weights [𝑊 ]1,𝑗 of the most important neuron in the first layer of the dense part of the CNN. Panels (a,b) and the green box correspond to
the episode with the lowest prediction error, 𝜀 = 7.57%. Panels (d,e) and the red box correspond to the episode with the largest prediction error, 𝜀 = −94.96%.
one feature map per filter used, so due to the fact that more than one
filter is trained for each layer, the output of each layer consists on a
set of stacked feature maps. The fact that the same filter is applied
to the whole input field explains why CNNs are able to exploit the
spatial structure better than MLPs, which treat each input sensor as
an independent input. Moreover, the convolutional layers of the CNNs
are invariant to translation, hence when they learn a pattern they can
detect it anywhere in the field, unlike MLPs that only detect structures
relative to the location of the actuation.

Fig. 9 depicts the feature maps output by the CNN after the convo-
lutional layers (i.e. after the filters are applied) and how these maps
are weighted by the most important neuron of the hidden layer of the
dense part of the network, for the best and worst prediction of the CNN
for 𝑁𝑠 = 1024 shear sensors, respectively. Inspection of the filtered
fields (panels b and e) reveals that features F-8, F-9 and F-15 accounts
for derivatives of the input field with respect to 𝑧, while F-10 and F-
4 seem to consist of spatial averages of the input field. Inspection of
the weights (panel c) shows that the weights associated to F-9 are the
largest, specially upstream of the actuator. This suggests that the CNN
depicted in Fig. 9 is trying to locate a near wall streak aligned with
the actuator by focusing on the value of 𝑑𝜏∕𝑑𝑧 just upstream of the
actuator. For the case in which the input field is a streak aligned with
the actuator (panel a), this results in a large drag reduction and a very
small error in the prediction of the CNN (green panel in Fig. 9) For the
case in which the input field consists of smaller streaks, not aligned
with the actuator (panel d), the CNN prediction is completely off (94%
error in the red panel of Fig. 9).

Interpreting how the CNN uses the information of pressure sensors
is more challenging. Fig. 10 shows the best and the worst predictions
for the CNN with 𝑁𝑠 = 1024 pressure sensors. The pressure fields
have smaller scales than the shear stress fields, and the corresponding
filtered fields are more complex as well. Visual inspection of the filtered
maps in Fig. 10b and e shows that most of the maps are combinations
of displacements, averages and derivatives, without any clear stereo-
typical filter. Similar conclusions can be obtained from the weights
distributions (Fig. 10c), which do not show any feature that clearly
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dominates over the others. Overall, the results presented in Fig. 10
show that the present architecture results in non-interpretable CNNs
for the pressure, a problem that is well described in the literature of
NNs and CNNs.

3.3. MLP vs. CNN

In this section we perform a set of analysis in order to better
understand why the CNN for 𝑁𝑠 = 1024 shear or pressure sensors
outperforms the MLP ones, trying to draw some mechanistic conclusion
from the analysis.

First, we will evaluate the ability of MLPs and CNNs to localize in
space a given wall signature with respect to the actuator. This is done
by performing a sensitivity analysis of the output of the NN with respect
to shifts of the input fields in the horizontal directions (i.e., streamwise
and spanwise). If the output of the corresponding NN (i.e., MLP or CNN)
to the 𝑘th field is

𝑢𝑘𝑁𝑁 = 𝐹𝑁𝑁 (𝜏𝑘𝑛 (𝑥𝑖, 𝑧𝑖), 𝑝
𝑘
𝑛(𝑥𝑖, 𝑧𝑖)), (3.6)

we can define the output to the shifted fields as

𝑢𝑘𝑁𝑁 (𝑟𝑥, 𝑟𝑧) = 𝐹𝑁𝑁 (𝜏𝑘𝑛 (𝑥𝑖 + 𝑟𝑥, 𝑧𝑖 + 𝑟𝑧), 𝑝𝑘𝑛(𝑥𝑖 + 𝑟𝑥, 𝑧𝑖 + 𝑟𝑧)), (3.7)

where the shifts (𝑟𝑥, 𝑟𝑧) are applied to the input fields taking into
account that the horizontal directions are periodic. We then evaluate
the sensitivity of the NN to (𝑟𝑥, 𝑟𝑧) using the root mean square of
𝑢𝑁𝑁 (𝑟𝑥, 𝑟𝑧) − 𝑢𝑁𝑁 (0, 0), averaged over the fields of the test set:

𝑅𝑀𝑆𝑁𝑁 (𝑟𝑥, 𝑟𝑧) =

[

1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡𝑠
∑

𝑘=1
(𝑢𝑘𝑁𝑁 (𝑟𝑥, 𝑟𝑧) − 𝑢𝑘𝑁𝑁 (0, 0))2

]1∕2

(3.8)

Fig. 11 shows 𝑅𝑀𝑆𝐶𝑁𝑁 (𝑟𝑥, 𝑟𝑧) and 𝑅𝑀𝑆𝑀𝐿𝑃 (𝑟𝑥, 𝑟𝑧) for different values
of 𝑇𝐻 , and for two sensor configurations: 𝑁𝑠 = 1024 pressure sensors,
and 𝑁𝑠 = 1024 shear sensors. Overall, both types of NNs are more
sensitive to spanwise shifts than to streamwise shifts. Indeed, the
streamwise sensitivity is only apparent for 𝑟𝑧 = 0. The sensitivity of
CNNs and MLPs are very similar when shear sensors are considered,
but large differences are observed for NNs with pressure sensors only.
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Fig. 10. Analysis of the CNN with 𝑁𝑠 = 1024 pressure sensors at 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 . (a,d) Pressure field at the input layer. (b,e) Feature maps 𝐹 at the exit of the convolutional layer
of the CNN. (c) Corresponding weights [𝑊 ]1,𝑗 of the most important neuron in the first layer of the dense part of the CNN. Panels (a,b) and the green box correspond to the
episode with the lowest prediction error, 𝜀 = 22.82%. Panels (d,e) and the red box correspond to the episode with the largest prediction error, 𝜀 = −7366%.
Fig. 11. Effect of (𝑟𝑥 , 𝑟𝑧) on the prediction of the NNs. Top row is 𝑅𝑀𝑆𝐶𝑁𝑁 , and bottom row is 𝑅𝑀𝑆𝑀𝐿𝑃 , defined in Eq. (3.8). Two time horizons (𝑇𝐻 = 0.2ℎ∕𝑢𝜏 and 𝑇𝐻 = 0.5ℎ∕𝑢𝜏 )
and two sensor configurations (𝑁𝑠 = 1024 shear sensors and 𝑁𝑠 = 1024 pressure sensors) are considered.
While the CNNs with pressure sensors are able to keep a comparable
level of sensitivity as the CNNs with shear sensors, the MLPs with
pressure sensors have a lower sensitivity. The fact that the MLP has
more difficulties in detecting shifts in the pressure fields than the
CNN is probably linked to the smaller scales of the pressure fields
(i.e., compared with the shear stress field), and is consistent with a
lower predictive capability of MLPs with pressure sensors than MLPs
with shear sensors or the CNNs with either type of sensor.

Second, we use the SHAP values defined in Section 2.2 to char-
acterize how each sensor contributes to the prediction of the NNs
(i.e., which parts of the input field are causal to the predicted value of
𝛥𝜏(𝑇𝐻 )). Fig. 12 shows the SHAP values for both the MLP and CNN,
for 𝑁𝑠 = 1024 shear and pressure sensors. The input fields used in
this analysis are the same used in Figs. 9–10, corresponding to the
fields that produce the best and the worst prediction of each network.
By construction 𝜙0 = 0 in our database, since our low amplitude
volumetric forcing is introduced in a statistically steady channel, and
has a zero net effect on the skin friction when all episodes are averaged.
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Because of this, the SHAP values sum up to the output predicted by the
NNs:

𝛥𝜏(𝑇𝐻 )∕𝜏0 ⋅ 104 =
∑

𝑖
𝜙𝑖 + 𝜀, (3.9)

where the small error (i.e., 𝜀∕𝜙𝑖 ≈ 10−4) comes from the fact that the
algorithm uses a simplified model 𝑔 for the calculation of the values,
as described in Section 2.2.

Several observations can be made of the distribution of the SHAP
values shown in Fig. 12. First, the SHAP values show clear structure,
which resembles to some extent the input fields. For instance, in the
1st and 2nd row of Fig. 12 (best and worst predictions based on shear
sensors) we see that the SHAP values associated to the high and low
speed streak regions have large absolute values, while the regions
where the streak changes sign have SHAP values close to zero. This
further supports the idea that the NNs are trying to identify specific wall
signatures. Second, the spatial distribution of the SHAP values of CNN
and MLP is similar, which suggests that both networks are deriving
their predictions from the same wall signatures. This means that the
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Fig. 12. SHAP values 𝜙𝑖 of the CNN (second column) and MLP (third column) for the input fields shown in the first column. SHAP values are computed for 𝑇𝐻 = 0.2ℎ∕𝑢𝜏 and
𝑁𝑠 = 1024 shear sensors (rows one and two) and pressure sensors (rows three and four). The title of the first column indicates the true value of 𝛥𝜏(𝑇𝐻 )∕𝜏0 ⋅ 104, whereas the titles
of the second and third column indicate the predicted values for each network.
main difference between CNNs and MLPs is not which structures they
are trying to detect, but how good they are in detecting them (i.e., see
discussion of Fig. 11) and in weighting their importance for the change
of skin friction after the actuation. Third, the SHAP values of the
CNNs seem somewhat noisier, with small scale contributions embedded
within large scale contributions of the opposite sign. The reason for this
is not clear at the moment, especially since both CNN and MLP with
𝑁𝑠 = 1024 have roughly the same number of degrees of freedom (see
Tables 1 and 2). Finally, the SHAP values of shear sensors seem to be
larger upstream of the actuator, and lower downstream of the actuator.
Conversely, SHAP values for pressure sensors seem to be larger at
the location of the actuator or downstream. This disposition of causal
shear upstream of causal pressure is reminiscent of the velocity fields
conditioned to vortex clusters and to intense Reynolds stress regions in
the near wall region [42,43], and it might be related to the fact that
the maximum effectiveness of the actuation is probably in the smooth
part of the streak, where the momentum introduced by the volumetric
force is not dispersed by small scale turbulence.

4. Conclusions

In this paper we analyse the capability of three different methods
to predict the effect that a localized forcing introduced into a low-
Reynolds number turbulent channel flow has on the skin friction drag.
The effect on the skin friction is measured directly, running a base case
(without actuation) and a forced case (with actuation) from the same
initial conditions. The differences between the averaged skin friction
of base and forced channels (i.e., 𝛥𝜏) are used to train three different
data-driven estimators: a multilayer perceptron (MLP), a convolutional
neural network (CNN) and a linear stochastic estimation (LSE). The
input signal for all estimators consists of a grid of pressure and shear
stress sensors located the wall. Note that while the LSE is a linear
method, the neural networks allow a certain degree of non-linearity.
11 
Overall, the performance of LSE and MLP is very similar. The
analysis of the wall-signatures targeted by the estimator shows that
both methods are looking for high/low velocity streaks. Their pre-
dictive capability decays monotonically with the predictive horizon
𝑇𝐻 , reaching Pearson correlation coefficients between the ground truth
and the predicted data of the order 𝜌 ≈ 0.4 when 𝑇𝐻 ≈ ℎ∕𝑢𝜏 , in
agreement with the observation of Pastor et al. [19] of the time at
which the effect of the localized forcing is lost on the flow. Reducing
the size of the sensors improves the predictive capability of LSE and
MLPs while 𝑙+𝑧 ≳ 65. Smaller sensors do not seem to result in better
estimations of the effect of the forcing on the evolution of the averaged
skin friction. Finally, LSE and MLP seem to be able to gain substantially
more information from shear sensors than from pressure sensors: the
Pearson correlation coefficient of a MLP with 𝑁𝑠 = 9 pressure sensors
at 𝑇𝐻𝑢𝜏∕ℎ = 0.5 is 𝜌 = 0.39, while 𝑁𝑠 = 9 shear sensors yields 𝜌 = 0.71,
and 𝑁𝑠 = 9 shear sensors plus 𝑁𝑠 = 9 pressure sensors yields 𝜌 = 0.74.

Interestingly, the performance of the CNN is only similar to MLP and
LSE when the sensors are relatively large (𝑙+𝑧 ≳ 35). When the sensors
are sufficiently small, CNNs are able to outperform MLP and LSE, both
in terms of the values of the Pearson correlation coefficients, and in
terms of the sensibility of the estimator with respect to shifts of the
input data in horizontal planes. Moreover, CNNs with only pressure
sensors were able to perform significantly better than their LSE and
MLP counterparts: a MLP with 𝑁𝑠 = 1024 pressure sensors yields
𝜌 = 0.45 at 𝑇𝐻𝑢𝜏∕ℎ = 0.5, while a CNN in the same conditions yields
𝜌 = 0.7. Although not completely unexpected, the better performance
of CNN is somewhat surprising, since some of the usual advantages
of convolutional filters (i.e., translational invariance and multi-scale
capability) are moot in the present setup (i.e., localized actuation and
low Reynolds number).

These results suggest that the MLPs are acting as relatively linear
estimators, predicting the change in the skin friction after actuation
based on the linear amplification (or damping) of the near-wall streaks
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by the actuator. From this point of view, the main difference between
MLPs and LSE resides in the training algorithm, which is more robust
for MLPs than for LSE when the number of sensors is large. On the
other hand, CNNs with sufficiently small sensors seem to be able
to model part of the non-linear dynamics occurring in the near-wall
region, which explains the increased significance of the pressure sensors
(i.e., the vertical velocity structures) on the estimation.

Finally, it is interesting to note that all estimators seem to be tar-
geting wall-signatures corresponding to an elongated near wall streak
aligned with the actuator. In the LSE and MLP this seems to be enacted
varying the signs of the weights associated to each sensor based on
their spanwise position. In the CNN, the streak detection seems to
be based on a 𝑑∕𝑑𝑧 of the input shear stress field (performed by
the convolutional filters) and a weighting operation of this derivative
upstream of the actuator (performed in the fully connected layers).

The fact that all estimators, linear and non-linear, target the near
wall streak has two important implications: First, in terms of a causality
analysis, this fact can be interpreted as the streak being the most causal
part of the flow for the present actuation [44]. In other words, the
trained estimators are able to predict reasonably well what will happen
to 𝛥𝜏 when the actuation occurs on a low/high velocity streak, but their
ccuracy is lower when the actuation occurs elsewhere. This interpre-
ation is consistent with the interventional experiments of Osawa and
iménez [45] (where the most causal structures near the wall are high-
peed streaks), and with the analysis of the Perron–Frobenius operator
n minimal turbulent channels by Jiménez [46] (where the growth of
he streak is identified as a highly-predictable phase of the log-layer
ynamics). This idea is further supported by the SHAP values presented
n section Section 3.3, showing that the most informative (i.e., the most
ausal) regions of the shear stress fields are those corresponding to the
treak aligned with the actuator, in the region upstream of the actuator.
n the other hand, the most informative/causal region of the pressure

ield seems to be downstream of the most informative/causal region of
he shear field.

Second, from the point of view of extrapolation to higher Reynolds
umber, it is clear that while the same strategy used here could be used
o control a passing near-wall streak over a specific sensor/actuator
scaled to have the same sizes in wall-units as in the present work),
he number of sensors/actuators necessary to have a significant impact
n the skin friction of a high 𝑅𝑒𝜏 flow should increase accordingly.
n the other hand, the existence of a hierarchy of streaks within the

ogarithmic layer [30] opens the possibility to use a similar strategy as
he one shown here to predict the effect of actuation on larger streaks
i.e., scaling the size of sensors/actuators with the size of the streak),
aving the way for future investigations into skin friction control in
igher Reynolds number flows.
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