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Universal control of four singlet-triplet qubits
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The coherent control of interacting spins in semiconductor quantum dots is of strong interest for
quantum information processing as well as for studying quantum magnetism from the bottom up.
Here, we present a 2x4 germanium quantum dot array with full and controllable interactions between
nearest-neighbor spins. As a demonstration of the level of control, we define four singlet-triplet
qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit
gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)-
99.84(1)% and Bell state fidelities of 73(1)-90(1)%. Combining these operations, we experimentally
implement a circuit designed to generate and distribute entanglement across the array. A remote
Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight
the potential of singlet-triplet qubits as a competing platform for quantum computing and indicate
that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible.

The coherent control of a large-scale array of spins in
the solid state represents a major challenge in the field of
quantum-coherent nanoscience [1-4]. As a quintessential
platform for quantum spin control, the lithographically-
defined semiconductor quantum dot has shown great
promise both for fault-tolerant digital quantum compu-
tation [5-15] and for analog quantum simulation of emer-
gent quantum phenomena [16-19]. Nevertheless, the
inherent nanoscale dimensions of the devices, the geo-
metrical constraints in integrating all the required com-
ponents, and the necessity of employing high-frequency
electromagnetic fields in cryogenic environments present
important challenges for the integration and control of a
large number of spins.

Already, significant efforts have been undertaken to
tackle these challenges. For single-spin qubits, the num-
ber of coherently controlled interacting spins has been
scaled up to six in a one-dimensional array [11] and four
in a two-dimensional array [10]. A six-dot linear array
was also used to achieve universal control of two qubits
that are each encoded in a subspace of three electron
spins distributed over three dots [15]. For singlet-triplet
qubits defined in a subspace of two spins across two dots,
recent progress includes the individual control of three
to four uncoupled qubits [20, 21] and the operation of a
single qubit in a 3 X 3 quantum dot array [22].

Similar to exchange-only qubits, singlet-triplet
qubits [6, 13, 14, 21, 23-30] allow fully electrical qubit
control using baseband voltage pulses. The use of
baseband-only control signals can avoid commonly
encountered problems of single-spin qubits such as mi-
crowave heating effects [11, 31, 32] and may furthermore
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alleviate crosstalk effects [33].  Singlet-triplet qubits
also map naturally to the spin-readout basis in Pauli
spin blockade (PSB), which is a common method for
spin-to-charge conversion in quantum dots [24, 34]. By
using pulse optimization, single-qubit control fidelities
of singlet-triplet qubits have exceeded 99% [28], whereas
two-qubit gate fidelities relying on the relatively weak ca-
pacitive (Coulomb) interaction reached 72-90% [13, 14].
In theory, the two-qubit gate fidelity can be further
improved by replacing the capacitive coupling with the
stronger exchange coupling [29], although it has been
little investigated in experiments [35]. Despite this
progress, universal control of more than two interact-
ing singlet-triplet qubits remains yet to be achieved.
Recently, a controlled number of charge carriers were
loaded in 2 x 4 arrays, a 4 x 4 array and a 1 x 12
array [36—40]. These advances set the stage for exploring
the operation of three or more interacting singlet-triplet
qubits experimentally.

Here we demonstrate coherent control of four inter-
acting singlet-triplet qubits in a 2x4 germanium quan-
tum dot array, which forms a quantum dot ladder. Tak-
ing advantage of the strong intrinsic spin-orbit coupling
and small in-plane g-factors of holes in strained germa-
nium quantum wells [41], we encode the qubit in the sin-
glet (]S)) and the lowest triplet (|]7_)) of two exchange-
coupled spins, a variant of the originally proposed singlet-
triplet qubit [19, 42-49]. By controlling the exchange in-
teraction inside each spin pair along the ladder rungs,
we first map out the qubit energy spectrum. Then we
show universal control of each qubit by pulsing both the
detuning and tunneling barrier of the corresponding dou-
ble quantum dot (DQD). With proper simultaneous con-
trol of detunings and tunneling barriers of neighbouring
S — T_ qubits, we achieve a two-qubit SWAP-style gate
induced by exchange interactions for each pair of neigh-
bouring qubits in the ladder. Finally, with the demon-
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FIG. 1. Device and energy spectroscopy. a, Schematic drawing showing the Ge/SiGe heterostructure and three layers of
gate electrodes on top to define the quantum dot ladder and sensing dots: screening gates (purple), plunger gates (red), barrier
gates (green). Ohmic contacts (gray) extend towards the Ge quantum well in which the holes are confined. The aluminum
oxide dielectric between different gate layers is omitted for clarity. b, False-colored scanning electron microscope image of a
device nominally identical to that used in the measurements, where the in-plane position of the 8 quantum dots is indicated
with numbers 1-8 in circles. Charge sensors close to the ladder corners are labeled within larger circles. The plunger (red) and
barrier (green) gates of the quantum dots are labeled outside the image. A schematic of the ladder structure of the quantum
dots is shown on top, with Q1-Q4 formed by vertical double quantum dots (DQD). c-e, The energy levels of two-spin states in a
DQD as a function of energy detuning &;; between dot i and j with from left to right the case J(e;; = 0) < E, J(gi; = 0) = E,
J(gij = 0) > E.. The dashed black circles denote the positions of S —7_ anticrossings. f-i, The measured energy spectra that
probe the positions of the S —T_ anticrossings as a function of the detuning and the barrier gate voltage for each vertical DQD
at B =5 mT. The color scale shows the measured spin triplet probability Pr after initializing a vertical DQD in a singlet state
(in (0,2) or (2,0)) and applying a gate voltage pulse (20 ns ramp in, 40 ns wait time, 0 ns ramp out) to the detuning shown
on the horizontal axis, for different vb;;. The cartoons on top of panels f-i represent the eight dots, and the dark grey line
indicates which exchange coupling is active in the panel below.

strated single- and two-qubit control, we implement a
quantum circuit for quantum state transfer across the
ladder.

I. GERMANIUM QUANTUM DOT LADDER

As shown in Fig. 1a and b, the 2x4 quantum dot ladder
is fabricated in a germanium quantum-well heterostruc-
ture [50]. The gate pattern and substrate have the same
design as that in ref. [38]. The eight quantum dots are
labeled with numbers 1 to 8 and the four charge sensors
to measure the charge states in the quantum dots are la-
beled St1,, STr, SL and Sgg, respectively. The quantum
dot potentials are controlled by plunger gates P;, and the
interdot or dot-sensor tunnel couplings are controlled by
barrier gates b;; or b;, with ¢ or j denoting the corre-
sponding quantum dot number. Linear combinations of
plunger gate voltages { P;} allow us to set the overall elec-
trochemical potential of each DQD p;; = (VP + vFP;)/2

and the interdot detuning &;; = (vP; — vP;)/2. The
prefix “v” indicates that the physical gate voltages are
virtualized to compensate the crosstalk on the dot po-
tentials [16] (see Supplementary Information section II
for the virtual gate matrix). Single-hole occupation of
each quantum dot in the array is confirmed by measur-
ing the charge stability diagrams using sensors Sgr, and
Spr (see Extended Data Fig. 1). All plunger and inter-
dot barrier gates are connected to a bias tee to allow both
DC voltages and voltage pulses to be applied.

II. SINGLET-TRIPLET QUBIT AND ENERGY
SPECTROSCOPY

We encode the qubit into the two-spin singlet-triplet
states, |S) and |T_), of the DQDs along the rungs of
the quantum dot ladder, with the singlet |S) = (|1}) —
[41))/v/2 and the lowest-energy triplet |7_) = |}|). Thus
Q1, Q2, Q3 and Q4 are formed using DQD 1-5, 2-6, 3-7



and 4-8. Qubit readout is achieved by pulsing the cor-
responding DQD to the PSB regime, i.e. in the (0,2) or
(2,0) regime but close to (1,1). This regime converts the
singlet and triplet states into distinct charge states, which
are then measured through the charge sensor (see Ex-
tended Data Fig. 1 for details). The single-qubit Hamil-
tonian can be written as

Ez —-J AS’T,
50z + 5 O (1)

Hgr_ =

where 0, and o, are the Pauli matrices, J = J(&;;, vb;;)
is a function of both the detuning ¢;; and the barrier gate
voltage vb;;, and E, = g;j1vp B is the average Zeeman en-
ergy of the two hole spins in the DQD, with g,; the aver-
age g-factor, up the Bohr magneton, and B the magnetic
field strength. Unless indicated otherwise, an in-plane
magnetic field (up to alignment precision) of B = 5 or
10 mT is applied to the device. The intrinsic spin-orbit
interaction for holes in germanium couples the states |S)
and |T-) with an energy Agr_.

Figs. lc-e show the energy levels of the two-spin |S)
and |T_) states in a DQD with J(g;; = 0) < E,, J(g;; =
0) = E., J(g;j = 0) > E, respectively. The other two-
spin states are [Tp) = (|1)) + [11))/v2 and |T) = [11).
In a DQD, we can describe the charge states as (nr,ng)
to denote the charge number distribution in the left (ny,)
and right (ng) quantum dot. By adjusting the detuning
e;j of the DQD from negative to positive, we can change
the charge state from (2,0) to (1,1) and then to (0,2),
as indicated by the labels on top of each diagram, and
the energy levels of the two-spin states in the DQD will
change accordingly. As shown in Fig. 1c, when J(g;; =
0) is smaller than E., the singlet |S) crosses the triplet
|T_) twice in the (1,1) regime. Due to intrinsic spin-orbit
coupling, these are in fact avoided crossings with a gap
Agr_, where the states |S) and |T_) are admixed. As
J(gi; = 0) increases, the two anticrossings approach each
other and eventually merge into one, as shown in Fig. 1d.
When J(e;; = 0) increases even further, see Fig. le, |5)
and |T_) no longer exhibit an anvoided crossing.

Experimentally, we probe the position of the avoided
crossings as follows. First, we initialize one of the qubits
to a singlet by pulsing from (0,2) or (2,0) to the detun-
ing €;5 in (1,1). A 20 ns ramp-in time is used to ensure
adiabaticity with respect to the tunnel coupling, which is
around 2 GHz, and diabaticity with respect to the S—T_
anticrossing. After waiting for a certain time, we pulse
the qubit back to the PSB regime to record the triplet
probability (see Extended Figure 1 for full details). When
the pulse takes the system to an anticrossing, the singlet
will evolve into a triplet during the waiting time (of 40 ns
duration, close to a 7 rotation is chosen to obtain a siz-
able triplet probability). Performing such measurements
as a function of the barrier gate voltage vb;; that controls
J for each qubit, results in the parabola-like patterns,
also called spin mixing maps [22, 51|, in Fig. 1f-i. As
expected, when vb;; is tuned from positive to negative,
J increases and the positions of the S —T_ anticrossings

move inwards before disappearing. The asymmetry visi-
ble in these panels can arise from imperfect virtualization
of the barrier gates or from a detuning-dependent Zee-
man energy [52] (see Supplementary Information section
I1I).

IIT. UNIVERSAL SINGLE-QUBIT CONTROL

With the knowledge of the energy spectrum of the four
S —T_ qubits, we next implement the two-axis control of
each qubit, which is necessary and sufficient for universal
single-qubit control. By operating the qubit in the regime
where J = E., the first term of Eq. 1 goes to zero and
Agr_ rotates the qubit around the z-axis in the Bloch
sphere, as shown in Fig. 2a. Furthermore, we tune the
barrier voltage to obtain J = E, at zero detuning, which
is a symmetry point where the effect of detuning noise is
strongly suppressed [53, 54]. The pulse scheme for test-
ing z-axis control is shown in Fig. 2k: first we initialize
the qubit into a singlet by starting in the (2,0) (or (0,2))
regime, then pulse the detuning to the center of the (1,1)
regime where J(g;; = 0) = E, next allow the qubit to
evolve for a variable time tyajt, and finally pulse the de-
tuning back to a point in the (2,0) (or (0,2)) regime for
spin readout via PSB. The measured rotations of Q1-Q4
as a function of the corresponding barrier gate voltage
are shown in Fig. 2c-f. By choosing the point where
the oscillation speed is the slowest, i.e., at the S — T_
anticrossing, the qubits rotate around the z-axis. Long-
timescale z-rotations are shown in Extended Data Fig. 3.
At B = 5 mT, the dephasing times are in the range of
1.5-2.2 us for Q1-Q4, mostly limited by low-frequency or
quasi-static noise.

To realize y-axis control, we use the relationship VY =
X H, where VY stands for a /2 rotation around the y-
axis, X for a w rotation around the z-axis, and H refers
to the Hadamard gate (for direct z-axis control, see Ex-
tended Data Fig. 2). To obtain a Hadamard gate, we
slightly increase J to a value where (J — Ez) = Agr .
The qubit then rotates around an axis halfway between
the x and z axes. A rotation angle of 7 then corresponds
to a Hadamard gate. In order to calibrate the rotation
axis and rotation angle of the H gate, we concatenate two
VY gates and evaluate the probability of having flipped
the qubit (Fig. 2b). Specifically, we first initialize the
qubit into a singlet, then change J diabatically by puls-
ing the corresponding barrier gate by an amount évb;; for
a time tyaj¢ to implement the H gate, and finally apply a
X gate (we aim to stay at the detuning symmetry point
when pulsing the barrier to minimize the sensitivity to
charge noise [53, 54]). This combination is repeated such
that a Y gate is expected for the right choice of Jvb;;
and tyait- This procedure is illustrated for Q2 in Fig. 2g.
The white dot shows the position where the sequence of
Fig. 2b produces a Y gate. Running only the first half
of the sequence implements a /Y gate. A correspond-
ing numerical simulation result is shown in the inset of
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FIG. 2. Universal single-qubit control of four singlet-triplet qubits. a,b, The pulse schemes used for z-axis control
(a) and y-axis control (b). In the experiments, the detuning pulse in a and b has a 20 ns ramp (not shown) from (2,0)
to (1,1), similar to the pulse used for the energy spectroscopy. c-f, Experimental results for z-axis rotations of each qubit,
showing measured triplet probabilities Pr as a function of twait and the corresponding barrier voltage dvb;;. g, Measured Pr
for the sequence shown in panel b as a function of tywait and the barrier voltage change §vbas. The inset shows the numerically
computed Pr as a function of twaiz and the ratio of z-axis component to the z-axis component, (J — Ez) /Asr_. The position
whereV/Y is properly calibrated is indicated by a white dot. h, Single-qubit randomized benchmarking data for Q1-Q4. The
numbers in the legend are the extracted average gate fidelities, which are obtained from the Clifford gate fidelities using a ratio
of 3.625. i, Table showing the single-qubit gate fidelities of Q1-Q4 measured by gate set tomography (GST). All the data above
are measured at B =5 mT.

Fig. 2g, showing the same pattern as the experimental
result.

IV. TWO-QUBIT GATE

In order to realize universal control of the full four-
qubit register, we need to complement single-qubit gates
with two-qubit entangling gates. Assuming isotropic
exchange interactions between adjacent S — T_ qubits,
the two-qubit Hamiltonian in the basis of {|SS), |[ST_-),
|T_S) and |T_T_)} can be written as:

Using the v X and VY gates, we perform randomized
benchmarking (RB) to obtain the average gate fidelities
(see Fig. 2h). All 4 qubits yield average gate fidelities

at or above 99%, extracted from the Clifford gate fideli- (E.ij — Jij)o9 + Agr_ 1500 N

ties. We also measure the v X and VY gate fidelities Haq = 2

with gate set tomography (GST), of which the results Eo— Jook 4 A ki

are summarized in Fig. 2i. Overall, most of the fidelities (- k)0 + AsT KOs + (2)
in GST results are slightly lower than those from RB. 7 2 1

These fidelity differences may stem from the presence of R J;J’ Ulyvl + 5(0? — (" = 1),

low-frequency noise in our system, which causes different 4

uncertainties in the fidelity estimates between GST and
RB [55]. Full details on the quantum process for those
two gates, derived from GST, are given in Extended Data
Fig. 7 and Supplementary Information section VIII.

where 7j and kl refer to the respective qubit dot pair,
and the interqubit coupling Jeoup = (Jir + Jj1)/2. The
coupling term is reminiscent of two well-known interac-
tion Hamiltonians. If the factor 1/2 of the o,0, coupling
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FIG. 3. Two-qubit interactions across the quantum dot ladder. a, A plaquette of two connected DQDs. The S — T
qubits have a splitting of J;; — Ez,ij and Jg; — E%kl (neglecting Agr_), which are controlled by the detunings ¢;; and eg,
respectivily. The qubit-qubit coupling Jeoup is an average of J;, and J;; between the corresponding dots, which are controlled
by €ir and €. b, The energy levels of two-qubit states, where we fix ex; to be positively large and scan €;;. At the positions
where J;; —Ez,ij equals Jg; —Ez,kl, an anticrossing with a gap Jeoup forms (black dashed circles), which can be used to induce
SWAP oscillations between |ST_) and |7 S). The parameters used in this calculation are based on the experimental results for
Q3-Q4 shown in Supplementary Fig. 4c. ¢, The pulse scheme for SWAP operations. We start in (0,2) or (2,0), at large positive
or negative detuning, and diabatically pulse one qubit to (1,1) at modest detuning such that it remains in |S), and pulse the
other qubit to zero detuning where a 7 rotation for a time tx takes it to |[T-). At this point, the qubits are set to |ST_) or
|T_S). Next, we pulse the detunings of both qubits to make their energies resonant, while at the same time activating J;x and
Jji. This will kickstart SWAP oscillations between the two qubits. The dashed lines in the pulse of €;; show that we scan the
detuning of one qubit to find the condition for SWAP operations. After an evolution time twait, we pulse the detunings to the
PSB readout configuration for one of the qubits. d-f, The experimental results of SWAP oscillations, showing measured triplet
probabilities Pr or singlet probabilities Ps as a function of operation time twait and the detuning voltage for Q1-Q2 (d), Q2-Q3
(e) and Q3-Q4 (f). The initial states of two qubits (before the SWAP oscillations) are denoted on the top, and the qubit pair
that is read out is indicated by the dashed arrow showing the readout pulse direction. g, The quantum circuit used to create a
generalized Bell state between Q1 and Q2 and to characterize it via quantum state tomography (QST). h, Measured two-qubit
density matrix of Q1-Q2, after removal of SPAM errors and using maximum-likelihood estimation (MLE). i, State fidelities
and concurrence estimated from the density matrices of the Bell states of Q1-Q2, Q2-Q3 and Q3-Q4. The data of panels d-f
and h-i is measured at B =5 mT.

term were 1 instead, we recover the exchange Hamilto-
nian that generates the SWAP gate and the universal
VSWAP gate. If that factor were zero, only the flip-
flop terms would survive, which generate the iISWAP
and ViSWAP gate. The coupling Hamiltonian in Eq. 2
thus generates a SWAP-style gate that is not a standard
two-qubit gate but is also universal from the perspective
of quantum computing (see Supplementary Information
section VII). For simplicity, we call it a SWAP gate in
the remainder of this work.

To activate the SWAP gate, we equalize the energy
splittings of two qubits and turn on J;, and Jj; such that
the flip-flop terms can exchange the qubit populations

(note that if the qubit energies were set very different
from each other, a CZ gate would result instead). Our
strategy for meeting both requirements at the same time
is to use the interdot detuning of both qubits [18, 19]. A
typical potential landscape for the two qubits in DQD 45
and k[ is shown in Fig. 3a, where we pulse €;; to large pos-
itive and €y; to large negative detuning. The detunings
s and €, which control the interactions between the
qubits, are then automatically increased as well. There-
fore, all the exchange interactions involved are enhanced
simultaneously and the effect of the single-qubit terms o,
is made negligible. In practice, we fix the (large) detun-
ing of one qubit and fine-tune that of the other to find the



position where two qubits have equal energy splittings.
This is illustrated by the energy spectrum in Fig. 3b,
where we fix the detuning e; to a large negative value
and scan the detuning ¢;;. We see that the states |ST_)
and |T_S) anticross at the two positions where J;; fEmj
is equal to Ji; — Ez,kl. The gap size is given by Jeoup-
Since €, and €;;, which control Jeoup via Ji, and Jj;, are
also dependent on ¢;;, the sizes of the two gaps are not
necessarily the same.

Fig. 3¢ shows an example of the pulse scheme we use in
the experiment to observe two-qubit SWAP oscillations.
Starting from both qubits in (0,2) or (2,0), we initialize
one qubit to |T_) using single-qubit control by pulsing
€;5 to zero and waiting for a 7 rotation, and we initial-
ize the other qubit to |S) by pulsing ey to a large value
in (1,1) (other qubits are either initialized to singlets by
pulsing back and forth to (0,2) or (2,0), or remain in
the (1,1) regime all the time). Then we pulse the detun-
ing of one qubit such that the energies of the two qubits
match, and SWAP oscillations are initiated. Simultane-
ously, several barrier voltages are pulsed to help set the
respective exchange-interaction strengths to appropriate
values (details of these pulses vary).

Fig. 3d-f show the resulting SWAP oscillations for Q1-
Q2, Q2-Q3, and Q3-Q4. Chevron-style patterns are ob-
served with the energies of the two qubits aligned in the
middle of the patterns. Moving away from the middle,
the energy of one qubit is shifted with respect to that of
the other. This qubit-qubit energy detuning tilts the ro-
tation axis and accelerates the rotation. Looking closely,
the chevron patterns are not symmetrical. This can be
understood by the fact that the qubit energy does not
vary linearly with detuning. In some panels, single-qubit
oscillations around an axis close to the z-axis are also ob-
served, such as the data at esg = 4 mV in Fig. 3e. These
€;; values are close to zero interdot detuning, and when
J(gij = 0) is not much larger than E., such rotations
are expected. We note that SWAP oscillations between
|ST_) and |T_S) were also observed in previous research
on simulating the dynamics of an antiferromagnetic spin
chain and resonating-valence-bond states based on the
Heisenberg model in four-quantum-dot systems [18, 19].

With a combination of single-qubit gates and the
SWAP-style gate, we prepare a Bell state and character-
ize it using quantum state tomography (QST). The pulse
sequence shown in Fig. 3g is expected to produce a gen-
eralized Bell state |¢) = %(|ST_> + ¢ |T_S)) between

the two qubits, where 0 is a single-qubit phase term, fol-
lowed by single-qubit gates (I, v X, vY) applied to both
qubits to achieve basis changes before measurement along
the z-axis. The density matrix of the Bell state formed by
Q1-Q2 is shown in Fig. 3h, and the acquired fidelity and
concurrence of all the neighbouring qubit pairs are shown
in Fig. 3i (see Extended Data Fig. 9 for details). The fi-
delities are in the range of 73(1)-90(1)% and the concur-
rence ranges from 21(4)% to 64(4)%. Concurrence is a
measure of the entanglement between two qubits, which
ranges from 0 (no entanglement) to 1 (maximal entan-

glement). Therefore, the measured concurrence for all
the qubit pairs demonstrates the implemented vVSWAP
gate can generate entanglement between qubits. To eval-
uate the performance of the vVSWAP gate, we perform
two-qubit GST on Q1 and Q2. By fitting the result to
a theoretical model, a gate fidelity of ~80% is obtained
(see Extended Data Fig. 9 and Supplementary Informa-
tion section VIII for details).
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FIG. 4. Implementation of a quantum circuit for en-
tanglement generation and quantum state transfer. a,
Quantum circuit with all the qubits initialized into the sin-
glet. An X gate (32 ns) rotates Q2 into a triplet state, and
a SWAP interaction for a variable time tswap periodically
produces entanglement between Q1 and Q2. Two subsequent
SWAP gates (30 ns and 24 ns) transfer the state of Q2 to Q4
and a final single-qubit rotation of Q4 for a variable time tqa
is followed by Q4 readout. The delay time between each quan-
tum gate is set to zero. b,c, Experimental (b) and numerical
(c) results after running the quantum circuit of panel a, with
triplet probabilities Pr of Q4 shown as a function of tswap
and tqs. d, Linecuts from a showing triplet probabilities Pr
of Q4 as a function of control time tq4. The data is vertically
shifted by 0.5 for clarity. All the data above are measured at
B =10 mT.



V. QUANTUM CIRCUIT IMPLEMENTATION

Finally, using a combination of the single- and two-
qubit gates demonstrated above, we aim to implement
a quantum circuit designed to create and distribute an
entangled state across the array. As shown in Fig. 4a,
we first initialize Q1 and Q2 into |ST_) by applying a
7 rotation on Q2 and then activate a SWAP interaction
between Q1 and Q2 for a duration tgwap. This interac-
tion is expected to generate entanglement when tswap
corresponds to a quarter period, i.e. for a vVSWAP gate.
Next, we apply consecutive half-period SWAP gates of
Q2-Q3 and Q3-Q4 to transfer the state of Q2 to Q4 via
Q3. Finally, we perform a single-qubit z-axis rotation of
Q4 for a time g4 and measure Q4.

The experimental results are shown in Fig. 4b, where
the single-qubit oscillations of Q4 as a function of tq4
are modulated in phase by tswap, resulting in a checker-
board pattern. The underlying mechanism is that the
state of Q2 oscillates as a function of tswap, as quan-
tum information is periodically exchanged between Q1
and Q2. Therefore the state of Q4 following the quan-
tum state transfer also oscillates with tswap. Where
the evolution of Q4 changes phase, tswap corresponds to
the duration of a v'SWAP operation (modulo an integer
number of SWAP operations), at which point maximal
entanglement between Q1 and Q2 is expected. When
two qubits are maximally entangled, the density matrix
of each qubit by itself is fully mixed. At this point, the
measured Pr of Q4 should not oscillate as a function of
tqa. This is indeed what we observe, see Fig. 4d, where
we show the linecuts from Fig. 4b. A trace without ap-
parent oscillations is observed between two sets of out-of-
phase oscillations of Q4, as expected. The same features
are seen in Fig. 4c, which shows the ideally expected
checkerboard pattern obtained from numerical simula-
tions of the protocol of Fig. 4a, assuming perfect initial-
ization, operations and readout.

We note the checkerboard pattern is quite robust to er-
rors in the SWAP gates. Small errors will merely change
the contrast of the pattern; for large SWAP errors, the
alternating rows are no longer equal in height. However,
when the initialization of Q1 or Q2 leads to superposition
states with a y-axis component (and assuming perfect
SWAP gates), the pattern acquires a tilt. In this case,
the rotation angle of the final z-axis rotation needed to
maximize or minimize Pr is no longer exactly 0 or =«
but depends on the y-axis component of Q4 (and hence
also on tswap) after the sequence of SWAP operations.
Looking closely, the blue and green oscillations in Fig. 4d
are not perfectly out of phase with each other, and the
data in Fig. 4b shows weak diagonal features not seen in
the numerical simulations. These point at the imperfect
initialization of Q1 or Q2.

We also characterize the remote Bell state of Q1 and
Q4 by performing QST. The experiment was performed
at B =5 mT and the quantum circuit is similar except
Q1 was initialized into a triplet instead of Q2. The re-

sulting Bell state fidelity is 75(2)% and the concurrence
is 22(4)%. Compared to the concurrence of the Bell state
of Q1-Q2 before state transfer, which is 90(1)%, the re-
mote entanglement is reduced by the transfer process of
two consecutive SWAP gates.

VI. CONCLUSION

In conclusion, we have experimentally demonstrated
initialization, readout, and universal control of four
singlet-triplet (S —T_) qubits in a 2x4 germanium quan-
tum dot array. By using randomized benchmarking and
quantum state tomography, we obtain average single-
qubit gate fidelities of 99.49(8)-99.84(1)% and Bell state
fidelities of 73(1)-90(1)% for all the nearest qubit pairs.
For the VSWAP gate, we estimate a gate fidelity of ~80%
by fitting the GST result to a theoretical model. Further-
more, through independent control of the exchange in-
teractions between any pair of neighbouring spins across
the device, we are able to implement a quantum circuit
that spans the entire array, yielding remote entanglement
of two singlet-triplet qubits with a Bell state fidelity of
75(2)% and a concurrence of 22(4)%.

With four universally controlled qubits in a bilinear ar-
ray, these results put baseband-controlled singlet-triplet
spin qubits in germanium firmly on the map as a po-
tential candidate for large-scale quantum computing. In
future experiments, the two-qubit gate fidelity must be
increased in order to allow fault-tolerant quantum com-
putation. The gate fidelities can be potentially improved
by suppressing low-frequency noise using feedback con-
trol or pulse optimization [28, 47, 56] and by a more
detailed modeling of the effects of spin-orbit interaction.
Additionally, other types of two-qubit gates like the CZ
gate for S — T_ qubits can be investigated. Additional
improvements can be reached if the tunnel barriers are
more tunable, which can be achieved by depositing the
barrier gates either before [10, 19] or together with [57]
the plunger gates. Moreover, with programmable control
of exchange interactions in the array, this spin ladder
can also be used for analog simulation of a wealth of rich
physical phenomena such as quantum magnetism [58].
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VII. METHODS
A. Device and setup

The device is thermally anchored to the mixing cham-
ber of a dilution refrigerator with a base temperature of
around 10 mK. All the control electronics are at room
temperature, which connect the device via 50 direct cur-
rent (DC) lines and 24 alternating current (AC) lines in
total. The DC and AC signals are combined using bias
tees on the printed circuit board (PCB) with an RC time
constant of 100 ms to apply both signals to the same gate
of the device. For baseband pulses, a compensation pulse
to the gate is applied to make the dc offset over the whole
measurement cycle equal to zero, which mitigates the
charging effects in the bias tees. DC signals are produced
by custom-built battery-powered DC voltage sources and
are fed through a matrix module—a breakout box with
filters inside—to the Fisher cables of the fridge. AC sig-
nals are produced by 6 Keysight M3202A modules which
are connected directly to the coaxial lines in the fridge.
The output digital filter of the AWG channels is set to
the anti-ringing filter mode to suppress ringing effects in
the baseband pulses. For the filters in the lines, we use
common-mode Ferrite chokes at room temperature to fil-
ter low-frequency noise (10 kHz - 1 MHz) in the ground
of AC lines and use RC filters (R=100 k2, C=47 nF for
normal gates, R=470 2, C=270 pF for the Ohmic con-
tacts) as well as copper-powder filters that are mounted
on the cold finger attached to the mixing chamber plate
to filter high-frequency noise in DC lines.

The sensing dots are measured using radio-frequency
(RF) reflectometry with working frequencies of 179 MHz,
190 MHz, 124 MHz and 158 MHz for sensor St1,, Sgy,
Str and Spr, respectively. Tank circuits are formed by
NbTiN inductors mounted on the PCB and the spurious
capacitance of the bonding wires and metal lines on the
board and chip. We apply RF signals using custom-built
RF generators and combine them into a single coaxial
line at room temperature using a power combiner ZFSC-
3-1W-S+. The signal is attenuated at each plate in the
dilution refrigerator and passes through a directional cou-
pler (ZEDC-15-2B) at the mixing chamber to reach the
device. The signal reflected from the device goes through
the same directional coupler and is then amplified with
a CITLF3 cryogenic amplifier at the 4K plate. At room
temperature, the signal is amplified again and demodu-
lated by custom-built IQ) mixers. The demodulated sig-
nal is sent to the Keysight M3102A module to convert
analog readout signals to digital signals. We use DC
blocks to reduce low-frequency noise (< 10 MHz) in the
RF lines. The DC block inside the refrigerator blocks



the DC signal on the inner conductor (PE8210) while
the ones at room temperature block that on both the
inner and outer conductor (PE8212). To suppress high-
frequency noise in the reflected signal, we use a low-pass
filter (SBLP-300+) at room temperature.

B. Initialization, control and readout

In the experiment, we repeatedly perform single-shot
readout cycles to obtain singlet or triplet probabili-
ties. The integration time for each single-shot readout
is around 10-40 us, depending on the signal-to-noise ra-
tio and triplet relaxation time during measurements. To
compensate for the drift of the sensor signal, we use a
reference readout segment before each measurement se-
quence [18]. For some datasets, we adjust the single-shot
readout threshold by post-processing instead of through
a reference segment. In post-processing, we collect a his-
togram of 500-4000 shots for each data point based on
which we set the threshold to analyze those shots. In
this way, the sensor drift between data points is mostly
filtered out.

A typical pulse for single-qubit control can include ini-
tialization (20 us), reference readout (20 us), initializa-
tion (20-50 ps), control (30-3000 ns) and readout (20 us).
A ramp-in time of 20 ns between initialization and control
is used to avoid diabatic errors. The position of initial-
ization is in the (0,2) or (2,0) regime but deeper than
the PSB readout point to ensure fast relaxation to the
ground state. In single-qubit GST measurements, the
gate set includes a null operation. In order to avoid the
readout immediately following the initialization, a wait-
ing time of 10 ns at a point in the (1,1) regime is added
to ensure the data acquisition is done correctly. This
may decrease the readout fidelity when the waiting point
causes unwanted rotations of the qubit. For this reason,
the waiting point was moved to the readout position in
the two-qubit GST experiment. For multi-qubit initial-
ization and control, we initialize all the qubits into the
singlet simultaneously by ramping from (2,0) or (0,2) to
a high detuning point in (1,1), except for the qubit to be
subject to single-qubit control, which is pulsed directly
to the zero detuning point. We also found that adding a
brief pre-control segment after initialization at high de-
tuning in (1,1) for all qubits (wait about 2 ns) can give a
better initialization to singlets. This variation is used in
some of the experiments on quantum state tomography
and gate set tomography.

For the qubit operation times we used in the measure-
ments of RB, QST and GST, the typical values are sum-
marized as follows:

e VX: 435 ns (Q1), 27.5 ns (Q2), 35 ns (Q3), and
25 ns (Q4).

e H: 65 ns (Q1), 40 ns (Q2), 56 ns (Q3), and 40 ns
(Q4);
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e vVSWAP: 13 ns (Q1-Q2), 16.5 ns (Q2-Q3), and 11
ns (Q3-Q4).

C. Randomized benchmarking

In single-qubit randomized benchmarking (RB), we use
the native gates I, v/ X and VY to compose the sequences
of Clifford gates. At the end of each sequence, a rotation
is applied to (ideally) bring the qubit back to its initial
state, and the final qubit state is measured using PSB.
Experimentally, the single-qubit I gate is implemented
as a pulse segment with zero waiting time. The Clifford
gate sequence length varies from 2 to 232, and there are
in total 30 random sequences for each sequence length.
Single-shot measurement of the tested qubit is repeated
1000 times for each random sequence to obtain the sin-
glet or triplet probability. The measured data is fitted
to a function P = ApY + B, where p, is the depolar-
izing parameter, A and B are the coefficients that ab-
sorb the state preparation and measurement errors, and
N is the number of Clifford operations in the sequence.
The average Clifford infidelity can then be described as
re = (d—1)(1 — p.)/d, where d = 2™ is the dimension of
the system and n is the number of qubits. For the single-
qubit operations used here, there are on average 3.625
generators per Clifford composition (see Extended Fig. 6
for details). Therefore, the average gate fidelity is given
by Fy =1 —1./3.625. The uncertainties in the reported
numbers represent the standard deviations acquired from
the curve fitting.

D. Quantum state tomography

The density matrix of a two-qubit state can be ex-
pressed as p = 221 c; M; where M; are 16 linearly in-
dependent measurement operators, and the coefficients
¢; are calculated from the expectation values m; of the
measurement, operators using a maximum-likelihood es-
timate. In the experiment, we performed 9 combinations
of {I, VX, V/Y'} basis-change rotations on the two qubits
and obtained the expectation values m; by determining
the joint two-qubit probabilities. To do so, we performed
500 single-shot measurements per sequence, and repeated
the whole experiment 3-5 times. After that, the measured
probabilities were converted to the estimated actual two-
spin probabilities by removing the SPAM errors.

The SPAM matrix was measured by aiming to initialize
two qubits into |SS), |ST), |[T_S), and |T_T_), and re-
peatedly measuring the two-qubit states in a single-shot
manner. Then we use the relationship Py = Mgpam P,
where Pj; are the measured two-qubit probabilities,
Mspanm the SPAM matrix, and P the actual two-qubit
probabilities. We notice this relationship works when the
initialization error is negligible compared to the readout
error, or it would cause miscorrections in the results.



Single-shot readout of two-qubit states was imple-
mented differently for different qubit pairs. For Q1 and
Q2, we first measure Q1 with an integration time of 20 us
while maintaining Q2 in the symmetry condition but with
dvbog = —60 mV to preserve its state. Next Q2 is mea-
sured. This method uses the same sensor for PSB read-
out of both Q1 and Q2, therefore the two measurements
have to be done sequentially. For Q2-Q3 and Q3-Q4,
we performed SWAP gates to transfer the qubit informa-
tion to Q1 and Q4, and the two qubits were measured
simultaneously using two sensors on both sides. Also for
the characterization of the remote Bell state Q1-Q4, the
qubits Q1 and Q4 were measured simultaneously using
the two sensors on both sides (after possible single-qubit
rotations to change basis).

The single-qubit rotations before the final measure-
ment were performed sequentially. Hence, the time be-
tween the vVSWAP gate and the single-qubit gate of the
second qubit can be dependent on any single-qubit op-
eration being applied to the first qubit. These different
times would cause different phase accumulations on the
second qubit. To solve this problem, we use a waiting
time as long as the longest qubit operation time of the
first qubit before performing the basis-change rotation of
the second qubit. This ensures the phase of the second
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qubit is consistent throughout the whole experiment (see
Extended Fig. 9a).

The Bell state fidelity is obtained from the exper-
imentally obtained density matrix pexp and the ide-
ally expected density matrix, as pigea;, and F =
Tr(y/\/Pideal Pexp/Pideal)- The phase 6 of the ideal Bell
state |¢) = %(LS’T,} +e¥|T_S)) is used as a fitting pa-
rameter to incorporate additional (fixed and predictable)
single-qubit phase rotations before and after the v SWAP
gate. The fitted 6 for the Bell state Q1-Q2, Q2-Q3, Q3-
Q4 and Q1-Q4 are 0.717, -0.614, -2.718 and 2.507, re-
spectively. We note the non-ideal pulse effect between
the concatenated single-qubit gate and the VSWAP gate
may also result in other types of single-qubit rotations
(see the Extended Data Fig. 10), which is not incorpo-
rated and can contribute to errors in the Bell state prepa-
ration. The uncertainties in the reported numbers are
the standard deviations calculated from 2000 bootstrap
re-sampling iterations of the single-shot readout data for
both the SPAM matrix and P ;.

VIII. EXTENDED FIGURES
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Extended Data Fig 1. Charge stability diagrams and Pauli spin blockade. a-d, Charge stability diagrams for DQD
1-5 (a), 2-6 (b), 3-7 (c¢), and 4-8 (d), respectively. a and b are recorded using the sensor Spr, while ¢ and d are recorded
using the sensor Sgr. Hole numbers inside the relevant charge stability regions are indicated, showing all the DQDs can be
emptied to (0,0). e-h, Charge stability diagrams measured by scanning the detuning e;; and the overall chemical potential
wi; of the DQD. The PSB regions inside the (2, 0) or (0, 2) area are indicated by solid white triangles and trapezoids. For
outer DQD 1-5 and 4-8, we find PSB by pulsing €15 and e4s from (1,1) to (2,0) and (0,2), where within a triangular region an
electron tunnels between the dots starting from the S(1,1) but no tunneling occurs (the system is in Pauli spin blockade) from
To(1,1), T-(1,1) and T4 (1,1). For inner DQD 2-6 and 3-7, we swap their spin states to those of DQD 5-6 and 7-8 where the
sensor signals are stronger. 1i,j, Illustration of PSB using the energy levels in the quadruple quantum dot plaquette for DQD
2-6 (i) and 3-7 (j), respectively. The hole numbers are indicated as (i’ »2) for i and (3 54) for j, and the subscripts S and
T show the two-spin states of holes in the quantum dots indicated by bold numbers, respectively. The solid arrows show fast
spin-conserving tunneling while the dashed arrows show suppressed tunneling due to PSB. Here we take pair 2-6 as an example
to explain the readout process of the inner spin pairs. First, we align DQD 1-5 at the charge stability boundary between (2,0)
and (2,1), as shown by the white dot in e, and then pulse 26 from negative to positive. We subsequently find a shaded region
between (0,1) and (0,2) in the diagram for DQD 2-6, which is caused by PSB in DQD 5-6. The mechanism is shown in i:
when we pulse DQD 2-6 to the point where S(0,2) is lower in energy than (0, 1), the holes in DQD 2-6 moves across to DQD
5-6, irrespective of the spin states. Subsequently, the conventional PSB mechanism in DQD 5-6 allows S(1,1) to transition
to S(0,2), while the triplets T(1,1) have to remain in the (1,1) charge state. In this way, we indirectly realize spin-to-charge
conversion for the two spins initially in DQD 2-6. Actually, S(1,1) in DQD 2-6 can also directly tunnel to S(0,2) inside the
same DQD, as seen by the curved arrow in i. The mechanism to measure DQD 3-7 is analogous.
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Extended Data Fig 2. Data of two-axis qubit control around the z- and z-axis, measured at B = 10 mT.

a,b, Pulse scheme and Bloch sphere illustration of z-axis and z-axis evolution of S —T_ qubits. The straight blue and orange
arrows show the corresponding rotation axis. The z-axis rotations are set by the S —T_ coupling, Agr_. For large J such that
J—E. > Agr_, the rotation axis tilts towards the z-axis. The rotation is never exactly around the z-axis due to the presence
of a finite Asr_, yet, sufficiently orthogonal control is possible when (J — E.) > Agr_. In b, we illustrate a Ramsey-like
pulse sequence used to demonstrate z-axis control. We first initialize the qubit into a singlet, perform a /2 rotation around
the z-axis of duration t, /2, and then change J diabatically by pulsing the corresponding barrier gate by an amount dvb;; to
implement a z-axis rotation. Finally, we perform another 7/2 operation around the z-axis and project the qubit into the S —7T_
basis for spin readout. c-f, Experimental results for z-axis rotations of each qubit, showing measured triplet probabilities Pr
as a function of twair and the detuning voltage €;;. g-j, Experimental results for z-axis rotations of each qubit, showing Pr as

a function of twait and the barrier voltage change évb;;. The oscillation frequency is given by fsr_ = \/ (J—E.)2+ A%, /h,

where h is Planck’s constant. We note that the outer two barrier gates vbis and vbss have a stronger effect on the corresponding
Ji; than the inner barrier gates vbas and vbsy. This may be explained by additional residual resist below the inner barrier
gates, which are fabricated in the last step [38], and by the different fan-out routing for the outer barrier gates (see Fig. la,b
in the main text). Within the tuning range of the barrier gate, the highest ratio (J — E.)/Asr_ amounts to around 20 for
the outer qubits Q1 and Q4 and about 10 for the inner qubits Q2 and Q3 (see Supplementary Information section IV for more
details).
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Extended Data Fig 3. Decoherence times of the qubits under control. a, Measured triplet probabilities Pr of long-
time evolutions around the z-axis for Q1-Q4 at B=5 mT. b, Measured singlet probabilities Ps as a function of the evolution
time twait at the center of the chevron patterns of the SWAP oscillations for each pair of qubits at B=5 mT. The data of a and
b are fitted with a function of the form Pr = Py 4 Acos(2rft + ¢)exp[—(t/T*)"], where Py, A, B, f, T* are fitting parameters.
Here f refers to the oscillation frequency, T refers to T}, the coherence time under x-axis rotations, or T¢);_q;, the coherence
time under SWAP oscillations between adjacent qubits. Furthermore, 5 determines the shape of the decay envelope, and the
fitted values are also shown in the inset. [ gives information on the noise spectrum in the system. If the system is dominated
by quasi-static or low-frequency noise, 8 = 2, which gives a Gaussian decay; if the system is dominated by high-frequency noise,
B = 1, which gives an exponential decay. The extracted § for the z-axis rotations of Q1-Q3 and all the SWAP oscillations are
close to 2, indicating the dominance of low-frequency noise in this system. Notice the large value of § for the z-axis rotations
of Q4 may result from the fitting error.
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Extended Data Fig 4. Coherent control of singlet-triplet states under different conditions and the average
g-factor. a, Pulse scheme to measure S —T_ and S — Tp oscillations. A square pulse is used with a ramp-in time t;amp and
waiting time twait. b, Measured triplet probabilities of DQD 4-8 as a function of twait and the barrier voltage amplitude dvbas
with tramp = 20 ns. As mentioned in the main text, a block pulse along the detuning axis with 20-nanosecond ramp time
(tramp) from (0,2) to (1,1) is adiabatic with respect to the tunnel coupling but diabatic with respect to the S —T_ anticrossing.
Therefore, we can drive z-rotations of S —T_ qubits when the pulse amplitude reaches zero detuning with J(g;; = 0) ~ E, (see
Fig. 1d in the main text). However, when we increase the barrier voltage change dvbss until J(g;; = 0) < E, (6vbss ~ 40 mV),
the S — T_ anticrossings appear away from zero detuning (see Fig. 1c in the main text), thus the same pulse does not produce
z-axis oscillations of the S — T_ qubit. Moreover, under this condition, the S — Tg splitting is reduced and the 20-nanosecond
ramp time eventually becomes diabatic with respect to the S — Ty splitting. As a result, the singlet state will rotate between
the S and Ty states under the Zeeman energy difference between the two dots AE,. ¢, Measured triplet probabilities of DQD
4-8 as a function of twait and tramp with dvbsg = 40 mV. When tramp is small, the observed oscillations are between S and Tp;
however, when tramp is increased until the pulse is adiabatic with respect to the S — Ty splitting (over 100 ns), the S — Tp
oscillations can no longer be observed. Such a long ramp time can rotate the initial state to a superposition state between S
and T_ states, and z-axis rotations of the S — T qubit become visible [45]. Therefore, we also observe a transition of S — Tp
oscillations and S — T oscillations as a function of ¢;amp in the figure. d, The rotation frequency fsr_ of each qubit as a
function of the magnetic field strength B. When the external magnetic field strength is varied while keeping the gate voltages
fixed, the frequency of these S — T_ oscillations increases nearly linearly with the field due to the contribution from Zeeman
energy in fsr_. From the slope, we extract g,; for the four qubits as shown in the inset. The data are acquired using the fast
Fourier transform (FFT) of time-domain oscillations in e-h. e-h, Measured singlet probabilities Ps of Q1 (i), Q2 (j), Q3 (k),
and Q4 (1) as a function of twais and magnetic field strength B. The rotations are induced using the pulse scheme of panel a
with tramp = 100 ns.
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Extended Data Fig 5. Coherent control of S —Tj states and g-factor differences. a-c, Measured singlet probabilities
Ps as a function of twair and the magnetic field strength B for Q1 (c), Q2 (d), and Q4 (e) during S — T oscillations. Here
tramp 1S set to zero and the barrier gate voltage is set such that J(e;; = 0) < E, to suppress unwanted S — T_ oscillations. d-f,
The fast Fourier transforms of the data in a-c, with a signal that can be line-fitted using the g-factor difference Ag;; (inset) of
two dots. For Q3, we didn’t find S — Tp oscillations, which may be because the corresponding Ag is too low to detect.
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Extended Data Fig 6. Single-qubit Clifford gate decomposition.
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Extended Data Fig 7. Results of single-qubit gate set tomography. a-h Single-qubit Pauli transfer matrices (PTM)
of the VX gate (a-d) and VY gate (e-h) for Q1-Q4 (from left to right) obtained from gate set tomography. i-1, Estimated
state preparation and measurement (SPAM) error probabilities from GST results for Q1-Q4, using the same method as used
in [59]. We find that the SPAM errors of Q2 and Q3 are worse than those of Q1 and Q4. There are two reasons. Firstly, the
indirect PSB mechanism is more sensitive to the readout point we chose and the idling point of the other qubit. In particular,
the readout fidelity of the triplet is lower when triplet relaxation is faster at the readout point. Secondly, the slower tunneling
rate from (0,2) or (2,0) to (1,1) causes an initialization error in some cases. Also, the instability of the charge sensor can
contribute to the readout error, which makes the readout visibility vary between different measurements.
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Extended Data Fig 8. Sequential readout and joint probabilities of two qubits under SWAP oscillations. a,b,
Sequentially measured probabilities Psg, Prs, Psr and Prr of Q2 and Q3 as a function of twait and the detuning of Q3, e37,
after initializing Q2-Q3 into |7_S) (a) and |SS) (b). The data is acquired at B = 5 mT. In a, the out-of-phase signals in Prg
and Psr observed around e37; = 1.5 mV are the result of the SWAP oscillations between these two qubits. A similar signal to
Prs but with lower visibility is observed in Psg, which can be explained by the higher triplet readout error for Q2 than for Q3.
The sequential readout is achieved by pulsing the barrier gate dvbas to -60 mV, where we measure Q3 first for a duration of 20
us and simultaneously keep Q2 in the center of (1,1) with sufficiently large J, where the Hamiltonian eigenbasis corresponds
to the qubit readout basis [13, 18, 19]. In the next step of the sequence, Q2 is measured. In panel b, we do not observe any
apparent leakage to |TT) but only see signs of single-qubit rotations at low detunings. This is expected given that, in this
regime, the states |TT) are far away in energy from the other states (see Fig. 3b in the main text).
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Extended Data Fig 9. Quantum gate circuit and results for quantum state tomography of the Bell states.
a,c,f)i, Quantum circuit used to prepare and characterize a Bell state for different qubit pairs. In a, we plot the details of the
single-qubit basis changes after the generation of the Bell state, where we apply a fixed wait time before performing gates on
Q2 to keep its phase consistent through all the experiments. In ¢, SWAP gates are used to transfer the state of Q2 to Q1
and that of Q3 to Q4. Next Q1 and Q4 are measured simultaneously using two sensors. In f, two consecutive SWAP gates
are used to transfer Q3 to Q1. Next Q1 and Q4 are measured simultaneously using two sensors as well. In i, the quantum
information is transferred from Q2 to Q4 before performing the single-qubit gates for basis changes. This allows us to quantify
the entanglement between Q1 and Q4 after state transfer. d,g,j, Two-qubit density matrices obtained from the corresponding
quantum circuit after removal of measurement errors and using MLE for Q2-Q3 (d), Q3-Q4 (g) and Q1-Q4 (j) (Fig. 3h shows
the density matrix for Q1-Q2). Measurement errors were removed based on the SPAM matrices. These matrices include not
only measurement errors but also initialization errors, hence we are overcorrecting. The fact that initialization errors for most
qubits were much smaller than measurement errors combined with the fact that MLE forces the resulting density matrix to
be physical, helps ensure a reliable outcome. If we don’t attempt to remove readout errors, the density matrices show state
fidelities and concurrences of 71.3(6)% and 9(2)% for Q1-Q2, 64.2(6)% and 10(2)% for Q2-Q3, 64.6(7)% and 0(0)% for Q3-Q4
and 64.4(9)% and 0(0)% for Q1-Q4. b,e,h.k, SPAM matrices used in the quantum state tomography analysis of Q1-Q2 (b),
Q2-Q3 (e), Q3-Q4 (h) and Q1-Q4 (k). The SPAM matrices of Q1-Q2 and Q1-Q4 were measured directly by initializing them
to the indicated states and measuring the corresponding pair in a single-shot manner. For Q2-Q3 or Q3-Q4, we initialized the
qubits to the indicated states and measured the state of Q1-Q4 after the SWAP operations. These SPAM matrices do include
errors from the SWAP operations.
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Extended Data Fig 10. Measurement sequence and results of two-qubit gate set tomography. a, Illustration of
the gate voltage pulses for a two-qubit circuit. Performing a single-qubit gate in the two-qubit space is nontrivial since during
the time one qubit is undergoing an operation, the idling qubit could suffer from unwanted rotations and crosstalk. To solve
this problem, we pulse the idle qubit to an operating point where it completes a 27 rotation during the time needed to operate
on the other qubit (see Supplementary Information section VIII for more details). b-e, Measured PTMs obtained from GST for
single-qubit gates in the two-qubit space, including v X o1 (b), vV X2 (¢), VY g1 (d) and VY o3 (e). f-i, The ideal PTMs from
GST for single-qubit gates in the two-qubit space, including VX o1 (£f), vV Xq2 (g8), VY g1 (h) and VY g (u). j, SPAM error
matrix of the measured two qubits estimated from GST, using the same method as used in [59]. k, The PTM of the standard
vVSWAP based on an isotropic Heisenberg exchange Hamiltonian. 1, The experimentally measured PTM, Mexp, obtained from
GST. m, The theoretical PTM, Miye, of the vVSWAP-style gate obtained by fitting the experimentally measured PTM, Meyp,
with a PTM generated by Eq. (28) in Supplementary Information section VII (the fitted parameters are given there). The
Hamiltonian Eq. (28) includes effects of spin-orbit coupling that are left out in the Hamiltonian of Eq. 2 of the main text. The
fidelity of the vVSWAP-style gate is obtained from F = #(Tr[Mt;iMexp] /d+1), where d = 2" is the dimension of the Hilbert
space, and N refers to the number of qubits.
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I. EXPERIMENTAL SETUP
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Supplementary Fig 1.  Measurement circuit for the device. The DC and AC control lines as well as radio-frequency

(RF) readout lines are fed from room-temperature instruments to the device at a base temperature of the dilution refrigerator
through the cables and various electronic components shown in the figure. The room-temperature instruments include three
custom-built SPI racks for supplying DC voltages and RF readout signals, and one Keysight PXIe Chassis for AC pulsing
(arbitrary waveform generator, AWG) and data acquisition (analog-to-digital converter, ADC). The on-board bias-tees used for
combining RF readout signals with DC voltages have an R=>5 k2 resistor, a C=100 pF capacitor to ground and a C=100 pF
capacitor at the AC input; the one used for combining voltage pulses with DC signals has an R=1 M2 resistor and a C=100
pF capacitor to connect the DC signal, and an R=100 k{2 resistor and a C=100 nF capacitor to connect the AC signal.



II.

VIRTUAL GATE MATRIX

As mentioned in the main text, we use virtualized gates to independently control the chemical potential in each
quantum dot. An example of the virtual gate matrix we used is as follows:
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III. ASYMMETRY IN MEASURED QUBIT ENERGY SPECTRUM

1)
=2
(<]

80 80 \ 80
= 20 = 20 = 20
~ ~ B
> > >
-40 -5 0 5 -40 -5 0 5 A0S 0 5
€,(mV) €,(mV) €, (mV)

Supplementary Fig 2. a, Simulated parabola-like curve of the energy spectroscopy as a function of detuning ¢;; and barrier
voltage vb;; with a standard single-qubit Hamiltonian. b, Simulated asymmetrical curve by considering a detuning dependent
g-factor. c, Simulated asymmetrical curve by considering a linear change of detuning offset as a function of vb;;.

In Fig. 1 of the main text, we show energy spectrums of the S —7T_ qubits and mention that the asymmetry of the
parabola-like curve may be caused by the detuning-dependent g-factor or an imperfect virtualization of the barrier
gate. Here we do a numerical simulation to determine their effects. The results are shown in Supplementary Fig. 2a-c,
which compares the standard energy spectrum (a) with the one with a detuning dependent g-factor (b) and that with
imperfect virtualization (c¢). To numerically simulate these curves, we use the single-qubit Hamiltonian (13) and a
relationship of J = 2t2U/(U? — £2). For the parameters, we use U = 295 GHz, g = 0.33, B = 10 mT and Agr_ = 16
MHz. For the effect of g-factor change, we use a linear change of g = 0.19-0.47 as a function of detuning, while for
the effect of imperfect virtualization, we use a linear variation of detuning offset ¢y as a function of the barrier gate
voltage vb;;, which changes in the range of -0.88 - 0.44 mV when vb;; is changed from 80 to -40 mV. The variation
of g-factor is a bit far away from the values reported in a similar device, where they report a change of 0.21-0.29 as
a function of detuning [1]. But the 1% variation of &y is plausible considering the imperfect virtualization. Still, the
observed asymmetrical curve in the main text may result from their combined effects.



IV. ADDITIONAL DATA OF S —T7_ OSCILLATIONS
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Supplementary Fig 3. a, Rotation frequency fsr_ of each qubit as a function of dvb;;, extracted from Extended Data
Fig.2g-j using a FFT. The data points for Q2 and Q3 show discrete steps as the barrier gate voltage changes, which are caused
by the FFT precision. The solid lines are fits of the data with an exponential function. b,c, Measured triplet probabilities
Pr of long-time evolutions around the z- (b) and z-axis (c) for Q1-Q4 at B=10 mT. The data is vertically shifted for clarity.
In b, the detuning is around 0 mV. In ¢, we take the data with the same detuning but with different barrier voltage pulses:
ovbis = —20 mV, dvbes = —80 mV, dvbsy = —80 mV, and dvbss = —30 mV. The barrier voltages are chosen to achieve the

condition J — E, > Agr_ depending on the gate tunability.

The additional data here is collected at B= 10 mT, under similar conditions as the data shown in Extended Data
Fig.2.

Supplementary Fig. 3a summarizes how fgr can be tuned via dvb;;. As discussed in the main text, the outer
two barrier gates vbis and vbsg have a stronger effect on the corresponding J;; than the inner barrier gates vbas and
vbs7. This may possibly be explained by resist residues below the inner barrier gates, which are fabricated in the last
step [2], and by the different fan-out routing for the outer barrier gates (see Fig.1a,b in the main text).

The dephasing time under free evolution, which is traditionally termed 7%, is an important metric for assessing
the qubit quality. Since the qubit rotations around both the z-axis and the z-axis are the result of free evolution,
we introduce T and T} to describe the corresponding dephasing times. Supplementary Fig. 3b,c show the measured
damped oscillations of the qubits under z-axis and z-axis control. From the fits, we obtain a T} of 0.5 - 2.1 us and a
T of 42(5) - 147(31) ns.

The measured values of T are slightly lower than previously reported values measured at B = 1 mT [3] under
the same condition that B is parallel to the hole movement direction. This can be partly attributed to the larger
magnetic field in panel b: Agr_  scales with B [4, 5] and not only sets fsr_ but also constitutes a proportionality
factor between noise and fgr fluctuations (see also Supplementary Information section VIII). The extracted z-axis
rotation frequencies in Supplementary Fig. 3b reflect the values of Agp_ for each qubit, which are around 11.9-15.9
MHz, much larger than the results reported at B = 1 mT [3]. This confirms that Agr_ is stronger in the present
experiment than in the previous work at 1 mT. The small variation in Agy_ and in the measured average g-factors
suggests a fairly homogeneous spin-orbit coupling in this device. The extracted parameter 8 also has a big variation
among qubits, and considering the variations in 7, are also large, especially for the data at B = 10 mT, these
qubits may suffer from spatially dependent charge noise or inhomogeneous hyperfine-induced dephasing due to dot
size differences [6].

We also observe that 7T is roughly an order of magnitude smaller than 7); in Supplementary Fig. 3b. Possibly
this is due to the fact that fluctuations in the tunnel barrier translate to fluctuations in J, which couple in directly
during z-axis evolution but only to second order for z-axis evolution |7, 8]. Additionally, the increased curvature of
the singlet branch for larger J implies a higher sensitivity to detuning noise. The variations in J thus may contribute



to the spread of the T values we obtained in Supplementary Fig. 3c.



V. ADDITIONAL DATA OF SWAP OPERATIONS
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Supplementary Fig 4. a-c, The experimental results of SWAP oscillations measured at B = 10 mT, showing triplet
probabilities Pr or singlet probabilities Ps as a function of operation time twait and the detuning voltage for Q1-Q2 (a), Q2-Q3
(b) and Q3-Q4 (c). The initial states of two qubits (before the SWAP oscillations) are denoted on the top, and the qubit pair
that is read out is indicated by the dashed arrow showing the readout pulse direction. d, Measured singlet probabilities Ps at
B = 10 mT as a function of the evolution time twait at the center of the chevron patterns of the SWAP oscillations for each
pair of qubits. Notice the conditions are slightly different from the two-dimensional scanned data due to device tuning.

The additional data here is collected at B= 10 mT, under similar conditions as the data shown in Fig.4b of the
main text.

Supplementary Fig. 4a-c shows SWAP oscillations of Q1-Q2, Q2-Q3, and Q3-Q4. For Q3-Q4, we scanned over a
wide range of detuning and there are three sets of oscillations visible from left to right, where the rightmost corresponds
to SWAP oscillations of Q3-Q4, the middle oscillations correspond to a single-qubit operation of Q4, and the leftmost
is also a set of SWAP oscillations but with a very slow oscillation speed, which corresponds to a smaller interqubit
coupling than the rightmost one (see the leftmost anticrossing in Fig. 3b of the main text). These features can all
be qualitatively understood using Fig. 3b in the main text. However, to quantitatively model the oscillations, the
contribution of anisotropic exchange couplings may be needed.

The oscillation frequencies in the middle of the chevron patterns are in the range of 22.2(3) - 112(1) MHz, corre-
sponding to a vVSWAP (entangling) gate with durations of just 2.2 ns to 11.3 ns, more than an order of magnitude
faster than the entangling gate based on capacitive coupling [9, 10]. To determine the dephasing times of the SWAP
oscillations, we collect data in the middle of the chevron patterns, as shown in Supplementary Fig. 4d, and fit them
with the same function as used for single-qubit oscillations. The extracted dephasing times are between 63(24) and
154(43) ns. An increased quality of SWAP oscillations can be observed in the Extended Fig. 3b, of which the data
was collected at B = 5 mT in a separate cool-down of the device. The dephasing times may be further increased
by executing the SWAP oscillations at the symmetry points of the detuning of each qubit, which requires a stronger
tunability of the exchange interactions using the barrier gates.



VI. PULSE SCHEME AND CALIBRATION FOR QUANTUM STATE TRANSFER
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Supplementary Fig 5. a, Schematic representation of the different steps in the quantum-state-transfer experiment of Fig. 4
of the main text. The gray dashed curves indicate potential entanglement between two qubits. The black curved double-arrow
refers to a SWAP gate that is intended to transfer information from one qubit to the next. b, Measured triplet probabilities of
Q4 as a function of waiting time twait and detuning of Q3, 37. The inset illustrates that we control Q3 to perform an z-rotation
with a time twait and subsequently perform a SWAP gate of Q3-Q4 and measure Q4 using PSB. ¢, Measured triplet probabilities
of Q3 as a function of twait and detuning of Q2, e26. The inset illustration is similar to that in b but with single-qubit control
of Q2, a subsequent SWAP gate of Q2-Q3 and PSB measurement of Q3. d, Measured triplet probabilities of Q4 as a function
of twait and the detuning of Q1, £15. The inset shows that we perform an z-rotation of Q1 with a time tair followed by three
consecutive SWAP gates to transfer the state of Q1 to Q2, Q3 and Q4, after which we measure Q4 using PSB. d has lower
visibility on the right-hand side of the figure compared to its left-hand side, which can be attributed to a possible parameter
shift of the consecutive SWAP gates by low-frequency charge noise after the left part was scanned. e, Direct readout of Q1
with the same single-qubit control as in d.

The detailed pulse scheme for collecting the data of quantum state transfer in Fig.4b of the main text is shown in
Supplementary Fig. 5a. We initialize Q1-Q4 in the (2923 9) regime and then diabatically pulse to the (11 11) regime,
preserving four singlets. At this point, the detuning of Q1 and Q3 is set close to the (1,1)-(2,0) transition and that of
Q4 close to the (1,1)-(0,2) transition in order to stay away from the S —T_ anticrossing. This ensures that these three
qubits remain in the singlet state. The detuning of Q2 is set to zero such that Q2 rotates around its = axis to [T_).
Then we pulse the detunings and barrier gates of Q1-Q2 to initiate a SWAP interaction for a duration ty.;, after
which we transfer the state of Q2 to Q4 by performing sequential SWAP operations of Q2-Q3 and Q3-Q4. Finally,
we pulse Q4 to zero detuning to kickstart single-qubit evolution around the z-axis for a duration tq4. For readout,
we pulse Q1-Q4 into (1119) where we perform PSB readout of Q4. The detunings of Q1-Q3 are set to zero while
Q4 is read out, but this will not affect the readout since Q4 is protected by a very large J in the readout window.

Before the quantum state transfer experiment, we confirm the operation of the individual SWAP gates by performing
a single-qubit rotation of one qubit and measuring its state using the other after a SWAP gate. Some results are
shown in Supplementary Fig. 5b and ¢, where we perform this test for Q3-Q4 and Q2-Q3, respectively. Supplementary
Fig. 5d shows a result where Q1 is rotated and the measured qubit is Q4 following three consecutive SWAP gates
from Q1 to Q4. A comparison of the direct readout of Q1 is shown in Supplementary Fig. 5e, with similar oscillations
to that of Supplementary Fig. 5d at similar detuning voltages. These results demonstrate the SWAP gates are of
sufficient quality to allow quantum state transfer across the entire array.



VII. A THEORETICAL MODEL FOR THE SWAP OPERATION

Holes confined in quantum dots are well described by the conventional Fermi-Hubbard model [11]. In the presence
of a finite magnetic field and spin-orbit interaction, the Fermi-Hubbard model can be written as:

N Ui
Hpp :Z [va +upB - gisﬁ} + Z 3”1(”1 -1+ Z Vijnin;
=1 i=1 (4,4)

+ Z (fijc;r’ocjﬁ + hC) + Z (tNSo)ijc;r’aCjﬁ + hC) . (1)

o=1,} o=T,{

Here, h.c. denotes hermitian conjugate, ¢ the opposite spin state of o, the operator c;-rﬁ (¢i,o) creates (annihilates)

a hole in QD ¢ with spin o =1,], n; = >, cZT»’o_cw is the charge number operator, and S = (S, ;,Sy.i,S-)T is the
vector consisting of the spin matrices

St

Sei= §(CI7T0L¢ + clicm) (2)
h
Sy = —Zi(cj,TCz‘,i —c jcin) (3)
h
S.i= §(CI,¢CZ;T —cl i) (4)

The first line in Hamiltonian (1) describes the hole energies, i.e., p; denotes the chemical potential in QD 4, U; is the
Coulomb repulsion for doubly occupying the i-th QD, V;; is the Coulomb repulsion of two holes occupying neighboring
QDs i and j, up is Bohr’s magneton, and G, is the quantum dot g-tensor. The second line describes the hopping terms
between neighboring sites denoted by the spin-conserving tunnel matrix elements fij and spin-non-conserving tunnel
matrix elements fso ;;. Note, that this notation is consistent with Refs. [12, 13] as #;; and #s0,;; can be complex in
general.

Single-qubit Hamiltonian

Considering only two neighboring quantum dots, the Hamiltonian can be simplified by transforming into the spin-
orbit frame [13]. Intuitively, since the spin-orbit interaction only rotates the spin during tunneling, local spin rotations
can always “unwind” the rotation. As a consequence of the spin-orbit interaction, the g-tensor of quantum dot i is
rotated as G; — R;G; = G;, and the tunnel coupling is renormalized as t = /|2 + |fsol? [13].

Hamiltonian The respective Hamiltonian in the basis {S(2,0), S(0,2), S(1,1), T—_(1,1), Tp(1,1), T4 (1,1)} of the
spin-orbit frame reads

(U+e 0 V2t 0 0 0
0 U-e vat AEIPiAEy 0 AEIO+iAEy
Hpqp = \/ft \ft AEm-i(-)iAEy —\/EZ Eifgy aﬁ . (5)
V2 Rt V2 U
0 0 AE, E;EE 0 EjiE
0 0 —SELRh 0 R E. ]

Here, we introduce the energy detuning € = p; — po, and the average and difference in Zeeman energy for a fixed
magnetic field direction, 21775 = upB(G1 + G2)€ and 2AE: = upB(Gy — G2)€, where € is the unit vector along axis
¢ = z,y,z. We note that in our experiment we only have access to the energies and not the individual g-tensors due
to the lack of access to a vector magnet.

Simulations To compute the single-qubit energy spectra in the main text (Fig. lc-e), we use Hamiltonian (1)
assuming only real tunnel matrix elements. Explicitly, we set the spin-conserving tunneling as ¢ = 1.2, 1.86, 2.4 GHz,
the spin-non-conserving tunneling as fso = 10 MHz, and U = 300 GHz, B = |B| = 10 mT, g = |G; + G2|/2 = 0.33,
Ag =1G1 — Gz|/2 = 0.008, and with all other components of the g-tensors set to zero.
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Effective qubit Hamiltonian To separate the spin dynamics from the charge dynamics, we now restrict ourselves
to the subspace spanned by the spin states {S(1,1), T_(1,1), To(1,1), 7+(1,1)}. This can be done either by block-
diagonalizing via Schrieffer-Wolff perturbation theory [14] or by diagonalizing the singlet sector spanned by {5(2,0),
S5(0,2), S(1,1)} with a subsequent projection or block-diagonalization [13]. Regardless of the chosen method, the
resulting Hamiltonian has the form of a generalized Heisenberg Hamiltonian

AE,—iAE, _ AE;+iAE,
Jo —5 7AE27 —z
AE,+iAE, _E Es+iEy 0
— V2 _E V2 _
HDQD - AFE* E,—iE, 0 E,+iE, ’ (6)
z V2 _ V2
—AE,+iAE, E,—iE, n
B 0 —= E,

where Jj is the exchange interaction. In the regime of single dot occupation, [t| < |U =+ €|, the exchange interaction
can be approximated by [14]

262U

We observe that during the transformation AE, , . is renormalized by the charge-state admixture as AE], , _ [13, 15].
For simplicity and without impacting practical outcomes, we henceforth omit the primed notation.

Starting from Hamiltonian (6) we can now construct the qubit Hamiltonian. The |0) = |S) = S(1,1) qubit state is
defined via the PSB readout mechanism. We find the second qubit state by diagonalizing the triplet sector spanned

—iv-8°/h

by {T-(1,1), To(1,1), T4+ (1,1)}. Fortunately, the transformation can be parameterized as e , where v is a real

vector and S° is a vector containing the spin-0 matrices

1

Sa(c) = 5(53271 + 5:672) (8)
1

52 = 5(5%1 + Sy,Q) (9)
1

Sg = 5(5271 + Sz,2)~ (10)

The |1) = |T—) qubit state is then consequently given by the lowest-energy state. The final qubit Hamiltonian reads

) _J AST7€1¢ST7
Hero = |, oer. z . (11)
— 3 —E.

In lowest-order perturbation theory the exchange energy J = Jo, the average Zeeman splitting E, = ,/E2 + Eg + E2,
and the spin-orbit coupling reads

- _ _ _ _
Asoe @7 — \/iAEz (EZ+ EQ fAEz(AI:JxEﬁ + AEE,) N ﬁiAEx{;y ~ AEE, 12)
E.(E, —iE,) (E, —iE,)

To arrive at the single-qubit Hamiltonian in the main text, we apply the local phase transformation Uy =

exp(—igsr_(|0) (0] —[1) (1])/2)

Hgr_ = UgHgr Ul =

AsT
7J —
AS2T7 —QEZ ‘| ’ (13)

We remark that a more accurate Hamiltonian can be computed recursively using perturbation theory for a sufficiently
large spectral gap [16]. We also remark that leakage outside the qubit subspace can be strongly suppressed using
optimal control theory and Hamiltonian engineering.



11
Decoherence times

Charge noise and nuclear spin noise are ubiquitous in germanium semiconductor devices. Due to the low-frequency
nature of both types of noise, they can be approximately modeled as quasistatic fluctuations of input parameters,
giving rise to pure dephasing. Furthermore, we ignore in our analysis any energy relaxation mechanism, which is a
good approximation for spin qubits [11]. Hamiltonian (13) under weak low-frequency noise thus becomes [17]

A SN, —iSA,
7 —J—4J Sort 2 — (14)
ST- = | A SAL+iSA, — — )

ST_+2 +i0Ay —EZ—(SEZ
where ¢ denotes fluctuations. Note that there are two off-diagonal contributions A, and dA, that arise from the com-

plex quantity Agy_ etPsT Assuming quasi-static noise (or low-frequency noise within the adiabatic approximation)

the qubit resonance frequency is modulated by noise as follows

P = \JA —B2)2 + A2y — \JA(T — B + 67— 6B.)2 + (Asr_ +0A,)2 + 542, (15)

The S — T_ qubit is operated in two regimes which we separately discuss. o
Dephasing during rotations around the x-axis For single-qubit z-rotations, we operate at J = E, and we can
expand Eq. (15) up to first order

hwi = Agr. + 68, + O(6?) (16)

to find the dominating contributions. Assuming quasi-static Gaussian distributed noise, the decoherence time in the
x-axis rotation regime is then given by

1
T = :
Y V204,
where 03 = (0A2) — (6A;)? is the standard deviation of the 6A; noise. Since AE; o« B and E¢ B for £ = 2,y, z,
we expect T oc B~! for an in-plane magnetic field [6, 18]. Therefore, operating at small magnetic fields is beneficial
for z-gates.

Dephasing during rotations around the z-axzis For single-qubit z-rotations, we operate at |J — E.| > Agr_ and
we can expand Eq. (15) up to first order

(17)

z Fnl T 2
hwi = |J — B +0J — 0B.| + O(8?) (18)

to find the dominating contributions. Assuming Gaussian distributed noise the decoherence time in the z-axis rotation
regime is then given by

1

S — 19
\/iaJ,E (1+¢) 19)
where agJE = ((0J—=0E.)%) —((6J—0dE.))? is the standard deviation of the noise difference, ¢ = cov(J, E.) /(0505 )

the noise correlation factor, cov(J, E.) the covariance, and o ; (05.) the standard deviation of the individual fluctua-
tions §J and F,. Since E, o< B, operating at small magnetic fields can suppress fluctuations of the Zeeman splitting,
giving rise to T = \/51(”. In contrast to T}, thus, T is not suppressed at small magnetic fields. This is consistent

with the observations in the main text that 77 < T7;.

Two-qubit Hamiltonian

The derivation of the Hamiltonian of two coupled S —T_ qubits is analogous to that of the single-qubit Hamiltonian.
The first step is separating the spin and charge degree of freedom, resulting in a generalized Heisenberg Hamiltonian.
We give explicit expressions for the two-qubit Hamiltonian for two different architectures, a simplified architecture
with single connectivity and the design from the experiment.
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Linear chain with a single inter-qubit tunnel (exchange) coupling and isotropic g-tensor up to a scaling. In this
case, the multi-qubit Hamiltonian is given by

Agt_ 4 S;-85; 1
HF‘H :;'LLBgiBSZ’i+Zl A ST‘F(z:)ﬁLJzJ (FLQ - Z 5 (20)
1= 1= 2,7
where (i,7) denotes neighboring quantum dots. Projected on the two-qubit basis {|S,S),|S,T-),|T-,S),|T-,T-)}
the two-qubit Hamiltonian reads

HQQ = HQl + HQ2 + Hcoup,iso (21)
with
I v R Al
Hoo o — | 95 =Ty —Baw 0 N 22
Q1+ Hqe = As0,i 0 .o T Aso.rt ’ (22)
R R
S0,ij skl
0 —5 —5 7Ez,ij - Ez,kl

0 0 0 0

71 0 0 Jcoup,ij,kl 0
Hcoup,lso *5 O Jcoup,ij,kl O O ) (23)

0 0 0 Jcoup,ij,kl

Here the subscripts indicate the sites ¢, j, k and [, respectively. Note that this Hamiltonian is identical to the
Hamiltonian used in the main text up to an energy offset that corresponds to a global phase shift.

From a quantum information point of view, the isotropic exchange Hamiltonian (23) generates a universal two-
qubit gate. More precisely, the Hamiltonian generates a SWAP + iSWAP gate. This can be visualized through the
symmetry of the system: since the isotropic exchange interaction is given by the projector on the singlet subspace,
the |T_T_) (T_T_| matrix element of the two-qubit interaction has to be zero.

Ladder with two inter-qubit tunnel (exchange) couplings and anisotropic g-tensors. This is the architecture used
in the present device. Consequently, the Hamiltonian cannot be cast into Eq. (20) and an additional rotation of the
spin has to be taken into account [13]. Fortunately, the “additional” rotation from the exchange interaction can be
absorbed into the rotation caused by the differences in g-tensor for a fixed magnetic field setting. In this case, the
total two-qubit Hamiltonian is given by

HQQ = HQ] + HQ2 + Hcoup,iso + Hcoup,SOI ’ (24)

where the first three terms are given in Eqs. (22)-(23). The last term is caused by the spin-orbit interaction and is
given by

Si - TSk 1 S;- TS 1
Hcoup,SOI = PZQUijA,kl |:<h2 - Z + % - Z Ui1.]‘7klP2Q - Hcoup,isoa (25)
T R N o
1 0 0 T iik Jazijr
=- 0 750 0 JSO ) (26)
2 © 11,45,kl © als,l(c)l,ij
Jionimt Jaziim Jatkiie Tk

where P»q is the projector on the two-qubit subspace,

Uijht = Ug,, Ugyy @i S5/ giom Siu/h, (27)

is the combination of the single S — T qubit basis transformation from the previous section, and Jix(;;) is the
exchange tensor between the spins in quantum dot pair ¢k (jI) in the spin-orbit basis [13] of quantum dot pair ij and
kl. We also note that the full characterization of all elements cannot be resolved with our current operation regime
and measurement setup, as high-fidelity sequential spin readout is required. For example, the st_gi j,k term could be
characterized in the regime where the energies of the |SS) and |[T_T_) states are identical but energetically separated
from the other states. Therefore, we consider for simplicity an isotropic model to describe the swapping dynamics,
which fits well to the observations.
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Simulation of the two-qubit energy spectrum To compute the two-qubit energy spectrum between Q3 and Q4 in
the main text (Fig. 3b), we use the Hamiltonian of (21) and Eq. (7) and the estimated single-qubit parameters at B =
10 mT. Explicitly, we use Ugs = 290 GHz, Ugs = 326 GHz, {3 = 3 GHz, {4 = 2.8 GHz, g3 = -174 GHz, go; =
0.37, g4 = 0.35, and assume for simplicity a homogeneous Aso ;j = Aso x = 10 MHz. For the two-qubit interaction
between Q3 and Q4, we use Heoup,iso With Jeoup = (Jix + Jj1)/2. We have estimated the inter-qubit exchange using
tir = 2 GHz and t;; = 0.4 GHz and €, = (€;5 — €m + t0)/2 and €j; = (er — €15 + 110)/2 by assuming the difference
between the chemical potential offsets of two qubits pg = ps5 — pa = 0.

Simulation of the state transfer For the simulation of the state transfer in the main text (Fig. 4b), we use the
Hamiltonian of Eq. (23) for the SWAP operations with Jeoup, = 95 MHz and a single-qubit x-axis rotation frequency
of Q4 of 13 MHz.

Fitting Hamiltonian Since our two-qubit characterization was performed in a regime where the single-qubit energies
are larger than the inter-qubit coupling energies, the upper Hamiltonian can be further simplified using another block-

. . . . . . . SO, * SO, * SO, *
diagonalization (SW approximation) step to ease fitting. In particular, we assume |JL2,M_’].,C|7 |Ja17kl7jk|, |Ja2’k17jk\ <

|Jij — E+ijl, |Jxi — B pa|. The effective Hamiltonian can then be written as follows:

J g g J g g J » e .. DI
Haq, e == (008! + o o!) + Z72 (003! — oio)) + =PEalol! + 2(0¥ —ol) + JoF +0l)  (28)
with the parameters
SO,x* SO
12 i adarij e
J = 44,k + Re JSO .~ Gst R e (29)
rans coup,tj 11,45,k 9 Ezyij +Ez7kl )
SO,* SO
12 i mdarij e
J = _Im JJS_O ikl + *—i’”’ — J: (30)
cross ( 1,47, 2 Ez,ij 4 Ez,kl
SO
P Jeoup, iz kl — JH,ij,kl 1 ‘J§1O,ij,kl|2 + |J§2?¢j,kz|2 (31)
ng — - - I
one 2 2 Ez,ij + Ez,kl
= = 1|J¢§2Oi'kl|2_|<]§10i’kl|2
E:E—E _J+J _’_7 7i _ ], , 32
2,17 z,kl i kl 4 Ez)ij T Ez,k,l ( )
SO
S—F. . +E = T — T — Jcoup,ij,kl - J||,ij,kl I 1 |J(§1C,)ij,kl‘2 =+ |‘]§2C,)ij,kl|2 n 2|JJS_(2),ij,kl|2
oY - Y 2 4 E,ij+E.r E..j+E.u—Jij — Ju

(33)

Here, Jirans denotes the real part and Jeoss the imaginary part of the center off-diagonal terms of the Hamiltonian (24);
Jiong mainly refers to the exchange interaction of S — T_ qubits plus the spin-orbit coupling induced anisotropic
exchange interactions; ¢ includes mainly the detuning of qubit energies in the experiment, and ¥ is the total qubit
energy, with a correction of the anisotropic exchange couplings. We remark, that the upper Hamiltonian also considers
the effect of single-qubit phase rotations that may happen before and after the v/ SWAP gate in the GST experiment,
e.g., through errors in the idling gate before and after the exchange pulse or crosstalk. Such single-qubit phase
rotations shift the vSWAP rotation axis 6 = arg(Jians + 1Jeross) — 0 + ¢, where arg denotes the argument of the
complex number. It can also be noted that this realistic Hamiltonian is similar in form to the isotropic Hamiltonian
in the main text up to single-qubit phases and controlled phase rotations, thus we used only the isotropic model to
describe the SWAP dynamics in the main text.

VIII. GATE SET TOMOGRAPHY OF THE SINGLE- AND TWO-QUBIT GATE
Gate set tomography of the single-qubit gate

The gate set tomography experiments are all carried out using the python package pyGSTi [19].

For single-qubit GST, we use the model smqlQ XY with a gateset including only v X and /Y. The fiducials
for state preparation and measurements are {null, VX, VY, VXVX, VXVXVX, VYVYVY }, where null is an
idle gate with zero waiting time, and the germs for amplifying qubit errors are {\/Y VY, VXVXVY +. Unless
indicated otherwise, the implemented circuit lengths are powers of two from 1 up to 32, resulting in 568 circuits in
total. In every sequence, the singlet or triplet probability of the involved qubit is acquired by averaging over 1000
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single-shot cycles. The data was analyzed using pyGSTi with the CPTP (completely positive trace-preserving) model,
from which we obtained Pauli transfer matrices (PTM) Mey, for each gate operation. By comparing them to the
ideal matrices, Migeal, We can derive an entanglement fidelity as F), = Tr[MiggalMexp]/ d?, and thus a gate infidelity
1-F, = ﬁ(l — F,), where d = 2N is the dimension of the Hilbert space, and N refers to the qubit number. Two
datasets of the gate infidelities of each qubit are shown in Table I.

It is worth mentioning that in some cases, the /Y gate shows a smaller error than the v/ X gate, which may be
an artefact caused by the GST protocol, i.e., biased attribution of relational errors [20]. Table I also includes the

non-unitary gate infidelities, 452 (1 — \/u(Mexp Midear ), Where u(M) = Tr(Jo(M)?) and J, (M) is the Jamiotkowski
isomorphism map between the matrix M and the corresponding Choi Matrix. Almost all the data show a larger error
of the gate infidelity than the non-unitary error, but only by a small amount. Therefore, we can expect slightly higher

control fidelities with improved pulse control.

Gate

Q1

Q2

Q3

Q4

VX
v/ X, non-unitary
VY
\/17 , non-unitary

0.0084+0.0004
0.0083+0.0004
0.0062+0.0004
0.006140.0004

0.0039+0.0004
0.0038+0.0004
0.005140.0005
0.004940.0005

0.010240.0009
0.0097+0.0009
0.006840.0008
0.006040.0008

0.0044+0.0004
0.0025£0.0004
0.0055+0.0004
0.0034£0.0004

VX
VX , non-unitary
VY

VY, non-unitary

0.0079+0.0004
0.0072+0.0004
0.0084+0.0004

0.0075+0.0004

0.0031+0.0006
0.0002+0.0006
0.0114+0.0007
0.0046+0.0007

0.010040.0009
0.0093+0.0009
0.011240.0009
0.0105+0.0009

0.005440.0015
0.0029+0.0015
0.0035+0.0014
0.0010£0.0014

TABLE I. Summary of the gate infidelities of single-qubit gates of Q1-Q4 from two different datasets. The uncertainty
represents the 95% confidence interval. Notice the second dataset for Q4 show higher error bars, which was obtained with
circuit length L=8, others were obtained with L=32.

Gate set tomography of the two-qubit gate

The two-qubit GST are performed on Q1 and Q2. We derive a model named smq2Q_ XYSQRT and the default
gateset includes {\/)7 Q1 VX Q2 VY Q1> VY, 02, VSWAP}, where the subscript in the single-qubit gate refers to the
corresponding qubit. The fiducials and germs are shown in Table II. The circuit lengths are powers of two from 1
up to 2, resulting in 1317 circuits in total. In every sequence, the joint probabilities of each qubit are acquired by
averaging over 500 single-shot cycles.

fiducial: preparation fiducial: germ
measurement

1 null null \/YQl
2 | Vo VX os Vo
3 |vras NI Fon
4 \/YQQ\/YQQ \/YQQ\/YQQ \/?QQ
5 |[|[VXaor VX SWAP
6 \/YQI\/YQQ \/?Ql VSWAP\/YQQ\/YQ2VSWAP\/YQ2\/YQ1
7 |[VXo1VY e VXoivVXar VX VY VY 1 VY g2VY 01
8 \/YQN/YQz\/YQz \/YQl\/YQp \/YQQ\/?Q2\/YQ1\/?QI
9 \/}7Q1 \/YQl\/?Qp VSWAP~/ SWAP\/?Q2\/YQ1\/?QI
10 \/?Ql\/XQQ \/?Ql\/ycp \/YQZ\/?QQ\/?Q2
11 \/?Ql\/?Q2 \/?Ql\/?Q2 \/?QQ\/YQl\/SWAP\/XQl
12 \/?Ql\/XQQ\/YQQ VSWAP\/YQl\/?Ql\/XQQ\/?Ql\/ SWAP
13 |[VXivVX VY 02VY 0aVY 01 VY i VX 02V X 0oV X 01
4 ||[VX VX vVXqo
15 || VXoiVX1vXq2
16 ||[VXvVX1 VX2V X2

TABLE II. Fiducials and germs for the two-qubit GST circuits
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Supplementary Fig 6. a, Illustration of the gate voltage pulses for the idle gate calibration of Q2 with Q1 doing an VX
gate operation. In this Ramsey-like sequence, a perfect idle gate will result in a zero singlet probability of Q2. The Bloch
sphere below shows the qubit rotation with a barrier gate pulse. b, Measured singlet probabilities Ps as a function of the
barrier voltage change with a fixed duration that equals the operation time on the other qubit. They are the results for the
calibration of v/X gy (top left), v X g, (top right), V'Y oo (bottom left) and v'Y g, (bottom right). The orange circles show the
expected position of the barrier gate voltage for the idle operation.

As discussed in the Extended Fig. 10 in the main text, the single-qubit gate in the two-qubit space requires an
idle gate. Our strategy is to pulse the idle qubit to an operating point where it completes a 27 rotation during the

time needed to operate on the other qubit, with a rotation speed of fgr = \/(J —E,)?+ A%n /h by pulsing the

barrier gate. To calibrate the barrier pulse, we use a Ramsey-like pulse sequence as shown in Supplementary Fig. 6a.
One example of the barrier pulse calibration for the single-qubit gates of Q1 and Q2 is shown in Supplementary
Fig. 6b. Here, we keep the idle qubit at the sweet point of the detuning and try to pulse the barrier gate positively to
reduce the effect of charge noise from strong exchange coupling. For v/X. Q1 VY Q1 VY @2 the idling qubit is pulsed
positively, while for v/ X @2, the idling qubit is pulsed negatively because the short VX gate duration of Q2 otherwise
does not allow a full rotation on the idling qubit (Q1) given the accessible values of |E, — J|.

The raw data of running GST circuits was analyzed using the CPTP model, and the gate infidelities of three
datasets are shown in Table. III. The single-qubit gate errors in the two-qubit space are quite large compared to
those measured in the single-qubit space. To get a better understanding, we calculate the Jamiotkowski probability
es(L) = =Tr[ps (L) |¥) (¥|] and the Jamiotkowski amplitude 6;(L) = ||(1 — |¥) (¥])ps(L) |¥) ||, which approximately
describe the amount of incoherent and coherent Hamiltonian errors of the quantum process, respectively [21]. Here
ps(L) = (L@ 142)|¥) (¥| is the Jamiotkowski state, £ = log(MexpM,5l,;) is the error generator of the process, and
|¥) is a maximally entangled state that originates from the relation of quantum processes to states in a Hilbert space
twice the dimension via the Choi-Jamiotkowski isomorphism. In Table. ITI, we can see that the coherent errors are all
larger than the incoherent errors, suggesting the qubits suffer more from calibration errors in the gate pulses rather
than decoherence. These calibration errors affect not only the qubit we aim to rotate but also the idling qubit, which
is ideally undergoing a 27 rotation. The total error they contribute to the gate operation can be approximately
calculated as 1 — Fy = d;il[e 7(L£) +0,(L£)?] when errors are small. We can observe that they are similar to the values
1 — F; calculated before.

For the two-qubit gate, the GST model we used for data analysis is a standard vSWAP. From the GST result,
we obtain a PTM and fit it to our theoretical model (28). The fitted parameters are shown in Table IV. The fact
that Jiong differs from Jians, as well as the non-zero value of Jeyoss, arise from spin-orbit coupling. The detuning of
two qubit splittings ¢ can originate from imperfect calibration of the vVSWAP gate operation point, whose strength
compared to the exchange coupling is calculated and shown as e//J2, s + J2.0s- 2 18 a single-qubit z rotation, see
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Gate Gate infidelity (1-Fy) |Jamiotkowski proba-|Jamiotkowski ampli-|Total error (1-F)
bility €5(L) tude 05(L)
VX 0.02826 0.01827 0.1337 0.02891
VX2 0.03796 0.04513 0.06360 0.03934
VY o1 0.04175 0.03593 0.13510 0.04335
VY g2 0.13356 0.10504 0.28204 0.14767
SWAP 0.20320 0.25753 0.22752 0.24743
VXo1 0.02535 0.02029 0.11011 0.02593
VX2 0.04334 0.05166 0.06701 0.04492
VY 0.04078 0.04056 0.11085 0.04228
VY g2 0.13500 0.10932 0.27864 0.14957
SWAP 0.20390 0.25132 0.23363 0.24472
o 0.03027 0.02342 0.12412 0.03106
VX2 0.04032 0.04576 0.08005 0.04173
VY o1 0.04232 0.04027 0.12052 0.04384
VY o 0.13230 0.10893 0.27269 0.14663
SWAP 0.19560 0.24216 0.22064 0.23267
TABLE III. Summary of the gate infidelities of the two-qubit GST measurement from three different datasets. Notice the

fidelities for the v/SWAP is analyzed by fitting the theoretical model.

Eq. (28). With those fitted parameters, we can rebuild the Pauli transfer matrix Miqea of the vVSWAP gate, and
by comparing it to the experimental result Mey,, we obtain the gate fidelities as shown in the Table IV. These gate
fidelities are lower than the Bell state fidelity, which possibly may be explained by the fact that the gate fidelity is
a measure that averages over all possible input states, while the Bell state fidelity considers only one specific input
state. Moreover, the pulse schemes for measuring the vVSWAP gate fidelity and the Bell state are different, which
can result in different contributions from single-qubit errors. These fitted parameters also enable us to rebuild the
two-qubit gate unitary matrix as shown below (using data set 3 in Table. IV):

1 0 0 0
T 0 0.748¢3 1311 (.664¢~ 145 0
SWAPST = 0 0.6646_1'95i 0.74862'894i 0 ) (34)
0 0 0 1¢0-266¢
Parameter Data set 1 Data set 2 Data set 3
Jiranst (rad) 4.313 4.528 4.624
Jorosst (rad) -1.187 -1.285 -1.181
Jiongt (rad) -0.465 -0.531 -0.524
et (rad) 1.540 1.148 0.635
>t (rad) 0.190 0.218 0.266
J2ons T JZ0ss 0.344 0.244 0.133
Gate Fidelity 79.7% 79.6% 80.4%

TABLE IV. Summary of the fitting parameters for the VSWAPgr gate. In the table, ¢ refers to the operation time of the
VSWAP s gate. The values of the parameters with a radiation unit are modulo 27.
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