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A B S T R A C T

Increasingly stringent performance requirements for motion systems necessitate explicit control of the flexible
dynamic behavior. The aim of this paper is to present an approach to identify spatio-temporal models
of overactuated mechatronic systems with a limited number of spatially distributed sensors. The proposed
approach exploits the modal modeling framework and exploits the symmetry in modal models to enhance
the spatial resolution of the identified spatially-sampled modal models. Spatio-temporal models are identified
by updating prior finite element method-based models based on the identified extended modal models. The
experimental results illustrate the effectiveness of the proposed approach for the identification of complex
position-dependent mechanical systems.
. Introduction

Stringent demands regarding performance in mechatronic systems
equire the flexible dynamic behavior to be addressed explicitly in
he control design [1–3]. Applications include, e.g., adaptive optics
n satellite communication and astronomy [4–7] and motion stages in
he semiconductor industry [8,9]. Traditionally, the flexible dynamics
n these mechatronic applications are not considered explicitly in the
requency range relevant for control [10–13]. This enabled decentral-
zed control through, e.g., decoupling of the rigid-body dynamics in
afer stages and static influence functions in adaptive optics [5,8].
urthermore, if these rigid-body/static approximations are valid, the
patial system behavior can be derived easily from static extrapo-
ation. However, to meet stringent demands regarding performance
nd design requirements, a paradigm shift in the design philosophy
f next-generation mechatronic systems resulting in, e.g., lightweight
nd flexible stage design and increasingly large adaptive secondary
irrors [4,6,14]. This leads to the situation where next-generation
echatronic systems exhibit flexible dynamic behavior within the fre-

uency range that is relevant for control which limits the maximum
chievable bandwidth and the use of static extrapolations. To actively
anage the flexible dynamic behavior through advanced control tech-
iques, these systems will be equipped with many spatially distributed
ctuators and sensors, i.e., overactuation and oversensing.

✩ This work is part of the research programme VIDI with project number 15698, which is (partly) financed by The Netherlands Organisation for Scientific
esearch (NWO). This paper was recommended for publication by Associate Editor Micky Rakotondrabe.
∗ Corresponding author.
E-mail address: p.j.m.m.tacx@tue.nl (P. Tacx).

The spatio-temporal nature of the flexible dynamics in next-
generation overactuated mechatronic systems can be actively managed
by exploiting a large number of spatially distributed actuators and
sensors. The flexible dynamic behavior in such mechatronic systems
leads to inherently spatio-temporal system behavior. At the same
time, the measured positions do not necessarily coincide with the
positions of interest. Also, the number of sensors that measure the
deflection of the deformable mirror is limited with respect to the
number of actuators. Approaches that deal with the resulting spatial–
temporal control problems are inferential control [15], control of Port-
Hamiltonian systems [16,17], and spatial vibration control [3]. These
approaches heavily rely on accurate modeling techniques that capture
the spatio-temporal nature of the flexible dynamic behavior [14,18].

Traditional parametric and non-parametric identification
approaches aim to identify the temporal dynamics, i.e., input–output
behavior, of the flexible dynamic behavior [8]. In [19], a model-
ing method tailored to inferential control is proposed. However, this
method requires at least one measurement at the point of interest,
which is generally not an easy task.

The introduction of parameter-varying control strategies spurred the
development of Linear Parameter-Varying (LPV) system identification
techniques [20–22]. These techniques mainly focused on black-box
ttps://doi.org/10.1016/j.mechatronics.2024.103270
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modeling approaches [23,24]. However, the combination of high-order
spatial and temporal dynamics in next-generation mechatronic systems
leads to high model complexity and significant user intervention when
using these black-box LPV modeling approaches.

Alternatively, methods have been developed that employ prior sys-
tem knowledge to model the spatio-temporal system behavior. The
lexible dynamics can be described by partial differential equations that
an be identified using techniques presented in, e.g., [25–27]. However,

these techniques are not directly suited to next-generation overactuated
mechatronic systems due to the high level of user intervention and high
ystem complexity due to, i.e., advanced three-dimensional geometries,
arge number of actuators, and high sampling rate.

In [28], an approach is proposed to identify spatio-temporal me-
chanical models of wafer stages. Essentially, a modal model is identified
based on frequency response data. The spatio-temporal model is con-
structed by interpolating the identified mode shape vectors through
 thin-plate spline. However, the method is only based on the sensor
ata and the thin-plate spline may not have the fidelity to capture the
patial system behavior which limits the accuracy of the interpolation.
n addition, the identification step does not employ additional prior

system knowledge about the mode shape vectors and eigenfrequencies.
Similarly, in [29,30], a first-principles modeling approach is pursued
for feedforward design in deformable mirror systems. However, first-
principles-based approaches often not have the fidelity to describe the
complex nature of the flexible dynamics.

Prior finite element method (FEM) models of mechatronic systems
are widely used to model spatio-temporal system dynamics [31–34].
Although these FEM models have a high spatial resolution, in practice,
these models mismatch with the true system dynamics in terms of,
e.g., overestimation of the stiffness resulting in overestimated eigenfre-
quencies, and these models do not capture variations across systems
due to manufacturing tolerances. This is mainly attributed to sim-
plifications of the true geometry in the FEM model, and additional
non-modeled artifacts in the hardware and uncertainty in the physical
properties. As a consequence, these models may not be sufficiently
ccurate for control of overactuated mechatronic systems.

Alternatively, in the field of structural analysis, model updating is
employed to correct the FEM models based on the responses of the
true structure. Various model updating techniques are presented in
he literature including techniques to update physical parameters, see,
.g., [35,36] for an overview. For instance, in [37–39], approaches

are presented to update model parameters based on modal models.
However, the use of these methods is not well established in the field
of identification and control of mechatronic systems. As a result, these
approaches are generally not unified, i.e., these approaches do not
describe the identification of the modal model, and are based on the
finite number of sensors, which limits the quality of the updated model.
Also, in [40–42], methods are presented to update modal parameters
directly from time and frequency domain data. However, these methods
ead to significant user intervention and are computationally expensive
or mechatronic systems that have high sampling rates. Despite the
stablished use of model updating algorithms in structural analysis,
heir use for control of mechatronic systems remains limited.

Although important developments have progressed spatio-temporal
ystem identification for control, at present, existing approaches seem

less tailored to control of overactuated mechatronic systems. The aim
of this paper is to present a systematic method for constructing spatio-
temporal models for overactuated control by combining concepts from
he field of identification and control of mechatronic systems and the

field of structural analysis. The proposed method is unified in the
sense that all the steps from frequency response function measurements
to the identification of spatio-temporal models are included. The key
step in this paper is to employ prior system knowledge. An important
observation is the fact that the system dynamics are dominated by
structural dynamics that are typically induced by a single moving body
2 
with small deflections. The first step in the construction of the spatio-
temporal model is to identify a spatially sampled modal model that
captures the input–output behavior. A dedicated algorithm is proposed
to identify modal models from frequency response function estimates.
The second step is concerned with enhancing the spatial resolution of
the obtained modal model by exploiting the symmetric nature of the
mode shape vectors at actuator and sensor level [43]. Related work
includes the field of experimental modal analysis and the Maxwell–Betti
reciprocal theorem, see e.g. [44–47]. The third step is concerned with
the construction of the spatio-temporal model. The approach is based
on combining the prior FEM model with the experimentally determined
extended modal model through model updating techniques from the
ield of structural analysis. The main contributions of the paper are the
ollowing.

C1 Unified approach to identify the spatio-temporal dynamics of
overactuated mechatronic systems with a limited number of
sensors.

C1.1 A systematic approach for identifying modal models of
overactuated mechatronic systems.

C1.2 Construction of the spatially enhanced extended modal
models at the unmeasured actuator locations.

C1.3 Spatio-temporal modeling approach by updating the prior
FEM model using the experimentally determined
extended modal model.

C2 An experimental case study with an experimental overactu-
ated beam setup which is considered representative for sev-
eral aspects of overactuated mechatronic systems confirms the
effectiveness of the proposed approaches.

This paper is organized as follows. In Section 2, the main problem
nd the experimental setup are introduced. In Section 3, the modal

modeling framework and the approach are outlined. In Section 5, the
modal identification approach and the formulation of the extended
modal model are introduced. In Section 6, the spatio-temporal model is
onstructed using the extended modal model. In Section 8, a discussion

of the proposed results is provided In Section 9, the conclusions are
formulated and an outlook for future research is presented.

2. Problem formulation

In this section, the class of overactuated mechatronic systems and
the related control challenges considered in this paper are introduced.
Also, the spatio-temporal modeling problem considered in this paper is
formulated.

2.1. Inferential control challenge

Next-generation mechatronic systems are envisaged to exhibit flex-
ble dynamic behavior within the frequency range that is relevant
or control. The flexible dynamic behavior leads to inherent spatio-
emporal system dynamics, which needs to be controlled with a large
umber of spatially distributed actuators. Two main consequences
re associated with the spatio-temporal system dynamics. First, to
alidate the next-generation designs, models are required to analyze
nd provide insight into the underlying system dynamics. Second, the
easured variables do not necessarily coincide with the performance

ariables resulting in an inferential control problem, see, e.g., [15,19]
for control methods for such problems. As a consequence, models
are required that capture the spatio-temporal nature of the flexible
dynamics to deal with these consequences.
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Fig. 1. Two-dimensional schematic representation of an overactuated system. The
epresentation includes 𝑛a actuators (×) that are denoted as 𝐹𝑖, 𝑖 ∈ {1,… , 𝑛a} and
s sensors that measure the deflection ( ). The geometry of the system is denoted by
he spatial domain .

2.2. Problem formulation

A schematic overview of an example overactuated system is de-
icted in Fig. 1. The spatial domain  ∈ R2 of the position variable 𝜌
s the two-dimensional in-plane position in the geometry of the flexible
ody. The main variable of interest is the out-of-plane deflection 𝑢(𝜌, 𝑡)
f the flexible body. Measurement data is obtained at a finite number
f spatially distributed sensor locations with a large number of spatially
istributed actuators

𝐺s ∶ 𝑓 (𝑡) ↦ 𝑢̄(𝑡) (1)

where 𝐺s denotes the overactuated system, 𝑓 (𝑡) ∈ R𝑛a denotes the
actuator forces, and 𝑢̄(𝑡) ∈ R𝑛s the deflection measured at the sensors.
The number of actuators is denoted by 𝑛a and the in-plane positions of
the actuators are denoted by

𝜌̄a =
{

𝜌a,1,… , 𝜌a,𝑛a
}

, 𝜌a,𝑖 ∈  , 𝑖 = 1,… , 𝑛a. (2)

The sensor data is obtained with sensors that measure the displacement
f the flexible body at 𝑛s distinct locations

̄(𝑡) = [

𝑢(𝜌s,1, 𝑡) … 𝑢(𝜌s,𝑛s , 𝑡)
]⊤ (3)

and the in-plane positions of these sensors are stacked into a vector

𝜌̄s =
{

𝜌s,1,… , 𝜌s,𝑛s
}

, 𝜌s,𝑖 ∈  , 𝑖 = 1,… , 𝑛s. (4)

Consequently, the deflection of the flexible body can be assessed at a
imited number of sensor locations.

The main problem addressed in this paper is to identify a position-
dependent model of the form

̂ (𝜌, 𝑡) =
{

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵 𝑓 (𝑡),
𝑢(𝜌, 𝑡) = 𝐶(𝜌)𝑥(𝑡)

(5)

where the model 𝐺̂(𝜌, 𝑡) describes the spatio-temporal dynamics of the
flexible body. Since the overactuated system 𝐺s is a spatially sampled
version, it can be retrieved as a special case. The deflection is assumed
to be sufficiently small such that it does not influence the internal
ynamics. For this reason, the 𝐴 matrix is invariant to the position
ariable 𝜌. The actuator locations are fixed with respect to the moving
ody and therefore the 𝐵 matrix is constant. The system is thus only

position-dependent through the 𝐶 matrix.
While temporal system identification can still be performed with

igh fidelity due to high sampling rates, the scarcity of spatial data, lim-
ted by the number of sensors, restricts the ability to accurately model

or interpolate the spatial system dynamics, which leads to degraded
inferential control performance. The aim of this paper is to develop
 spatio-temporal identification approach that exploits prior mechan-
cal system knowledge to reconstruct the spatio-temporal behavior of
veractuated mechatronic systems.
3 
3. Spatio-temporal modeling approach

In this section, the approach for identifying spatio-temporal mod-
els of overactuated systems is introduced. First, the modal modeling
framework is introduced and used to analyze overactuated mechatronic
systems. Second, the approach is presented to identify spatio-temporal
models.

3.1. Modeling flexible structures

The key variable is the out-of-plane deflection 𝑢(𝜌, 𝑡) ∈ R, see Fig. 1,
which is defined by partial differential equations of which the solution
can be described through space–time-separated basis functions [47],

𝑢(𝜌, 𝑡) =
𝑛𝑞
∑

𝑘=1
𝑤𝑘(𝜌)𝑞𝑘(𝑡). (6)

The temporal contribution is determined by the generalized coordinates
𝑞𝑘(𝑡) and the spatial contribution is determined by 𝑤𝑘(𝜌). The solution
in (6) converges to the true deflection for 𝑛𝑞 → ∞ for appropriate basis
functions. Analytical solutions are not available in general and only
exist for specific cases. For this reason, the solution often is limited
to FEM models that use a finite set of points in space. Throughout this
paper, the nodal coordinates are structured as 𝑞(𝑡) = [

𝑞a(𝑡)⊤𝑞e(𝑡)⊤
]⊤,

where 𝑞a(𝑡) contains the nodal coordinates that correspond to the actu-
ator positions 𝜌̄a and 𝑞e(𝑡) contain the remaining coordinates, including
a fine grid of the spatial coordinate in (37). Given the separation of
time and space in (6), the dynamics can be formulated as a coupled set
of second-order ordinary differential equations

𝑀 ̈𝑞 +𝐷 ̇𝑞 +𝐾 𝑞 = 𝑄𝑓 (𝑡) (7)

where the mass matrix 𝑀 ∈ R𝑛𝑞×𝑛𝑞 is positive definite, 𝐷 ∈ R𝑛𝑞×𝑛𝑞

denotes the damping matrix, 𝐾 ∈ R𝑛𝑞×𝑛𝑞 the positive semi-definite
stiffness matrix, 𝑄 ∈ R𝑛𝑞×𝑛a the input matrix, and 𝑓 (𝑡) ∈ R𝑛a×1 the input
function at actuation locations in (2). Because the actuators operate
n an absolute setting and the nodal coordinates are structured in a

specific form, the input matrix is partitioned as 𝑄 = [𝐼 , 𝑂]⊤, where
denotes an identity matrix and 𝑂 denotes a zero matrix, both of

ppropriate dimensions.
The problem of finding the values of 𝜔2 and a non-trivial 𝜙̄ is known

s the generalized eigenvalue problem
[

𝐾 − 𝜔2𝑀
]

𝜙̄ = 0. (8)

A nontrivial solution exists if and only if the characteristic polynomial
ssociated with the matrices 𝐾 and 𝑀 is equal to zero, i.e., det (𝐾 −
2𝑀) = 0. The characteristic polynomial consists of 𝑛𝑞 roots which are
enotes throughout as 𝜔𝑘, 𝑘 = 1,… , 𝑛𝑞 . Associated with the eigenfre-
uencies are the corresponding eigenvectors 𝜙̄𝑘, 𝑘 = 1,… , 𝑛𝑞 , which
enote the mode shape vector sampled at the positions of the nodes.
hroughout this paper, mass-normalized generalized eigenvectors are
onsidered, i.e.,

𝜙̄𝑘𝑀𝜙̄⊤
𝑘 = 𝐼 . (9)

The scalar function 𝜙𝑘(𝜌) ∶  ↦ R is the 𝑘th mass-normalized mode
shape function, which depends on the spatial variable 𝜌. To improve
conciseness of the results, these functions are vectorized as 𝜙̄𝑘 by
evaluating the scalar functions at the spatial locations of the nodal
oordinates. Due to the specific ordering of the nodal coordinates, the
ode shape vector is partitioned accordingly as 𝜙̄𝑘 =

[

𝜙̄⊤
a,𝑘 𝜙̄⊤

e,𝑘

]⊤
.

The coupled set of differential equations in (7) can be decoupled
y introducing the coordinate transformation to modal coordinates,
.e. 𝑞 = 𝛷 𝜂, where 𝛷 =

[

𝜙̄1,… , 𝜙̄𝑛𝑞

]

. Substituting the coordinate
ransformation and left multiplying (7) with 𝛷⊤ leads to

𝐺𝑚(𝜌) =
⎧

⎪

⎨

⎪

𝐼 ̈𝜂 +𝐷𝑚𝜂̇ +𝐾𝑚𝜂 =
[

𝜙̄a,1 ... 𝜙̄a,𝑛𝑞

]⊤
𝑓 (𝑡), (a)

𝑢(𝜌, 𝑡) = ∑𝑛𝑚 𝜙 (𝜌)𝜂 (𝑡) (b)
(10)
⎩

𝑘=1 𝑘 𝑘
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where 𝐷𝑚 = 𝛷⊤
a 𝐷 𝛷a = diag

(

𝑑𝑚,1,… , 𝑑𝑚,𝑛𝑞
)

, 𝐾𝑚 = 𝛷⊤
a 𝐾 𝛷a =

iag
(

𝜔2
1,… , 𝜔2

𝑛𝑞

)

. In this paper, modal damping is considered which
eads to the decoupled set of differential equations in (10)(a) and which

is a useful approximation of many lightly-damped systems in practice.

3.2. Spatio-temporal identification approach

Measurement data is obtained at a finite number, 𝑛s, of spatially dis-
tributed sensors which are defined by the set 𝜌̄s. The system dynamics
are identified from the obtained experimental data where the model is
parameterized in the modal form, i.e., (10)(a), with a limited number
f 𝑛𝑚 modes. Instead of a continuous position-dependent mode shape
unction in (10)(b), a spatially sampled system is measured

̄s(𝑡) =
𝑛𝑚
∑

𝑘=1

⎡

⎢

⎢

⎣

𝜙𝑘(𝜌s,1)
⋮

𝜙𝑘(𝜌s,ns )

⎤

⎥

⎥

⎦

𝜂𝑘(𝑡). (11)

The key idea in this paper is to exploit system knowledge to identify
patio-temporal models using a limited number of available sensors that
easure the deflection. In particular, since the dynamics are dominated

y structural dynamics, the modal modeling framework is exploited and
rior FEM models are used. To this end, the first step in the proposed
patio-temporal modeling procedure is to identify the frequency re-
ponse function in Section 4. A frequency domain approach is pursued

since this approach is interpretable from a control perspective and data
efficient.

The second step involves the identification of modal models of the
form (10)(a) and (11) with a dedicated algorithm in Section 5. Due to
he high sampling rates, these models provide an accurate description
f the temporal systems dynamics. In contrast, due to the limited

number of sensors 𝑛s, these models determine the spatially sampled
system behavior with a limited spatial resolution.

In the third step, in Section 5.2, extended modal models are con-
structed by combining the mode shape vectors sampled at the actuator
and sensor locations to enhance the spatial resolution of the modal

odels. This procedure enables to enhance the spatial resolution with-
out using additional sensors, however, the resolution is still limited by
he number of sensors and actuators.

The fourth step is presented in Section 6 where the experimen-
ally determined extended modal models are used to construct spatio-

temporal models through prior FEM models. Typically, the latter con-
tain a large number of elements thereby exceeding the number of
sensors significantly 𝑛n ≫ 𝑛s. As a consequence, the deflection function
in (10)(b) can be estimated with a large spatial resolution. In this
step, prior FEM models are parameterized and updated based on the
extended modal models to reconstruct spatio-temporal behavior of
overactuated systems. Since this step relies on prior system knowl-
edge, the spatial nature of the dynamics can be determined accurately
without the use of a large number of sensors. The proposed approach
is graphically shown in Fig. 2. In the following sections, the spatio-
emporal modeling approach is presented which constitutes the main
ontribution of this paper, i.e., Contribution C1.

4. Frequency response function estimation

4.1. Frequency response function estimation

Frequency response function estimation is the first step in identify-
ing the spatio-temporal models. In an experimental setting, experiments
are usually conducted with discrete-time signals due to the digital
interface. To estimate the frequency response functions, the discrete
ime excitation signal 𝑓 , and output 𝑢̄ in Fig. 3 are measured. These
ignals are transformed through the Discrete Fourier Transform (DFT)
nto the frequency domain, which leads to 𝐹 ⟨𝑙⟩(𝑣) and 𝑈̄ ⟨𝑙⟩(𝑣), where 𝑣
4 
Fig. 2. Schematic overview of the proposed spatio-temporal modeling approach.

Fig. 3. Open-loop setting of a linear time invariant system with input 𝑓 , measurement
noise 𝑑, and output 𝑢̄.

denotes the 𝑣th DFT bin. By performing 𝑙 = {1,… , 𝑛a} experiments, the
frequency response function is estimated as
̃s(𝛺𝑣) =

[

𝑈̄ ⟨1⟩(𝑣) … 𝑈̄ ⟨𝑛a⟩(𝑣)
] [
𝐹 ⟨1⟩(𝑣) …𝐹 ⟨𝑛a⟩(𝑣)

]−1 (12)

where the frequency variable at the 𝑣th DFT bin is denoted by 𝛺𝑣.
Several crucial aspects impact the design and processing of the

xperiment. Firstly, the noise 𝑑 represented in Fig. 3 is assumed to
be filtered white noise, this ensures that the measured inputs and
outputs are normally distributed and have zero mean. Consequently,
noise-related estimation errors can be solely characterized by their
variance. Secondly, averaging and windowing can be invoked to re-
duce transient leakage error and noise-related estimation variance. In
addition, periodic input signals can further reduce the noise-related
estimation variance. Thirdly, a critical condition for the identification
approach in (12) is the full rank condition of the excitation matrix
[

𝐹 ⟨1⟩(𝑣) …𝐹 ⟨𝑛a⟩(𝑣)
]

, meaning the applied input signals must span the
entire input space. This is typically achieved by using 𝑛a indepen-
dently generated white noise signals or random-phase multisine signals.
Fourthly, to facilitate exposition, this paper assumes an open-loop
setting for frequency response function estimation. It is important to
note that this approach extends to the closed-loop setting as well,
see, e.g., [48,49]. Finally, the remainder of the paper adopts a pseudo
continuous-time setting (i.e., 𝛺𝑣 = 𝑗 𝜔𝑣), see [50, Chapter 8] for details.

ny delays introduced in an experimental setting by the zero hold
ircuitry can be efficiently identified and compensated using existing
utomated methods or manual data inspection and compensation [51,

Section 8.5] [50, Chapter 8]. This allows to perform the subsequent
parametric identification procedures in the Laplace domain.

5. Modal model identification

In this section, an approach is presented to identify parametric
odal models which describe the input–output behavior. This is an

essential step for identifying spatio-temporal models as outlined in
Section 3. First, the modal model identification approach is presented,
ncluding the parametrization, algorithm, and initial estimate. Second,

the spatial resolution of the identified modal models is enhanced by
exploiting the symmetry in the modal structure.
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5.1. Modal model identification approach

This subsection presents the approach for identifying modal models
of the spatially sampled system 𝐺s which constitutes Contribution C1.1.
First, the parametrization is outlined, defining the model structure
and the identification parameters. Second, the algorithm is introduced
which outlines the steps to estimate the parameters from the frequency
response function estimate introduced in Section 4.1. Third, the initial
condition for the identification algorithm is proposed.

5.1.1. Parametrization
The modeling of the spatio-temporal system dynamics requires the

identification of the spatially sampled system 𝐺s in (38). In this paper, a
frequency domain-based approach is pursued to identify the parametric
model. For this reason, it is essential to formulate a modal parametriza-
tion in the frequency domain. A frequency domain-based description
of the spatially sampled system given by (10)(a and (11) is defined
through the application of the modal expansion theorem

̂ s(𝑠, 𝜃) =
𝑛𝑚
∑

𝑘=1

𝑅𝑘

𝑠2 + 𝑑𝑚,𝑘𝑠 + 𝜔2
𝑘

. (13)

Essentially, the modal model in (13) can be interpreted as a summation
of modal contributions. Here, 𝑅𝑘 denotes the rank-one modal participa-
tion matrix that is based on the sampled mode shape vectors and that
s defined as

𝑅𝑘 = 𝑣𝑘𝑤
⊤
𝑘 (14)

where

𝑣𝑘 =
⎡

⎢

⎢

⎣

𝜙𝑘(𝜌s,1)
⋮

𝜙𝑘(𝜌s,ns )

⎤

⎥

⎥

⎦

, 𝑤𝑘 =
⎡

⎢

⎢

⎣

𝜙𝑘(𝜌a,1)
⋮

𝜙𝑘(𝜌a,na )

⎤

⎥

⎥

⎦

. (15)

An important observation is that the mode shape vector is encountered
twice through 𝑣𝑘 and 𝑤𝑘 which represent the mode shape vector sam-
pled at the sensor and actuator locations respectively. The parametric
modal model in (13) is fully defined by the parameter vector

𝜃 = vec
{

𝑑𝑚, 𝜔̄𝑚, 𝛷𝑣, 𝛷𝑤
}

(16)

Where the parameter vectors are defined as 𝜔̄𝑚 =
[

𝜔𝑚,1,… , 𝜔𝑚,𝑛𝑚

]

,

𝑚̄ =
[

𝑑𝑚,1,… , 𝑑𝑚,𝑛𝑚
]

. The parameter matrices denote the mode shape

ectors sampled at the sensor locations 𝛷𝑣 =
[

𝑣1,… , 𝑣𝑛s

]

and at the

ctuator locations 𝛷𝑤 =
[

𝑤1,… , 𝑤𝑛a

]

. In view of identification for
ontrol, low-order models are desired that are sufficiently accurate in

the frequency range of interest. This means that only a limited number
of modal coordinates 𝑛𝑚 is required. Usually, a limited number of
modes dominates the system dynamics in the frequency range which
is relevant for control. In the case of dominant unmodeled high-order
modes, a compliance effect may occur at lower frequencies [52]. While
not explicitly included in the current paper, the proposed approach can
e readily extended to encompass the residual flexibilities from the un-
odeled modes by incorporating a direct feed-through term [53]. The

onsidered modal parametrization in (13) can be trivially transformed
to the state-space form in (5) as shown in, e.g., [28].

5.1.2. Algorithm
The key identification aim is to find the parameter vector 𝜃 that

inimizes the Frobenius norm-based cost function

𝜃̂ = ar g min
𝜃

𝑁
∑

𝑣=1

‖

‖

𝜖(𝜃 , 𝛺𝑣)‖‖
2
𝐹 . (17)

𝜖(𝜃 , 𝛺𝑣) = 𝑊𝑠(𝛺𝑣)◦
(

𝑊𝑢(𝛺𝑣)
(

𝐺̃s(𝛺𝑣) − 𝐺̂s(𝜃 , 𝛺𝑣)
)

𝑊𝑓 (𝛺𝑣)
)

(18)

Here, 𝑊𝑠(𝛺𝑣), 𝑊𝑓 (𝛺𝑣), and 𝑊𝑢(𝛺𝑣) denote the Schur, input, and output
filter, respectively, that are frequency-dependent weighting matrices
5 
selected by the control engineer. The symbol ◦ denotes the Hadamard
product. The optimization in (17) is a nonlinear least-squares problem
hat is solved iteratively. In this paper, Gauss–Newton iterations are
sed to solve the optimization problem.

Algorithm 1. Gauss–Newton Iterations Procedure. Given an initial
stimate 𝜃⟨0⟩. Compute a new parameter vector by solving the linear

least-squares problem for 𝑖 = 0, 1, 2,…

𝜃⟨𝑖+1⟩ = 𝜃⟨𝑖⟩ + ar g min
𝛥𝜃

𝑁
∑

𝑣=1

‖

‖

‖

‖

‖

𝜕 𝜖(𝜃 , 𝜔𝑣)
𝜕 𝜃⊤

|

|

|

|

|𝜃⟨𝑖⟩
𝛥𝜃 + 𝜖(𝜃⟨𝑖⟩, 𝜔𝑣)

‖

‖

‖

‖

‖

2

𝐹

(19)

The Gauss–Newton algorithm is known for its efficient and often
onotonic convergence to a minimum of the cost function. The ob-

ained minimum is not necessarily the global minimum and depends
on the quality of the initial estimate. Traditionally, the Sanathanan-
Koerner algorithm (e.g., [28,54]) is used to provide an initial guess for
these gradient-based methods, but this adds computational complexity
and necessitates additional user intervention.

Remark 1. The weighted least-squares cost function in (17) encom-
passes control-relevant identification criteria [55, Section A.2]. This
allows to explicitly incorporate the control goal into the identification
step.

Remark 2. The rank-one property of the modal participation matrix
is enforced from the singular value decomposition, i.e., 𝑅̃𝑘 = 𝑈𝑘𝛴𝑘𝑉 ⊤

𝑘 ,
uch that

𝑅𝑘 =
[

𝑈𝑘
]1 [𝛴𝑘

]1
1
[

𝑉𝑘
]⊤
1 . (20)

The first column and row are denoted by
[

𝑈𝑘
]1 and

[

𝑉𝑘
]

1, respectively.
Enforcing the rank-one property in (22) generally works well in practice
as will be shown in Section 7.3.

5.1.3. Initial condition
The initial estimate is determined in three steps. First, the initial

stimate of resonance frequencies 𝜔̄⟨0⟩
𝑚,𝑘 are manually selected from the

lement-wise Bode magnitude plot. Second, the damping parameters
̄⟨0⟩
𝑚,𝑘 are estimated by estimating locally a second-order model to several
lements of the frequency response estimate that is optimal in the least-
quares sense. This approach is also known as the Single DOF (SDOF)
pproach, see, e.g., [47,56,57]. The values are averaged to obtain an

accurate estimate of the global system parameters.
Finally, the initial estimate of the modal participation matrix 𝑅⟨0⟩

𝑘 in
(14) is obtained through the circle fitting method [47]. Essentially, this
approach is based on the observation that at the resonance frequency,
he response of the mechanical system in (13) is approximately
̃s(𝑗 𝜔𝑘) ≈

−𝑗 𝑅𝑘
𝑑𝑚,𝑘𝜔𝑘

. (21)

Based on this observation, the frequency response function estimate,
and the initial estimate of the resonance and damping parameters, the
modal participation matrix is estimated, i.e.,

𝑅⟨0⟩
𝑘 = 𝑑⟨0⟩𝑚,𝑘𝜔

⟨0⟩
𝑚,𝑘Im

{

𝐺̃s(𝑗 𝜔⟨0⟩
𝑚,𝑘)

}

. (22)

The method described by (22) generally works well in practice with
a sufficiently high resolution of the frequency response estimate [58].
The rank one property of the modal participation matrix in (22) is
enforced by the procedure outlined in Remark 2.

5.2. Extending modal models

The modeling of the spatial component in (10)(b) typically requires
a high model complexity. At the same time, only a limited number of 𝑛s
sensor locations cover the spatial domain  which limits the quality of

the spatial component. In this subsection, an approach is proposed that
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allows for the evaluation of the mode shape vector at an increased set
of spatial locations by combining sensor and actuator data. This section
constitutes Contribution C1.2.

An important observation for the analysis of the modal model is
that the modal participation matrix is based on the mode shape vectors
in (14). The key idea in this paper is that in the modal description,
e.g. (13), the mode shape vectors are encountered twice. Specifically,
the mode shape vector is sampled at the sensor and actuator locations.
The following theorem is an important step in the reconstruction of
these mass-normalized mode shape vectors.

Theorem 1. If 𝑅𝑘 ∈ R𝑛s×𝑛a is a rank-one matrix, then 𝑅𝑘 can be
decomposed into
𝑅𝑘 = 𝑣̃𝑘𝑤̃

⊤
𝑘 , (23)

with 𝑣̃𝑘 ∈ R𝑛s and 𝑤̃𝑘 ∈ R𝑛a .

Proof. The proof follows from the definition of the matrix rank, see
e.g., [59, Section 3.115] and [60, Section 3.6]. □

Thus, every modal participation matrix, e.g., (14), is decomposed
into a product of mode shape vectors. The key issue is that the de-
composition is not unique. For instance 𝛼 ̃𝑣⊤𝑘

1
𝛼 𝑤̃

⊤
𝑘 with any nonzero

∈ R is a solution. Thus, the mode shape vector is unique up
to a scaling constant [61]. The following result provides a sufficient
esign requirement for finding a unique decomposition of the modal
articipation matrix into mass-normalized mode shape vectors.

Theorem 2. Let 𝑅𝑘 be a rank-one modal participation matrix of a system
according to (13) with 𝑛a actuators, 𝑛s sensors. If there exists at least one
collocated sensor-actuator pair, i.e., 𝜌s,𝑖 = 𝜌a,𝑗 with 𝑖, 𝑗 ∈ N, then the
decomposition in (15) can be uniquely determined.

Essentially, Theorem 2 enables the extraction of mass-normalized
mode shape vectors by a design requirement, i.e., at least one collo-
ated sensor-actuator pair should be present. A proof of Theorem 2 is

provided in Appendix. An additional requirement is that the collocated
sensor-actuator pair should not be located at a node of any relevant
mode shape.

The key idea in this paper is that in the modal description, e.g. (23),
the mode shape vector is encountered twice. Specifically, the mode
hape is sampled at the sensor and actuator locations. To enhance the

spatial resolution of the modal model, the mode shape vectors sampled
at sensor and actuator locations are combined. Consider

̂ext,𝑘 =
⎡

⎢

⎢

⎣

𝜙𝑘(𝜌̄ext,1)
⋮

𝜙𝑘(𝜌̄ext,𝑛ext )

⎤

⎥

⎥

⎦

(24)

where 𝜙̂ext,𝑘 ∈ R𝑛ext denotes the extended mode shape vector and
𝜌̄ext = 𝜌̄a ∪ 𝜌̄s denotes the combined actuator and sensor locations set.
The spatial resolution of the extended mode shape vector depends on
the number of sensors, actuators, and collocated sensor-actuator pairs,
i.e.,

𝑛ext = card
(

𝜌̄ext
)

(25)

where card() denotes the cardinality of a set. Since at least one col-
located sensor actuator pair is required in Theorem 2, the ultimately
chievable resolution of the combined mode shape vector is bounded

by

𝑛s ≤ 𝑛ext ≤ 𝑛s + 𝑛a − 1. (26)

The extended mode shape vector 𝜙̂ext,𝑘 in (24) provides additional
nformation about the spatial nature of the flexible dynamic behavior
hich is essential for identifying spatio-temporal models.

The interchanging role of sensors and actuators underlying (24)
s known as the Betti–Maxwell theorem, see, e.g., [43–45,62]. This
6 
interchanging role is exploited in this paper to spatially enhance modal
models for spatio-temporal modeling for control.

The combined sampled mode shape vector in (24) allows for the
onstruction of the extended modal model

𝐺̂ext (𝑠) =
𝑛𝑚
∑

𝑘=1

𝑅̂ext,𝑘

𝑠2 + 𝑑𝑚,𝑘𝑠 + 𝜔2
𝑘

, (27)

𝑅̂ext,𝑘 = 𝜙̂ext,𝑘𝜙̂
⊤
a,𝑘, (28)

which enhances the spatial resolution compared to the modal model
n (13).

6. Spatio-temporal modeling

This section presents the approach to identify spatio-temporal mod-
els of overactuated motion systems with a limited number of sensors.
The spatio-temporal model is constructed by combining the extended

odal model with a prior FEM model. The modeling approach is
iscussed including the parametrization and algorithm.

6.1. Spatio-temporal modeling

In this subsection, a method is presented to construct spatio-
emporal models by updating FEM models using the identified extended

modal models. This section constitutes Contribution C1.3.

6.1.1. Parametrization
The prior FEM model forms the basis for identifying the spatio-

emporal system. An essential step is to parameterize the FEM model
based on physical parameters

𝐾FEM(𝛼̄) =𝐾FEM
0 +

𝑛𝛼
∑

𝑖=1
𝐾FEM

𝑖 𝛼𝑖 (29)

𝑀FEM(𝛼̄) =𝑀FEM
0 +

𝑛𝛼
∑

𝑖=1
𝑀FEM

𝑖 𝛼𝑖 (30)

where 𝛼̄ denotes the parameter vector

𝛼̄ =
[

𝛼1,… , 𝛼𝑛𝛼
]

. (31)

that contains the physical update parameters such as, e.g., the elasticity
modulus and mass density of certain elements. Notice that the stiffness
nd mass matrices are assumed to be linear in the parameter vector

𝛼̄. In this paper, the parameters are updated based on the eigenvalues
nd mode shape vectors. As a consequence of the parameter-dependent
ass and stiffness matrix in (29) and (30), the corresponding eigenfre-

quencies and mode shape vector depend implicitly on these parameters

̃ FEM
𝑘 (𝛼̄)𝜙̃FEM

𝑘 (𝛼̄) 𝑘 = 1,… , 𝑛𝑞 (32)

where 𝜔̃FEM
𝑘 (𝛼̄) denotes the 𝑘th eigenfrequency of the FEM model and

𝜙̃FEM
𝑘 (𝛼̄) denotes the 𝑘th mode shape vector of the FEM model which is
rranged such that

𝜙̃FEM
𝑘 (𝛼̄) =

[

𝜙̃FEM,ext
𝑘 (𝛼̄)⊤ 𝜙̃FEM,𝑒

𝑘 (𝛼̄)⊤
]⊤

(33)

where 𝜙̃FEM,ext
𝑘 (𝛼̄) corresponds to the experimentally determined ex-

tended mode shape vector in (24) and 𝜙̃FEM,𝑒
𝑘 (𝛼̄)⊤ contains the remain-

ing unmeasured responses.

6.1.2. Algorithm
In this paper, an algorithm is considered that is based on the

inimization of the difference in modal residuals

̂̄𝛼 = ar g min
𝛼̄

𝑛𝑚
∑

𝑘=1

((

𝜔̂𝑘 − 𝜔̃FEM
𝑘 (𝛼̄)

)

𝑊𝜔,𝑘
)2

+
‖

‖

‖

(

𝜙̂ext
𝑘 − 𝜙̃FEM,ext

𝑘 (𝛼̄)
)

𝑊𝜙,𝑘
‖

‖

‖

2
.

(34)
‖ ‖2
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The considered cost function effectively minimizes the differences be-
tween the measured and predicted eigenfrequencies in (27) and mode
shape vectors in (24). This cost function has been successfully used
in structural dynamics applications including [35,37,39]. The modal
damping parameters are not updated and the damping parameters
identified in Section 5.1 are used. The optimization problem is solved
iteratively using Gauss–Newton iterations, see Algorithm 1. For a more
detailed explanation regarding the optimization, see, e.g., [39]. The
resulting updated FEM model has a substantial model order 𝑛𝑚 ≪ 𝑛𝑞
which limits the suitability for applications. For this reason, model
reduction is employed.

6.1.3. Spatio-temporal model
To obtain low-order spatio-temporal models, model reduction is em-

ployed, see, e.g., [36, Section 9.2.1]. In this paper, modal model reduc-
tion is considered by selecting modes that are relevant for control. The
mass, stiffness, and damping matrices are then adjusted accordingly.
The modal reduced model is defined as

𝐺̃𝑚(𝑠) =
𝑛𝑚
∑

𝑘=1
𝜙̃FEM
𝑘 ( ̂̄𝛼) 1

𝑠2 + 𝑑𝑚,𝑘𝑠 + 𝜔̃FEM
𝑘 ( ̂̄𝛼)2

𝜙̃FEM,a
𝑘 ( ̂̄𝛼)⊤, (35)

where 𝜙̃FEM,a
𝑘 ( ̂̄𝛼) denotes the part of the updated mode shape vector

where the actuators are attached to the body. Due to the high spatial
resolution of the mode shape vector 𝜙̃FEM

𝑘 ( ̂̄𝛼), the resulting modal model
𝐺̃𝑚(𝑠) provides detailed information about the spatial nature of the
flexible dynamics. The resulting modal model can be converted through
trivial transformations to the state-space form in (5) as shown in,
e.g., [28].

7. Experimental case study

In this section, the effectiveness of the proposed approach is illus-
trated in an experimental case study. The case study includes a flexible
beam setup, see Fig. 4. The case study encompasses all steps from
frequency response function estimation to the formulation of the spatio-
temporal model. The experimental setup is explained first. Second, the
frequency response estimation procedure is discussed. Third, the identi-
fication of the modal model and the derivation of the extended modal
model is discussed. Lastly, the spatio-temporal model is constructed.
This section constitutes Contribution C2.

7.1. Experimental setup and aim

The experimental setup involves an overactuated beam setup with
flexible dynamic behavior in mainly one dimension. The out-of-plane
flexible dynamics is encountered in many applications, including, adap-
tive optics where the flexible dynamics is induced by the limited out-of-
plane stiffness of the deformable mirror system and in wafer scanners
where the limited out-of-plane stiffness of the motion stages leads
to flexible dynamic behavior [8,9,30,63]. For this reason, the setup
resembles a one-dimensional approximation of the multi-dimensional
flexible dynamic behavior encountered in next-generation mechatronic
systems.

The experimental overactuated beam setup is depicted in Fig. 4. The
considered system is designed to exhibit out-of-plane flexible dynamic
behavior. The system consists of a slim beam with dimensions 2 ×
20 × 500 mm. The system can be seen as to operate in 2 degrees of
freedom, one translation, and one rotation. Four degrees of freedom are
constrained by wire flexures. Due to the limited out-of-plane stiffness of
the beam, the system contains a significant number of flexible modes.
The beam system consists of three actuators and five sensors

𝐺f =
[

𝑓1 𝑓2 𝑓3
]

↦
[

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5
]

(36)

where 𝑢𝑖 = 𝑢(𝜌s,𝑖), 𝑖 = 1,… , 5, where 𝜌s,𝑖 denotes the 𝑖th sensor location.
The actuators 𝑓𝑖 are Akribis AVM19-5 voice-coil actuators and the
position is measured contactless with five Philtec D64-NQ fiberoptic
7 
Fig. 4. Experimental overactuated beam setup. Three degrees of freedom are con-
strained by four vertical wire flexures, and one degree of freedom is constrained by
a horizontal wire flexure (on the left). The setup is equipped with three voice coil
actuators ( ), five position sensors of which three are used for constructing the spatio-
temporal model ( ) and two sensors are used for validation purposes ( ).

sensors, with a resolution of 1 μm. A Beckhoff EtherCAT module is used
for data acquisition and the system operates with a sampling frequency
of 2048 Hz.

The measured positions are relative with respect to a steel bracket.
These measurements are approximately be absolute due to the high
stiffness of the bracket, the rigid and heavy test bench, and the bracket
not being in the force loop. Similarly, each actuator exerts a force
relative to an independent heavy steal bracket which is mounted to a
heavy and rigid table.

The aim is to estimate a spatio-temporal model of the beam system
in Fig. 4
𝐺𝑜(𝜌) ∶

[

𝑓1 𝑓2 𝑓3
]

↦ 𝑢(𝜌), 𝜌 ∈  , (37)

where 𝑢(𝜌), 𝜌 ∈ , denotes the deflection function on the domain .
To illustrate the effectiveness of the proposed approach, an overactu-
ated setting with limited sensing capabilities is created, i.e.,

𝐺s ∶
[

𝑓1 𝑓2 𝑓3
]

↦
[

𝑢1 𝑢2 𝑢5
]

. (38)

Thus, only three position sensors are used to estimate the spatio-
temporal model. It is emphasized that the remaining two sensors are
used for validation purposes only.

7.2. Experimental results: Step 1: Frequency response function estimation

To identify the spatio-temporal model, first, the frequency response
function is estimated. Since the system is stable and has a certain
limited stroke, open-loop experiments are conducted. A full-MIMO
random phase multisine input signal with a flat amplitude spectrum
is injected into all inputs up to the Nyquist frequency. The excitation
signal contains 12 period with independent 30 realizations with a total
measurement time of approximately one hour. The results are processed
with spectral analysis in Matlab. The identified element-wise Bode
magnitude plot of the frequency response function estimate is depicted
in Fig. 5.

7.3. Step 2.1: Modal model identification

This subsection aims to identify a parametric modal model of the
spatially sampled system 𝐺s. Modal models are estimated of the form
in (13). For control, low-order models are desired that are sufficiently
accurate in the control-relevant frequency range. For this reason, the
first 𝑛𝑚 = 9 modes are considered which cover most of the dynamics
that are relevant for control.

To identify the modal model of the form in (13), the optimization
algorithm outlined in Section 5.1 is used. An inverse Schur weighting
filter 𝑊s is designed in (18) to emphasize the relative difference be-
tween the frequency response function of the modal model, see [28,
Section IV.B]. The input weighting filter 𝑊 is a first-order filter with
𝑓



P. Tacx et al. Mechatronics 105 (2025) 103270 
Fig. 5. Element-wise Bode magnitude plot of the frequency response function estimate
of the full system 𝐺f ( ) and the subset 𝐺s ( ) and their corresponding
variances (same colors, dotted), and the identified parametric extended plant 𝐺̂ext
( ). It is emphasized that the extended plant is estimated using the frequency
response function estimate of the subsystem 𝐺s only whereas the full system 𝐺f is only
shown for validation purposes.

a cutoff of 200 Hz to emphasize low frequencies. The output weighting
filter 𝑊𝑢 is set to identity.

The resulting element-wise Bode magnitude plot of the modal model
𝐺̂𝑠 is depicted in Fig. 5. The plot reveals that the modal model ac-
curately fits the frequency response function estimate. However, the
analysis of the modal model in its current form is limited to a temporal
analysis of three sensors, which limits the spatial resolution. For this
reason, the construction of the extended modal model is essential.

7.4. Step 2.2: Extended modal model

An important step in the estimation of the spatio-temporal model
is to construct the extended modal model as outlined in Section 5.2.
Since the first sensor is collocated with the first actuator, the con-
ditions underlying Theorem 2 are satisfied. Consequently, the iden-
tified modal participation matrix is uniquely decomposed into mass-
normalized mode shape vectors. Another important step in the formu-
lation of the extended modal model is to combine the mode shape
vectors sampled at the sensor and actuator positions in (24). The
extended modal model is constructed in (27) and (28). These mode
shape vectors are visualized in Fig. 8. The resulting element-wise Bode
magnitude plot is depicted in Fig. 5. The spatial resolution of the
extended modal model is increased without having additional sensors.
This is an important step in the identification of the spatio-temporal
model.

In Fig. 5, an Element-wise Bode magnitude plot is depicted of the
frequency response function estimate, the modal model, and the ex-
tended modal model. The modal and extended modal models accurately
match the frequency response function estimate. This confirms the
capability of the modal model identification algorithm in Section 5.1
to accurately identify modal models and the validity formulation of
the extended modal model in Section 5.2. A discrepancy in the re-
sponse at sensors 3 and 5 between the extended modal model and the
frequency response estimate appears in the vicinity of the modes at
572 Hz and 649 Hz. The FEM model indicates that these frequencies
match with an in-plane mode. As a consequence of a tilted sensor
and a significant bend in the beam, the in-plane mode appears in
the frequency response function estimate. Overall, the extended modal
model accurately matches the frequency response estimate and enables
the prediction of the dynamic behavior at the third sensor without using
the frequency response function estimate. Hence, the extended modal
8 
Fig. 6. Rendering of the finite element mesh used to construct the spatio-temporal
identification of the flexible beam. The mesh incorporates the folded ends of the beam
and includes five wire flexures. The FEM model employs 4000 elements to capture the
dynamics of the beam setup.

model enables an enhancement of the spatial resolution without addi-
tional sensors. It is emphasized that the frequency response function
estimates at sensors 3 and 4 are only used for validation purposes.

7.5. Experimental results: Step 4: Spatio-temporal model

Similar to many overactuated mechatronic systems in practice, a
detailed FEM model is available of the flexible beam setup. The FEM
model is made in Ansys, see Fig. 6. A three-dimensional model with
4000 elements of the flexible beam setup is considered including the
folded end tips and the wire flexures. Although the model covers a
substantial amount of detail of the flexible beam, there are a few non-
modeled artifacts, including, several buckled wire flexures, the slight
bend in the beam, and the actuators.

The spatio-temporal model is constructed by updating a prior FEM
model based on the extended modal model. The geometry of the
model is depicted in Fig. 6. The model is parameterized by five update
parameters

𝛼̄ =
[

𝐸 , 𝜌, 𝜈 , 𝑘1, 𝑘2,
]

(39)

where, 𝐸, 𝜌, and 𝜈 denote the Young modulus, mass density, and
Poisson ratio of the flexible beam, respectively, and, 𝑘1 and 𝑘2 the
stiffness of the vertical and horizontal wire flexures, respectively. The
update parameters are optimized by the procedure outlined in Sec-
tion 6.1. The element-wise Bode magnitude plot of the initial and
updated spatio-temporal model at the five sensor locations is depicted
in Fig. 7.

In Fig. 7, the estimate of the spatio-temporal model is depicted in
the element-wise Bode magnitude plot. The initial non-updated model
significantly overestimates the eigenfrequencies. This is likely caused
by imperfections in the beam setup, e.g., buckled wire flexures and a
bent flexible beam. In contrast, the updated model accurately matches
the frequency response function estimate. In particular, the updated
model accurately captures the low-order modes including rigid-body
modes and the first flexible mode. The modes at 572 Hz and 649 Hz in
the frequency response function estimate are attributed to an in-plane
mode according to the FEM model. Due to sensor tilt or misalignment
with the beam, this behavior is observed in the frequency response
estimate of the out-of-plane sensors. Therefore, these modes are not
visible in the out-of-plane directions of the model. It is emphasized
that only the frequency response function estimate of three sensors
are used for identifying the spatio-temporal model. This confirms the
effectiveness of the proposed approach to identify the spatio-temporal
behavior of overactuated mechatronic systems with a limited number
of sensors.

Fig. 8 depicts the mode shape vectors for six modes based on the
extended modal model, the initial non-updated FEM model, and the
updated spatio-temporal model. The initial non-updated model deviates
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Fig. 7. Element-wise Bode magnitude plot of the frequency response function estimate
of the full system 𝐺f ( ) and the subset 𝐺s ( ), the initial FEM model ( )
and the spatio-temporal model 𝐺̃𝑚 ( ). It is emphasized that the spatio-temporal
model is essentially obtained using the non-parametric estimate of the subsystem only
and the full system 𝐺f is only visualized for validation purposes.

Fig. 8. Visualization of the mode shape vectors corresponding to the rigid-body modes
(top) and the flexible modes (bottom) mode of the flexible beam. Visualized are the
mode shape vector based on a modal model of the full system ( ) , and subsystem ( )
. The spatio-temporal model ( ) demonstrates accurate estimation of the flexible
dynamic behavior. The position coordinate reflects the horizontal position on the
flexible beam.

significantly from the extended modal model. In contrast, the updated
model accurately matches the extended mode shape vectors. Overall,
the experimental case study illustrates that the proposed approach
enables accurate identification of the spatio-temporal system behavior
of overactuated mechatronic systems with a limited number of spatially
distributed sensors.

In Fig. 9, the measured step response, the step response simulated
with the non-updated FEM model, and the simulated step response
based on the spatio-temporal model at the location of the fourth sensor
are depicted. The system is perturbed with a step response in the
direction of the first flexible mode. The response of the spatio-temporal
model matches the measured response relatively well. The response
confirms that the rigid-body modes and the first flexible mode are
accurately modeled as indicated in Fig. 7. However, the steady-state
response somewhat deviates from the measured response. This can
be caused by the compliance effect of high-order modes that is not
included in the spatio-temporal model.
9 
Fig. 9. Step response at sensor 4. The plot depicts the validation data ( ), non-
updated FEM model ( ), and spatio-temporal model ( ). It is emphasized that
the validation data is solely used for validation purposes and is not used to identify
the spatio-temporal model.

8. Discussion

The proposed spatio-temporal modeling approach encompasses all
steps from frequency response function estimation, modal model iden-
tification, and extended modal model construction to spatio-temporal
modeling using prior FEM models. The experimental results confirm
the ability of the proposed approach to accurately model the spatio-
temporal behavior.

In comparison to previous studies, the approach proposed in this
paper offers several advantages. First, the results presented in this paper
extend to the previous results in [43,63] by providing an approach for
modeling the spatio-temporal system behavior, an extended derivation
of the modal modeling framework, and the identification of the (ex-
tended) modal models is automated through an optimization algorithm.
Secondly, a frequency domain-based approach is pursued which en-
ables enhanced data efficiency, interpretability for control, and model
validation in view of control compared to time domain methods [64–
66]. Thirdly, in [28,56], a two-stage optimization procedure is required
to obtain an appropriate initial estimate for the second Gauss–Newton
iteration stage. This paper identifies modal models with a single stage
Gauss–Newton algorithm by using an initial estimate based on prior
system knowledge which reduces the computational effort. Similar to
the two-stage algorithms, the algorithm considered in this paper does
not necessarily converge to the global optimum. However, the results
presented in this paper illustrate that it works well in practice. The
initial estimate procedure may lead to insufficiently inaccurate results
in the case of significant coupling between the modes and leads to a
slight increase in user intervention. However, the procedure works well
in practice as shown in, e.g., [57]. Fourthly, the estimation quality
of traditional experimental approaches to identify a spatio-temporal
model is limited by the finite number of sensors that capture the
complex spatial nature of the flexible dynamics [28,37,67]. In contrast,
the approach in this paper exploits the symmetric nature of the mode
shape vectors at actuator and sensor level. By combining these mode
shape vectors, the spatial resolution of the obtained extended modal
model is enhanced which leads to an enhanced spatio-temporal esti-
mation quality of the spatio-temporal model [43]. Finally, in contrast
to the field of structural analysis (e.g., [56,68]), the focus in this
paper lies on obtaining spatio-temporal models that are suitable for
control purposes. This is emphasized by the possibility of extending
the proposed approach to incorporate control-relevant identification
criteria [14]. Furthermore, a unified approach is proposed from fre-
quency response measurements to the identification of modal models
and spatio-temporal models. Similar to the optimization algorithm of
the parametric modal model, the model updating algorithm does not
need to converge to the global optimum. The results reported in this
paper and the literature (e.g.,[37]) indicate that these algorithms seem
to work well in practice. However, experience with the considered
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setup indicated that the quality of the updated model depends on the
considered parameterized finite-element model. Hence, the considered
FEM model should be contain a sufficient amount of detail of the con-
idered setup. The required level of detail depends on the considered
pplication and must be balanced with the increased computational
omplexity. The number and selection of the update parameters must
e considered based on the relevancy for the update problem, also
ensitivity methods can be used to automate this process [36]. For

complex geometries and increased automation, mode tracing and mode
matching techniques can also be considered see, e.g., [36,47].

Alternatively, the development of port-Hamiltonian system analysis
has spurred the development of port-Hamiltonian control strategies
for mechanical systems [16,17]. In this paper, FEM models and a
frequency domain-based approach are considered as these are usually
he starting point in the mechatronic industry. In particular, software
ackages for FEM analysis are available on a wide scale and are widely
sed in the mechatronic industry. These models can be combined with
xperimental data, i.e., model updating, to compensate for, e.g., over-
stimation of the stiffness resulting in overestimated eigenfrequencies
nd variations across systems due to manufacturing tolerances. The
esulting spatio-temporal models are accurate and relatively accessible
or mechatronic engineers due to the wide adoption of FEM software
ackages. Furthermore, a frequency domain-based approach is consid-
red as these frequency domain-based approaches are widely adopted
n mechatronic system design. These frequency-domain approaches are

well established and naturally align with control-relevant system iden-
tification techniques, as demonstrated in, e.g., [14]. However, alterna-
ively, partial differential equations-based and port-Hamiltonian-based
pproaches can also be considered to describe the flexible dynamic
ehavior.

The proposed framework is tailored to systems of the form in (11).
In particular, mechatronic systems that consist of a single moving body.

owever, it is envisioned that the proposed approach is also applicable
o systems with more than one flexible body. An example of such a
ystem is a deformable mirror system with a flexible actuator support
rame, as shown in [43]. Ongoing research focuses on confirming
he performance and applicability of the proposed approach for these
ystems. The ability of the proposed approach to model unmeasured
ensor locations is confirmed in Section 7.5 and in particular in Figs. 7

and 9. However, the proposed framework is not yet used in a control
setting. For this reason, ongoing research focuses on using the proposed
spatio-temporal modeling method in inferential control approaches.
The spatio-temporal modeling approach is expected to enhance the per-
formance of inferential control algorithms in next-generation motion
technologies using the methodologies in, e.g., [3,15,69–71].

9. Conclusions

This paper presents an approach to identify spatio-temporal models
for control of overactuated mechatronic systems with a limited number
f sensors. An important step is to employ prior system knowledge

through the modal modeling framework and prior FEM models.
A frequency domain-based approach is pursued for efficient and in-

terpretable data processing in Section 4. In Section 5, modal models are
identified that describe the spatially-sampled input–output behavior.

he identification algorithm is based on a single-step Gauss–Newton
approach with an initial guess based on the frequency response func-
tion estimate. The spatial resolution of the modal models is enhanced
by exploiting the symmetry of modal models in Section 5.2. Spatio-
emporal models are identified by updating prior FEM models through
he identified extended modal models in Section 6. The integration of

prior knowledge from mechanical models and FEM models leads to
accurate spatio-temporal models. The experimental results confirm that
the proposed method is able to accurately capture the spatio-temporal
system behavior and accurately estimate the dynamic behavior at
unmeasured sensor locations
10 
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Appendix. Proof of Theorem 2

Proof. Let 𝑅𝑘 be a rank-one modal participation matrix and let 𝜌s,𝑖 =
𝜌a,𝑗 for a certain collocated index pair 𝑖, 𝑗 ∈ N be the collocated
positions of the sensor-actuator pair. As such, the mass-normalized
mode shape vectors are related through
[

𝑣𝑘
]

𝑖 =
[

𝑤𝑘
]

𝑗 . (A.1)

Here, [.]𝑖 denotes the 𝑖th element of a vector. By virtue of Theorem 1,
the rank-one modal participation matrix can be decomposed into a
dyadic product of mode shape vectors 𝑣̃𝑘, and 𝑤̃𝑘 which are unique
up to a scaling parameter 𝛽

𝑅𝑘 = 𝛽 ̃𝑣𝑘 1𝛽 𝑤̃
⊤
𝑘 . (A.2)

These mode shape vectors are mass-normalized by finding the scaling
parameter 𝛽∗ such that

𝑣𝑘 = 𝛽∗𝑣̃𝑘𝑤𝑘 = 1
𝛽∗

𝑤̃𝑘 (A.3)

Substitution of (A.1) in (A.3) and subsequent reformulation leads to the
scaling parameter

𝛽∗ =

√

√

√

√

[

𝑤̃𝑘
]

𝑗
[

𝑣̃𝑘
]

𝑖

(A.4)

which mass-normalizes any arbitrarily scaled mode shape vectors 𝑣̃𝑘,
nd 𝑤̃𝑘 and completes the proof of Theorem 2. □
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