
REBOOTING THE WEB OF TRUST
DESIGNING THE FUTURE OF DECENTRALIZED SELF-SOVEREIGN IDENTITY

RWOT XI GOLD SPONSORS:

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 1

A WHITE PAPER FROM RWOT XI: THE HAGUE

Identfer Binding: defning the
Core of Holder Binding

by Paul Bastan, Rieks Joosten, Zaïda Rivai, Oliver
Terbu, Snorre Lothar von Gohren Edwin, Antonio
Antonino, Nikos Fotou, Stephen Curran, and
Ahamed Azeem

Abstract
The W3C Verifiable Credentials Data Model (VCDM) specifies Verifiable Credentials (VCs)1 as a collection of claims
that are issued by a single party, and Verifiable Presentations (VPs) as a collection of claims that a holder can construct
from different VCs issued by different parties. Over the last year(s), various issues have been raised that revolve around
what has been called ‘holder binding’. The term ‘holder binding’ itself isn’t clearly defined, and is in fact quite contentious.
This paper seeks to come to grips with this discussion. Our first contribution is the specification of a terminology, which is
intended to help readers understand what we mean to say without requiring them to make assumptions about such meanings
(as is often the case in discussions about ‘holder binding’). Our second contribution is an analysis of a (fictitious) use-case
that suggests that verifiers typically do not need to know who the holder is (i.e. who has presented the claims to be
verified). This analysis shows that verifiers need capabilities to (a) learn which entity is the subject of a particular claim,
and (b) to know whether or not two subject identifiers refer to the same entity or to different entities. Also, they may need
assurances regarding the party on whose behalf the component that has electronically presented the claims, has been using
those capabilities. Our third contribution is a proposal for the syntax and semantics of a new property that can be used in
(different parts of) VCs/VPs, that will provide verifiers with such capabilities.

Acknowledgements
This work was partly funded by the eSSIF-Lab project under EU H2020 Research and Innovation Programme - Grant
Agreement Nº 871932.

This work was partly funded by the IDunion project supported by the Federal Ministry for Economic Affairs and Climate
Action (BMWK) on the basis of a decision by the German Bundestag - Grant Agreement 01MN21002L.

This work was partly funded by DIN(Digital Identity Nordics) a non profit organization in Norway striving to work for better
digital identity in the nordics.

The work at RWOT#11 was sponsored by (Gold Sponsors) the Hague University of Applied Sciences, the City of the Hague,
TNO (eSSIF-Lab), the Dutch Blockchain Coalition, Digital Contract Design, (Contributing Sponsors) Spherity, Jolocom, and
(Collaborating Sponsors) Blockchain Commons and Legendary Requirements.

Terminology
In VCDM issue #902, Orie Steele sighed "My guess is that ‘holder binding’ would be far less contentious if we could define
what a holder is first." While the term ‘holder binding’ is indeed quite contentious, it is not that the term isn’t defined. Rather,
its definition is not actually used; it is effectively ignored, so every time someone uses the term, readers need to hallucinate
about what it means. It is not a problem if someone uses the term in a different meaning, as long as it is accompanied with a
definition that actually allows readers (which include non-native english speakers, non code-writers, etc.) to determine what
is, and what is not an instance (example) of the term. The problem is that authors do not make that effort, readers accept this
and interpret the term as they see it, and the result is… well, you can see it for yourself.

Terms such as ‘holder’ also suffer from ‘terminological confusion’ as a result of writers and readers not being aware of the
fact that the meaning of terms is typically limited to a specific scope/context. For example, in the context of the Dutch
government, the holder (of an identity document) is defined as "the person in whose name the travel document is issued and
for whom it has been issued". In the context of VCDM (and using its definitions), that person would be referred to as the
subject (of the identity document), and the holder would be the entity that possesses it and can present it, which could be, but

1 Bolded texts are terms, the meaning of which is specified in the section “Terminology”. We have based this terminology
on that of the VCDM and of eSSIF-Lab, so that it has the precision that allows us to better (and more formally) identify
and express the concerns that this paper seeks to address than would have been the case if we would have simply referred
to the VCDM terminology.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 2

http://wetten.overheid.nl/jci1.3:c:BWBR0005212&hoofdstuk=I¶graaf=1&artikel=1
https://github.com/w3c/vc-data-model/issues/902
https://www.w3.org/TR/vc-data-model/#dfn-holders
https://github.com/w3c/vc-data-model/issues/902
https://www.w3.org/TR/vc-data-model/
https://essif-lab.github.io/framework/docs/essifLab-glossary
https://essif-lab.github.io/framework/docs/essifLab-glossary

is not necessarily, its subject.

In an attempt to prevent any kind of misunderstanding, this section defines the key terminology that we use throughout this
paper.2 Each term starts with a sentence that states the criterion that you can evaluate to determine whether or not something
is an instance (example) of that term. Subsequent sentences provide additional information, e.g. the purpose (why we need
the term, what you can do with it, and/or specific characteristics that you may want to keep in mind).

The idea behind (a) making our terminology explicit, (b) consequently using these terms as we defined them, and (c)
requesting you to interpret them in the way that we defined them, is that this prevents most misunderstandings. The
consequence, however, is that we may use terms in a meaning that is different from what you or others typically take it to be3.
But that’s life: authors need to make a real effort to write texts that others can understand, and readers have to make a real
effort to interpret these words with the intended meanings.

Actor

An entity that can act (do things/execute actions). This includes e.g., people (human actors), machines (non-human
actors), and (running) apps (digital actors). It does NOT include organizations. We can say that a party acts, but that
should be interpreted to mean that an actor exists that performs this action on behalf of that party.

Agent (of a party)

An actor that is in the process of executing an action on behalf of that party (at runtime). An actor that is doing this
fulfills the role of agent for that party. After the action terminates, the actor no longer fulfills the role of agent.

Attribute

A digital representation of a feature, characteristic, or quality that a party has ascribed to a specific entity. This data
typically comes as a ‘key-value’ or ‘predicate-object’ pair.

Authenticate, Authentication

The process or action executed by a party to convince itself that a particular identifier actually (truely, genuinely)
identifies a specific (real world) entity.4 Note that proving control of an identifier (particularly for DIDs) in itself
does not constitute authentication.

Claim

A digital representation of a statement that a party (called the author of the claim) has made about an entity (called
the subject of the claim). The statement may or may not be true. The subject of the claim may or may not be
identifiable. A claim may have a subject identifier, with the author being the authority for its dereferencing. A
claim may also consist of one or more attributes that its author has ascribed to the same entity.

Component

An actor, consisting of hardware and/or software, that operates in the digital realm. Typically components act on
behalf of a specific party (thus being an agent for that party). Specific kinds of components will do things that are
specific for their kind. Examples include issuer components, verifier components, or wallets.

2 While some readers may find some of the terminology ‘selbstverständlich’, properly defining it will enable those who use
it to efficiently and effectively resolve any issues that may arise from terms that would otherwise have remained
ambiguous.

3 Another consequence is that we will not entertain feedback stating or suggesting that some specific term has the wrong
definition/meaning. We do not care too much about the terms themselves, because their purpose is to refer to meaning
(described by the definition), and this meaning is what we care about.

4 The NIST definition refers to authentication as: “Verifying the identity of a user, process, or device, often as a
prerequisite to allowing access to resources in an information system”. However, the term “identity” is very difficult and
might be misleading, see e.g., eSSIF-Lab.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 3

https://essif-lab.github.io/framework/docs/terms/organization
https://essif-lab.github.io/framework/docs/terms/action
https://essif-lab.github.io/framework/docs/terms/identity

Credential

A set of one or more claims made by an issuer. The claims in a credential can be about different subjects (and
because of this, there is no such thing as the subject of a credential). See also: verifiable credential (VC).

Entity

Someone or something that is known to exist. This is really anyone/anything, e.g. another person, yourself, some
computer, an extinct animal, a thought, an idea, a JSON-object, …. , as long as there is at least one party that knows
of its existence.

Holder

A role that a party5 can perform as it (a) requests and obtains a VC from an issuer, (b) manages VCs within a
wallet, or (c) creates VPs from one or more VCs and sends them to the verifier that requested it. A holder is
usually, but not always, the subject of a claim in one or more of the VCs that it uses to create a VP.

Holding

Any of the following activities:

1. sending a request for obtaining a credential (to issuer components of other parties), extracting the
credential out of the response, and sending/storing it in (one of) the wallet of the party on whose behalf
this action is executed;

2. (1) receiving a presentation request, (2) deciding whether to accept or reject the request, and if accepted,
(3) obtaining VCs with which to construct the requested presentation from the wallet of the party on
whose behalf this action is executed, (4) constructing the presentation as specified in the presentation
request, adding meta-data, and cryptographically sign it, and (5) sending the result to the requester as a
response to the presentation request.

3. securely storing and protecting (possibly sensitive) data, e.g. VCs that have been received, on behalf of the
party on whose behalf this action is executed

4. controlling the (create/read/update/delete) access of the securely stored/protected data on behalf of the
party on whose behalf this action is executed

Identify, Identification

The action or process of asserting that a (real-world) entity is known by a specific party.6 Such an assertion can be
done by anyone (including that party), and can take many forms, e.g. saying/presenting a name, an identifier (e.g.
an email address, or a username) a (set of) characteristics, or relations with other entities (e.g. as in a passport), etc.

Identifier

Data that is used for the purpose of recognizing a (real world) entity, typically to distinguish it from other entities in
some set. The data is typically in the form of characters (or attribute sets), but could also take the form of audio
(speech), pictures (portrait), etc., or a combination of those.

Identifier Binding

The situation in which there is an identifier that a particular party has bound to some entity that it knows to exist,
and has specified one or more means that other parties can use to identify and/or authenticate that entity. Such
means are typically specified as part of a VC.

5 The W3C VCDM defines the holder as an ‘entity’, leaving it to the reader to determine from the context whether or not a
party is intended, or a component (an actor) that acts on behalf of such a party. For a discussion about distinguishing
between parties and actors, see the eSSIF-Lab mental model on Parties, Actors and Actions.

6 This is also sometimes phrased as “selecting (or: singling ont) one entity out of a set of entities”. See e.g. Pfitzmann and
Hansen (See Anon_Terminology_v0.34 (tu-dresden.de))

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 4

https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://essif-lab.github.io/framework/docs/terms/pattern-party-actor-action

Identifier Semantics (of a Party)

The mapping that a particular party uses between the identifiers that it uses and the entities that it knows to exist.
Every party maintains such a mapping in its own, autonomous way. In such a mapping, every identifier refers to
(represents) a single entity, whereas an entity can be referred to (be represented by) multiple identifiers.

Issuer

A role that a party can perform as it authors claims about one or more entities, and creates a VC from these claims,
and transmits the VC to a holder.

Issuer component

A component that is capable of executing the actions on behalf of a party in its role of issuer. It does so in
compliance with that party’s issuer-policy.

Issuing

An activity that consists of (1) receiving a request for issuing a VC of a certain type, (2) deciding whether to accept
or reject that request, and if accepted7, (3) constructing the claims, adding metadata, cryptographically signing it,
and (4) sending the result to the requester as a response to its request.

Party

An entity that has its own objectives, knowledge, semantics (which includes its identifier semantics), logic (for
reasoning), and decision rules, as well as the capability to manage/maintain these in an autonomous (self-sovereign)
fashion. Colloquially, it is an entity that can be said to have ‘a mind of its own’. Their ‘minds’ (subjective
knowledge) are what distinguishes parties from each other (every party is 1-1 related to its knowledge/mind).
Typical examples are individual people and organizations (but also parts of organizations, such as departments).
Note that not all parties are capable of acting (e.g.: organizations). When we say that a party acts, this means that
an actor exists that performs this action on behalf of that party. Further explanations can be found in eSSIF-Lab.

Policy

A (set of) rules, working instructions and/or other guidance for the execution of one or more kinds of actions that
agents of the party that governs the policy have access to and can interpret such that this results in these actions
being executed as intended by that party.

Presentation

Data that a holder sends to a verifier as a response to a presentation request, and that contains data that has been
derived from one or more VCs issued by one or more issuers. See also: verifiable presentation (VP).

Presentation Request

a (signed) digital message that a verifier component sends to a wallet asking for specific data from one or more
VCs that may be issued by different parties, and where this data must satisfy specific constraints and/or come with
specific proofs or evidence.

Subject

The entity to which a given set of coherent attributes relates/pertains. In a VC, every claim has a subject (VCs
themselves do not). In an AnonCred (a different credential flavor), there is a single subject (i.e. all attributes in an
AnonCred pertain to the same entity).

7 If the request is rejected, the requester may be notified of that.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 5

https://essif-lab.github.io/framework/docs/terms/verifier
https://essif-lab.github.io/framework/docs/terms/semantics
https://essif-lab.github.io/framework/docs/terms/semantics
https://essif-lab.github.io/framework/docs/terms/semantics
https://essif-lab.github.io/framework/docs/terms/semantics
https://essif-lab.github.io/framework/docs/terms/party
https://essif-lab.github.io/framework/docs/terms/organization
https://essif-lab.github.io/framework/docs/terms/semantics
https://essif-lab.github.io/framework/docs/terms/knowledge

Subject Identifier

An identifier, typically in the form of a character string, that is being used for the identification of a subject. The
party that has authored the subject identifier is the authority for dereferencing it (i.e. for determining the subject
that it identifies). For subject identifiers that are used in claims (in a VC), this would typically be the author of the
claim (which in most cases is also the issuer of the VC that contains the claim).

Subject Identifier Semantics (of a Party)

The mapping that a particular party uses between the subject identifiers that it uses in the claims that it issues, and
the respective entities to which they refer (the subjects of these claims).

User

A role that a party can perform as it uses a component (as an agent) to establish and maintain a connection with
another component of which it seeks to obtain a service. Users are said to request and/or use and/or obtain such a
service, which they do through a user-interface of their agent. Wikipedia calls this the end-user.

User component

A component that is capable of executing the actions on behalf of a party in its role of user. Typical examples
include internet browsers, but also other computer applications (e.g., on mobile phones, tablets or computers). The
instructions that user components get for acting on behalf of some party (the policy of the party on whose behalf
it is acting) can be located in a configuration file, or given in terms of settings/preferences or as instructions that the
the person that operates the component provides, e.g., through a user interface.

Verifier

A role that a party can perform by (a) requesting one or more VCs (by sending a presentation request to a holder)
optionally as a VP, that are intended to be used for a specific purpose, and (b) receiving a response, of which it
verifies the structure and proofs.

Verifier component

A component that is capable of executing the actions on behalf of a party in its role of verifier. It does so in
compliance with that party’s verifier-policy.

Verifiable Credential (VC)

A credential that is tamper-evident and contains a proof about the issuer that can be cryptographically verified.
Typically, this proof identifies the issuer, but it could also be a proof that the issuer has been certified by another
(possibly identifiable) party. VCs can be used to build VPs.

Verifiable Presentation (VP)

A presentation that is tamper-evident and contains a proof about its author that can be cryptographically verified.
Certain types of VP might contain data that is synthesized from, but do not contain, the VCs from which the data
was synthesized (for example, zero-knowledge proofs).

Wallet

A component that is capable of executing the actions on behalf of a party in its role of holder. It does so
in compliance with that party’s holder-policy. Wallets typically have additional functionalities that make
them useful for particular purposes (e.g. banking). Wallets may use local storage or remote storage
components for the VCs they obtain, and for getting VCs from which they construct presentations.
Multiple wallets may access the same (local or remote) storage provided they are an agent of the same party.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 6

https://en.wikipedia.org/wiki/User_(computing)#End_user

1 Introduction
All SSI8 technologies exist for the purpose of supporting parties (individuals and organizations) that want to perform some
kind of (business) transaction, for which both need to decide whether or not to commit to that transaction. We will see an
example of this where Bob (who provides courses) and Alice (who wants to take a course) interact. At various points, Bob
and Alice need to decide things, e.g. which course to take, whether or not to enroll Alice as a student for that course, whether
or not to provide access to a course to a person claiming to be a (registered) student, etc.

Each such party gets to autonomously decide which set of rules it will use for making such decisions. Having done so, the
party must then know where to get the data it will need to evaluate such rules. If that data is to be obtained from an external
source, it makes sense to require that both the integrity and the authorship of such data is verifiable, and that’s where VCs
and VPs come in.

However, a party also needs to ensure that this data is valid9 for the evaluation of these rules, because using invalid data may
lead to wrong decisions that can cause real harm. What is or is not valid data for a particular rule is a subjective judgment of
the party that makes decisions based on such rules. Thus, we expect that each party specifies which kinds of claims and
VCs it deems sufficiently valid to rely on for evaluating a particular rule — not only because of what the claim means, but
also because of who the issuer is, the kinds of processes that it (claims to have) used that result in it making these claims, etc.

While a party needs to know who the issuer (of a claim/VC) is as it is gathering data for making transaction-related
decisions, it typically has no need to know who actually presents a claim/VP (the holder), or to whom a claim/VC was
issued. This does not mean, however, that a party isn’t interested to learn who it is that performs other (typically transaction
dependent) roles, but those are different matters. We will elaborate on this in the use case scenarios that we describe further
on.

Evaluating rules that use claim data requires the verifier to be aware of what entity the claim makes a statement about (the
subject of that claim), as well as what this statement actually means. For the purpose of this paper, we consider the
awareness of what this statement actually means out of scope.

Concerning the subject of the claim, we think that a verifier would have three requirements that it would like to
see fulfilled, which are:

● identify the entity that is the subject of a claim (typically the binding between subject and subject
identifier),

● authenticate the entity that is the subject of a claim (typically binding between the subject and the
claim) and

● establish whether the subject of two claims (authored by the same or different parties)

○ are in fact the same entity,

○ are different entities, or

○ are entities of which it cannot be determined that they are the same or different.

Providing means to fulfill at least some of these requirements is the topic of this paper.

8 SSI (Self-Sovereign Identity) is a term that has many different interpretations; we use it to refer to concepts/ideas,
architectures, processes and technologies that aim to support (autonomous) parties as they (electronically) exchange data
for the purpose of conducting transactions with one another.

9 Verification and validation are different things. See description of validation by eSSIF-Lab.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 7

The actual support that these SSI technologies provide for parties that need or want to exchange information, comes in the
form of (digital) components that act on their behalf. Within SSI, we are familiar with functionalities that are known as
‘issuing’, ‘holding’ and ‘verifying’. Parties that are said to do this (and thereby assume the roles of ‘issuer’, ‘holder’ and
‘verifier’ as appropriate), will typically employ (and control) components to execute such actions on their behalf.

The following figure shows a number of parties (most of which will also appear in the use case) and for each of them some
(functional) components10 that can execute SSI functionalities on its behalf e.g. for issuing, holding (wallets), or verifying,
as well as for e.g. securely storing VCs.

Figure 1: Parties and some (functional) components that work on their behalf..

The colors of the rectangles and messages represent the party that controls its contents. Thus, Alice controls a wallet and the
contents of the VP (response) message.11

In this paper, we constrain ourselves to what is specified, or assumed, by the W3C Verifiable Credentials Data Model
(VCDM). We intend to contribute to its value by further enabling Verifiable Credentials (VCs) to be used. Specifically, we
want to focus on how verifiers can use claims to actually evaluate their business rules as they set up and conduct business
transactions, by providing means for their requirements Req1, Req2 and Req312.

A verifier that wants to use VCs and VPs is provided with guidance, e.g. when it comes to the semantics of properties used
in claims (as specified in their credentialSubject property), but has little, if any, guidance when it comes to learning
which entity is the subject of a given claim (i.e. to which entity the subject identifier of that claim refers).

The VCDM says that every claim (in the credentialSubject property) can have an id field that is "intended to
unambiguously refer to an object, such as a person, product, or organization", suggesting that this would then be the subject
of that claim.13 However, it does not provide any actual guidance about how a verifier can learn which entity is being

10 Each such component is expected to be provided with a (machine-readable) policy that contains the rules, instructions,
and other guidance that ensures they will execute the actions in accordance with the intentions of the party on whose
behalf they do so. This topic is out of scope for this paper.

11 Note that the figure does not distinguish between online, offline, or mixed modes of requesting and providing
presentations.

12 this perspective differs from the usual one, in which a holder seems to determine what (not) to present to a verifier, or
where a verifier would need to know that the holder is the subject of the VC (disregarding the VCDM specifications that
say that a VC can have claims about multiple subjects, none of which is necessarily the holder)

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 8

https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

referred to.14 Still, the ‘holder binding problem’ often seems to be a request for providing guidance on this matter. So how
does this work in the real world? What can we learn from what happens there?

In the real world, any party that authors (creates) an identifier determines the identifier semantics, i.e. the mapping
between the identifier and the entity to which it refers. This must particularly be the case if such an identifier appears as
part of a claim that this party subsequently signs.

From this, it follows naturally that every issuer gets to determine its own subject identifier semantics15. Responsible issuers
would also insist on this actually being the case, because if some other party could change that semantics, it could also
change the meaning of the claim that the issuer has signed and issued as a VC some time after the issuer has signed it,
without needing to inform the issuer (who doesn’t then have reason to revoke it), and without leaving any trace that would
signal a verifier that the statements that he thinks the issuer has made differ from the statements that the issuer has actually
made.16

The remainder of this paper is organized as follows. Chapter 2 describes a simple use-case using various scenarios, where we
develop the needs of the verifier. Chapter 3 makes a proposal that can readily be made part of the VCDM, illustrates how it
can be used in different ways, and lists various implementation-, privacy- and other kinds of considerations. Chapter 4
describes how we see it work in practice. We wrap up with conclusions and future work.

13 If the id field is omitted, the VCDM says it is a ‘bearer claim’, meaning that whoever presents the claim must be
considered its subject.

14 The statement that "It is RECOMMENDED that the URI in the id be one which, if dereferenced, results in a document
containing machine-readable information about the id." is a statement about the id, not about the entity to which that
id refers.

15 It could even be useful for an issuer to use a primary index of his private database as an identifier for the credential
subject.

16 Suppose Alice can determine the semantics of the subject identifier that Ivan used in a claim that supposedly states that
Alice has earned some degree. This would happen if Ivan uses a DID that Alice controls (because the DID spec says that
"a DID refers to any subject (e.g., a person, organization, thing, data model, abstract entity, etc.) as determined by the
controller of the DID"). When Ivan issues a VC that contains this claim under the assumption that the subject identifier
refers e.g., to Alice, and Alice changes it to refer to Chuck, then the VC contains a claim, signed by Ivan, saying that
Chuck has earned the degree.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 9

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#abstract
https://www.w3.org/TR/vc-data-model/#dfn-uri

2 Use Case: Course Enrollment
We assume that for the general audience of this paper, the term ‘holder binding’ is quite contentious. Rather than joining the
disputes of what it is, or should be, we will revert to a conceptually very simple use-case that can operationally be executed in
many ways. We expect that expressing these operational ways using our terminology in a consistent way will illustrate what
‘holder binding’ could (or should) be.

In the subsequent sections, we will use the phrase ‘issuing (or: verifying) a/the claim’ as a shorthand for ‘issuing a VC that
contains a/the claim’. Similarly, we use the phrase ‘verifying (or presenting) a/the claim’ as shorthand for ‘verifying (or
presenting) a/the VP or VC that contains a/the claim’. The reason for this is that the purpose of VCs and VPs is to provide
guarantees regarding the integrity and authorship of the claims they contain, while for this use case, we want our focus to be
on the claims and the statements they represent. Introducing these shorthand phrases helps to keep the texts more readable
while maintaining their intended meaning.

The conceptual use case is one in which Bob offers the course called "Making Logic Arguments Stick". As a prerequisite for
the course, students must have mastered Second Order Logic, which they can prove by presenting a VC that is issued by Ivan
(the teacher or organizer of that course) which contains a claim asserting this. The operational use case is where Alice gets
enrolled in the course, and gets access to its lessons.

In the following sections, different scenarios are described that lead to Alice being enrolled and her getting access to the
lessons (rather than someone else). But first, we provide the background that each of these scenarios builds upon.

2.1 Background
Before Alice can be enrolled, Bob must first put the course’s enrollment process in place, and Alice must collect the things
she needs for that enrollment. This section describes the prerequisites from the perspectives of Ivan, Bob and Alice,
respectively.

2.1.1 Ivan

Ivan issues VCs that contain claims of the form (si,"passed",<exam>), where si is the subject identifier, <exam>
is the name of an exam, and "passed" asserts that the entity that is identified by si (the subject of the claim) has passed
the exam that has the name <exam>.

Ivan uses "SOL" as the name of the exam that shows mastery of Second Order Logic.

In order to allow potential verifiers (such as Bob) to learn that Ivan issues such VCs and to help them to decide whether or
not to use them for their particular purposes, Ivan has published an offer that states the claim type, its meaning, the
endpoint(s) where holders may obtain VCs containing such a claim, the conditions under which such VCs will be issued,
and any other information that parties such as Bob may need.

2.1.2 Bob

Bob has decided to offer several ‘course variants’, i.e. options for following the course:

1. a Massive Online Open Course (MOOC), that is available 24/7 online;

2. every semester, a series of online video sessions, run by a real teacher;

3. every summer, a summer school that consists of a series of physical sessions (run by a real teacher) at a designated
location.

Enabling people to follow one of the course variants implies enabling the teachers (which we here take to include the MOOC
server) to determine whether or not a person that requests access to the course variant (we will call them the ‘requester’) is
actually entitled to follow it. To allow the request, the teachers must make sure every of the following conditions is fulfilled:

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 10

https://en.wikipedia.org/wiki/Second-order_logic

● a claim of the form (pi,"isEnrolledFor",cvi) exists (which asserts that the person identified by pi is
eligible to follow the course variant identified by cvi);

● this claim is issued by a party that Bob can rely on to have ensured that all conditions that he has set for entering
the course are fulfilled. For this use case, we only consider Bob to be such a ‘trusted issuer’;

● cvi identifies a course variant that is being taught by the teacher;

● pi identifies the requester (i.e. the requester is the subject of the claim).

Bob first designs a process for issuing such claims and then implements an enrollment application that will run this process
on his behalf.

In his issuing process, Bob’s enrollment application first needs to decide whether or not to accept a request for some person
to be enrolled in a particular course variant. After having accepted such a request, the application can continue to construct a
claim of the form(pi,"isEnrolledFor",cvi) and issue this claim.

The enrollment application only accepts a request if

● an identifier cvi is selected by its user, that represents the course variant. This can be done by the application
presenting the list of course variants (each of which is associated with a particular cvi) for which enrollment is
(still) possible, having the user select one, and using the associated cvi.

● all conditions are met that Bob requires to be fulfilled for enrollment. In this use case, we limit that to the condition
that the student to be enrolled has mastered second order logic, and can prove that by presenting a claim of the form
(si,"passed","SOL") that is issued by Ivan.17

● an identifier pi has been made available that represents the student. This identifier can be conveniently copied
from the aforementioned claim, i.e.: pi=si).

After Bob’s enrollment application has accepted the request for enrollment, it starts by creating the claim
(si,"isEnrolledFor",cvi), where si is obtained from the claim that was issued by Ivan and presented by the user
of the enrollment application, and was inferred by the enrollment application after the user selected an element from the list
of presented course variants. Then, it constructs a VC containing the claim, stores it and sends it to the user.

2.1.3 Alice

Alice wants to get herself enrolled for Bob’s course "Making Logic Arguments Stick", and sees on the website
that this requires her to be able to present a claim of the form (si,"passed","SOL") that is issued by Ivan.

Here, we assume that

● Alice has successfully obtained a VC (issued by Ivan) that contains the claim
("somevaliduri","passed","SOL"),

● at the time of issuing, Alice was the subject of that claim, and

● this VC is stored in a wallet and

● the wallet that will be used in the enrollment process, has access to that VC

There are many ways in which these assumptions might be realized, the most obvious of which is that a wallet belonging to
Alice electronically requests such a VC from the issuer component of Ivan, which then decides whether or not to issue a VC
to Alice, and if so, what claim(s) to include in it (and which subject identifiers to use), and then send it to Alice’s wallet
which then stores it securely into Alice’s wallet.

17 This is because Bob has searched for such claims, found the offer of Ivan, and based on the information he found there,
decided to rely on these claims of Ivan.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 11

Alternative workflows exist. One is that Alice may ask Trevor to get such a VC and devise a way to get it into her own
wallet; but there are many others. We will see that in the scenarios we present, the above assumptions are sufficient to get the
use case done.

2.2 Registration Scenarios
This section describes different ways in which Alice can be accepted as a student of the course "Making Logic Arguments
Stick" that Bob has on offer.

2.2.1 Alice registers herself

She does so by pointing her browser to Bob’s enrollment application, where she chooses the course "Making Logic
Arguments Stick" (the specific variety is identified with MLAS-3). Bob’s enrollment application (that includes a verifier
component) connects to the wallet she has chosen to use, and sends it a presentation request that asks for a claim of the
form (si,"passed","SOL") that has been issued by Ivan. Alice’s wallet finds the VC issued by Ivan that contains
("somevaliduri","passed","SOL"), sends that VC to the wallet which in turn constructs a VP that includes the
claim and the proof that Ivan has issued it, and sends the VP to (the verifier component in) Bob’s enrollment application.

As the verification checks out, Bob’s enrollment accepts the application, creates the claim
("somevaliduri","isEnrolledFor","MLAS-3"), saves it, constructs a VC containing the claim, stores it, and
issues it to the wallet of Alice.

2.2.2 Trevor registers Alice

For various reasons, Alice may want (or need) someone else to enroll her for the course. She would do well to only ask
someone she can entrust with this task. She decides to ask Trevor.

Trevor proceeds in exactly the same way as Alice did in the previous scenario. He only needs the ability to find the VC that
was issued by Ivan and that contains ("somevaliduri","passed","SOL").

There are several ways this can be arranged: Alice can send the VC to him, she could provide the wallet he will be using (for
reading the particular VC), or she could provide him with the means that enable him to successfully obtain a VC from Ivan
that includes that claim. The details of this are outside the scope of this particular use case.

Also, Trevor should make sure that the VC that was issued to his wallet by (the enrollment application of) Bob gets
forwarded to Alice. This is not a necessity though: if Trevor doesn’t do that, Alice could still request the VC from Bob as
Bob has registered the fact that Alice was enrolled, similar to how Ivan issues VCs that contain claims about people that have
passed exams.

2.2.3 Mallory registers Alice

We should also consider the possibility that Mallory (a malevolent actor) registers Alice for the course while Alice has no
intention of taking the course. After all, VCs are just sets of claims, signed by an issuer; they can be transferred at will and it
is reasonable to assume that people such as Mallory could get their hands on a VC and do ill-intended stuff.

This is not necessarily something that Alice would seek to prevent. That would only be the case if Mallory were able to instill
a (legally enforceable) duty on her, e.g. to make some payment. Since Mallory would not be able to sign stuff on behalf of
Alice, chances are that Alice wouldn’t mind (or care).

However, it may constitute a problem for Bob: a variant of a ‘Denial of Service’ attack. If Bob were to accept an application
that Mallory submits for Alice, and registers Alice as a student for the selected course variant, then the amount of free places
would be reduced by one. This may lead to the situation where Bob thinks a course variant is fully booked, when in fact that
is not the case. For the MOOC that may not be all that bad, but for physical courses it may. If this risk is not acceptable to
Bob, he should take measures to mitigate it, e.g. by adding criteria for the acceptance of enrollment applications. Requiring
full (unsubsidized) payment is one option: it could still leave places open, but that would not harm Bob (initially) and it
would make the ‘attack’ more costly.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 12

Another option is that Bob implements the enrollment application such that it asks its user to provide a VC that can be used
to identify and authenticate the user, enabling Bob to find and sue those that have exhibited misbehavior. The enrollment
application should make sure that this identification and authentication VC is valid for that purpose, e.g. by having the user
authenticate using the claims in that VC.

2.3 Access Scenarios
Every course variant provides a particular context within which the teacher (physical person or IT component) is required to
check whether or not a person that requests access should be permitted access.

2.3.1 Electronic access to the MOOC server

Bob’s MOOC server is online 24/7, and students can use it where and when they like. That is to say: anyone using the
MOOC service would need a user component, e.g. a web browser, that would access the MOOC service on its behalf. That
user component will request access to the course provided by the MOOC service. The MOOC server must request a
presentation that includes a claim of the form(si,"isEnrolledFor","MOOC") which a wallet component (that
could be part of the user component) would provide. The MOOC server then needs to verify that

A. the claim has the requested format, and is issued by Bob, and that

B. the wallet operates on behalf of the entity to which si refers (the subject of that claim).

It doesn’t matter whether the user component provides such a claim (as long as the MOOC server can verify it comes from a
VC that Bob has issued), or that the MOOC server checks the registry (database, backend storage facility) in which Bob has
stored the VCs that he issued. Both options work.

What might matter is whether or not the wallet and/or user component operate(s) on behalf of the subject of that claim. If
the MOOC server does not establish that this is the case, then Trevor (having stored the VC that Bob issued to him upon his
request to register Alice) can also access the MOOC server, thus impersonating Alice.

It depends on the risk assessment and risk appetite of Bob whether or not he wants to have the MOOC server check this. If he
does, he may have the MOOC server request claims for which the subject is the user component and/or wallet, and that
state, e.g., that its subject (the component):

● has been certified according to a particular scheme (signed by a certification agency),

● has the same integrity that it had immediately after it was installed (e.g. by having the component obtain an
ephemeral VC (from a remote integrity attestation service) that contains a claim that states this), and

● has very recently created a VC containing a claim that says on whose behalf it is currently operating, i.e. that its
user has logged into the component with a particular mechanism, or using a mechanism that comes with some
predefined Level of Authentication (LoA).

As establishing this is a matter that appears in all access scenarios, we have dedicated a separate section to this, 2.4 Identifier
Binding.

2.3.2 Physical access to a physical location

The summer school setup consists of a series of physical sessions (run by a real teacher) at a designated location. If the
teacher of that course wants to ensure that only people that have properly registered for that particular course will attend,
(s)he can request a VP that contain claims of the form (si,"isEnrolledFor",cvi)where cvi identifies the course
variant that the teacher tutors, and the claims come from a VC issued by Bob. (S)he will need one such claim for every
student, and finally, (s)he will need to learn which of the students is referred to by the various subject identifiers si. We
refer the reader again to the separate section, 2.4 Identifier Binding, about this.

Note that it is not necessary that a student presents the claim (si,"isEnrolledFor",cvi) for which that student is
the subject. For example, a group of students might have organized it such that the group leader would be able to present
such claims for all group members.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 13

2.3.3 Access to an online video course run by a real person

Access to the online video course can be checked by the video server that runs on Bob’s behalf, but also by the teacher of the
course that sets up the video conference.

A user would typically request access to the video server in the same way as it would request access to the MOOC server and
the same mechanism applies (which we shall not repeat here).

However, users may also be allowed to access the call purely based on them having a valid URL, or some video server
account, in which case the (human) teacher would need to check that all users are properly registered students for the online
video course. (S)he can do that in the same way as with people that try to access a physical location where the course is held,
and the same mechanism applies (which we shall not repeat here). The difference is that a user may be kicked out of the
conference call rather than off the premises.

2.4 Identifier Binding
A situation that occurs regularly is one in which a party has bound an identifier to some entity, and/or there is a party that
wants to learn which entity, if any, that identifier has been bound to. Observing how this works in the actual world helps to
properly understand and come to grips with the mechanics involved.

In the real world, every party knows about a subset of all entities that exist. In order to talk and reason about them, it needs
data (which we call identifiers) that it can use to refer to such entities, i.e. single out individual entities from the set of
entities that it knows to exist. It is easy to observe that parties in the real world choose such data as they see fit. People that
have been called names will realize that the ones calling them such names have exercised precisely that autonomy. You may
now realize that you, the reader, too, have been doing your share of name giving…

We use the term identifier semantics (of a party) to refer to the mapping that this party maintains between the identifiers
that it uses and the entities that it knows to exist. We observe that parties autonomously decide what this mapping actually
is. This implies that what is an identifier for one party may not identify some entity in the view of another party. Also, if
two parties both use some identifier, they may have it refer to different entities (example: “daddy”, or “the best president
we ever had”).

Many parties will make some effort to make their identifier semantics ‘interoperable’ with that of other parties i.e. that a
subset of the identifiers that it uses have the property that these identifiers (data) are also used by other parties to refer to
that same entity.

It is a common misconception to assume that this is naturally the case. People that design and implement IT (as well as
others) would do well to avoid assuming this. Readers are encouraged to read more about this topic on the site of the eSSIF-
Lab framework.18

From the above, it follows naturally that whenever a party wants to learn which entity an identifier refers to, it can only do
so if this is enabled by the party that determines the associated identifier semantics. For identifiers that are used in VCs
(e.g. as a subject identifier in a claim), that should be the issuer of that VC.

In our use case, Ivan has used `somevaliduri` as an identifier. That means that Ivan should control the associated
identifier semantics, i.e. determine which entity it refers to. As a consequence, Ivan is the single party that can provide
other parties with means for learning which that entity is.

The current state of the VCDM (and DID) specs is such that there is no guidance whatsoever on identifier binding: issuers
are not provided with (standardized) ways to provide other parties with means for learning which entity an identifier,
specifically a subject identifier, refers to. As a consequence, verifiers have no other option than to make assumptions, which
can be made to work in specific cases, but are not generally applicable.

We propose to use the phrase ‘identifier binding’ to refer to a situation in which there is an identifier that a particular party

18 The eSSIF-Lab framework has pages for the terms identifier and identify, and a mental model on identification.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 14

https://essif-lab.github.io/framework/docs/terms/pattern-identification
https://essif-lab.github.io/framework/docs/terms/identify
https://essif-lab.github.io/framework/docs/terms/identifier

has bound to some entity that it knows to exist, and for which it has specified one or more means that other parties can use
to identify and/or authenticate that entity. Such means would typically be specified as part of a VC. Be aware that
‘identifier’ as in ‘identifier binding’ does not need to be an ‘id’-like DID-ish string but can also relate to other data as stated
in our terminology. Identifier binding might in most cases be used as ‘subject binding’ but we do not prefer that term to keep
the concept more general. The following chapter contains some proposals for such means.

If such means were to exist, that would conclude the various access scenarios we described above, because then Ivan can add
such means to the VCs that it issues and Alice can (selectively) disclose such means to Bob’s teachers, which in turn will be
enabled to then verify that it is Alice that has the right to access the particular course variant.

2.5 Discussion
The description of this use case was devised to include a minimum amount of assumptions. In particular, we do not want to
assume that ‘holder binding’ is some kind of ‘Deus ex Machina’ that solves all sorts of problems. Rather, we have come up
with a simple use case that nevertheless we expect to be so rich that if ‘holder binding’ has a useful meaning, we should be
able to pinpoint that.

The above elaboration of the use case shows that it is not relevant who the holder actually is. In many situations, it is
perfectly acceptable that someone other than the party that needs to be identified and authenticated would present the
claims (in VCs) to a verifier, and hence is — by definition — the holder of these claims (VCs). Whether or not this is the
case is to be determined by the verifier. So to prevent misunderstandings, we distinguish between the roles holder (that hold
various claims (VCs)) and user (that interacts with (IT) services of other parties, and for which identification and/or
authentication may be required).

All this suggests that the phrase ‘holder binding’ is not only contentious, but also misleading, as it leads people to focus on
irrelevant things (such as proving who the holder is). The term contributes more to confusion than to solving actual
problems. We propose to use the term identifier binding instead, as it better suggests the actual problems we are trying to
solve, for which the next chapter will propose some solutions.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 15

3 Proposal
An important part of making the W3C Verifiable Credentials Data Model (VCDM) work is to ensure that the Verifiable
Credentials (VCs) that it specifies can be actually used. It is relatively easy to see how issuers and holders could use them,
but it is not at all obvious how verifiers could do that. Use cases are often described using statements that suggest that a
holder determines what (not) to present to a verifier, or that a verifier would need to know that the holder is the subject of
the VC (disregarding the VCDM specifications that say that a VC can have claims about multiple subjects, none of which is
necessarily the holder).

A verifier that does not want to rely on undocumented assumptions has little, if any, guidance when it comes to learning
which entity is the subject of a given claim (i.e. to which entity the subject identifier of that claim refers).

The guidance provided by the VCDM is that DIDs are "most often" used in a VC as subject identifier but specifies that, if it
is provided, it must be a URI. For URIs, there is no further guidance, and for DIDs the DID spec says that "a DID refers to
any subject (e.g., a person, organization, thing, data model, abstract entity, etc.) as determined by the controller of the DID",
so a party should find out who controls that DID. As we mentioned earlier, it is the issuer of a VC that should control the
identifier semantics, so what the DID spec text thus implies is that the issuer should be the controller of every DID that it
uses as an identifier (including subject identifiers). This is contrary to what many people think. But regardless of that, the
DID spec, too, does not provide any guidance about how a verifier can learn which entity is actually being referred to.

3.1 The `binding` property
We propose to specify a new property, provisionally called `binding`, the purpose of which is to enable parties
(specifically those in the role of verifier), to determine which entity a particular identifier refers to when it is used in a VC
or VP. We start with elaborating on our proposal, and proceed to give examples of how it can be used.

Here is an example of how this property can be used:

...

 "binding": [{

 "id": ["somevaliduri"],

 "type": "didAuthenticationKey",

 "keyId": "did:example:deadbeefcafe#keys-3"

 }, {

 "id": ["somevaliduri", "anothervaliduri"],

 "type": "passport",

 "nationality": "NL",

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "id": ["somevaliduri"],

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }],

...

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 16

https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#dfn-decentralized-identifiers
https://www.w3.org/TR/did-core/#abstract
https://www.w3.org/TR/vc-data-model/

In the above example, the `binding` property is an array that contains three elements, each of which can help verifiers to
identify and authenticate the entity that the author of this property refers to using the identifier "somevaliduri". Let’s
assume that would be Alice.

The first `binding`-element (of type "didAuthenticationKey", says that the entity that is identified with
"somevaliduri" has the private key material associated with "did:example:deadbeefcafe#keys-3".
Thus, a verifier can ask a user that purports to be identifiable with "somevaliduri" to prove she has that private key
material. Note that this does not need (and actually also should not be) the private key material that authenticates the DID
controller, as explained before. This is an example where the `binding` property can be used for online identification and
authentication.

The second `binding`-element (of type "passport"), says that the entity that is identified with either
"somevaliduri" or "anothervaliduri" is the holder of a passport issued by the Dutch government, with
passport serial number 012345678. Thus, a verifier can ask a user that purports to be identifiable with either identifier to
show a passport, verify that it has been issued by the Dutch government and has serial number 012345678, and from there
see if the person matches the photograph and everything else that is customary when authenticating someone by her
passport.

The third `binding`-element (of type "portrait"), specifies a portrait (an image of the front of the head of a person) in
`png` format that, when rendered on a graphics device, enables humans to determine whether or not some arbitrary person is
the one in the image. Thus, a verifier can ask a user that purports to be identifiable with "somevaliduri" to show her
face, compare that with the picture, and decide whether or not they match, i.e. the person is the one represented by the picture
(and therefore, also by "somevaliduri").

The example shows that binding-types can be devised for different contexts: the (suggested) `didAuthenticationKey`-type is
useful for remote, electronic identification, and the `passport` and `portrait` can be used for local and/or deferred physical
identification. This setup is easily extended with other means that enable verifiers to identify/authenticate the entities that
serve as the subject of some claim. Of course, it would be useful to standardize, or recommend, a set of simple and common
binding-types. That, however, is outside the scope of our proposal.

We propose the `binding` property to be specified as an array of elements that enable the identification and
authentication of some entity, where each element consists of:

 an (optional) `id` field, i.e. a (possibly empty) list of the identifiers that all refer to the entity that can be
identified and authenticated by the contents of this `binding`-element. If the `id` property is not
specified, then the binding-element can be used to identify and authenticate the entity to which the sibling-
properties of `binding` are attributed.

 a (required) `type` field, i.e. an identifier that specifies the method/mechanism for identifying and
authenticating the entity from a registry of types, where a registry19 specifies which key-value pairs it
expects (optionally, or required), and how they are to be used to identify and/or authenticate the entity that
is bound to (any of) (the identifiers in the `id` field of) the binding-element.

 a set of key-value pairs, where the keys are particular to the specified `binding`type and the values will
be used as the method specified in the `type` field, so as to identify and/or authenticate the entity, as
intended by the author of the `binding` property.

The semantics of the `binding` property is that if a party executes the method (or uses the mechanism) as
specified by the `type` field, using the provided set of key-value pairs, then that identifies and/or authenticates
a specific entity. If one more identifier(s) is specified in the `id` field, then each of these identifiers represents
that specific entity.

19 The registry itself, where it is located, etc., is outside the scope of this paper.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 17

In the following sections, we offer solutions on how to integrate the `binding` property into the current VCDM.

3.1.1 Add a `binding` property to a `credentialSubject` element

Our first proposal suggests adding the `binding` property to the contents of the `credentialSubject` element of the VC that
has been issued by Ivan to attest that Alice has passed the exam for SOL (VC metadata and signature are omitted):

...

"credentialSubject": [{

 "id": "somevaliduri", //optional

 "binding": [<array of binding-elements>],

 "hasPassedExam": "SOL"

 }

],

...

The <array of binding-elements> is the same as in the previous section (and left out for conciseness). Whenever
a verifier needs to identify/authenticate a person as Alice, any of these elements provides a specific way determined by the
issuer by which the verifier can do so, as long as he makes sure that the `id` field of the `credentialSubject` element matches
one of the `id` field elements of the `binding`-element that it chooses to use for identification and authentication of
Alice.

Note that if the `id` field were omitted, then the `binding` property could still be interpreted as a way to bind (identify
and/or authenticate) the claim’s subject. The advantage of doing this is that the `binding` is more concise as it directly
refers to the subject and no `id` fields are required, not only in the `credentialSubject` element, but also not in the `binding`
array. However, this interpretation is inconsistent with the current VCDM, which says that whenever the `id` field in a
`credentialSubject` element is missing, it is to be considered a ‘bearer claim’20, so a decision about this needs to be taken.

In the example above, the `binding` property is contained in the claim itself. This construct can be used to create VCs that
people can use as pure identification and authentication credentials. They can also be used to construct VCs that contain
claims, e.g. about things (containers, pets, etc. - where privacy issues do not play a large role). So when this mechanism is
used in a `credentialSubject` element, it could be referred to as `subject binding`.

Thus, if a VC/VP were to contain properties such as `holder`, `presenter`, `issuee`, or others21, this construct could also be
used to enable verifiers to identify and/or authenticate the entity that (the value of) this `id` field refers to.

3.1.2 Using the `evidence` field

Our second proposal suggests placing the `binding` property in the `evidence` field (as being discussed e.g. in VCDM
issue #902) with some minor modifications, as follows:

...

"credentialSubject": [

 { "id": "somevaliduri", //mandatory

 "hasPassedExam": "SOL"

 }

],

20 The VCDM text expresses this in terms of VCs rather than claims, but the intention is the same.

21 The discussion of whether or not to add such fields to a VC or VP is a good idea are outside the scope of this document.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 18

https://github.com/w3c/vc-data-model/issues/902#issuecomment-1332838780
https://github.com/w3c/vc-data-model/issues/902#issuecomment-1332838780

"evidence": [{

 "id": "somevaliduri", //mandatory

 "type": ["Binding" , "didAuthenticationKey"] ,

 "keyId": "did:example:deadbeefcafe#keys-3"

 }, {

 "id": "somevaliduri",

 "type": ["Binding" , "passport"] ,

 "nationality": "NL",

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "id": "somevaliduri",

 "type": ["Binding" , "portrait"] ,

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }]

}

...

In this example, the "evidence" property contains 1 or more elements, each of which enables verifiers to
identify/authenticate the entity that is identified by a particular identifier in the credentialSubject. As the VCDM
description of evidence property is very vague and allows lots of use cases, we propose to include "binding" in the array
of types to distinguish from other forms of evidence.

3.1.3 Adding the `binding` property to the VCDM top level

Our third proposal suggests adding a new top-level `binding` property disjunct from the `evidence` field that comprises the
array of `binding` elements. Therefore the contents for the proposed identifier `binding` would be the only content of
the `binding` property and the ‘evidence’ property would be used for other use cases or concepts

...

"credentialSubject": [

 { "id": "somevaliduri",

 "hasPassedExam": "SOL"

 }

],

"binding": [{

 "id": "somevaliduri",

 "type": "didAuthenticationKey",

 "keyId": "did:example:deadbeefcafe#keys-3"

 }, {

 "id": "somevaliduri",

 "type": "passport",

 "nationality": "NL",

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 19

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "id": "somevaliduri",

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }]

},

"evidence": {

 //whatever

}

...

3.2 Using identifier binding across multiple VCs
As described in the introduction, the verifier requires means to

● identify the entity that is the subject of a given claim

● authenticate the entity that is the subject of a given claim

● establish whether multiple subjects refer to the same entity, or not.

The first and second requirements need not be fulfilled by a single claim — nor even within a single VC. Under the
(reasonable) assumption that an issuer will only use unambiguous identifiers, the value of `credentialSubject.id` (as used by
a single issuer) will always refer to the same entity. Hence, such identifiers can be used in multiple claims, not only as a
subject identifier, but also as an ‘object identifier’; it may also appear in a `binding`-property, which can be part of e.g., a
VC that is specifically intended to provide verifiers with the ability to identify and/or authenticate the subject.

While the first and second requirements are enabled through the `binding` property, the third requirement might need
additional work or further explanations. When the verifier requests multiple claims of potentially multiple VCs, he will need
to know how the subjects of these claims are related, and to ensure that he can establish such relationships. For relationships
such as one subject being a parent (child, delegate, friend) of the other, this may seem obvious. However, the verifier must
also be able to establish that the subject of one claim is identical to (the same as) that of the other claim. After all, the entity
that one party refers to with identifier X may be referred to with identifier Y by another party.

Here are some examples:

● Two claims are issued by the same issuer and they have the same `credentialSubject.id`. In this case, since the
identifier semantics is that of a single party (the issuer), it is reasonable to infer that the subject of both claims is
the same entity.

● Two claims (from two VCs) come from different issuers and the value of `credentialSubject.id` is the same for both
claims. Since there are two identifier semantics involved (one for each of the issuers), the verifier needs additional
information to establish that both claims have the same subject (or not). This also holds if both claims have other
attributes (e.g., name, firstName, birthdate) that together form an identifier (this is limited to specific contexts and it
gets complicated fast)

The assessment of whether two or more claims that originate from different issuers have the same subject, is a difficult
matter that cannot be resolved in the context of the VCDM. Rather, it requires verifiers to make assumptions that they can
ground, e.g., on legislation or governance frameworks that the issuers are subjected (or committed) to, or on experience, best
practices, or a risk assessment.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 20

4 How `binding` Types Work
This chapter describes various situations in which identifier binding should work, and shows that one or more of the
solutions we propose actually work. We are demonstrating various options for Bob to realize his service offering using the
concepts from previous chapters. None of these examples imply that certain `binding` types or decisions are “the best”
way to implement a specific scenario. In fact, there will be many ways to ensure a `binding` and we want to show the
different ways all using our proposed properties for the W3C VCDM.

4.1 DIDAuthentication
In this section we are showing a concrete example for the registration scenario “Alice registers herself” and the access
scenario “Electronic access to the MOOC server”, used with the identifier binding type “DIDAuthenticationKey”.

In this example Alice got a VC from Ivan for her participation and successful exam on the course ‘SOL’ :

...

"credentialSubject": [{

 "id": "https://universityoflogic.com/id/492754832663",

 "binding": [{

 "type": "DIDAuthenticationKey",

 "didAuth": "did:jwk:123"

 }],

 "hasPassedExam": "SOL"

 }

],

...

Alice wants to register at Bob’s web application for the course ‘MLAS’ and creates a verifiable presentation of the VC
received from Ivan by authenticating with the DID "did:jwk:123". Bob will check the validity of the VP and check the
signature of Ivan. As the VC contains the claim "hasPassedExam": "SOL" Bob will enroll Alice for the course and
issue her an enrollment VC binding it to "did:jwk:456", which Alice presented to Bob :

...

"credentialSubject": [{

 "id": "https://universityofbob.com/id/399912",

 "binding": [{

 "type": "DIDAuthenticataionKey",

 "didAuth": "did:jwk:456"

 }],

 "isEnrolledFor": "MLAS-3"

 }

],

...

When Alice wants to start or continue the MOOC, she presents the enrollment VC to the login services (on behalf of Bob)
and authenticates with the DID "did:jwk:456". The login service verifies the presentation, including the

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 21

"DIDAuthenticationKey" `binding`, checking for the claim "isEnrolledFor": "MLAS-3" and forwards
Alice to the course material.

4.2 Out-of-band Binding / On-Site Portrait Holder Authentication
In this section we show a concrete example for the registration scenario “Alice registers herself” and the access scenario
“Physical access to a physical location”, used with the identifier binding types “passport” and “portrait”.

4.2.1 Example 1

In this example Alice22 got a VC from Ivan for her participation and successful exam on the course ‘SOL’ :

...

"credentialSubject": [{

 "id": "https://universityoflogic.com/id/492754832663", //optional

 "binding": [{

 "type": "passport",

 "nationality": "NL",

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }],

 "hasPassedExam": "SOL"

 }

],

...

Alice wants to register at Bob’s web application for the course ‘MLAS’ and presents the VC received from Ivan. Bob will
check the validity of the VC and check the signature of Ivan. As the VC contains the claim "hasPassedExam":
"SOL" Bob will enroll Alice for the course. When the physical course starts at the university the teacher (on behalf of Bob)
will bring a list of Passport numbers and/or portrait pictures and compare those to the people entering the course room.

4.2.2 Example 2

In this example Alice got a VC from Ivan for her participation and successful exam on the course ‘SOL’ :

...

"credentialSubject": [{

 "id": "https://universityoflogic.com/id/492754832663", //optional

 "binding": [{

 "type": "passport",

 "nationality": "NL",

22 This use case can also easily be done by Trevor.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 22

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }],

 "hasPassedExam": "SOL"

 }

],

...

Alice wants to register at Bob’s web application for the course ‘MLAS’ and presents the VC received from Ivan. Bob will
check the validity of the VC and check the signature of Ivan. As the VC contains the claim "hasPassedExam":
"SOL" Bob will enroll Alice for the course and issue her an enrollment VC:

...

"credentialSubject": [{

 "id": "https://universityofbob.com/id/399912", //optional

 "binding": [{

 "type": "passport",

 "nationality": "NL",

 "passportNr": 012345678,

 "contentHash": "3338be69 ... 2398f392"

 }, {

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }],

 "isEnrolledFor": "MLAS-3"

 }

],

...

When the physical course starts at the university, Alice brings her enrollment VC and presents those to the teacher (on behalf
of Bob). In the case of the Out-Of-Band `binding` Alice presents her physical passport and the teacher matches the
physical passport with the data from the enrollment VC containing the claim "isEnrolledFor": "MLAS-3". In the
case of ‘On-Site Portrait Holder Authentication’ the teacher compares Alice's face with the image from the VC.

4.2.3 Example 3

In this example Alice has two VCs in her wallet.

The first is a national ID card VC from a government issuer, stating typical personal identification information and an
identifier binding type for On-Site portrait holder authentication:

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 23

"credentialSubject": [{

 "id": "https://stateissuer.nl/id/9021678534", //mandatory

 "binding": [{

 "type": "portrait",

 "format" : "png",

 "portrait": "iVBORw0KGgoAAAANSUhEUgAAA8sAAAJl..."

 }],

 "firstName": "Alice",

 "familyName": "from Wonderland",

 ...

 }

],

...

The second is a course participation VC from Ivan on her successful exam on the course ‘SOL’. This credential does not have
an identifier binding of itself, but links to the `binding` of the first VC (this also illustrates the req3).

...

"credentialSubject": [{

 "id": "https://universityoflogic.com/id/492754832663",

 "binding": [{

 "type": "linkedBinding",

 "link": "https://stateissuer.nl/id/9021678534"

 }],

 "hasPassedExam": "SOL"

 }

],

...

Alice wants to register in Bob’s web application for the course ‘MLAS’ and presents the VC received from Ivan. Bob will
check the validity of the VC and check the signature of Ivan. As the VC contains the claim "hasPassedExam":
"SOL" Bob will enroll Alice for the course and issue her an enrollment VC, copying the linked identifier binding:

...

"credentialSubject": [{

 "id": "https://universityofbob.com/id/399912",

 "binding": [{

 "type": "linkedCredential",

 "link": "https://stateissuer.nl/id/9021678534"

 }],

 "isEnrolledFor": "MLAS-3"

 }

],

...

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 24

When the physical course starts at the university, Alice presents both the national ID card and enrollment VC to the teacher
(on behalf of Bob). In this example the teacher checks the linkage of both VCs, uses the ‘On-Site Portrait Holder
Authentication’ from the first VC and compares Alice's face with the image from the `binding` mechanism. Note that this
is a simplified example and precautions must be made to genuinely identify the correct linked identifier binding, such that
the issuer of such VC is also securely linked, e.g. by identifiers of issuer and credential.

4.3 Remote Holder Authentication for Mobile Secure Wallet (DIF)
In this section we are showing a concrete example for the registration scenario “Alice registers herself” and the access
scenario “Access to an online video course run by a real person”, used with the identifier binding type
“RemoteHolderAuthentication”.

In this example Alice has two VCs in her wallet. The first is a national ID card VC from a government issuer, stating typical
person identification information and an identifier binding type for remote holder authentication. During issuance the
holder’s wallet was authenticated and the VC bound to a hardware-backed key with provided holder authentication:

"credentialSubject": [{

 "id": "https://stateissuer.nl/id/9021678535", //mandatory

 "binding": [{

 "type": "secureWalletRemoteBindingDIF",

 "walletName": "Example Wallet", //optional

 "walletVersion": "1.3.0", //optional

 "hardwarePublicKey": "did:jwk:123", //links and other formats possible

 "holderAuthentication": ["FaceID", "PIN"]

 }],

 "firstName": "Alice",

 "familyName": "from Wonderland",

 ...

 }

],

...

The second is a course participation VC from Ivan on her successful exam on the course ‘SOL’. This credential does not have
an identifier binding of itself, but links to the `binding` of the first VC (this also illustrates the req3):

...

"credentialSubject": [{

 "id": "https://universityoflogic.com/id/492754832663",

 "binding": [{

 "type": "linkedBinding",

 "link": "https://stateissuer.nl/id/9021678535"

 }],

 "hasPassedExam": "SOL"

 }

],

...

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 25

Alice wants to register at Bob’s web application for the course ‘MLAS’ and presents the VC received from Ivan. Bob will
check the validity of the VC and check the signature of Ivan. As the VC contains the claim "hasPassedExam":
"SOL" Bob will enroll Alice for the course and issue her an enrollment VC, copying the linked identifier binding:

...

"credentialSubject": [{

 "id": "https://universityofbob.com/id/399912",

 "binding": [{

 "type": "linkedCredential",

 "link": "https://stateissuer.nl/id/9021678535"

 }],

 "isEnrolledFor": "MLAS-3"

 }

],

...

When the course starts in the video conference of Bob’s university platform, Alice presents both the national ID card and
enrollment VC to the web application. The authentication is locally enforced by her wallet according to the binding
mechanism. Bob’s verifier component then checks the validity of both VCs, checks the linkage and lets Alice enter the video
conference.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 26

5. Considerations
This section contains a first set of topics that implementers and others need to consider. It is not intended to be complete; it
simply points out some concerns that need to be (better) addressed.

5.1 Implementer Considerations
The issuer (author of identifiers) MUST control the identifier semantics of all identifiers that it uses in claims within every
VC that it issues. This implies that an issuer that chooses to use DIDs for such identifiers, MUST control these DIDs.23

Attributes that are used for specific binding-types may be PII, so this will typically require selective disclosure in order to
maintain privacy. It also requires caution when transferring VCs between different parties — to be elaborated. PII might be
transferred to places where it should not come (how to prevent that?). Also, there may be nice identification attributes, e.g. a
nationality + passport number.

There are a number of SSI frameworks or libraries that provide functions for verifying VCs and VPs. Examples include but
are not limited to DIDKit, vc.js, and Veramo. Those implementations typically have a plugin mechanism to wire up
additional proof types and other extension points of the VCDM to add support for these mechanisms.

Largely, those frameworks or libraries do not provide functions for verifying identifier binding because the VCDM does not
define such a concept. This leads to custom implementations which are prone to errors and which result in challenges
regarding interoperability across the different components involved in typical SSI flows. The proposed approach would allow
frameworks or libraries to define functions for verifying identifier binding in a similar way to verifying verifiable
presentations. Each specific binding method could be defined as a plugin and verifiers may use the ones that are fit for their
specific purpose. Also, since a binding can be part of an individual VC, verifiers can ask for VCs that include bindings of the
type they need. The result is that the SSI application developers have to provide less code to implement this very common
business requirement by just registering the identifier binding methods that are also less prone to errors and increases
interoperability across the entire SSI ecosystem.

5.2 Privacy (and Other) Considerations
Concerns have been raised saying that "holder-binding may have unanticipated privacy & correlation issues" and also that
"holder-binding may be an entree for parties to create centralization or lock-in, or worse, create human-rights issues" (VCDM
issue #988).

The guidance that the VCDM already provides in its sections on privacy considerations, security considerations, etc. are
equally applicable to the contents of the `binding` properties. There is nothing very special about them, except perhaps that it
may be more important that holders are able to selectively disclose them.

What might be a topic to consider is that, when a VC is transferred from one party to another, there would be a way to obscure
some of the ̀ binding` elements so that the party to which the VC is transferred does not learn all the means by which the
enclosed identifiers can be dereferenced. One mechanism could be to use the third option of our proposal, i.e. issuing the
binding properties as stand-alone VCs, and RECOMMEND that issuers would only issue these VCs to a wallet that is an agent
of the party that is or owns the entity to which the identifier refers and to which the binding properties apply.

With regards to creating centralization or lock-in, this does not seem to be a problem as we only propose that the issuer
provides means to other parties to dereference the identifiers that it has authored, for which it is the (sole) authority.

This does not imply that there may not be any issues left, waiting to be found and addressed. However, as this paper is intended
to contribute to the holder-binding discussion rather than to provide the final solution, we will leave this topic as future work.

23 This contradicts the SSI principle that holders should control their identities. However, it is inevitable as the DID spec
says that a party that controls a DID gets to determine its identifier semantics (i.e.: the DID subject).

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 27

https://www.w3.org/TR/vc-data-model/#security-considerations
https://www.w3.org/TR/vc-data-model/#privacy-considerations
https://github.com/w3c/vc-data-model/issues/988
https://github.com/w3c/vc-data-model/issues/988

6. Conclusion and Future Work
VCDM issue #902 shows that ‘holder binding’ is not only quite contentious, but also that many members of the SSI
community have a habit of using terms that are defined in the VCDM, yet in other meanings as they are defined. While we
cannot prevent readers from doing the latter, we can provide them with criteria by which they can determine themselves
whether or not something is an instance (example) of a term we use. Taking the VCDM terminology as a starting point, we
clarified what we thought was appropriate, and added some terms we deemed necessary. Any term that is used in this paper
and as a definition in the terminology section, is used in the way it is defined there. Outside the scope of this paper, terms are
expected to have other meanings as well. Whether or not this practice is followed elsewhere, is a useful discussion but
outside the scope of this paper.

Using our terminology, and looking at use-cases in the real world, we have found that the typical use-cases that claim to need
‘holder binding’, i.e. in which the verifier needs to know who the holder is, are in fact specializations of use-cases in which
it would be perfectly acceptable for the verifier to not know who the holder is, typically because while a party may transact
on its own behalf, another party may conduct that same transaction on the first party’s behalf.

The main requirements that verifiers have in such cases are their need for a capability to:

● identify the entity that is the subject of a claim (typically the binding between subject and subject identifier),

● authenticate the entity that is the subject of a claim (typically binding between the subject and the claim), and

● establish whether the subject of two claims (authored by the same or different parties)

○ are in fact the same entity,

○ are different entities, or

○ are entities for which it cannot be determined that they are the same or different.

Currently, verifiers do not have such capabilities. The result in practice is that they revert to means such as (tacit)
assumptions that have no basis in specifications. For example, to authenticate the entity that is identified by a DID that
shows up as a subject identifier (i.e. as the value of the `id` field in one of the `credentialSubject` elements of a VC), which
is not compliant with what the DID spec says. Examples such as these, and the fact that such practices are defended, clearly
demonstrate the need for properly discussing and standardizing means that contribute to providing such verifier capabilities.

Our paper proposes a generically useful property that we call `binding`, which aims to make such contributions. We specify
an extendable syntax and have drafted a specification for its semantics. This `binding` property is not only useful to ‘bind’ an
entity to a claim as its subject, but can also be used to ‘bind’ an entity that is related to the subject of the claim by means of
a predicate (one might call this `object binding`). Also, if ever the properties of `holder` or `issuee` were to be standardized
(which is totally unnecessary once the `binding` property is used), then the entities fulfilling such roles could be ‘bound’ by
the binding property.

We show how this property can be used in VCs and VPs, in various ways, both in online and offline use-cases. This is shown
in various operational scenarios of the same use case. This also shows that, depending on the kind of operational scenario,
verifiers typically have additional, scenario-specific needs that result from their business-thinking, and are reflected in their
business rules.

A particularly important addition comes from the fact that it is typically not parties that interact with each other, but that
each of them also uses some (often IT) components to contribute to that interaction on their behalf. Users would typically
employ a mobile phone or tablet, which in practice may be shared with others. A verifier whose business rules state he
MUST know who the party is that operates a component that has sent a VC/VP, may need to establish the relation between
that IT component and this party on whose behalf it operates, which is a topic that we consider future work.24

24 We might look at what it takes for such components to issue claims that state who the party is on whose behalf it
operates, and how a verifier can trust that component to make such claims.

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 28

https://github.com/w3c/vc-data-model/issues/902

Additional Credits
Lead Author: Oliver Terbu

Authors: Paul Bastian, Rieks Joosten, Zaïda Rivai, Oliver Terbu, Snorre Lothar von Gohren Edwin, Antonio Antonino,
Nikos Fotiou, Stephen Curran, and Ahamed Azeem

Sample APA Citation
Bastian, P., Joosten, R., Rivai, Z., Terbu, O., Edwin, S. Antonino, A., Fotiou, N., Curran, S., and Azeem, A. (2023).
Identifier Binding: defining the Core of Holder Binding. Rebooting the Web of Trust XI. Retrieved from
https://github.com/WebOfTrustInfo/rwot11-the-hague/blob/master/final-documents/identifier-binding.pdf.

This paper is licensed under CC-BY-4.0.

About Rebooting the Web of Trust
This paper was produced as part of the Rebooting the Web of Trust XI design workshop. On
September 26th to 30th, 2022, over 60 tech visionaries came together in The Hague, The
Netherlands to talk about the future of decentralized trust on the internet with the goal of
writing at least 5 white papers and specs. This is one of them.

• RWOT Board of Directors: Christopher Allen, Joe Andrieu, Erica Connell.

• RWOT11 Coordination Team: Will Abramson, Christopher Allen, Joe Andrieu, Shannon
Appelcline, Erica Connell, Eric Schuh, Carsten Stöcker.

• Workshop Credits: Will Abramson (Producer), Christopher Allen (Founder), Shannon Appelcline (Editor-in-Chief),
Erica Connell (Host), Amy Guy (Ombudsperson), Willemijn Lambert (Graphic Recorder), Eric Schuh (Ombudsperson),
Carsten Stöcker (Co-Producer, Demo Organizer), Dorothy Zablah (Facilitator).

• Gold Sponsors: The City of the Hague, Digital Contract Design, Dutch Blockchain Coalition, The Hague University of
Applied Sciences, eSSIF-Lab.

• Contributing Sponsors: Blockchain Commons, Legendary Requirements, Spherity.

Thanks to all our attendees and other contributors!

What’s Next?
The design workshop and this paper are just starting points for Rebooting the Web of Trust. If you have any comments,
thoughts, or expansions on this paper, please post them to our GitHub issues page:

https://github.com/WebOfTrustInfo/rwot11/issues

The twelfth Rebooting the Web of Trust design workshop is scheduled for late 2022. If you’d like to be involved or
would like to help sponsor the event, email: Leadership@WebOfTrust.info

2023-02-03 Identifier Binding: defining the Core of Holder Binding 1.0b 29

mailto:Leadership@WebOfTrust.info
https://github.com/WebOfTrustInfo/rwot11/issues
https://creativecommons.org/licenses/by/4.0/
https://github.com/WebOfTrustInfo/rwot11-the-hague/blob/master/final-documents/identifier-binding.pdf

	Abstract
	2.1 Background
	2.1.1 Ivan
	2.1.2 Bob
	2.1.3 Alice

	2.2 Registration Scenarios
	2.2.1 Alice registers herself
	2.2.2 Trevor registers Alice
	2.2.3 Mallory registers Alice

	2.3 Access Scenarios
	2.3.1 Electronic access to the MOOC server
	2.3.2 Physical access to a physical location
	2.3.3 Access to an online video course run by a real person

	2.4 Identifier Binding
	2.5 Discussion
	3.1 The `binding` property
	3.1.1 Add a `binding` property to a `credentialSubject` element
	3.1.2 Using the `evidence` field
	3.1.3 Adding the `binding` property to the VCDM top level

	3.2 Using identifier binding across multiple VCs
	4.1 DIDAuthentication
	4.2 Out-of-band Binding / On-Site Portrait Holder Authentication
	4.2.1 Example 1
	4.2.2 Example 2
	4.2.3 Example 3

	4.3 Remote Holder Authentication for Mobile Secure Wallet (DIF)
	5.1 Implementer Considerations
	5.2 Privacy (and Other) Considerations
	Additional Credits
	Sample APA Citation
	About Rebooting the Web of Trust
	What’s Next?

